1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 168 bool UseSExt = true); 169 unsigned PPCMaterialize32BitInt(int64_t Imm, 170 const TargetRegisterClass *RC); 171 unsigned PPCMaterialize64BitInt(int64_t Imm, 172 const TargetRegisterClass *RC); 173 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 174 unsigned SrcReg, bool IsSigned); 175 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 176 177 // Call handling routines. 178 private: 179 bool processCallArgs(SmallVectorImpl<Value*> &Args, 180 SmallVectorImpl<unsigned> &ArgRegs, 181 SmallVectorImpl<MVT> &ArgVTs, 182 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 183 SmallVectorImpl<unsigned> &RegArgs, 184 CallingConv::ID CC, 185 unsigned &NumBytes, 186 bool IsVarArg); 187 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 188 CCAssignFn *usePPC32CCs(unsigned Flag); 189 190 private: 191 #include "PPCGenFastISel.inc" 192 193 }; 194 195 } // end anonymous namespace 196 197 #include "PPCGenCallingConv.inc" 198 199 // Function whose sole purpose is to kill compiler warnings 200 // stemming from unused functions included from PPCGenCallingConv.inc. 201 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 202 if (Flag == 1) 203 return CC_PPC32_SVR4; 204 else if (Flag == 2) 205 return CC_PPC32_SVR4_ByVal; 206 else if (Flag == 3) 207 return CC_PPC32_SVR4_VarArg; 208 else 209 return RetCC_PPC; 210 } 211 212 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 213 switch (Pred) { 214 // These are not representable with any single compare. 215 case CmpInst::FCMP_FALSE: 216 case CmpInst::FCMP_UEQ: 217 case CmpInst::FCMP_UGT: 218 case CmpInst::FCMP_UGE: 219 case CmpInst::FCMP_ULT: 220 case CmpInst::FCMP_ULE: 221 case CmpInst::FCMP_UNE: 222 case CmpInst::FCMP_TRUE: 223 default: 224 return Optional<PPC::Predicate>(); 225 226 case CmpInst::FCMP_OEQ: 227 case CmpInst::ICMP_EQ: 228 return PPC::PRED_EQ; 229 230 case CmpInst::FCMP_OGT: 231 case CmpInst::ICMP_UGT: 232 case CmpInst::ICMP_SGT: 233 return PPC::PRED_GT; 234 235 case CmpInst::FCMP_OGE: 236 case CmpInst::ICMP_UGE: 237 case CmpInst::ICMP_SGE: 238 return PPC::PRED_GE; 239 240 case CmpInst::FCMP_OLT: 241 case CmpInst::ICMP_ULT: 242 case CmpInst::ICMP_SLT: 243 return PPC::PRED_LT; 244 245 case CmpInst::FCMP_OLE: 246 case CmpInst::ICMP_ULE: 247 case CmpInst::ICMP_SLE: 248 return PPC::PRED_LE; 249 250 case CmpInst::FCMP_ONE: 251 case CmpInst::ICMP_NE: 252 return PPC::PRED_NE; 253 254 case CmpInst::FCMP_ORD: 255 return PPC::PRED_NU; 256 257 case CmpInst::FCMP_UNO: 258 return PPC::PRED_UN; 259 } 260 } 261 262 // Determine whether the type Ty is simple enough to be handled by 263 // fast-isel, and return its equivalent machine type in VT. 264 // FIXME: Copied directly from ARM -- factor into base class? 265 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 266 EVT Evt = TLI.getValueType(DL, Ty, true); 267 268 // Only handle simple types. 269 if (Evt == MVT::Other || !Evt.isSimple()) return false; 270 VT = Evt.getSimpleVT(); 271 272 // Handle all legal types, i.e. a register that will directly hold this 273 // value. 274 return TLI.isTypeLegal(VT); 275 } 276 277 // Determine whether the type Ty is simple enough to be handled by 278 // fast-isel as a load target, and return its equivalent machine type in VT. 279 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 280 if (isTypeLegal(Ty, VT)) return true; 281 282 // If this is a type than can be sign or zero-extended to a basic operation 283 // go ahead and accept it now. 284 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 285 return true; 286 } 287 288 return false; 289 } 290 291 bool PPCFastISel::isValueAvailable(const Value *V) const { 292 if (!isa<Instruction>(V)) 293 return true; 294 295 const auto *I = cast<Instruction>(V); 296 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) 297 return true; 298 299 return false; 300 } 301 302 // Given a value Obj, create an Address object Addr that represents its 303 // address. Return false if we can't handle it. 304 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 305 const User *U = nullptr; 306 unsigned Opcode = Instruction::UserOp1; 307 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 308 // Don't walk into other basic blocks unless the object is an alloca from 309 // another block, otherwise it may not have a virtual register assigned. 310 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 311 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 312 Opcode = I->getOpcode(); 313 U = I; 314 } 315 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 316 Opcode = C->getOpcode(); 317 U = C; 318 } 319 320 switch (Opcode) { 321 default: 322 break; 323 case Instruction::BitCast: 324 // Look through bitcasts. 325 return PPCComputeAddress(U->getOperand(0), Addr); 326 case Instruction::IntToPtr: 327 // Look past no-op inttoptrs. 328 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 329 TLI.getPointerTy(DL)) 330 return PPCComputeAddress(U->getOperand(0), Addr); 331 break; 332 case Instruction::PtrToInt: 333 // Look past no-op ptrtoints. 334 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 335 return PPCComputeAddress(U->getOperand(0), Addr); 336 break; 337 case Instruction::GetElementPtr: { 338 Address SavedAddr = Addr; 339 long TmpOffset = Addr.Offset; 340 341 // Iterate through the GEP folding the constants into offsets where 342 // we can. 343 gep_type_iterator GTI = gep_type_begin(U); 344 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 345 II != IE; ++II, ++GTI) { 346 const Value *Op = *II; 347 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 348 const StructLayout *SL = DL.getStructLayout(STy); 349 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 350 TmpOffset += SL->getElementOffset(Idx); 351 } else { 352 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 353 for (;;) { 354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 355 // Constant-offset addressing. 356 TmpOffset += CI->getSExtValue() * S; 357 break; 358 } 359 if (canFoldAddIntoGEP(U, Op)) { 360 // A compatible add with a constant operand. Fold the constant. 361 ConstantInt *CI = 362 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 363 TmpOffset += CI->getSExtValue() * S; 364 // Iterate on the other operand. 365 Op = cast<AddOperator>(Op)->getOperand(0); 366 continue; 367 } 368 // Unsupported 369 goto unsupported_gep; 370 } 371 } 372 } 373 374 // Try to grab the base operand now. 375 Addr.Offset = TmpOffset; 376 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 377 378 // We failed, restore everything and try the other options. 379 Addr = SavedAddr; 380 381 unsupported_gep: 382 break; 383 } 384 case Instruction::Alloca: { 385 const AllocaInst *AI = cast<AllocaInst>(Obj); 386 DenseMap<const AllocaInst*, int>::iterator SI = 387 FuncInfo.StaticAllocaMap.find(AI); 388 if (SI != FuncInfo.StaticAllocaMap.end()) { 389 Addr.BaseType = Address::FrameIndexBase; 390 Addr.Base.FI = SI->second; 391 return true; 392 } 393 break; 394 } 395 } 396 397 // FIXME: References to parameters fall through to the behavior 398 // below. They should be able to reference a frame index since 399 // they are stored to the stack, so we can get "ld rx, offset(r1)" 400 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 401 // just contain the parameter. Try to handle this with a FI. 402 403 // Try to get this in a register if nothing else has worked. 404 if (Addr.Base.Reg == 0) 405 Addr.Base.Reg = getRegForValue(Obj); 406 407 // Prevent assignment of base register to X0, which is inappropriate 408 // for loads and stores alike. 409 if (Addr.Base.Reg != 0) 410 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 411 412 return Addr.Base.Reg != 0; 413 } 414 415 // Fix up some addresses that can't be used directly. For example, if 416 // an offset won't fit in an instruction field, we may need to move it 417 // into an index register. 418 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 419 unsigned &IndexReg) { 420 421 // Check whether the offset fits in the instruction field. 422 if (!isInt<16>(Addr.Offset)) 423 UseOffset = false; 424 425 // If this is a stack pointer and the offset needs to be simplified then 426 // put the alloca address into a register, set the base type back to 427 // register and continue. This should almost never happen. 428 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 429 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 431 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 432 Addr.Base.Reg = ResultReg; 433 Addr.BaseType = Address::RegBase; 434 } 435 436 if (!UseOffset) { 437 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 438 : Type::getInt64Ty(*Context)); 439 const ConstantInt *Offset = 440 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 441 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 442 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 443 } 444 } 445 446 // Emit a load instruction if possible, returning true if we succeeded, 447 // otherwise false. See commentary below for how the register class of 448 // the load is determined. 449 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 450 const TargetRegisterClass *RC, 451 bool IsZExt, unsigned FP64LoadOpc) { 452 unsigned Opc; 453 bool UseOffset = true; 454 455 // If ResultReg is given, it determines the register class of the load. 456 // Otherwise, RC is the register class to use. If the result of the 457 // load isn't anticipated in this block, both may be zero, in which 458 // case we must make a conservative guess. In particular, don't assign 459 // R0 or X0 to the result register, as the result may be used in a load, 460 // store, add-immediate, or isel that won't permit this. (Though 461 // perhaps the spill and reload of live-exit values would handle this?) 462 const TargetRegisterClass *UseRC = 463 (ResultReg ? MRI.getRegClass(ResultReg) : 464 (RC ? RC : 465 (VT == MVT::f64 ? &PPC::F8RCRegClass : 466 (VT == MVT::f32 ? &PPC::F4RCRegClass : 467 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 468 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 469 470 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 471 472 switch (VT.SimpleTy) { 473 default: // e.g., vector types not handled 474 return false; 475 case MVT::i8: 476 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 477 break; 478 case MVT::i16: 479 Opc = (IsZExt ? 480 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 481 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 482 break; 483 case MVT::i32: 484 Opc = (IsZExt ? 485 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 486 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 488 UseOffset = false; 489 break; 490 case MVT::i64: 491 Opc = PPC::LD; 492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 493 "64-bit load with 32-bit target??"); 494 UseOffset = ((Addr.Offset & 3) == 0); 495 break; 496 case MVT::f32: 497 Opc = PPC::LFS; 498 break; 499 case MVT::f64: 500 Opc = FP64LoadOpc; 501 break; 502 } 503 504 // If necessary, materialize the offset into a register and use 505 // the indexed form. Also handle stack pointers with special needs. 506 unsigned IndexReg = 0; 507 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 508 509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 510 // be used. 511 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 512 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 514 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 515 if ((Is32VSXLoad || Is64VSXLoad) && 516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 517 (Addr.Offset == 0)) { 518 UseOffset = false; 519 } 520 521 if (ResultReg == 0) 522 ResultReg = createResultReg(UseRC); 523 524 // Note: If we still have a frame index here, we know the offset is 525 // in range, as otherwise PPCSimplifyAddress would have converted it 526 // into a RegBase. 527 if (Addr.BaseType == Address::FrameIndexBase) { 528 // VSX only provides an indexed load. 529 if (Is32VSXLoad || Is64VSXLoad) return false; 530 531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 533 Addr.Offset), 534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 535 MFI.getObjectAlignment(Addr.Base.FI)); 536 537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 539 540 // Base reg with offset in range. 541 } else if (UseOffset) { 542 // VSX only provides an indexed load. 543 if (Is32VSXLoad || Is64VSXLoad) return false; 544 545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 546 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 547 548 // Indexed form. 549 } else { 550 // Get the RR opcode corresponding to the RI one. FIXME: It would be 551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 552 // is hard to get at. 553 switch (Opc) { 554 default: llvm_unreachable("Unexpected opcode!"); 555 case PPC::LBZ: Opc = PPC::LBZX; break; 556 case PPC::LBZ8: Opc = PPC::LBZX8; break; 557 case PPC::LHZ: Opc = PPC::LHZX; break; 558 case PPC::LHZ8: Opc = PPC::LHZX8; break; 559 case PPC::LHA: Opc = PPC::LHAX; break; 560 case PPC::LHA8: Opc = PPC::LHAX8; break; 561 case PPC::LWZ: Opc = PPC::LWZX; break; 562 case PPC::LWZ8: Opc = PPC::LWZX8; break; 563 case PPC::LWA: Opc = PPC::LWAX; break; 564 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 565 case PPC::LD: Opc = PPC::LDX; break; 566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 568 } 569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 570 .addReg(Addr.Base.Reg).addReg(IndexReg); 571 } 572 573 return true; 574 } 575 576 // Attempt to fast-select a load instruction. 577 bool PPCFastISel::SelectLoad(const Instruction *I) { 578 // FIXME: No atomic loads are supported. 579 if (cast<LoadInst>(I)->isAtomic()) 580 return false; 581 582 // Verify we have a legal type before going any further. 583 MVT VT; 584 if (!isLoadTypeLegal(I->getType(), VT)) 585 return false; 586 587 // See if we can handle this address. 588 Address Addr; 589 if (!PPCComputeAddress(I->getOperand(0), Addr)) 590 return false; 591 592 // Look at the currently assigned register for this instruction 593 // to determine the required register class. This is necessary 594 // to constrain RA from using R0/X0 when this is not legal. 595 unsigned AssignedReg = FuncInfo.ValueMap[I]; 596 const TargetRegisterClass *RC = 597 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 598 599 unsigned ResultReg = 0; 600 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 601 return false; 602 updateValueMap(I, ResultReg); 603 return true; 604 } 605 606 // Emit a store instruction to store SrcReg at Addr. 607 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 608 assert(SrcReg && "Nothing to store!"); 609 unsigned Opc; 610 bool UseOffset = true; 611 612 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 613 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 614 615 switch (VT.SimpleTy) { 616 default: // e.g., vector types not handled 617 return false; 618 case MVT::i8: 619 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 620 break; 621 case MVT::i16: 622 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 623 break; 624 case MVT::i32: 625 assert(Is32BitInt && "Not GPRC for i32??"); 626 Opc = PPC::STW; 627 break; 628 case MVT::i64: 629 Opc = PPC::STD; 630 UseOffset = ((Addr.Offset & 3) == 0); 631 break; 632 case MVT::f32: 633 Opc = PPC::STFS; 634 break; 635 case MVT::f64: 636 Opc = PPC::STFD; 637 break; 638 } 639 640 // If necessary, materialize the offset into a register and use 641 // the indexed form. Also handle stack pointers with special needs. 642 unsigned IndexReg = 0; 643 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 644 645 // If this is a potential VSX store with an offset of 0, a VSX indexed store 646 // can be used. 647 bool IsVSSRC = isVSSRCRegister(SrcReg); 648 bool IsVSFRC = isVSFRCRegister(SrcReg); 649 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 650 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 651 if ((Is32VSXStore || Is64VSXStore) && 652 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 653 (Addr.Offset == 0)) { 654 UseOffset = false; 655 } 656 657 // Note: If we still have a frame index here, we know the offset is 658 // in range, as otherwise PPCSimplifyAddress would have converted it 659 // into a RegBase. 660 if (Addr.BaseType == Address::FrameIndexBase) { 661 // VSX only provides an indexed store. 662 if (Is32VSXStore || Is64VSXStore) return false; 663 664 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 665 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 666 Addr.Offset), 667 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 668 MFI.getObjectAlignment(Addr.Base.FI)); 669 670 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 671 .addReg(SrcReg) 672 .addImm(Addr.Offset) 673 .addFrameIndex(Addr.Base.FI) 674 .addMemOperand(MMO); 675 676 // Base reg with offset in range. 677 } else if (UseOffset) { 678 // VSX only provides an indexed store. 679 if (Is32VSXStore || Is64VSXStore) return false; 680 681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 682 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 683 684 // Indexed form. 685 } else { 686 // Get the RR opcode corresponding to the RI one. FIXME: It would be 687 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 688 // is hard to get at. 689 switch (Opc) { 690 default: llvm_unreachable("Unexpected opcode!"); 691 case PPC::STB: Opc = PPC::STBX; break; 692 case PPC::STH : Opc = PPC::STHX; break; 693 case PPC::STW : Opc = PPC::STWX; break; 694 case PPC::STB8: Opc = PPC::STBX8; break; 695 case PPC::STH8: Opc = PPC::STHX8; break; 696 case PPC::STW8: Opc = PPC::STWX8; break; 697 case PPC::STD: Opc = PPC::STDX; break; 698 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 699 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 700 } 701 702 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 703 .addReg(SrcReg); 704 705 // If we have an index register defined we use it in the store inst, 706 // otherwise we use X0 as base as it makes the vector instructions to 707 // use zero in the computation of the effective address regardless the 708 // content of the register. 709 if (IndexReg) 710 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 711 else 712 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 713 } 714 715 return true; 716 } 717 718 // Attempt to fast-select a store instruction. 719 bool PPCFastISel::SelectStore(const Instruction *I) { 720 Value *Op0 = I->getOperand(0); 721 unsigned SrcReg = 0; 722 723 // FIXME: No atomics loads are supported. 724 if (cast<StoreInst>(I)->isAtomic()) 725 return false; 726 727 // Verify we have a legal type before going any further. 728 MVT VT; 729 if (!isLoadTypeLegal(Op0->getType(), VT)) 730 return false; 731 732 // Get the value to be stored into a register. 733 SrcReg = getRegForValue(Op0); 734 if (SrcReg == 0) 735 return false; 736 737 // See if we can handle this address. 738 Address Addr; 739 if (!PPCComputeAddress(I->getOperand(1), Addr)) 740 return false; 741 742 if (!PPCEmitStore(VT, SrcReg, Addr)) 743 return false; 744 745 return true; 746 } 747 748 // Attempt to fast-select a branch instruction. 749 bool PPCFastISel::SelectBranch(const Instruction *I) { 750 const BranchInst *BI = cast<BranchInst>(I); 751 MachineBasicBlock *BrBB = FuncInfo.MBB; 752 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 753 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 754 755 // For now, just try the simplest case where it's fed by a compare. 756 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 757 if (isValueAvailable(CI)) { 758 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 759 if (!OptPPCPred) 760 return false; 761 762 PPC::Predicate PPCPred = OptPPCPred.getValue(); 763 764 // Take advantage of fall-through opportunities. 765 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 766 std::swap(TBB, FBB); 767 PPCPred = PPC::InvertPredicate(PPCPred); 768 } 769 770 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 771 772 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 773 CondReg)) 774 return false; 775 776 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 777 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 778 fastEmitBranch(FBB, DbgLoc); 779 FuncInfo.MBB->addSuccessor(TBB); 780 return true; 781 } 782 } else if (const ConstantInt *CI = 783 dyn_cast<ConstantInt>(BI->getCondition())) { 784 uint64_t Imm = CI->getZExtValue(); 785 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 786 fastEmitBranch(Target, DbgLoc); 787 return true; 788 } 789 790 // FIXME: ARM looks for a case where the block containing the compare 791 // has been split from the block containing the branch. If this happens, 792 // there is a vreg available containing the result of the compare. I'm 793 // not sure we can do much, as we've lost the predicate information with 794 // the compare instruction -- we have a 4-bit CR but don't know which bit 795 // to test here. 796 return false; 797 } 798 799 // Attempt to emit a compare of the two source values. Signed and unsigned 800 // comparisons are supported. Return false if we can't handle it. 801 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 802 bool IsZExt, unsigned DestReg) { 803 Type *Ty = SrcValue1->getType(); 804 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 805 if (!SrcEVT.isSimple()) 806 return false; 807 MVT SrcVT = SrcEVT.getSimpleVT(); 808 809 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 810 return false; 811 812 // See if operand 2 is an immediate encodeable in the compare. 813 // FIXME: Operands are not in canonical order at -O0, so an immediate 814 // operand in position 1 is a lost opportunity for now. We are 815 // similar to ARM in this regard. 816 long Imm = 0; 817 bool UseImm = false; 818 819 // Only 16-bit integer constants can be represented in compares for 820 // PowerPC. Others will be materialized into a register. 821 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 822 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 823 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 824 const APInt &CIVal = ConstInt->getValue(); 825 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 826 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 827 UseImm = true; 828 } 829 } 830 831 unsigned CmpOpc; 832 bool NeedsExt = false; 833 switch (SrcVT.SimpleTy) { 834 default: return false; 835 case MVT::f32: 836 CmpOpc = PPC::FCMPUS; 837 break; 838 case MVT::f64: 839 CmpOpc = PPC::FCMPUD; 840 break; 841 case MVT::i1: 842 case MVT::i8: 843 case MVT::i16: 844 NeedsExt = true; 845 // Intentional fall-through. 846 case MVT::i32: 847 if (!UseImm) 848 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 849 else 850 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 851 break; 852 case MVT::i64: 853 if (!UseImm) 854 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 855 else 856 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 857 break; 858 } 859 860 unsigned SrcReg1 = getRegForValue(SrcValue1); 861 if (SrcReg1 == 0) 862 return false; 863 864 unsigned SrcReg2 = 0; 865 if (!UseImm) { 866 SrcReg2 = getRegForValue(SrcValue2); 867 if (SrcReg2 == 0) 868 return false; 869 } 870 871 if (NeedsExt) { 872 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 873 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 874 return false; 875 SrcReg1 = ExtReg; 876 877 if (!UseImm) { 878 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 879 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 880 return false; 881 SrcReg2 = ExtReg; 882 } 883 } 884 885 if (!UseImm) 886 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 887 .addReg(SrcReg1).addReg(SrcReg2); 888 else 889 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 890 .addReg(SrcReg1).addImm(Imm); 891 892 return true; 893 } 894 895 // Attempt to fast-select a floating-point extend instruction. 896 bool PPCFastISel::SelectFPExt(const Instruction *I) { 897 Value *Src = I->getOperand(0); 898 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 899 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 900 901 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 902 return false; 903 904 unsigned SrcReg = getRegForValue(Src); 905 if (!SrcReg) 906 return false; 907 908 // No code is generated for a FP extend. 909 updateValueMap(I, SrcReg); 910 return true; 911 } 912 913 // Attempt to fast-select a floating-point truncate instruction. 914 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 915 Value *Src = I->getOperand(0); 916 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 917 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 918 919 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 920 return false; 921 922 unsigned SrcReg = getRegForValue(Src); 923 if (!SrcReg) 924 return false; 925 926 // Round the result to single precision. 927 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 929 .addReg(SrcReg); 930 931 updateValueMap(I, DestReg); 932 return true; 933 } 934 935 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 936 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 937 // those should be used instead of moving via a stack slot when the 938 // subtarget permits. 939 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 940 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 941 // case to 8 bytes which produces tighter code but wastes stack space. 942 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 943 bool IsSigned) { 944 945 // If necessary, extend 32-bit int to 64-bit. 946 if (SrcVT == MVT::i32) { 947 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 948 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 949 return 0; 950 SrcReg = TmpReg; 951 } 952 953 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 954 Address Addr; 955 Addr.BaseType = Address::FrameIndexBase; 956 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 957 958 // Store the value from the GPR. 959 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 960 return 0; 961 962 // Load the integer value into an FPR. The kind of load used depends 963 // on a number of conditions. 964 unsigned LoadOpc = PPC::LFD; 965 966 if (SrcVT == MVT::i32) { 967 if (!IsSigned) { 968 LoadOpc = PPC::LFIWZX; 969 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 970 } else if (PPCSubTarget->hasLFIWAX()) { 971 LoadOpc = PPC::LFIWAX; 972 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 973 } 974 } 975 976 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 977 unsigned ResultReg = 0; 978 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 979 return 0; 980 981 return ResultReg; 982 } 983 984 // Attempt to fast-select an integer-to-floating-point conversion. 985 // FIXME: Once fast-isel has better support for VSX, conversions using 986 // direct moves should be implemented. 987 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 988 MVT DstVT; 989 Type *DstTy = I->getType(); 990 if (!isTypeLegal(DstTy, DstVT)) 991 return false; 992 993 if (DstVT != MVT::f32 && DstVT != MVT::f64) 994 return false; 995 996 Value *Src = I->getOperand(0); 997 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 998 if (!SrcEVT.isSimple()) 999 return false; 1000 1001 MVT SrcVT = SrcEVT.getSimpleVT(); 1002 1003 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1004 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1005 return false; 1006 1007 unsigned SrcReg = getRegForValue(Src); 1008 if (SrcReg == 0) 1009 return false; 1010 1011 // We can only lower an unsigned convert if we have the newer 1012 // floating-point conversion operations. 1013 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1014 return false; 1015 1016 // FIXME: For now we require the newer floating-point conversion operations 1017 // (which are present only on P7 and A2 server models) when converting 1018 // to single-precision float. Otherwise we have to generate a lot of 1019 // fiddly code to avoid double rounding. If necessary, the fiddly code 1020 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1021 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1022 return false; 1023 1024 // Extend the input if necessary. 1025 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1026 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1027 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1028 return false; 1029 SrcVT = MVT::i64; 1030 SrcReg = TmpReg; 1031 } 1032 1033 // Move the integer value to an FPR. 1034 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1035 if (FPReg == 0) 1036 return false; 1037 1038 // Determine the opcode for the conversion. 1039 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1040 unsigned DestReg = createResultReg(RC); 1041 unsigned Opc; 1042 1043 if (DstVT == MVT::f32) 1044 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1045 else 1046 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1047 1048 // Generate the convert. 1049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1050 .addReg(FPReg); 1051 1052 updateValueMap(I, DestReg); 1053 return true; 1054 } 1055 1056 // Move the floating-point value in SrcReg into an integer destination 1057 // register, and return the register (or zero if we can't handle it). 1058 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1059 // those should be used instead of moving via a stack slot when the 1060 // subtarget permits. 1061 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1062 unsigned SrcReg, bool IsSigned) { 1063 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1064 // Note that if have STFIWX available, we could use a 4-byte stack 1065 // slot for i32, but this being fast-isel we'll just go with the 1066 // easiest code gen possible. 1067 Address Addr; 1068 Addr.BaseType = Address::FrameIndexBase; 1069 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1070 1071 // Store the value from the FPR. 1072 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1073 return 0; 1074 1075 // Reload it into a GPR. If we want an i32, modify the address 1076 // to have a 4-byte offset so we load from the right place. 1077 if (VT == MVT::i32) 1078 Addr.Offset = 4; 1079 1080 // Look at the currently assigned register for this instruction 1081 // to determine the required register class. 1082 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1083 const TargetRegisterClass *RC = 1084 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1085 1086 unsigned ResultReg = 0; 1087 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1088 return 0; 1089 1090 return ResultReg; 1091 } 1092 1093 // Attempt to fast-select a floating-point-to-integer conversion. 1094 // FIXME: Once fast-isel has better support for VSX, conversions using 1095 // direct moves should be implemented. 1096 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1097 MVT DstVT, SrcVT; 1098 Type *DstTy = I->getType(); 1099 if (!isTypeLegal(DstTy, DstVT)) 1100 return false; 1101 1102 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1103 return false; 1104 1105 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1106 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1107 return false; 1108 1109 Value *Src = I->getOperand(0); 1110 Type *SrcTy = Src->getType(); 1111 if (!isTypeLegal(SrcTy, SrcVT)) 1112 return false; 1113 1114 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1115 return false; 1116 1117 unsigned SrcReg = getRegForValue(Src); 1118 if (SrcReg == 0) 1119 return false; 1120 1121 // Convert f32 to f64 if necessary. This is just a meaningless copy 1122 // to get the register class right. COPY_TO_REGCLASS is needed since 1123 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1124 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1125 if (InRC == &PPC::F4RCRegClass) { 1126 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1128 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1129 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1130 SrcReg = TmpReg; 1131 } 1132 1133 // Determine the opcode for the conversion, which takes place 1134 // entirely within FPRs. 1135 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1136 unsigned Opc; 1137 1138 if (DstVT == MVT::i32) 1139 if (IsSigned) 1140 Opc = PPC::FCTIWZ; 1141 else 1142 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1143 else 1144 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1145 1146 // Generate the convert. 1147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1148 .addReg(SrcReg); 1149 1150 // Now move the integer value from a float register to an integer register. 1151 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1152 if (IntReg == 0) 1153 return false; 1154 1155 updateValueMap(I, IntReg); 1156 return true; 1157 } 1158 1159 // Attempt to fast-select a binary integer operation that isn't already 1160 // handled automatically. 1161 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1162 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1163 1164 // We can get here in the case when we have a binary operation on a non-legal 1165 // type and the target independent selector doesn't know how to handle it. 1166 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1167 return false; 1168 1169 // Look at the currently assigned register for this instruction 1170 // to determine the required register class. If there is no register, 1171 // make a conservative choice (don't assign R0). 1172 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1173 const TargetRegisterClass *RC = 1174 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1175 &PPC::GPRC_and_GPRC_NOR0RegClass); 1176 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1177 1178 unsigned Opc; 1179 switch (ISDOpcode) { 1180 default: return false; 1181 case ISD::ADD: 1182 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1183 break; 1184 case ISD::OR: 1185 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1186 break; 1187 case ISD::SUB: 1188 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1189 break; 1190 } 1191 1192 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1193 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1194 if (SrcReg1 == 0) return false; 1195 1196 // Handle case of small immediate operand. 1197 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1198 const APInt &CIVal = ConstInt->getValue(); 1199 int Imm = (int)CIVal.getSExtValue(); 1200 bool UseImm = true; 1201 if (isInt<16>(Imm)) { 1202 switch (Opc) { 1203 default: 1204 llvm_unreachable("Missing case!"); 1205 case PPC::ADD4: 1206 Opc = PPC::ADDI; 1207 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1208 break; 1209 case PPC::ADD8: 1210 Opc = PPC::ADDI8; 1211 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1212 break; 1213 case PPC::OR: 1214 Opc = PPC::ORI; 1215 break; 1216 case PPC::OR8: 1217 Opc = PPC::ORI8; 1218 break; 1219 case PPC::SUBF: 1220 if (Imm == -32768) 1221 UseImm = false; 1222 else { 1223 Opc = PPC::ADDI; 1224 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1225 Imm = -Imm; 1226 } 1227 break; 1228 case PPC::SUBF8: 1229 if (Imm == -32768) 1230 UseImm = false; 1231 else { 1232 Opc = PPC::ADDI8; 1233 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1234 Imm = -Imm; 1235 } 1236 break; 1237 } 1238 1239 if (UseImm) { 1240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1241 ResultReg) 1242 .addReg(SrcReg1) 1243 .addImm(Imm); 1244 updateValueMap(I, ResultReg); 1245 return true; 1246 } 1247 } 1248 } 1249 1250 // Reg-reg case. 1251 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1252 if (SrcReg2 == 0) return false; 1253 1254 // Reverse operands for subtract-from. 1255 if (ISDOpcode == ISD::SUB) 1256 std::swap(SrcReg1, SrcReg2); 1257 1258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1259 .addReg(SrcReg1).addReg(SrcReg2); 1260 updateValueMap(I, ResultReg); 1261 return true; 1262 } 1263 1264 // Handle arguments to a call that we're attempting to fast-select. 1265 // Return false if the arguments are too complex for us at the moment. 1266 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1267 SmallVectorImpl<unsigned> &ArgRegs, 1268 SmallVectorImpl<MVT> &ArgVTs, 1269 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1270 SmallVectorImpl<unsigned> &RegArgs, 1271 CallingConv::ID CC, 1272 unsigned &NumBytes, 1273 bool IsVarArg) { 1274 SmallVector<CCValAssign, 16> ArgLocs; 1275 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1276 1277 // Reserve space for the linkage area on the stack. 1278 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1279 CCInfo.AllocateStack(LinkageSize, 8); 1280 1281 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1282 1283 // Bail out if we can't handle any of the arguments. 1284 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1285 CCValAssign &VA = ArgLocs[I]; 1286 MVT ArgVT = ArgVTs[VA.getValNo()]; 1287 1288 // Skip vector arguments for now, as well as long double and 1289 // uint128_t, and anything that isn't passed in a register. 1290 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1291 !VA.isRegLoc() || VA.needsCustom()) 1292 return false; 1293 1294 // Skip bit-converted arguments for now. 1295 if (VA.getLocInfo() == CCValAssign::BCvt) 1296 return false; 1297 } 1298 1299 // Get a count of how many bytes are to be pushed onto the stack. 1300 NumBytes = CCInfo.getNextStackOffset(); 1301 1302 // The prolog code of the callee may store up to 8 GPR argument registers to 1303 // the stack, allowing va_start to index over them in memory if its varargs. 1304 // Because we cannot tell if this is needed on the caller side, we have to 1305 // conservatively assume that it is needed. As such, make sure we have at 1306 // least enough stack space for the caller to store the 8 GPRs. 1307 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1308 NumBytes = std::max(NumBytes, LinkageSize + 64); 1309 1310 // Issue CALLSEQ_START. 1311 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1312 TII.get(TII.getCallFrameSetupOpcode())) 1313 .addImm(NumBytes); 1314 1315 // Prepare to assign register arguments. Every argument uses up a 1316 // GPR protocol register even if it's passed in a floating-point 1317 // register (unless we're using the fast calling convention). 1318 unsigned NextGPR = PPC::X3; 1319 unsigned NextFPR = PPC::F1; 1320 1321 // Process arguments. 1322 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1323 CCValAssign &VA = ArgLocs[I]; 1324 unsigned Arg = ArgRegs[VA.getValNo()]; 1325 MVT ArgVT = ArgVTs[VA.getValNo()]; 1326 1327 // Handle argument promotion and bitcasts. 1328 switch (VA.getLocInfo()) { 1329 default: 1330 llvm_unreachable("Unknown loc info!"); 1331 case CCValAssign::Full: 1332 break; 1333 case CCValAssign::SExt: { 1334 MVT DestVT = VA.getLocVT(); 1335 const TargetRegisterClass *RC = 1336 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1337 unsigned TmpReg = createResultReg(RC); 1338 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1339 llvm_unreachable("Failed to emit a sext!"); 1340 ArgVT = DestVT; 1341 Arg = TmpReg; 1342 break; 1343 } 1344 case CCValAssign::AExt: 1345 case CCValAssign::ZExt: { 1346 MVT DestVT = VA.getLocVT(); 1347 const TargetRegisterClass *RC = 1348 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1349 unsigned TmpReg = createResultReg(RC); 1350 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1351 llvm_unreachable("Failed to emit a zext!"); 1352 ArgVT = DestVT; 1353 Arg = TmpReg; 1354 break; 1355 } 1356 case CCValAssign::BCvt: { 1357 // FIXME: Not yet handled. 1358 llvm_unreachable("Should have bailed before getting here!"); 1359 break; 1360 } 1361 } 1362 1363 // Copy this argument to the appropriate register. 1364 unsigned ArgReg; 1365 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1366 ArgReg = NextFPR++; 1367 if (CC != CallingConv::Fast) 1368 ++NextGPR; 1369 } else 1370 ArgReg = NextGPR++; 1371 1372 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1373 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1374 RegArgs.push_back(ArgReg); 1375 } 1376 1377 return true; 1378 } 1379 1380 // For a call that we've determined we can fast-select, finish the 1381 // call sequence and generate a copy to obtain the return value (if any). 1382 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1383 CallingConv::ID CC = CLI.CallConv; 1384 1385 // Issue CallSEQ_END. 1386 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1387 TII.get(TII.getCallFrameDestroyOpcode())) 1388 .addImm(NumBytes).addImm(0); 1389 1390 // Next, generate a copy to obtain the return value. 1391 // FIXME: No multi-register return values yet, though I don't foresee 1392 // any real difficulties there. 1393 if (RetVT != MVT::isVoid) { 1394 SmallVector<CCValAssign, 16> RVLocs; 1395 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1396 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1397 CCValAssign &VA = RVLocs[0]; 1398 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1399 assert(VA.isRegLoc() && "Can only return in registers!"); 1400 1401 MVT DestVT = VA.getValVT(); 1402 MVT CopyVT = DestVT; 1403 1404 // Ints smaller than a register still arrive in a full 64-bit 1405 // register, so make sure we recognize this. 1406 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1407 CopyVT = MVT::i64; 1408 1409 unsigned SourcePhysReg = VA.getLocReg(); 1410 unsigned ResultReg = 0; 1411 1412 if (RetVT == CopyVT) { 1413 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1414 ResultReg = createResultReg(CpyRC); 1415 1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1417 TII.get(TargetOpcode::COPY), ResultReg) 1418 .addReg(SourcePhysReg); 1419 1420 // If necessary, round the floating result to single precision. 1421 } else if (CopyVT == MVT::f64) { 1422 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1424 ResultReg).addReg(SourcePhysReg); 1425 1426 // If only the low half of a general register is needed, generate 1427 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1428 // used along the fast-isel path (not lowered), and downstream logic 1429 // also doesn't like a direct subreg copy on a physical reg.) 1430 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1431 ResultReg = createResultReg(&PPC::GPRCRegClass); 1432 // Convert physical register from G8RC to GPRC. 1433 SourcePhysReg -= PPC::X0 - PPC::R0; 1434 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1435 TII.get(TargetOpcode::COPY), ResultReg) 1436 .addReg(SourcePhysReg); 1437 } 1438 1439 assert(ResultReg && "ResultReg unset!"); 1440 CLI.InRegs.push_back(SourcePhysReg); 1441 CLI.ResultReg = ResultReg; 1442 CLI.NumResultRegs = 1; 1443 } 1444 1445 return true; 1446 } 1447 1448 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1449 CallingConv::ID CC = CLI.CallConv; 1450 bool IsTailCall = CLI.IsTailCall; 1451 bool IsVarArg = CLI.IsVarArg; 1452 const Value *Callee = CLI.Callee; 1453 const MCSymbol *Symbol = CLI.Symbol; 1454 1455 if (!Callee && !Symbol) 1456 return false; 1457 1458 // Allow SelectionDAG isel to handle tail calls. 1459 if (IsTailCall) 1460 return false; 1461 1462 // Let SDISel handle vararg functions. 1463 if (IsVarArg) 1464 return false; 1465 1466 // Handle simple calls for now, with legal return types and 1467 // those that can be extended. 1468 Type *RetTy = CLI.RetTy; 1469 MVT RetVT; 1470 if (RetTy->isVoidTy()) 1471 RetVT = MVT::isVoid; 1472 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1473 RetVT != MVT::i8) 1474 return false; 1475 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1476 // We can't handle boolean returns when CR bits are in use. 1477 return false; 1478 1479 // FIXME: No multi-register return values yet. 1480 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1481 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1482 RetVT != MVT::f64) { 1483 SmallVector<CCValAssign, 16> RVLocs; 1484 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1485 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1486 if (RVLocs.size() > 1) 1487 return false; 1488 } 1489 1490 // Bail early if more than 8 arguments, as we only currently 1491 // handle arguments passed in registers. 1492 unsigned NumArgs = CLI.OutVals.size(); 1493 if (NumArgs > 8) 1494 return false; 1495 1496 // Set up the argument vectors. 1497 SmallVector<Value*, 8> Args; 1498 SmallVector<unsigned, 8> ArgRegs; 1499 SmallVector<MVT, 8> ArgVTs; 1500 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1501 1502 Args.reserve(NumArgs); 1503 ArgRegs.reserve(NumArgs); 1504 ArgVTs.reserve(NumArgs); 1505 ArgFlags.reserve(NumArgs); 1506 1507 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1508 // Only handle easy calls for now. It would be reasonably easy 1509 // to handle <= 8-byte structures passed ByVal in registers, but we 1510 // have to ensure they are right-justified in the register. 1511 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1512 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1513 return false; 1514 1515 Value *ArgValue = CLI.OutVals[i]; 1516 Type *ArgTy = ArgValue->getType(); 1517 MVT ArgVT; 1518 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1519 return false; 1520 1521 if (ArgVT.isVector()) 1522 return false; 1523 1524 unsigned Arg = getRegForValue(ArgValue); 1525 if (Arg == 0) 1526 return false; 1527 1528 Args.push_back(ArgValue); 1529 ArgRegs.push_back(Arg); 1530 ArgVTs.push_back(ArgVT); 1531 ArgFlags.push_back(Flags); 1532 } 1533 1534 // Process the arguments. 1535 SmallVector<unsigned, 8> RegArgs; 1536 unsigned NumBytes; 1537 1538 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1539 RegArgs, CC, NumBytes, IsVarArg)) 1540 return false; 1541 1542 MachineInstrBuilder MIB; 1543 // FIXME: No handling for function pointers yet. This requires 1544 // implementing the function descriptor (OPD) setup. 1545 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1546 if (!GV) { 1547 // patchpoints are a special case; they always dispatch to a pointer value. 1548 // However, we don't actually want to generate the indirect call sequence 1549 // here (that will be generated, as necessary, during asm printing), and 1550 // the call we generate here will be erased by FastISel::selectPatchpoint, 1551 // so don't try very hard... 1552 if (CLI.IsPatchPoint) 1553 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1554 else 1555 return false; 1556 } else { 1557 // Build direct call with NOP for TOC restore. 1558 // FIXME: We can and should optimize away the NOP for local calls. 1559 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1560 TII.get(PPC::BL8_NOP)); 1561 // Add callee. 1562 MIB.addGlobalAddress(GV); 1563 } 1564 1565 // Add implicit physical register uses to the call. 1566 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1567 MIB.addReg(RegArgs[II], RegState::Implicit); 1568 1569 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1570 // into the call. 1571 PPCFuncInfo->setUsesTOCBasePtr(); 1572 MIB.addReg(PPC::X2, RegState::Implicit); 1573 1574 // Add a register mask with the call-preserved registers. Proper 1575 // defs for return values will be added by setPhysRegsDeadExcept(). 1576 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1577 1578 CLI.Call = MIB; 1579 1580 // Finish off the call including any return values. 1581 return finishCall(RetVT, CLI, NumBytes); 1582 } 1583 1584 // Attempt to fast-select a return instruction. 1585 bool PPCFastISel::SelectRet(const Instruction *I) { 1586 1587 if (!FuncInfo.CanLowerReturn) 1588 return false; 1589 1590 const ReturnInst *Ret = cast<ReturnInst>(I); 1591 const Function &F = *I->getParent()->getParent(); 1592 1593 // Build a list of return value registers. 1594 SmallVector<unsigned, 4> RetRegs; 1595 CallingConv::ID CC = F.getCallingConv(); 1596 1597 if (Ret->getNumOperands() > 0) { 1598 SmallVector<ISD::OutputArg, 4> Outs; 1599 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1600 1601 // Analyze operands of the call, assigning locations to each operand. 1602 SmallVector<CCValAssign, 16> ValLocs; 1603 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1604 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1605 const Value *RV = Ret->getOperand(0); 1606 1607 // FIXME: Only one output register for now. 1608 if (ValLocs.size() > 1) 1609 return false; 1610 1611 // Special case for returning a constant integer of any size - materialize 1612 // the constant as an i64 and copy it to the return register. 1613 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1614 CCValAssign &VA = ValLocs[0]; 1615 1616 unsigned RetReg = VA.getLocReg(); 1617 // We still need to worry about properly extending the sign. For example, 1618 // we could have only a single bit or a constant that needs zero 1619 // extension rather than sign extension. Make sure we pass the return 1620 // value extension property to integer materialization. 1621 unsigned SrcReg = 1622 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() == CCValAssign::SExt); 1623 1624 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1625 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1626 1627 RetRegs.push_back(RetReg); 1628 1629 } else { 1630 unsigned Reg = getRegForValue(RV); 1631 1632 if (Reg == 0) 1633 return false; 1634 1635 // Copy the result values into the output registers. 1636 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1637 1638 CCValAssign &VA = ValLocs[i]; 1639 assert(VA.isRegLoc() && "Can only return in registers!"); 1640 RetRegs.push_back(VA.getLocReg()); 1641 unsigned SrcReg = Reg + VA.getValNo(); 1642 1643 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1644 if (!RVEVT.isSimple()) 1645 return false; 1646 MVT RVVT = RVEVT.getSimpleVT(); 1647 MVT DestVT = VA.getLocVT(); 1648 1649 if (RVVT != DestVT && RVVT != MVT::i8 && 1650 RVVT != MVT::i16 && RVVT != MVT::i32) 1651 return false; 1652 1653 if (RVVT != DestVT) { 1654 switch (VA.getLocInfo()) { 1655 default: 1656 llvm_unreachable("Unknown loc info!"); 1657 case CCValAssign::Full: 1658 llvm_unreachable("Full value assign but types don't match?"); 1659 case CCValAssign::AExt: 1660 case CCValAssign::ZExt: { 1661 const TargetRegisterClass *RC = 1662 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1663 unsigned TmpReg = createResultReg(RC); 1664 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1665 return false; 1666 SrcReg = TmpReg; 1667 break; 1668 } 1669 case CCValAssign::SExt: { 1670 const TargetRegisterClass *RC = 1671 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1672 unsigned TmpReg = createResultReg(RC); 1673 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1674 return false; 1675 SrcReg = TmpReg; 1676 break; 1677 } 1678 } 1679 } 1680 1681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1682 TII.get(TargetOpcode::COPY), RetRegs[i]) 1683 .addReg(SrcReg); 1684 } 1685 } 1686 } 1687 1688 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1689 TII.get(PPC::BLR8)); 1690 1691 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1692 MIB.addReg(RetRegs[i], RegState::Implicit); 1693 1694 return true; 1695 } 1696 1697 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1698 // signed and zero extensions are supported. Return false if we 1699 // can't handle it. 1700 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1701 unsigned DestReg, bool IsZExt) { 1702 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1703 return false; 1704 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1705 return false; 1706 1707 // Signed extensions use EXTSB, EXTSH, EXTSW. 1708 if (!IsZExt) { 1709 unsigned Opc; 1710 if (SrcVT == MVT::i8) 1711 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1712 else if (SrcVT == MVT::i16) 1713 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1714 else { 1715 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1716 Opc = PPC::EXTSW_32_64; 1717 } 1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1719 .addReg(SrcReg); 1720 1721 // Unsigned 32-bit extensions use RLWINM. 1722 } else if (DestVT == MVT::i32) { 1723 unsigned MB; 1724 if (SrcVT == MVT::i8) 1725 MB = 24; 1726 else { 1727 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1728 MB = 16; 1729 } 1730 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1731 DestReg) 1732 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1733 1734 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1735 } else { 1736 unsigned MB; 1737 if (SrcVT == MVT::i8) 1738 MB = 56; 1739 else if (SrcVT == MVT::i16) 1740 MB = 48; 1741 else 1742 MB = 32; 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1744 TII.get(PPC::RLDICL_32_64), DestReg) 1745 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1746 } 1747 1748 return true; 1749 } 1750 1751 // Attempt to fast-select an indirect branch instruction. 1752 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1753 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1754 if (AddrReg == 0) 1755 return false; 1756 1757 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1758 .addReg(AddrReg); 1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1760 1761 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1762 for (const BasicBlock *SuccBB : IB->successors()) 1763 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1764 1765 return true; 1766 } 1767 1768 // Attempt to fast-select an integer truncate instruction. 1769 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1770 Value *Src = I->getOperand(0); 1771 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1772 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1773 1774 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1775 return false; 1776 1777 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1778 return false; 1779 1780 unsigned SrcReg = getRegForValue(Src); 1781 if (!SrcReg) 1782 return false; 1783 1784 // The only interesting case is when we need to switch register classes. 1785 if (SrcVT == MVT::i64) { 1786 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1788 TII.get(TargetOpcode::COPY), 1789 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1790 SrcReg = ResultReg; 1791 } 1792 1793 updateValueMap(I, SrcReg); 1794 return true; 1795 } 1796 1797 // Attempt to fast-select an integer extend instruction. 1798 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1799 Type *DestTy = I->getType(); 1800 Value *Src = I->getOperand(0); 1801 Type *SrcTy = Src->getType(); 1802 1803 bool IsZExt = isa<ZExtInst>(I); 1804 unsigned SrcReg = getRegForValue(Src); 1805 if (!SrcReg) return false; 1806 1807 EVT SrcEVT, DestEVT; 1808 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1809 DestEVT = TLI.getValueType(DL, DestTy, true); 1810 if (!SrcEVT.isSimple()) 1811 return false; 1812 if (!DestEVT.isSimple()) 1813 return false; 1814 1815 MVT SrcVT = SrcEVT.getSimpleVT(); 1816 MVT DestVT = DestEVT.getSimpleVT(); 1817 1818 // If we know the register class needed for the result of this 1819 // instruction, use it. Otherwise pick the register class of the 1820 // correct size that does not contain X0/R0, since we don't know 1821 // whether downstream uses permit that assignment. 1822 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1823 const TargetRegisterClass *RC = 1824 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1825 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1826 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1827 unsigned ResultReg = createResultReg(RC); 1828 1829 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1830 return false; 1831 1832 updateValueMap(I, ResultReg); 1833 return true; 1834 } 1835 1836 // Attempt to fast-select an instruction that wasn't handled by 1837 // the table-generated machinery. 1838 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1839 1840 switch (I->getOpcode()) { 1841 case Instruction::Load: 1842 return SelectLoad(I); 1843 case Instruction::Store: 1844 return SelectStore(I); 1845 case Instruction::Br: 1846 return SelectBranch(I); 1847 case Instruction::IndirectBr: 1848 return SelectIndirectBr(I); 1849 case Instruction::FPExt: 1850 return SelectFPExt(I); 1851 case Instruction::FPTrunc: 1852 return SelectFPTrunc(I); 1853 case Instruction::SIToFP: 1854 return SelectIToFP(I, /*IsSigned*/ true); 1855 case Instruction::UIToFP: 1856 return SelectIToFP(I, /*IsSigned*/ false); 1857 case Instruction::FPToSI: 1858 return SelectFPToI(I, /*IsSigned*/ true); 1859 case Instruction::FPToUI: 1860 return SelectFPToI(I, /*IsSigned*/ false); 1861 case Instruction::Add: 1862 return SelectBinaryIntOp(I, ISD::ADD); 1863 case Instruction::Or: 1864 return SelectBinaryIntOp(I, ISD::OR); 1865 case Instruction::Sub: 1866 return SelectBinaryIntOp(I, ISD::SUB); 1867 case Instruction::Call: 1868 return selectCall(I); 1869 case Instruction::Ret: 1870 return SelectRet(I); 1871 case Instruction::Trunc: 1872 return SelectTrunc(I); 1873 case Instruction::ZExt: 1874 case Instruction::SExt: 1875 return SelectIntExt(I); 1876 // Here add other flavors of Instruction::XXX that automated 1877 // cases don't catch. For example, switches are terminators 1878 // that aren't yet handled. 1879 default: 1880 break; 1881 } 1882 return false; 1883 } 1884 1885 // Materialize a floating-point constant into a register, and return 1886 // the register number (or zero if we failed to handle it). 1887 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1888 // No plans to handle long double here. 1889 if (VT != MVT::f32 && VT != MVT::f64) 1890 return 0; 1891 1892 // All FP constants are loaded from the constant pool. 1893 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1894 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1895 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1896 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1897 CodeModel::Model CModel = TM.getCodeModel(); 1898 1899 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1900 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1901 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1902 1903 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1904 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1905 1906 PPCFuncInfo->setUsesTOCBasePtr(); 1907 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1908 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1910 TmpReg) 1911 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1913 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1914 } else { 1915 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1916 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1917 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1918 // But for large code model, we must generate a LDtocL followed 1919 // by the LF[SD]. 1920 if (CModel == CodeModel::Large) { 1921 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1923 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1925 .addImm(0).addReg(TmpReg2); 1926 } else 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1928 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1929 .addReg(TmpReg) 1930 .addMemOperand(MMO); 1931 } 1932 1933 return DestReg; 1934 } 1935 1936 // Materialize the address of a global value into a register, and return 1937 // the register number (or zero if we failed to handle it). 1938 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1939 assert(VT == MVT::i64 && "Non-address!"); 1940 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1941 unsigned DestReg = createResultReg(RC); 1942 1943 // Global values may be plain old object addresses, TLS object 1944 // addresses, constant pool entries, or jump tables. How we generate 1945 // code for these may depend on small, medium, or large code model. 1946 CodeModel::Model CModel = TM.getCodeModel(); 1947 1948 // FIXME: Jump tables are not yet required because fast-isel doesn't 1949 // handle switches; if that changes, we need them as well. For now, 1950 // what follows assumes everything's a generic (or TLS) global address. 1951 1952 // FIXME: We don't yet handle the complexity of TLS. 1953 if (GV->isThreadLocal()) 1954 return 0; 1955 1956 PPCFuncInfo->setUsesTOCBasePtr(); 1957 // For small code model, generate a simple TOC load. 1958 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1960 DestReg) 1961 .addGlobalAddress(GV) 1962 .addReg(PPC::X2); 1963 else { 1964 // If the address is an externally defined symbol, a symbol with common 1965 // or externally available linkage, a non-local function address, or a 1966 // jump table address (not yet needed), or if we are generating code 1967 // for large code model, we generate: 1968 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1969 // Otherwise we generate: 1970 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1971 // Either way, start with the ADDIStocHA: 1972 unsigned HighPartReg = createResultReg(RC); 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1974 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1975 1976 // If/when switches are implemented, jump tables should be handled 1977 // on the "if" path here. 1978 if (CModel == CodeModel::Large || 1979 (GV->getType()->getElementType()->isFunctionTy() && 1980 !GV->isStrongDefinitionForLinker()) || 1981 GV->isDeclaration() || GV->hasCommonLinkage() || 1982 GV->hasAvailableExternallyLinkage()) 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1984 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1985 else 1986 // Otherwise generate the ADDItocL. 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1988 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1989 } 1990 1991 return DestReg; 1992 } 1993 1994 // Materialize a 32-bit integer constant into a register, and return 1995 // the register number (or zero if we failed to handle it). 1996 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1997 const TargetRegisterClass *RC) { 1998 unsigned Lo = Imm & 0xFFFF; 1999 unsigned Hi = (Imm >> 16) & 0xFFFF; 2000 2001 unsigned ResultReg = createResultReg(RC); 2002 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2003 2004 if (isInt<16>(Imm)) 2005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2006 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2007 .addImm(Imm); 2008 else if (Lo) { 2009 // Both Lo and Hi have nonzero bits. 2010 unsigned TmpReg = createResultReg(RC); 2011 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2012 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2013 .addImm(Hi); 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2015 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2016 .addReg(TmpReg).addImm(Lo); 2017 } else 2018 // Just Hi bits. 2019 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2020 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2021 .addImm(Hi); 2022 2023 return ResultReg; 2024 } 2025 2026 // Materialize a 64-bit integer constant into a register, and return 2027 // the register number (or zero if we failed to handle it). 2028 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2029 const TargetRegisterClass *RC) { 2030 unsigned Remainder = 0; 2031 unsigned Shift = 0; 2032 2033 // If the value doesn't fit in 32 bits, see if we can shift it 2034 // so that it fits in 32 bits. 2035 if (!isInt<32>(Imm)) { 2036 Shift = countTrailingZeros<uint64_t>(Imm); 2037 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2038 2039 if (isInt<32>(ImmSh)) 2040 Imm = ImmSh; 2041 else { 2042 Remainder = Imm; 2043 Shift = 32; 2044 Imm >>= 32; 2045 } 2046 } 2047 2048 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2049 // (if not shifted). 2050 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2051 if (!Shift) 2052 return TmpReg1; 2053 2054 // If upper 32 bits were not zero, we've built them and need to shift 2055 // them into place. 2056 unsigned TmpReg2; 2057 if (Imm) { 2058 TmpReg2 = createResultReg(RC); 2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2060 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2061 } else 2062 TmpReg2 = TmpReg1; 2063 2064 unsigned TmpReg3, Hi, Lo; 2065 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2066 TmpReg3 = createResultReg(RC); 2067 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2068 TmpReg3).addReg(TmpReg2).addImm(Hi); 2069 } else 2070 TmpReg3 = TmpReg2; 2071 2072 if ((Lo = Remainder & 0xFFFF)) { 2073 unsigned ResultReg = createResultReg(RC); 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2075 ResultReg).addReg(TmpReg3).addImm(Lo); 2076 return ResultReg; 2077 } 2078 2079 return TmpReg3; 2080 } 2081 2082 2083 // Materialize an integer constant into a register, and return 2084 // the register number (or zero if we failed to handle it). 2085 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2086 bool UseSExt) { 2087 // If we're using CR bit registers for i1 values, handle that as a special 2088 // case first. 2089 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2090 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2092 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2093 return ImmReg; 2094 } 2095 2096 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2097 VT != MVT::i8 && VT != MVT::i1) 2098 return 0; 2099 2100 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2101 &PPC::GPRCRegClass); 2102 2103 // If the constant is in range, use a load-immediate. 2104 if (UseSExt && isInt<16>(CI->getSExtValue())) { 2105 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2106 unsigned ImmReg = createResultReg(RC); 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2108 .addImm(CI->getSExtValue()); 2109 return ImmReg; 2110 } else if (!UseSExt && isUInt<16>(CI->getZExtValue())) { 2111 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2112 unsigned ImmReg = createResultReg(RC); 2113 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2114 .addImm(CI->getZExtValue()); 2115 return ImmReg; 2116 } 2117 2118 // Construct the constant piecewise. 2119 int64_t Imm = CI->getZExtValue(); 2120 2121 if (VT == MVT::i64) 2122 return PPCMaterialize64BitInt(Imm, RC); 2123 else if (VT == MVT::i32) 2124 return PPCMaterialize32BitInt(Imm, RC); 2125 2126 return 0; 2127 } 2128 2129 // Materialize a constant into a register, and return the register 2130 // number (or zero if we failed to handle it). 2131 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2132 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2133 2134 // Only handle simple types. 2135 if (!CEVT.isSimple()) return 0; 2136 MVT VT = CEVT.getSimpleVT(); 2137 2138 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2139 return PPCMaterializeFP(CFP, VT); 2140 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2141 return PPCMaterializeGV(GV, VT); 2142 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2143 return PPCMaterializeInt(CI, VT, VT != MVT::i1); 2144 2145 return 0; 2146 } 2147 2148 // Materialize the address created by an alloca into a register, and 2149 // return the register number (or zero if we failed to handle it). 2150 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2151 // Don't handle dynamic allocas. 2152 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2153 2154 MVT VT; 2155 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2156 2157 DenseMap<const AllocaInst*, int>::iterator SI = 2158 FuncInfo.StaticAllocaMap.find(AI); 2159 2160 if (SI != FuncInfo.StaticAllocaMap.end()) { 2161 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2163 ResultReg).addFrameIndex(SI->second).addImm(0); 2164 return ResultReg; 2165 } 2166 2167 return 0; 2168 } 2169 2170 // Fold loads into extends when possible. 2171 // FIXME: We can have multiple redundant extend/trunc instructions 2172 // following a load. The folding only picks up one. Extend this 2173 // to check subsequent instructions for the same pattern and remove 2174 // them. Thus ResultReg should be the def reg for the last redundant 2175 // instruction in a chain, and all intervening instructions can be 2176 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2177 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2178 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2179 const LoadInst *LI) { 2180 // Verify we have a legal type before going any further. 2181 MVT VT; 2182 if (!isLoadTypeLegal(LI->getType(), VT)) 2183 return false; 2184 2185 // Combine load followed by zero- or sign-extend. 2186 bool IsZExt = false; 2187 switch(MI->getOpcode()) { 2188 default: 2189 return false; 2190 2191 case PPC::RLDICL: 2192 case PPC::RLDICL_32_64: { 2193 IsZExt = true; 2194 unsigned MB = MI->getOperand(3).getImm(); 2195 if ((VT == MVT::i8 && MB <= 56) || 2196 (VT == MVT::i16 && MB <= 48) || 2197 (VT == MVT::i32 && MB <= 32)) 2198 break; 2199 return false; 2200 } 2201 2202 case PPC::RLWINM: 2203 case PPC::RLWINM8: { 2204 IsZExt = true; 2205 unsigned MB = MI->getOperand(3).getImm(); 2206 if ((VT == MVT::i8 && MB <= 24) || 2207 (VT == MVT::i16 && MB <= 16)) 2208 break; 2209 return false; 2210 } 2211 2212 case PPC::EXTSB: 2213 case PPC::EXTSB8: 2214 case PPC::EXTSB8_32_64: 2215 /* There is no sign-extending load-byte instruction. */ 2216 return false; 2217 2218 case PPC::EXTSH: 2219 case PPC::EXTSH8: 2220 case PPC::EXTSH8_32_64: { 2221 if (VT != MVT::i16 && VT != MVT::i8) 2222 return false; 2223 break; 2224 } 2225 2226 case PPC::EXTSW: 2227 case PPC::EXTSW_32_64: { 2228 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2229 return false; 2230 break; 2231 } 2232 } 2233 2234 // See if we can handle this address. 2235 Address Addr; 2236 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2237 return false; 2238 2239 unsigned ResultReg = MI->getOperand(0).getReg(); 2240 2241 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2242 return false; 2243 2244 MI->eraseFromParent(); 2245 return true; 2246 } 2247 2248 // Attempt to lower call arguments in a faster way than done by 2249 // the selection DAG code. 2250 bool PPCFastISel::fastLowerArguments() { 2251 // Defer to normal argument lowering for now. It's reasonably 2252 // efficient. Consider doing something like ARM to handle the 2253 // case where all args fit in registers, no varargs, no float 2254 // or vector args. 2255 return false; 2256 } 2257 2258 // Handle materializing integer constants into a register. This is not 2259 // automatically generated for PowerPC, so must be explicitly created here. 2260 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2261 2262 if (Opc != ISD::Constant) 2263 return 0; 2264 2265 // If we're using CR bit registers for i1 values, handle that as a special 2266 // case first. 2267 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2268 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2270 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2271 return ImmReg; 2272 } 2273 2274 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2275 VT != MVT::i8 && VT != MVT::i1) 2276 return 0; 2277 2278 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2279 &PPC::GPRCRegClass); 2280 if (VT == MVT::i64) 2281 return PPCMaterialize64BitInt(Imm, RC); 2282 else 2283 return PPCMaterialize32BitInt(Imm, RC); 2284 } 2285 2286 // Override for ADDI and ADDI8 to set the correct register class 2287 // on RHS operand 0. The automatic infrastructure naively assumes 2288 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2289 // for these cases. At the moment, none of the other automatically 2290 // generated RI instructions require special treatment. However, once 2291 // SelectSelect is implemented, "isel" requires similar handling. 2292 // 2293 // Also be conservative about the output register class. Avoid 2294 // assigning R0 or X0 to the output register for GPRC and G8RC 2295 // register classes, as any such result could be used in ADDI, etc., 2296 // where those regs have another meaning. 2297 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2298 const TargetRegisterClass *RC, 2299 unsigned Op0, bool Op0IsKill, 2300 uint64_t Imm) { 2301 if (MachineInstOpcode == PPC::ADDI) 2302 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2303 else if (MachineInstOpcode == PPC::ADDI8) 2304 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2305 2306 const TargetRegisterClass *UseRC = 2307 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2308 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2309 2310 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2311 Op0, Op0IsKill, Imm); 2312 } 2313 2314 // Override for instructions with one register operand to avoid use of 2315 // R0/X0. The automatic infrastructure isn't aware of the context so 2316 // we must be conservative. 2317 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2318 const TargetRegisterClass* RC, 2319 unsigned Op0, bool Op0IsKill) { 2320 const TargetRegisterClass *UseRC = 2321 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2322 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2323 2324 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2325 } 2326 2327 // Override for instructions with two register operands to avoid use 2328 // of R0/X0. The automatic infrastructure isn't aware of the context 2329 // so we must be conservative. 2330 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2331 const TargetRegisterClass* RC, 2332 unsigned Op0, bool Op0IsKill, 2333 unsigned Op1, bool Op1IsKill) { 2334 const TargetRegisterClass *UseRC = 2335 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2336 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2337 2338 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2339 Op1, Op1IsKill); 2340 } 2341 2342 namespace llvm { 2343 // Create the fast instruction selector for PowerPC64 ELF. 2344 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2345 const TargetLibraryInfo *LibInfo) { 2346 // Only available on 64-bit ELF for now. 2347 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2348 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2349 return new PPCFastISel(FuncInfo, LibInfo); 2350 return nullptr; 2351 } 2352 } 2353