1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCISelLowering.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/FastISel.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 //===----------------------------------------------------------------------===// 40 // 41 // TBD: 42 // fastLowerArguments: Handle simple cases. 43 // PPCMaterializeGV: Handle TLS. 44 // SelectCall: Handle function pointers. 45 // SelectCall: Handle multi-register return values. 46 // SelectCall: Optimize away nops for local calls. 47 // processCallArgs: Handle bit-converted arguments. 48 // finishCall: Handle multi-register return values. 49 // PPCComputeAddress: Handle parameter references as FrameIndex's. 50 // PPCEmitCmp: Handle immediate as operand 1. 51 // SelectCall: Handle small byval arguments. 52 // SelectIntrinsicCall: Implement. 53 // SelectSelect: Implement. 54 // Consider factoring isTypeLegal into the base class. 55 // Implement switches and jump tables. 56 // 57 //===----------------------------------------------------------------------===// 58 using namespace llvm; 59 60 #define DEBUG_TYPE "ppcfastisel" 61 62 namespace { 63 64 typedef struct Address { 65 enum { 66 RegBase, 67 FrameIndexBase 68 } BaseType; 69 70 union { 71 unsigned Reg; 72 int FI; 73 } Base; 74 75 long Offset; 76 77 // Innocuous defaults for our address. 78 Address() 79 : BaseType(RegBase), Offset(0) { 80 Base.Reg = 0; 81 } 82 } Address; 83 84 class PPCFastISel final : public FastISel { 85 86 const TargetMachine &TM; 87 const TargetInstrInfo &TII; 88 const TargetLowering &TLI; 89 const PPCSubtarget *PPCSubTarget; 90 LLVMContext *Context; 91 92 public: 93 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 94 const TargetLibraryInfo *LibInfo) 95 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 96 TII(*TM.getSubtargetImpl()->getInstrInfo()), 97 TLI(*TM.getSubtargetImpl()->getTargetLowering()), 98 PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()), 99 Context(&FuncInfo.Fn->getContext()) {} 100 101 // Backend specific FastISel code. 102 private: 103 bool fastSelectInstruction(const Instruction *I) override; 104 unsigned fastMaterializeConstant(const Constant *C) override; 105 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 106 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 107 const LoadInst *LI) override; 108 bool fastLowerArguments() override; 109 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 110 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 111 const TargetRegisterClass *RC, 112 unsigned Op0, bool Op0IsKill, 113 uint64_t Imm); 114 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill); 117 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 118 const TargetRegisterClass *RC, 119 unsigned Op0, bool Op0IsKill, 120 unsigned Op1, bool Op1IsKill); 121 122 // Instruction selection routines. 123 private: 124 bool SelectLoad(const Instruction *I); 125 bool SelectStore(const Instruction *I); 126 bool SelectBranch(const Instruction *I); 127 bool SelectIndirectBr(const Instruction *I); 128 bool SelectFPExt(const Instruction *I); 129 bool SelectFPTrunc(const Instruction *I); 130 bool SelectIToFP(const Instruction *I, bool IsSigned); 131 bool SelectFPToI(const Instruction *I, bool IsSigned); 132 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 133 bool SelectCall(const Instruction *I); 134 bool SelectRet(const Instruction *I); 135 bool SelectTrunc(const Instruction *I); 136 bool SelectIntExt(const Instruction *I); 137 138 // Utility routines. 139 private: 140 bool isTypeLegal(Type *Ty, MVT &VT); 141 bool isLoadTypeLegal(Type *Ty, MVT &VT); 142 bool isVSFRCRegister(unsigned Register) const { 143 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 144 } 145 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 146 bool isZExt, unsigned DestReg); 147 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 148 const TargetRegisterClass *RC, bool IsZExt = true, 149 unsigned FP64LoadOpc = PPC::LFD); 150 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 151 bool PPCComputeAddress(const Value *Obj, Address &Addr); 152 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 153 unsigned &IndexReg); 154 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 155 unsigned DestReg, bool IsZExt); 156 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 157 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 158 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 159 unsigned PPCMaterialize32BitInt(int64_t Imm, 160 const TargetRegisterClass *RC); 161 unsigned PPCMaterialize64BitInt(int64_t Imm, 162 const TargetRegisterClass *RC); 163 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 164 unsigned SrcReg, bool IsSigned); 165 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 166 167 // Call handling routines. 168 private: 169 bool processCallArgs(SmallVectorImpl<Value*> &Args, 170 SmallVectorImpl<unsigned> &ArgRegs, 171 SmallVectorImpl<MVT> &ArgVTs, 172 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 173 SmallVectorImpl<unsigned> &RegArgs, 174 CallingConv::ID CC, 175 unsigned &NumBytes, 176 bool IsVarArg); 177 void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 178 const Instruction *I, CallingConv::ID CC, 179 unsigned &NumBytes, bool IsVarArg); 180 CCAssignFn *usePPC32CCs(unsigned Flag); 181 182 private: 183 #include "PPCGenFastISel.inc" 184 185 }; 186 187 } // end anonymous namespace 188 189 #include "PPCGenCallingConv.inc" 190 191 // Function whose sole purpose is to kill compiler warnings 192 // stemming from unused functions included from PPCGenCallingConv.inc. 193 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 194 if (Flag == 1) 195 return CC_PPC32_SVR4; 196 else if (Flag == 2) 197 return CC_PPC32_SVR4_ByVal; 198 else if (Flag == 3) 199 return CC_PPC32_SVR4_VarArg; 200 else 201 return RetCC_PPC; 202 } 203 204 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 205 switch (Pred) { 206 // These are not representable with any single compare. 207 case CmpInst::FCMP_FALSE: 208 case CmpInst::FCMP_UEQ: 209 case CmpInst::FCMP_UGT: 210 case CmpInst::FCMP_UGE: 211 case CmpInst::FCMP_ULT: 212 case CmpInst::FCMP_ULE: 213 case CmpInst::FCMP_UNE: 214 case CmpInst::FCMP_TRUE: 215 default: 216 return Optional<PPC::Predicate>(); 217 218 case CmpInst::FCMP_OEQ: 219 case CmpInst::ICMP_EQ: 220 return PPC::PRED_EQ; 221 222 case CmpInst::FCMP_OGT: 223 case CmpInst::ICMP_UGT: 224 case CmpInst::ICMP_SGT: 225 return PPC::PRED_GT; 226 227 case CmpInst::FCMP_OGE: 228 case CmpInst::ICMP_UGE: 229 case CmpInst::ICMP_SGE: 230 return PPC::PRED_GE; 231 232 case CmpInst::FCMP_OLT: 233 case CmpInst::ICMP_ULT: 234 case CmpInst::ICMP_SLT: 235 return PPC::PRED_LT; 236 237 case CmpInst::FCMP_OLE: 238 case CmpInst::ICMP_ULE: 239 case CmpInst::ICMP_SLE: 240 return PPC::PRED_LE; 241 242 case CmpInst::FCMP_ONE: 243 case CmpInst::ICMP_NE: 244 return PPC::PRED_NE; 245 246 case CmpInst::FCMP_ORD: 247 return PPC::PRED_NU; 248 249 case CmpInst::FCMP_UNO: 250 return PPC::PRED_UN; 251 } 252 } 253 254 // Determine whether the type Ty is simple enough to be handled by 255 // fast-isel, and return its equivalent machine type in VT. 256 // FIXME: Copied directly from ARM -- factor into base class? 257 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 258 EVT Evt = TLI.getValueType(Ty, true); 259 260 // Only handle simple types. 261 if (Evt == MVT::Other || !Evt.isSimple()) return false; 262 VT = Evt.getSimpleVT(); 263 264 // Handle all legal types, i.e. a register that will directly hold this 265 // value. 266 return TLI.isTypeLegal(VT); 267 } 268 269 // Determine whether the type Ty is simple enough to be handled by 270 // fast-isel as a load target, and return its equivalent machine type in VT. 271 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 272 if (isTypeLegal(Ty, VT)) return true; 273 274 // If this is a type than can be sign or zero-extended to a basic operation 275 // go ahead and accept it now. 276 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 277 return true; 278 } 279 280 return false; 281 } 282 283 // Given a value Obj, create an Address object Addr that represents its 284 // address. Return false if we can't handle it. 285 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 286 const User *U = nullptr; 287 unsigned Opcode = Instruction::UserOp1; 288 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 289 // Don't walk into other basic blocks unless the object is an alloca from 290 // another block, otherwise it may not have a virtual register assigned. 291 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 292 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 293 Opcode = I->getOpcode(); 294 U = I; 295 } 296 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 297 Opcode = C->getOpcode(); 298 U = C; 299 } 300 301 switch (Opcode) { 302 default: 303 break; 304 case Instruction::BitCast: 305 // Look through bitcasts. 306 return PPCComputeAddress(U->getOperand(0), Addr); 307 case Instruction::IntToPtr: 308 // Look past no-op inttoptrs. 309 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 310 return PPCComputeAddress(U->getOperand(0), Addr); 311 break; 312 case Instruction::PtrToInt: 313 // Look past no-op ptrtoints. 314 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 315 return PPCComputeAddress(U->getOperand(0), Addr); 316 break; 317 case Instruction::GetElementPtr: { 318 Address SavedAddr = Addr; 319 long TmpOffset = Addr.Offset; 320 321 // Iterate through the GEP folding the constants into offsets where 322 // we can. 323 gep_type_iterator GTI = gep_type_begin(U); 324 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 325 II != IE; ++II, ++GTI) { 326 const Value *Op = *II; 327 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 328 const StructLayout *SL = DL.getStructLayout(STy); 329 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 330 TmpOffset += SL->getElementOffset(Idx); 331 } else { 332 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 333 for (;;) { 334 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 335 // Constant-offset addressing. 336 TmpOffset += CI->getSExtValue() * S; 337 break; 338 } 339 if (canFoldAddIntoGEP(U, Op)) { 340 // A compatible add with a constant operand. Fold the constant. 341 ConstantInt *CI = 342 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 343 TmpOffset += CI->getSExtValue() * S; 344 // Iterate on the other operand. 345 Op = cast<AddOperator>(Op)->getOperand(0); 346 continue; 347 } 348 // Unsupported 349 goto unsupported_gep; 350 } 351 } 352 } 353 354 // Try to grab the base operand now. 355 Addr.Offset = TmpOffset; 356 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 357 358 // We failed, restore everything and try the other options. 359 Addr = SavedAddr; 360 361 unsupported_gep: 362 break; 363 } 364 case Instruction::Alloca: { 365 const AllocaInst *AI = cast<AllocaInst>(Obj); 366 DenseMap<const AllocaInst*, int>::iterator SI = 367 FuncInfo.StaticAllocaMap.find(AI); 368 if (SI != FuncInfo.StaticAllocaMap.end()) { 369 Addr.BaseType = Address::FrameIndexBase; 370 Addr.Base.FI = SI->second; 371 return true; 372 } 373 break; 374 } 375 } 376 377 // FIXME: References to parameters fall through to the behavior 378 // below. They should be able to reference a frame index since 379 // they are stored to the stack, so we can get "ld rx, offset(r1)" 380 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 381 // just contain the parameter. Try to handle this with a FI. 382 383 // Try to get this in a register if nothing else has worked. 384 if (Addr.Base.Reg == 0) 385 Addr.Base.Reg = getRegForValue(Obj); 386 387 // Prevent assignment of base register to X0, which is inappropriate 388 // for loads and stores alike. 389 if (Addr.Base.Reg != 0) 390 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 391 392 return Addr.Base.Reg != 0; 393 } 394 395 // Fix up some addresses that can't be used directly. For example, if 396 // an offset won't fit in an instruction field, we may need to move it 397 // into an index register. 398 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 399 unsigned &IndexReg) { 400 401 // Check whether the offset fits in the instruction field. 402 if (!isInt<16>(Addr.Offset)) 403 UseOffset = false; 404 405 // If this is a stack pointer and the offset needs to be simplified then 406 // put the alloca address into a register, set the base type back to 407 // register and continue. This should almost never happen. 408 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 409 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 411 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 412 Addr.Base.Reg = ResultReg; 413 Addr.BaseType = Address::RegBase; 414 } 415 416 if (!UseOffset) { 417 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 418 : Type::getInt64Ty(*Context)); 419 const ConstantInt *Offset = 420 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 421 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 422 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 423 } 424 } 425 426 // Emit a load instruction if possible, returning true if we succeeded, 427 // otherwise false. See commentary below for how the register class of 428 // the load is determined. 429 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 430 const TargetRegisterClass *RC, 431 bool IsZExt, unsigned FP64LoadOpc) { 432 unsigned Opc; 433 bool UseOffset = true; 434 435 // If ResultReg is given, it determines the register class of the load. 436 // Otherwise, RC is the register class to use. If the result of the 437 // load isn't anticipated in this block, both may be zero, in which 438 // case we must make a conservative guess. In particular, don't assign 439 // R0 or X0 to the result register, as the result may be used in a load, 440 // store, add-immediate, or isel that won't permit this. (Though 441 // perhaps the spill and reload of live-exit values would handle this?) 442 const TargetRegisterClass *UseRC = 443 (ResultReg ? MRI.getRegClass(ResultReg) : 444 (RC ? RC : 445 (VT == MVT::f64 ? &PPC::F8RCRegClass : 446 (VT == MVT::f32 ? &PPC::F4RCRegClass : 447 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 448 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 449 450 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 451 452 switch (VT.SimpleTy) { 453 default: // e.g., vector types not handled 454 return false; 455 case MVT::i8: 456 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 457 break; 458 case MVT::i16: 459 Opc = (IsZExt ? 460 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 461 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 462 break; 463 case MVT::i32: 464 Opc = (IsZExt ? 465 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 466 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 467 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 468 UseOffset = false; 469 break; 470 case MVT::i64: 471 Opc = PPC::LD; 472 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 473 "64-bit load with 32-bit target??"); 474 UseOffset = ((Addr.Offset & 3) == 0); 475 break; 476 case MVT::f32: 477 Opc = PPC::LFS; 478 break; 479 case MVT::f64: 480 Opc = FP64LoadOpc; 481 break; 482 } 483 484 // If necessary, materialize the offset into a register and use 485 // the indexed form. Also handle stack pointers with special needs. 486 unsigned IndexReg = 0; 487 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 488 489 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 490 // be used. 491 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 492 if (IsVSFRC && (Opc == PPC::LFD) && 493 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 494 (Addr.Offset == 0)) { 495 UseOffset = false; 496 } 497 498 if (ResultReg == 0) 499 ResultReg = createResultReg(UseRC); 500 501 // Note: If we still have a frame index here, we know the offset is 502 // in range, as otherwise PPCSimplifyAddress would have converted it 503 // into a RegBase. 504 if (Addr.BaseType == Address::FrameIndexBase) { 505 // VSX only provides an indexed load. 506 if (IsVSFRC && Opc == PPC::LFD) return false; 507 508 MachineMemOperand *MMO = 509 FuncInfo.MF->getMachineMemOperand( 510 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 511 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 512 MFI.getObjectAlignment(Addr.Base.FI)); 513 514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 515 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 516 517 // Base reg with offset in range. 518 } else if (UseOffset) { 519 // VSX only provides an indexed load. 520 if (IsVSFRC && Opc == PPC::LFD) return false; 521 522 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 523 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 524 525 // Indexed form. 526 } else { 527 // Get the RR opcode corresponding to the RI one. FIXME: It would be 528 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 529 // is hard to get at. 530 switch (Opc) { 531 default: llvm_unreachable("Unexpected opcode!"); 532 case PPC::LBZ: Opc = PPC::LBZX; break; 533 case PPC::LBZ8: Opc = PPC::LBZX8; break; 534 case PPC::LHZ: Opc = PPC::LHZX; break; 535 case PPC::LHZ8: Opc = PPC::LHZX8; break; 536 case PPC::LHA: Opc = PPC::LHAX; break; 537 case PPC::LHA8: Opc = PPC::LHAX8; break; 538 case PPC::LWZ: Opc = PPC::LWZX; break; 539 case PPC::LWZ8: Opc = PPC::LWZX8; break; 540 case PPC::LWA: Opc = PPC::LWAX; break; 541 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 542 case PPC::LD: Opc = PPC::LDX; break; 543 case PPC::LFS: Opc = PPC::LFSX; break; 544 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 545 } 546 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 547 .addReg(Addr.Base.Reg).addReg(IndexReg); 548 } 549 550 return true; 551 } 552 553 // Attempt to fast-select a load instruction. 554 bool PPCFastISel::SelectLoad(const Instruction *I) { 555 // FIXME: No atomic loads are supported. 556 if (cast<LoadInst>(I)->isAtomic()) 557 return false; 558 559 // Verify we have a legal type before going any further. 560 MVT VT; 561 if (!isLoadTypeLegal(I->getType(), VT)) 562 return false; 563 564 // See if we can handle this address. 565 Address Addr; 566 if (!PPCComputeAddress(I->getOperand(0), Addr)) 567 return false; 568 569 // Look at the currently assigned register for this instruction 570 // to determine the required register class. This is necessary 571 // to constrain RA from using R0/X0 when this is not legal. 572 unsigned AssignedReg = FuncInfo.ValueMap[I]; 573 const TargetRegisterClass *RC = 574 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 575 576 unsigned ResultReg = 0; 577 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 578 return false; 579 updateValueMap(I, ResultReg); 580 return true; 581 } 582 583 // Emit a store instruction to store SrcReg at Addr. 584 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 585 assert(SrcReg && "Nothing to store!"); 586 unsigned Opc; 587 bool UseOffset = true; 588 589 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 590 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 591 592 switch (VT.SimpleTy) { 593 default: // e.g., vector types not handled 594 return false; 595 case MVT::i8: 596 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 597 break; 598 case MVT::i16: 599 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 600 break; 601 case MVT::i32: 602 assert(Is32BitInt && "Not GPRC for i32??"); 603 Opc = PPC::STW; 604 break; 605 case MVT::i64: 606 Opc = PPC::STD; 607 UseOffset = ((Addr.Offset & 3) == 0); 608 break; 609 case MVT::f32: 610 Opc = PPC::STFS; 611 break; 612 case MVT::f64: 613 Opc = PPC::STFD; 614 break; 615 } 616 617 // If necessary, materialize the offset into a register and use 618 // the indexed form. Also handle stack pointers with special needs. 619 unsigned IndexReg = 0; 620 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 621 622 // If this is a potential VSX store with an offset of 0, a VSX indexed store 623 // can be used. 624 bool IsVSFRC = isVSFRCRegister(SrcReg); 625 if (IsVSFRC && (Opc == PPC::STFD) && 626 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 627 (Addr.Offset == 0)) { 628 UseOffset = false; 629 } 630 631 // Note: If we still have a frame index here, we know the offset is 632 // in range, as otherwise PPCSimplifyAddress would have converted it 633 // into a RegBase. 634 if (Addr.BaseType == Address::FrameIndexBase) { 635 // VSX only provides an indexed store. 636 if (IsVSFRC && Opc == PPC::STFD) return false; 637 638 MachineMemOperand *MMO = 639 FuncInfo.MF->getMachineMemOperand( 640 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 641 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 642 MFI.getObjectAlignment(Addr.Base.FI)); 643 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 645 .addReg(SrcReg) 646 .addImm(Addr.Offset) 647 .addFrameIndex(Addr.Base.FI) 648 .addMemOperand(MMO); 649 650 // Base reg with offset in range. 651 } else if (UseOffset) { 652 // VSX only provides an indexed store. 653 if (IsVSFRC && Opc == PPC::STFD) return false; 654 655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 656 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 657 658 // Indexed form. 659 } else { 660 // Get the RR opcode corresponding to the RI one. FIXME: It would be 661 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 662 // is hard to get at. 663 switch (Opc) { 664 default: llvm_unreachable("Unexpected opcode!"); 665 case PPC::STB: Opc = PPC::STBX; break; 666 case PPC::STH : Opc = PPC::STHX; break; 667 case PPC::STW : Opc = PPC::STWX; break; 668 case PPC::STB8: Opc = PPC::STBX8; break; 669 case PPC::STH8: Opc = PPC::STHX8; break; 670 case PPC::STW8: Opc = PPC::STWX8; break; 671 case PPC::STD: Opc = PPC::STDX; break; 672 case PPC::STFS: Opc = PPC::STFSX; break; 673 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 674 } 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 676 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 677 } 678 679 return true; 680 } 681 682 // Attempt to fast-select a store instruction. 683 bool PPCFastISel::SelectStore(const Instruction *I) { 684 Value *Op0 = I->getOperand(0); 685 unsigned SrcReg = 0; 686 687 // FIXME: No atomics loads are supported. 688 if (cast<StoreInst>(I)->isAtomic()) 689 return false; 690 691 // Verify we have a legal type before going any further. 692 MVT VT; 693 if (!isLoadTypeLegal(Op0->getType(), VT)) 694 return false; 695 696 // Get the value to be stored into a register. 697 SrcReg = getRegForValue(Op0); 698 if (SrcReg == 0) 699 return false; 700 701 // See if we can handle this address. 702 Address Addr; 703 if (!PPCComputeAddress(I->getOperand(1), Addr)) 704 return false; 705 706 if (!PPCEmitStore(VT, SrcReg, Addr)) 707 return false; 708 709 return true; 710 } 711 712 // Attempt to fast-select a branch instruction. 713 bool PPCFastISel::SelectBranch(const Instruction *I) { 714 const BranchInst *BI = cast<BranchInst>(I); 715 MachineBasicBlock *BrBB = FuncInfo.MBB; 716 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 717 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 718 719 // For now, just try the simplest case where it's fed by a compare. 720 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 721 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 722 if (!OptPPCPred) 723 return false; 724 725 PPC::Predicate PPCPred = OptPPCPred.getValue(); 726 727 // Take advantage of fall-through opportunities. 728 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 729 std::swap(TBB, FBB); 730 PPCPred = PPC::InvertPredicate(PPCPred); 731 } 732 733 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 734 735 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 736 CondReg)) 737 return false; 738 739 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 740 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 741 fastEmitBranch(FBB, DbgLoc); 742 FuncInfo.MBB->addSuccessor(TBB); 743 return true; 744 745 } else if (const ConstantInt *CI = 746 dyn_cast<ConstantInt>(BI->getCondition())) { 747 uint64_t Imm = CI->getZExtValue(); 748 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 749 fastEmitBranch(Target, DbgLoc); 750 return true; 751 } 752 753 // FIXME: ARM looks for a case where the block containing the compare 754 // has been split from the block containing the branch. If this happens, 755 // there is a vreg available containing the result of the compare. I'm 756 // not sure we can do much, as we've lost the predicate information with 757 // the compare instruction -- we have a 4-bit CR but don't know which bit 758 // to test here. 759 return false; 760 } 761 762 // Attempt to emit a compare of the two source values. Signed and unsigned 763 // comparisons are supported. Return false if we can't handle it. 764 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 765 bool IsZExt, unsigned DestReg) { 766 Type *Ty = SrcValue1->getType(); 767 EVT SrcEVT = TLI.getValueType(Ty, true); 768 if (!SrcEVT.isSimple()) 769 return false; 770 MVT SrcVT = SrcEVT.getSimpleVT(); 771 772 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 773 return false; 774 775 // See if operand 2 is an immediate encodeable in the compare. 776 // FIXME: Operands are not in canonical order at -O0, so an immediate 777 // operand in position 1 is a lost opportunity for now. We are 778 // similar to ARM in this regard. 779 long Imm = 0; 780 bool UseImm = false; 781 782 // Only 16-bit integer constants can be represented in compares for 783 // PowerPC. Others will be materialized into a register. 784 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 785 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 786 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 787 const APInt &CIVal = ConstInt->getValue(); 788 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 789 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 790 UseImm = true; 791 } 792 } 793 794 unsigned CmpOpc; 795 bool NeedsExt = false; 796 switch (SrcVT.SimpleTy) { 797 default: return false; 798 case MVT::f32: 799 CmpOpc = PPC::FCMPUS; 800 break; 801 case MVT::f64: 802 CmpOpc = PPC::FCMPUD; 803 break; 804 case MVT::i1: 805 case MVT::i8: 806 case MVT::i16: 807 NeedsExt = true; 808 // Intentional fall-through. 809 case MVT::i32: 810 if (!UseImm) 811 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 812 else 813 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 814 break; 815 case MVT::i64: 816 if (!UseImm) 817 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 818 else 819 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 820 break; 821 } 822 823 unsigned SrcReg1 = getRegForValue(SrcValue1); 824 if (SrcReg1 == 0) 825 return false; 826 827 unsigned SrcReg2 = 0; 828 if (!UseImm) { 829 SrcReg2 = getRegForValue(SrcValue2); 830 if (SrcReg2 == 0) 831 return false; 832 } 833 834 if (NeedsExt) { 835 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 836 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 837 return false; 838 SrcReg1 = ExtReg; 839 840 if (!UseImm) { 841 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 842 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 843 return false; 844 SrcReg2 = ExtReg; 845 } 846 } 847 848 if (!UseImm) 849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 850 .addReg(SrcReg1).addReg(SrcReg2); 851 else 852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 853 .addReg(SrcReg1).addImm(Imm); 854 855 return true; 856 } 857 858 // Attempt to fast-select a floating-point extend instruction. 859 bool PPCFastISel::SelectFPExt(const Instruction *I) { 860 Value *Src = I->getOperand(0); 861 EVT SrcVT = TLI.getValueType(Src->getType(), true); 862 EVT DestVT = TLI.getValueType(I->getType(), true); 863 864 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 865 return false; 866 867 unsigned SrcReg = getRegForValue(Src); 868 if (!SrcReg) 869 return false; 870 871 // No code is generated for a FP extend. 872 updateValueMap(I, SrcReg); 873 return true; 874 } 875 876 // Attempt to fast-select a floating-point truncate instruction. 877 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 878 Value *Src = I->getOperand(0); 879 EVT SrcVT = TLI.getValueType(Src->getType(), true); 880 EVT DestVT = TLI.getValueType(I->getType(), true); 881 882 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 883 return false; 884 885 unsigned SrcReg = getRegForValue(Src); 886 if (!SrcReg) 887 return false; 888 889 // Round the result to single precision. 890 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 892 .addReg(SrcReg); 893 894 updateValueMap(I, DestReg); 895 return true; 896 } 897 898 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 899 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 900 // those should be used instead of moving via a stack slot when the 901 // subtarget permits. 902 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 903 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 904 // case to 8 bytes which produces tighter code but wastes stack space. 905 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 906 bool IsSigned) { 907 908 // If necessary, extend 32-bit int to 64-bit. 909 if (SrcVT == MVT::i32) { 910 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 911 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 912 return 0; 913 SrcReg = TmpReg; 914 } 915 916 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 917 Address Addr; 918 Addr.BaseType = Address::FrameIndexBase; 919 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 920 921 // Store the value from the GPR. 922 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 923 return 0; 924 925 // Load the integer value into an FPR. The kind of load used depends 926 // on a number of conditions. 927 unsigned LoadOpc = PPC::LFD; 928 929 if (SrcVT == MVT::i32) { 930 if (!IsSigned) { 931 LoadOpc = PPC::LFIWZX; 932 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 933 } else if (PPCSubTarget->hasLFIWAX()) { 934 LoadOpc = PPC::LFIWAX; 935 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 936 } 937 } 938 939 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 940 unsigned ResultReg = 0; 941 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 942 return 0; 943 944 return ResultReg; 945 } 946 947 // Attempt to fast-select an integer-to-floating-point conversion. 948 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 949 MVT DstVT; 950 Type *DstTy = I->getType(); 951 if (!isTypeLegal(DstTy, DstVT)) 952 return false; 953 954 if (DstVT != MVT::f32 && DstVT != MVT::f64) 955 return false; 956 957 Value *Src = I->getOperand(0); 958 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 959 if (!SrcEVT.isSimple()) 960 return false; 961 962 MVT SrcVT = SrcEVT.getSimpleVT(); 963 964 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 965 SrcVT != MVT::i32 && SrcVT != MVT::i64) 966 return false; 967 968 unsigned SrcReg = getRegForValue(Src); 969 if (SrcReg == 0) 970 return false; 971 972 // We can only lower an unsigned convert if we have the newer 973 // floating-point conversion operations. 974 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 975 return false; 976 977 // FIXME: For now we require the newer floating-point conversion operations 978 // (which are present only on P7 and A2 server models) when converting 979 // to single-precision float. Otherwise we have to generate a lot of 980 // fiddly code to avoid double rounding. If necessary, the fiddly code 981 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 982 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 983 return false; 984 985 // Extend the input if necessary. 986 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 987 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 988 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 989 return false; 990 SrcVT = MVT::i64; 991 SrcReg = TmpReg; 992 } 993 994 // Move the integer value to an FPR. 995 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 996 if (FPReg == 0) 997 return false; 998 999 // Determine the opcode for the conversion. 1000 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1001 unsigned DestReg = createResultReg(RC); 1002 unsigned Opc; 1003 1004 if (DstVT == MVT::f32) 1005 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1006 else 1007 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1008 1009 // Generate the convert. 1010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1011 .addReg(FPReg); 1012 1013 updateValueMap(I, DestReg); 1014 return true; 1015 } 1016 1017 // Move the floating-point value in SrcReg into an integer destination 1018 // register, and return the register (or zero if we can't handle it). 1019 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1020 // those should be used instead of moving via a stack slot when the 1021 // subtarget permits. 1022 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1023 unsigned SrcReg, bool IsSigned) { 1024 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1025 // Note that if have STFIWX available, we could use a 4-byte stack 1026 // slot for i32, but this being fast-isel we'll just go with the 1027 // easiest code gen possible. 1028 Address Addr; 1029 Addr.BaseType = Address::FrameIndexBase; 1030 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1031 1032 // Store the value from the FPR. 1033 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1034 return 0; 1035 1036 // Reload it into a GPR. If we want an i32, modify the address 1037 // to have a 4-byte offset so we load from the right place. 1038 if (VT == MVT::i32) 1039 Addr.Offset = 4; 1040 1041 // Look at the currently assigned register for this instruction 1042 // to determine the required register class. 1043 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1044 const TargetRegisterClass *RC = 1045 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1046 1047 unsigned ResultReg = 0; 1048 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1049 return 0; 1050 1051 return ResultReg; 1052 } 1053 1054 // Attempt to fast-select a floating-point-to-integer conversion. 1055 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1056 MVT DstVT, SrcVT; 1057 Type *DstTy = I->getType(); 1058 if (!isTypeLegal(DstTy, DstVT)) 1059 return false; 1060 1061 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1062 return false; 1063 1064 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1065 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1066 return false; 1067 1068 Value *Src = I->getOperand(0); 1069 Type *SrcTy = Src->getType(); 1070 if (!isTypeLegal(SrcTy, SrcVT)) 1071 return false; 1072 1073 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1074 return false; 1075 1076 unsigned SrcReg = getRegForValue(Src); 1077 if (SrcReg == 0) 1078 return false; 1079 1080 // Convert f32 to f64 if necessary. This is just a meaningless copy 1081 // to get the register class right. COPY_TO_REGCLASS is needed since 1082 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1083 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1084 if (InRC == &PPC::F4RCRegClass) { 1085 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1087 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1088 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1089 SrcReg = TmpReg; 1090 } 1091 1092 // Determine the opcode for the conversion, which takes place 1093 // entirely within FPRs. 1094 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1095 unsigned Opc; 1096 1097 if (DstVT == MVT::i32) 1098 if (IsSigned) 1099 Opc = PPC::FCTIWZ; 1100 else 1101 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1102 else 1103 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1104 1105 // Generate the convert. 1106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1107 .addReg(SrcReg); 1108 1109 // Now move the integer value from a float register to an integer register. 1110 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1111 if (IntReg == 0) 1112 return false; 1113 1114 updateValueMap(I, IntReg); 1115 return true; 1116 } 1117 1118 // Attempt to fast-select a binary integer operation that isn't already 1119 // handled automatically. 1120 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1121 EVT DestVT = TLI.getValueType(I->getType(), true); 1122 1123 // We can get here in the case when we have a binary operation on a non-legal 1124 // type and the target independent selector doesn't know how to handle it. 1125 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1126 return false; 1127 1128 // Look at the currently assigned register for this instruction 1129 // to determine the required register class. If there is no register, 1130 // make a conservative choice (don't assign R0). 1131 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1132 const TargetRegisterClass *RC = 1133 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1134 &PPC::GPRC_and_GPRC_NOR0RegClass); 1135 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1136 1137 unsigned Opc; 1138 switch (ISDOpcode) { 1139 default: return false; 1140 case ISD::ADD: 1141 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1142 break; 1143 case ISD::OR: 1144 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1145 break; 1146 case ISD::SUB: 1147 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1148 break; 1149 } 1150 1151 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1152 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1153 if (SrcReg1 == 0) return false; 1154 1155 // Handle case of small immediate operand. 1156 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1157 const APInt &CIVal = ConstInt->getValue(); 1158 int Imm = (int)CIVal.getSExtValue(); 1159 bool UseImm = true; 1160 if (isInt<16>(Imm)) { 1161 switch (Opc) { 1162 default: 1163 llvm_unreachable("Missing case!"); 1164 case PPC::ADD4: 1165 Opc = PPC::ADDI; 1166 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1167 break; 1168 case PPC::ADD8: 1169 Opc = PPC::ADDI8; 1170 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1171 break; 1172 case PPC::OR: 1173 Opc = PPC::ORI; 1174 break; 1175 case PPC::OR8: 1176 Opc = PPC::ORI8; 1177 break; 1178 case PPC::SUBF: 1179 if (Imm == -32768) 1180 UseImm = false; 1181 else { 1182 Opc = PPC::ADDI; 1183 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1184 Imm = -Imm; 1185 } 1186 break; 1187 case PPC::SUBF8: 1188 if (Imm == -32768) 1189 UseImm = false; 1190 else { 1191 Opc = PPC::ADDI8; 1192 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1193 Imm = -Imm; 1194 } 1195 break; 1196 } 1197 1198 if (UseImm) { 1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1200 ResultReg) 1201 .addReg(SrcReg1) 1202 .addImm(Imm); 1203 updateValueMap(I, ResultReg); 1204 return true; 1205 } 1206 } 1207 } 1208 1209 // Reg-reg case. 1210 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1211 if (SrcReg2 == 0) return false; 1212 1213 // Reverse operands for subtract-from. 1214 if (ISDOpcode == ISD::SUB) 1215 std::swap(SrcReg1, SrcReg2); 1216 1217 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1218 .addReg(SrcReg1).addReg(SrcReg2); 1219 updateValueMap(I, ResultReg); 1220 return true; 1221 } 1222 1223 // Handle arguments to a call that we're attempting to fast-select. 1224 // Return false if the arguments are too complex for us at the moment. 1225 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1226 SmallVectorImpl<unsigned> &ArgRegs, 1227 SmallVectorImpl<MVT> &ArgVTs, 1228 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1229 SmallVectorImpl<unsigned> &RegArgs, 1230 CallingConv::ID CC, 1231 unsigned &NumBytes, 1232 bool IsVarArg) { 1233 SmallVector<CCValAssign, 16> ArgLocs; 1234 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1235 1236 // Reserve space for the linkage area on the stack. 1237 bool isELFv2ABI = PPCSubTarget->isELFv2ABI(); 1238 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, 1239 isELFv2ABI); 1240 CCInfo.AllocateStack(LinkageSize, 8); 1241 1242 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1243 1244 // Bail out if we can't handle any of the arguments. 1245 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1246 CCValAssign &VA = ArgLocs[I]; 1247 MVT ArgVT = ArgVTs[VA.getValNo()]; 1248 1249 // Skip vector arguments for now, as well as long double and 1250 // uint128_t, and anything that isn't passed in a register. 1251 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1252 !VA.isRegLoc() || VA.needsCustom()) 1253 return false; 1254 1255 // Skip bit-converted arguments for now. 1256 if (VA.getLocInfo() == CCValAssign::BCvt) 1257 return false; 1258 } 1259 1260 // Get a count of how many bytes are to be pushed onto the stack. 1261 NumBytes = CCInfo.getNextStackOffset(); 1262 1263 // The prolog code of the callee may store up to 8 GPR argument registers to 1264 // the stack, allowing va_start to index over them in memory if its varargs. 1265 // Because we cannot tell if this is needed on the caller side, we have to 1266 // conservatively assume that it is needed. As such, make sure we have at 1267 // least enough stack space for the caller to store the 8 GPRs. 1268 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1269 NumBytes = std::max(NumBytes, LinkageSize + 64); 1270 1271 // Issue CALLSEQ_START. 1272 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1273 TII.get(TII.getCallFrameSetupOpcode())) 1274 .addImm(NumBytes); 1275 1276 // Prepare to assign register arguments. Every argument uses up a 1277 // GPR protocol register even if it's passed in a floating-point 1278 // register. 1279 unsigned NextGPR = PPC::X3; 1280 unsigned NextFPR = PPC::F1; 1281 1282 // Process arguments. 1283 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1284 CCValAssign &VA = ArgLocs[I]; 1285 unsigned Arg = ArgRegs[VA.getValNo()]; 1286 MVT ArgVT = ArgVTs[VA.getValNo()]; 1287 1288 // Handle argument promotion and bitcasts. 1289 switch (VA.getLocInfo()) { 1290 default: 1291 llvm_unreachable("Unknown loc info!"); 1292 case CCValAssign::Full: 1293 break; 1294 case CCValAssign::SExt: { 1295 MVT DestVT = VA.getLocVT(); 1296 const TargetRegisterClass *RC = 1297 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1298 unsigned TmpReg = createResultReg(RC); 1299 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1300 llvm_unreachable("Failed to emit a sext!"); 1301 ArgVT = DestVT; 1302 Arg = TmpReg; 1303 break; 1304 } 1305 case CCValAssign::AExt: 1306 case CCValAssign::ZExt: { 1307 MVT DestVT = VA.getLocVT(); 1308 const TargetRegisterClass *RC = 1309 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1310 unsigned TmpReg = createResultReg(RC); 1311 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1312 llvm_unreachable("Failed to emit a zext!"); 1313 ArgVT = DestVT; 1314 Arg = TmpReg; 1315 break; 1316 } 1317 case CCValAssign::BCvt: { 1318 // FIXME: Not yet handled. 1319 llvm_unreachable("Should have bailed before getting here!"); 1320 break; 1321 } 1322 } 1323 1324 // Copy this argument to the appropriate register. 1325 unsigned ArgReg; 1326 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1327 ArgReg = NextFPR++; 1328 ++NextGPR; 1329 } else 1330 ArgReg = NextGPR++; 1331 1332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1333 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1334 RegArgs.push_back(ArgReg); 1335 } 1336 1337 return true; 1338 } 1339 1340 // For a call that we've determined we can fast-select, finish the 1341 // call sequence and generate a copy to obtain the return value (if any). 1342 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1343 const Instruction *I, CallingConv::ID CC, 1344 unsigned &NumBytes, bool IsVarArg) { 1345 // Issue CallSEQ_END. 1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1347 TII.get(TII.getCallFrameDestroyOpcode())) 1348 .addImm(NumBytes).addImm(0); 1349 1350 // Next, generate a copy to obtain the return value. 1351 // FIXME: No multi-register return values yet, though I don't foresee 1352 // any real difficulties there. 1353 if (RetVT != MVT::isVoid) { 1354 SmallVector<CCValAssign, 16> RVLocs; 1355 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1356 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1357 CCValAssign &VA = RVLocs[0]; 1358 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1359 assert(VA.isRegLoc() && "Can only return in registers!"); 1360 1361 MVT DestVT = VA.getValVT(); 1362 MVT CopyVT = DestVT; 1363 1364 // Ints smaller than a register still arrive in a full 64-bit 1365 // register, so make sure we recognize this. 1366 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1367 CopyVT = MVT::i64; 1368 1369 unsigned SourcePhysReg = VA.getLocReg(); 1370 unsigned ResultReg = 0; 1371 1372 if (RetVT == CopyVT) { 1373 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1374 ResultReg = createResultReg(CpyRC); 1375 1376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1377 TII.get(TargetOpcode::COPY), ResultReg) 1378 .addReg(SourcePhysReg); 1379 1380 // If necessary, round the floating result to single precision. 1381 } else if (CopyVT == MVT::f64) { 1382 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1383 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1384 ResultReg).addReg(SourcePhysReg); 1385 1386 // If only the low half of a general register is needed, generate 1387 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1388 // used along the fast-isel path (not lowered), and downstream logic 1389 // also doesn't like a direct subreg copy on a physical reg.) 1390 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1391 ResultReg = createResultReg(&PPC::GPRCRegClass); 1392 // Convert physical register from G8RC to GPRC. 1393 SourcePhysReg -= PPC::X0 - PPC::R0; 1394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1395 TII.get(TargetOpcode::COPY), ResultReg) 1396 .addReg(SourcePhysReg); 1397 } 1398 1399 assert(ResultReg && "ResultReg unset!"); 1400 UsedRegs.push_back(SourcePhysReg); 1401 updateValueMap(I, ResultReg); 1402 } 1403 } 1404 1405 // Attempt to fast-select a call instruction. 1406 bool PPCFastISel::SelectCall(const Instruction *I) { 1407 const CallInst *CI = cast<CallInst>(I); 1408 const Value *Callee = CI->getCalledValue(); 1409 1410 // Can't handle inline asm. 1411 if (isa<InlineAsm>(Callee)) 1412 return false; 1413 1414 // Allow SelectionDAG isel to handle tail calls. 1415 if (CI->isTailCall()) 1416 return false; 1417 1418 // Obtain calling convention. 1419 ImmutableCallSite CS(CI); 1420 CallingConv::ID CC = CS.getCallingConv(); 1421 1422 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1423 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 1424 bool IsVarArg = FTy->isVarArg(); 1425 1426 // Not ready for varargs yet. 1427 if (IsVarArg) 1428 return false; 1429 1430 // Handle simple calls for now, with legal return types and 1431 // those that can be extended. 1432 Type *RetTy = I->getType(); 1433 MVT RetVT; 1434 if (RetTy->isVoidTy()) 1435 RetVT = MVT::isVoid; 1436 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1437 RetVT != MVT::i8) 1438 return false; 1439 1440 // FIXME: No multi-register return values yet. 1441 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1442 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1443 RetVT != MVT::f64) { 1444 SmallVector<CCValAssign, 16> RVLocs; 1445 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1446 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1447 if (RVLocs.size() > 1) 1448 return false; 1449 } 1450 1451 // Bail early if more than 8 arguments, as we only currently 1452 // handle arguments passed in registers. 1453 unsigned NumArgs = CS.arg_size(); 1454 if (NumArgs > 8) 1455 return false; 1456 1457 // Set up the argument vectors. 1458 SmallVector<Value*, 8> Args; 1459 SmallVector<unsigned, 8> ArgRegs; 1460 SmallVector<MVT, 8> ArgVTs; 1461 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1462 1463 Args.reserve(NumArgs); 1464 ArgRegs.reserve(NumArgs); 1465 ArgVTs.reserve(NumArgs); 1466 ArgFlags.reserve(NumArgs); 1467 1468 for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end(); 1469 II != IE; ++II) { 1470 // FIXME: ARM does something for intrinsic calls here, check into that. 1471 1472 unsigned AttrIdx = II - CS.arg_begin() + 1; 1473 1474 // Only handle easy calls for now. It would be reasonably easy 1475 // to handle <= 8-byte structures passed ByVal in registers, but we 1476 // have to ensure they are right-justified in the register. 1477 if (CS.paramHasAttr(AttrIdx, Attribute::InReg) || 1478 CS.paramHasAttr(AttrIdx, Attribute::StructRet) || 1479 CS.paramHasAttr(AttrIdx, Attribute::Nest) || 1480 CS.paramHasAttr(AttrIdx, Attribute::ByVal)) 1481 return false; 1482 1483 ISD::ArgFlagsTy Flags; 1484 if (CS.paramHasAttr(AttrIdx, Attribute::SExt)) 1485 Flags.setSExt(); 1486 if (CS.paramHasAttr(AttrIdx, Attribute::ZExt)) 1487 Flags.setZExt(); 1488 1489 Type *ArgTy = (*II)->getType(); 1490 MVT ArgVT; 1491 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1492 return false; 1493 1494 if (ArgVT.isVector()) 1495 return false; 1496 1497 unsigned Arg = getRegForValue(*II); 1498 if (Arg == 0) 1499 return false; 1500 1501 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 1502 Flags.setOrigAlign(OriginalAlignment); 1503 1504 Args.push_back(*II); 1505 ArgRegs.push_back(Arg); 1506 ArgVTs.push_back(ArgVT); 1507 ArgFlags.push_back(Flags); 1508 } 1509 1510 // Process the arguments. 1511 SmallVector<unsigned, 8> RegArgs; 1512 unsigned NumBytes; 1513 1514 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1515 RegArgs, CC, NumBytes, IsVarArg)) 1516 return false; 1517 1518 // FIXME: No handling for function pointers yet. This requires 1519 // implementing the function descriptor (OPD) setup. 1520 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1521 if (!GV) 1522 return false; 1523 1524 // Build direct call with NOP for TOC restore. 1525 // FIXME: We can and should optimize away the NOP for local calls. 1526 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1527 TII.get(PPC::BL8_NOP)); 1528 // Add callee. 1529 MIB.addGlobalAddress(GV); 1530 1531 // Add implicit physical register uses to the call. 1532 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1533 MIB.addReg(RegArgs[II], RegState::Implicit); 1534 1535 // Direct calls in the ELFv2 ABI need the TOC register live into the call. 1536 if (PPCSubTarget->isELFv2ABI()) 1537 MIB.addReg(PPC::X2, RegState::Implicit); 1538 1539 // Add a register mask with the call-preserved registers. Proper 1540 // defs for return values will be added by setPhysRegsDeadExcept(). 1541 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1542 1543 // Finish off the call including any return values. 1544 SmallVector<unsigned, 4> UsedRegs; 1545 finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg); 1546 1547 // Set all unused physregs defs as dead. 1548 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1549 1550 return true; 1551 } 1552 1553 // Attempt to fast-select a return instruction. 1554 bool PPCFastISel::SelectRet(const Instruction *I) { 1555 1556 if (!FuncInfo.CanLowerReturn) 1557 return false; 1558 1559 const ReturnInst *Ret = cast<ReturnInst>(I); 1560 const Function &F = *I->getParent()->getParent(); 1561 1562 // Build a list of return value registers. 1563 SmallVector<unsigned, 4> RetRegs; 1564 CallingConv::ID CC = F.getCallingConv(); 1565 1566 if (Ret->getNumOperands() > 0) { 1567 SmallVector<ISD::OutputArg, 4> Outs; 1568 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1569 1570 // Analyze operands of the call, assigning locations to each operand. 1571 SmallVector<CCValAssign, 16> ValLocs; 1572 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1573 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1574 const Value *RV = Ret->getOperand(0); 1575 1576 // FIXME: Only one output register for now. 1577 if (ValLocs.size() > 1) 1578 return false; 1579 1580 // Special case for returning a constant integer of any size. 1581 // Materialize the constant as an i64 and copy it to the return 1582 // register. We still need to worry about properly extending the sign. E.g: 1583 // If the constant has only one bit, it means it is a boolean. Therefore 1584 // we can't use PPCMaterializeInt because it extends the sign which will 1585 // cause negations of the returned value to be incorrect as they are 1586 // implemented as the flip of the least significant bit. 1587 if (isa<ConstantInt>(*RV)) { 1588 const Constant *C = cast<Constant>(RV); 1589 1590 CCValAssign &VA = ValLocs[0]; 1591 1592 unsigned RetReg = VA.getLocReg(); 1593 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1594 VA.getLocInfo() == CCValAssign::SExt); 1595 1596 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1597 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1598 1599 RetRegs.push_back(RetReg); 1600 1601 } else { 1602 unsigned Reg = getRegForValue(RV); 1603 1604 if (Reg == 0) 1605 return false; 1606 1607 // Copy the result values into the output registers. 1608 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1609 1610 CCValAssign &VA = ValLocs[i]; 1611 assert(VA.isRegLoc() && "Can only return in registers!"); 1612 RetRegs.push_back(VA.getLocReg()); 1613 unsigned SrcReg = Reg + VA.getValNo(); 1614 1615 EVT RVEVT = TLI.getValueType(RV->getType()); 1616 if (!RVEVT.isSimple()) 1617 return false; 1618 MVT RVVT = RVEVT.getSimpleVT(); 1619 MVT DestVT = VA.getLocVT(); 1620 1621 if (RVVT != DestVT && RVVT != MVT::i8 && 1622 RVVT != MVT::i16 && RVVT != MVT::i32) 1623 return false; 1624 1625 if (RVVT != DestVT) { 1626 switch (VA.getLocInfo()) { 1627 default: 1628 llvm_unreachable("Unknown loc info!"); 1629 case CCValAssign::Full: 1630 llvm_unreachable("Full value assign but types don't match?"); 1631 case CCValAssign::AExt: 1632 case CCValAssign::ZExt: { 1633 const TargetRegisterClass *RC = 1634 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1635 unsigned TmpReg = createResultReg(RC); 1636 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1637 return false; 1638 SrcReg = TmpReg; 1639 break; 1640 } 1641 case CCValAssign::SExt: { 1642 const TargetRegisterClass *RC = 1643 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1644 unsigned TmpReg = createResultReg(RC); 1645 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1646 return false; 1647 SrcReg = TmpReg; 1648 break; 1649 } 1650 } 1651 } 1652 1653 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1654 TII.get(TargetOpcode::COPY), RetRegs[i]) 1655 .addReg(SrcReg); 1656 } 1657 } 1658 } 1659 1660 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1661 TII.get(PPC::BLR)); 1662 1663 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1664 MIB.addReg(RetRegs[i], RegState::Implicit); 1665 1666 return true; 1667 } 1668 1669 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1670 // signed and zero extensions are supported. Return false if we 1671 // can't handle it. 1672 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1673 unsigned DestReg, bool IsZExt) { 1674 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1675 return false; 1676 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1677 return false; 1678 1679 // Signed extensions use EXTSB, EXTSH, EXTSW. 1680 if (!IsZExt) { 1681 unsigned Opc; 1682 if (SrcVT == MVT::i8) 1683 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1684 else if (SrcVT == MVT::i16) 1685 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1686 else { 1687 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1688 Opc = PPC::EXTSW_32_64; 1689 } 1690 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1691 .addReg(SrcReg); 1692 1693 // Unsigned 32-bit extensions use RLWINM. 1694 } else if (DestVT == MVT::i32) { 1695 unsigned MB; 1696 if (SrcVT == MVT::i8) 1697 MB = 24; 1698 else { 1699 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1700 MB = 16; 1701 } 1702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1703 DestReg) 1704 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1705 1706 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1707 } else { 1708 unsigned MB; 1709 if (SrcVT == MVT::i8) 1710 MB = 56; 1711 else if (SrcVT == MVT::i16) 1712 MB = 48; 1713 else 1714 MB = 32; 1715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1716 TII.get(PPC::RLDICL_32_64), DestReg) 1717 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1718 } 1719 1720 return true; 1721 } 1722 1723 // Attempt to fast-select an indirect branch instruction. 1724 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1725 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1726 if (AddrReg == 0) 1727 return false; 1728 1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1730 .addReg(AddrReg); 1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1732 1733 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1734 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1735 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1736 1737 return true; 1738 } 1739 1740 // Attempt to fast-select an integer truncate instruction. 1741 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1742 Value *Src = I->getOperand(0); 1743 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1744 EVT DestVT = TLI.getValueType(I->getType(), true); 1745 1746 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1747 return false; 1748 1749 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1750 return false; 1751 1752 unsigned SrcReg = getRegForValue(Src); 1753 if (!SrcReg) 1754 return false; 1755 1756 // The only interesting case is when we need to switch register classes. 1757 if (SrcVT == MVT::i64) { 1758 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1760 TII.get(TargetOpcode::COPY), 1761 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1762 SrcReg = ResultReg; 1763 } 1764 1765 updateValueMap(I, SrcReg); 1766 return true; 1767 } 1768 1769 // Attempt to fast-select an integer extend instruction. 1770 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1771 Type *DestTy = I->getType(); 1772 Value *Src = I->getOperand(0); 1773 Type *SrcTy = Src->getType(); 1774 1775 bool IsZExt = isa<ZExtInst>(I); 1776 unsigned SrcReg = getRegForValue(Src); 1777 if (!SrcReg) return false; 1778 1779 EVT SrcEVT, DestEVT; 1780 SrcEVT = TLI.getValueType(SrcTy, true); 1781 DestEVT = TLI.getValueType(DestTy, true); 1782 if (!SrcEVT.isSimple()) 1783 return false; 1784 if (!DestEVT.isSimple()) 1785 return false; 1786 1787 MVT SrcVT = SrcEVT.getSimpleVT(); 1788 MVT DestVT = DestEVT.getSimpleVT(); 1789 1790 // If we know the register class needed for the result of this 1791 // instruction, use it. Otherwise pick the register class of the 1792 // correct size that does not contain X0/R0, since we don't know 1793 // whether downstream uses permit that assignment. 1794 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1795 const TargetRegisterClass *RC = 1796 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1797 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1798 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1799 unsigned ResultReg = createResultReg(RC); 1800 1801 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1802 return false; 1803 1804 updateValueMap(I, ResultReg); 1805 return true; 1806 } 1807 1808 // Attempt to fast-select an instruction that wasn't handled by 1809 // the table-generated machinery. 1810 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1811 1812 switch (I->getOpcode()) { 1813 case Instruction::Load: 1814 return SelectLoad(I); 1815 case Instruction::Store: 1816 return SelectStore(I); 1817 case Instruction::Br: 1818 return SelectBranch(I); 1819 case Instruction::IndirectBr: 1820 return SelectIndirectBr(I); 1821 case Instruction::FPExt: 1822 return SelectFPExt(I); 1823 case Instruction::FPTrunc: 1824 return SelectFPTrunc(I); 1825 case Instruction::SIToFP: 1826 return SelectIToFP(I, /*IsSigned*/ true); 1827 case Instruction::UIToFP: 1828 return SelectIToFP(I, /*IsSigned*/ false); 1829 case Instruction::FPToSI: 1830 return SelectFPToI(I, /*IsSigned*/ true); 1831 case Instruction::FPToUI: 1832 return SelectFPToI(I, /*IsSigned*/ false); 1833 case Instruction::Add: 1834 return SelectBinaryIntOp(I, ISD::ADD); 1835 case Instruction::Or: 1836 return SelectBinaryIntOp(I, ISD::OR); 1837 case Instruction::Sub: 1838 return SelectBinaryIntOp(I, ISD::SUB); 1839 case Instruction::Call: 1840 if (dyn_cast<IntrinsicInst>(I)) 1841 return false; 1842 return SelectCall(I); 1843 case Instruction::Ret: 1844 return SelectRet(I); 1845 case Instruction::Trunc: 1846 return SelectTrunc(I); 1847 case Instruction::ZExt: 1848 case Instruction::SExt: 1849 return SelectIntExt(I); 1850 // Here add other flavors of Instruction::XXX that automated 1851 // cases don't catch. For example, switches are terminators 1852 // that aren't yet handled. 1853 default: 1854 break; 1855 } 1856 return false; 1857 } 1858 1859 // Materialize a floating-point constant into a register, and return 1860 // the register number (or zero if we failed to handle it). 1861 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1862 // No plans to handle long double here. 1863 if (VT != MVT::f32 && VT != MVT::f64) 1864 return 0; 1865 1866 // All FP constants are loaded from the constant pool. 1867 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1868 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1869 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1870 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1871 CodeModel::Model CModel = TM.getCodeModel(); 1872 1873 MachineMemOperand *MMO = 1874 FuncInfo.MF->getMachineMemOperand( 1875 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1876 (VT == MVT::f32) ? 4 : 8, Align); 1877 1878 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1879 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1880 1881 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1882 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1884 TmpReg) 1885 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1886 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1887 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1888 } else { 1889 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1891 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1892 // But for large code model, we must generate a LDtocL followed 1893 // by the LF[SD]. 1894 if (CModel == CodeModel::Large) { 1895 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1897 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1899 .addImm(0).addReg(TmpReg2); 1900 } else 1901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1902 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1903 .addReg(TmpReg) 1904 .addMemOperand(MMO); 1905 } 1906 1907 return DestReg; 1908 } 1909 1910 // Materialize the address of a global value into a register, and return 1911 // the register number (or zero if we failed to handle it). 1912 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1913 assert(VT == MVT::i64 && "Non-address!"); 1914 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1915 unsigned DestReg = createResultReg(RC); 1916 1917 // Global values may be plain old object addresses, TLS object 1918 // addresses, constant pool entries, or jump tables. How we generate 1919 // code for these may depend on small, medium, or large code model. 1920 CodeModel::Model CModel = TM.getCodeModel(); 1921 1922 // FIXME: Jump tables are not yet required because fast-isel doesn't 1923 // handle switches; if that changes, we need them as well. For now, 1924 // what follows assumes everything's a generic (or TLS) global address. 1925 1926 // FIXME: We don't yet handle the complexity of TLS. 1927 if (GV->isThreadLocal()) 1928 return 0; 1929 1930 // For small code model, generate a simple TOC load. 1931 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1933 DestReg) 1934 .addGlobalAddress(GV) 1935 .addReg(PPC::X2); 1936 else { 1937 // If the address is an externally defined symbol, a symbol with common 1938 // or externally available linkage, a non-local function address, or a 1939 // jump table address (not yet needed), or if we are generating code 1940 // for large code model, we generate: 1941 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1942 // Otherwise we generate: 1943 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1944 // Either way, start with the ADDIStocHA: 1945 unsigned HighPartReg = createResultReg(RC); 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1947 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1948 1949 // If/when switches are implemented, jump tables should be handled 1950 // on the "if" path here. 1951 if (CModel == CodeModel::Large || 1952 (GV->getType()->getElementType()->isFunctionTy() && 1953 (GV->isDeclaration() || GV->isWeakForLinker())) || 1954 GV->isDeclaration() || GV->hasCommonLinkage() || 1955 GV->hasAvailableExternallyLinkage()) 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1957 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1958 else 1959 // Otherwise generate the ADDItocL. 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1961 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1962 } 1963 1964 return DestReg; 1965 } 1966 1967 // Materialize a 32-bit integer constant into a register, and return 1968 // the register number (or zero if we failed to handle it). 1969 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1970 const TargetRegisterClass *RC) { 1971 unsigned Lo = Imm & 0xFFFF; 1972 unsigned Hi = (Imm >> 16) & 0xFFFF; 1973 1974 unsigned ResultReg = createResultReg(RC); 1975 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1976 1977 if (isInt<16>(Imm)) 1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1979 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1980 .addImm(Imm); 1981 else if (Lo) { 1982 // Both Lo and Hi have nonzero bits. 1983 unsigned TmpReg = createResultReg(RC); 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1985 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1986 .addImm(Hi); 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1988 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1989 .addReg(TmpReg).addImm(Lo); 1990 } else 1991 // Just Hi bits. 1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1993 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1994 .addImm(Hi); 1995 1996 return ResultReg; 1997 } 1998 1999 // Materialize a 64-bit integer constant into a register, and return 2000 // the register number (or zero if we failed to handle it). 2001 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2002 const TargetRegisterClass *RC) { 2003 unsigned Remainder = 0; 2004 unsigned Shift = 0; 2005 2006 // If the value doesn't fit in 32 bits, see if we can shift it 2007 // so that it fits in 32 bits. 2008 if (!isInt<32>(Imm)) { 2009 Shift = countTrailingZeros<uint64_t>(Imm); 2010 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2011 2012 if (isInt<32>(ImmSh)) 2013 Imm = ImmSh; 2014 else { 2015 Remainder = Imm; 2016 Shift = 32; 2017 Imm >>= 32; 2018 } 2019 } 2020 2021 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2022 // (if not shifted). 2023 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2024 if (!Shift) 2025 return TmpReg1; 2026 2027 // If upper 32 bits were not zero, we've built them and need to shift 2028 // them into place. 2029 unsigned TmpReg2; 2030 if (Imm) { 2031 TmpReg2 = createResultReg(RC); 2032 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2033 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2034 } else 2035 TmpReg2 = TmpReg1; 2036 2037 unsigned TmpReg3, Hi, Lo; 2038 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2039 TmpReg3 = createResultReg(RC); 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2041 TmpReg3).addReg(TmpReg2).addImm(Hi); 2042 } else 2043 TmpReg3 = TmpReg2; 2044 2045 if ((Lo = Remainder & 0xFFFF)) { 2046 unsigned ResultReg = createResultReg(RC); 2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2048 ResultReg).addReg(TmpReg3).addImm(Lo); 2049 return ResultReg; 2050 } 2051 2052 return TmpReg3; 2053 } 2054 2055 2056 // Materialize an integer constant into a register, and return 2057 // the register number (or zero if we failed to handle it). 2058 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2059 bool UseSExt) { 2060 // If we're using CR bit registers for i1 values, handle that as a special 2061 // case first. 2062 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2063 const ConstantInt *CI = cast<ConstantInt>(C); 2064 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2066 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2067 return ImmReg; 2068 } 2069 2070 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2071 VT != MVT::i8 && VT != MVT::i1) 2072 return 0; 2073 2074 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2075 &PPC::GPRCRegClass); 2076 2077 // If the constant is in range, use a load-immediate. 2078 const ConstantInt *CI = cast<ConstantInt>(C); 2079 if (isInt<16>(CI->getSExtValue())) { 2080 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2081 unsigned ImmReg = createResultReg(RC); 2082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2083 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2084 return ImmReg; 2085 } 2086 2087 // Construct the constant piecewise. 2088 int64_t Imm = CI->getZExtValue(); 2089 2090 if (VT == MVT::i64) 2091 return PPCMaterialize64BitInt(Imm, RC); 2092 else if (VT == MVT::i32) 2093 return PPCMaterialize32BitInt(Imm, RC); 2094 2095 return 0; 2096 } 2097 2098 // Materialize a constant into a register, and return the register 2099 // number (or zero if we failed to handle it). 2100 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2101 EVT CEVT = TLI.getValueType(C->getType(), true); 2102 2103 // Only handle simple types. 2104 if (!CEVT.isSimple()) return 0; 2105 MVT VT = CEVT.getSimpleVT(); 2106 2107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2108 return PPCMaterializeFP(CFP, VT); 2109 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2110 return PPCMaterializeGV(GV, VT); 2111 else if (isa<ConstantInt>(C)) 2112 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2113 2114 return 0; 2115 } 2116 2117 // Materialize the address created by an alloca into a register, and 2118 // return the register number (or zero if we failed to handle it). 2119 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2120 // Don't handle dynamic allocas. 2121 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2122 2123 MVT VT; 2124 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2125 2126 DenseMap<const AllocaInst*, int>::iterator SI = 2127 FuncInfo.StaticAllocaMap.find(AI); 2128 2129 if (SI != FuncInfo.StaticAllocaMap.end()) { 2130 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2132 ResultReg).addFrameIndex(SI->second).addImm(0); 2133 return ResultReg; 2134 } 2135 2136 return 0; 2137 } 2138 2139 // Fold loads into extends when possible. 2140 // FIXME: We can have multiple redundant extend/trunc instructions 2141 // following a load. The folding only picks up one. Extend this 2142 // to check subsequent instructions for the same pattern and remove 2143 // them. Thus ResultReg should be the def reg for the last redundant 2144 // instruction in a chain, and all intervening instructions can be 2145 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2146 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2147 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2148 const LoadInst *LI) { 2149 // Verify we have a legal type before going any further. 2150 MVT VT; 2151 if (!isLoadTypeLegal(LI->getType(), VT)) 2152 return false; 2153 2154 // Combine load followed by zero- or sign-extend. 2155 bool IsZExt = false; 2156 switch(MI->getOpcode()) { 2157 default: 2158 return false; 2159 2160 case PPC::RLDICL: 2161 case PPC::RLDICL_32_64: { 2162 IsZExt = true; 2163 unsigned MB = MI->getOperand(3).getImm(); 2164 if ((VT == MVT::i8 && MB <= 56) || 2165 (VT == MVT::i16 && MB <= 48) || 2166 (VT == MVT::i32 && MB <= 32)) 2167 break; 2168 return false; 2169 } 2170 2171 case PPC::RLWINM: 2172 case PPC::RLWINM8: { 2173 IsZExt = true; 2174 unsigned MB = MI->getOperand(3).getImm(); 2175 if ((VT == MVT::i8 && MB <= 24) || 2176 (VT == MVT::i16 && MB <= 16)) 2177 break; 2178 return false; 2179 } 2180 2181 case PPC::EXTSB: 2182 case PPC::EXTSB8: 2183 case PPC::EXTSB8_32_64: 2184 /* There is no sign-extending load-byte instruction. */ 2185 return false; 2186 2187 case PPC::EXTSH: 2188 case PPC::EXTSH8: 2189 case PPC::EXTSH8_32_64: { 2190 if (VT != MVT::i16 && VT != MVT::i8) 2191 return false; 2192 break; 2193 } 2194 2195 case PPC::EXTSW: 2196 case PPC::EXTSW_32_64: { 2197 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2198 return false; 2199 break; 2200 } 2201 } 2202 2203 // See if we can handle this address. 2204 Address Addr; 2205 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2206 return false; 2207 2208 unsigned ResultReg = MI->getOperand(0).getReg(); 2209 2210 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2211 return false; 2212 2213 MI->eraseFromParent(); 2214 return true; 2215 } 2216 2217 // Attempt to lower call arguments in a faster way than done by 2218 // the selection DAG code. 2219 bool PPCFastISel::fastLowerArguments() { 2220 // Defer to normal argument lowering for now. It's reasonably 2221 // efficient. Consider doing something like ARM to handle the 2222 // case where all args fit in registers, no varargs, no float 2223 // or vector args. 2224 return false; 2225 } 2226 2227 // Handle materializing integer constants into a register. This is not 2228 // automatically generated for PowerPC, so must be explicitly created here. 2229 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2230 2231 if (Opc != ISD::Constant) 2232 return 0; 2233 2234 // If we're using CR bit registers for i1 values, handle that as a special 2235 // case first. 2236 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2237 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2239 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2240 return ImmReg; 2241 } 2242 2243 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2244 VT != MVT::i8 && VT != MVT::i1) 2245 return 0; 2246 2247 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2248 &PPC::GPRCRegClass); 2249 if (VT == MVT::i64) 2250 return PPCMaterialize64BitInt(Imm, RC); 2251 else 2252 return PPCMaterialize32BitInt(Imm, RC); 2253 } 2254 2255 // Override for ADDI and ADDI8 to set the correct register class 2256 // on RHS operand 0. The automatic infrastructure naively assumes 2257 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2258 // for these cases. At the moment, none of the other automatically 2259 // generated RI instructions require special treatment. However, once 2260 // SelectSelect is implemented, "isel" requires similar handling. 2261 // 2262 // Also be conservative about the output register class. Avoid 2263 // assigning R0 or X0 to the output register for GPRC and G8RC 2264 // register classes, as any such result could be used in ADDI, etc., 2265 // where those regs have another meaning. 2266 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2267 const TargetRegisterClass *RC, 2268 unsigned Op0, bool Op0IsKill, 2269 uint64_t Imm) { 2270 if (MachineInstOpcode == PPC::ADDI) 2271 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2272 else if (MachineInstOpcode == PPC::ADDI8) 2273 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2274 2275 const TargetRegisterClass *UseRC = 2276 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2277 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2278 2279 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2280 Op0, Op0IsKill, Imm); 2281 } 2282 2283 // Override for instructions with one register operand to avoid use of 2284 // R0/X0. The automatic infrastructure isn't aware of the context so 2285 // we must be conservative. 2286 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2287 const TargetRegisterClass* RC, 2288 unsigned Op0, bool Op0IsKill) { 2289 const TargetRegisterClass *UseRC = 2290 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2291 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2292 2293 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2294 } 2295 2296 // Override for instructions with two register operands to avoid use 2297 // of R0/X0. The automatic infrastructure isn't aware of the context 2298 // so we must be conservative. 2299 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2300 const TargetRegisterClass* RC, 2301 unsigned Op0, bool Op0IsKill, 2302 unsigned Op1, bool Op1IsKill) { 2303 const TargetRegisterClass *UseRC = 2304 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2305 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2306 2307 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2308 Op1, Op1IsKill); 2309 } 2310 2311 namespace llvm { 2312 // Create the fast instruction selector for PowerPC64 ELF. 2313 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2314 const TargetLibraryInfo *LibInfo) { 2315 const TargetMachine &TM = FuncInfo.MF->getTarget(); 2316 2317 // Only available on 64-bit ELF for now. 2318 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 2319 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) 2320 return new PPCFastISel(FuncInfo, LibInfo); 2321 2322 return nullptr; 2323 } 2324 } 2325