1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 168 bool UseSExt = true); 169 unsigned PPCMaterialize32BitInt(int64_t Imm, 170 const TargetRegisterClass *RC); 171 unsigned PPCMaterialize64BitInt(int64_t Imm, 172 const TargetRegisterClass *RC); 173 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 174 unsigned SrcReg, bool IsSigned); 175 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 176 177 // Call handling routines. 178 private: 179 bool processCallArgs(SmallVectorImpl<Value*> &Args, 180 SmallVectorImpl<unsigned> &ArgRegs, 181 SmallVectorImpl<MVT> &ArgVTs, 182 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 183 SmallVectorImpl<unsigned> &RegArgs, 184 CallingConv::ID CC, 185 unsigned &NumBytes, 186 bool IsVarArg); 187 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 188 CCAssignFn *usePPC32CCs(unsigned Flag); 189 190 private: 191 #include "PPCGenFastISel.inc" 192 193 }; 194 195 } // end anonymous namespace 196 197 #include "PPCGenCallingConv.inc" 198 199 // Function whose sole purpose is to kill compiler warnings 200 // stemming from unused functions included from PPCGenCallingConv.inc. 201 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 202 if (Flag == 1) 203 return CC_PPC32_SVR4; 204 else if (Flag == 2) 205 return CC_PPC32_SVR4_ByVal; 206 else if (Flag == 3) 207 return CC_PPC32_SVR4_VarArg; 208 else 209 return RetCC_PPC; 210 } 211 212 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 213 switch (Pred) { 214 // These are not representable with any single compare. 215 case CmpInst::FCMP_FALSE: 216 case CmpInst::FCMP_UEQ: 217 case CmpInst::FCMP_UGT: 218 case CmpInst::FCMP_UGE: 219 case CmpInst::FCMP_ULT: 220 case CmpInst::FCMP_ULE: 221 case CmpInst::FCMP_UNE: 222 case CmpInst::FCMP_TRUE: 223 default: 224 return Optional<PPC::Predicate>(); 225 226 case CmpInst::FCMP_OEQ: 227 case CmpInst::ICMP_EQ: 228 return PPC::PRED_EQ; 229 230 case CmpInst::FCMP_OGT: 231 case CmpInst::ICMP_UGT: 232 case CmpInst::ICMP_SGT: 233 return PPC::PRED_GT; 234 235 case CmpInst::FCMP_OGE: 236 case CmpInst::ICMP_UGE: 237 case CmpInst::ICMP_SGE: 238 return PPC::PRED_GE; 239 240 case CmpInst::FCMP_OLT: 241 case CmpInst::ICMP_ULT: 242 case CmpInst::ICMP_SLT: 243 return PPC::PRED_LT; 244 245 case CmpInst::FCMP_OLE: 246 case CmpInst::ICMP_ULE: 247 case CmpInst::ICMP_SLE: 248 return PPC::PRED_LE; 249 250 case CmpInst::FCMP_ONE: 251 case CmpInst::ICMP_NE: 252 return PPC::PRED_NE; 253 254 case CmpInst::FCMP_ORD: 255 return PPC::PRED_NU; 256 257 case CmpInst::FCMP_UNO: 258 return PPC::PRED_UN; 259 } 260 } 261 262 // Determine whether the type Ty is simple enough to be handled by 263 // fast-isel, and return its equivalent machine type in VT. 264 // FIXME: Copied directly from ARM -- factor into base class? 265 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 266 EVT Evt = TLI.getValueType(DL, Ty, true); 267 268 // Only handle simple types. 269 if (Evt == MVT::Other || !Evt.isSimple()) return false; 270 VT = Evt.getSimpleVT(); 271 272 // Handle all legal types, i.e. a register that will directly hold this 273 // value. 274 return TLI.isTypeLegal(VT); 275 } 276 277 // Determine whether the type Ty is simple enough to be handled by 278 // fast-isel as a load target, and return its equivalent machine type in VT. 279 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 280 if (isTypeLegal(Ty, VT)) return true; 281 282 // If this is a type than can be sign or zero-extended to a basic operation 283 // go ahead and accept it now. 284 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 285 return true; 286 } 287 288 return false; 289 } 290 291 bool PPCFastISel::isValueAvailable(const Value *V) const { 292 if (!isa<Instruction>(V)) 293 return true; 294 295 const auto *I = cast<Instruction>(V); 296 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 297 } 298 299 // Given a value Obj, create an Address object Addr that represents its 300 // address. Return false if we can't handle it. 301 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 302 const User *U = nullptr; 303 unsigned Opcode = Instruction::UserOp1; 304 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 305 // Don't walk into other basic blocks unless the object is an alloca from 306 // another block, otherwise it may not have a virtual register assigned. 307 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 308 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 309 Opcode = I->getOpcode(); 310 U = I; 311 } 312 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 313 Opcode = C->getOpcode(); 314 U = C; 315 } 316 317 switch (Opcode) { 318 default: 319 break; 320 case Instruction::BitCast: 321 // Look through bitcasts. 322 return PPCComputeAddress(U->getOperand(0), Addr); 323 case Instruction::IntToPtr: 324 // Look past no-op inttoptrs. 325 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 326 TLI.getPointerTy(DL)) 327 return PPCComputeAddress(U->getOperand(0), Addr); 328 break; 329 case Instruction::PtrToInt: 330 // Look past no-op ptrtoints. 331 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 332 return PPCComputeAddress(U->getOperand(0), Addr); 333 break; 334 case Instruction::GetElementPtr: { 335 Address SavedAddr = Addr; 336 long TmpOffset = Addr.Offset; 337 338 // Iterate through the GEP folding the constants into offsets where 339 // we can. 340 gep_type_iterator GTI = gep_type_begin(U); 341 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 342 II != IE; ++II, ++GTI) { 343 const Value *Op = *II; 344 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 345 const StructLayout *SL = DL.getStructLayout(STy); 346 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 347 TmpOffset += SL->getElementOffset(Idx); 348 } else { 349 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 350 for (;;) { 351 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 352 // Constant-offset addressing. 353 TmpOffset += CI->getSExtValue() * S; 354 break; 355 } 356 if (canFoldAddIntoGEP(U, Op)) { 357 // A compatible add with a constant operand. Fold the constant. 358 ConstantInt *CI = 359 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 360 TmpOffset += CI->getSExtValue() * S; 361 // Iterate on the other operand. 362 Op = cast<AddOperator>(Op)->getOperand(0); 363 continue; 364 } 365 // Unsupported 366 goto unsupported_gep; 367 } 368 } 369 } 370 371 // Try to grab the base operand now. 372 Addr.Offset = TmpOffset; 373 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 374 375 // We failed, restore everything and try the other options. 376 Addr = SavedAddr; 377 378 unsupported_gep: 379 break; 380 } 381 case Instruction::Alloca: { 382 const AllocaInst *AI = cast<AllocaInst>(Obj); 383 DenseMap<const AllocaInst*, int>::iterator SI = 384 FuncInfo.StaticAllocaMap.find(AI); 385 if (SI != FuncInfo.StaticAllocaMap.end()) { 386 Addr.BaseType = Address::FrameIndexBase; 387 Addr.Base.FI = SI->second; 388 return true; 389 } 390 break; 391 } 392 } 393 394 // FIXME: References to parameters fall through to the behavior 395 // below. They should be able to reference a frame index since 396 // they are stored to the stack, so we can get "ld rx, offset(r1)" 397 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 398 // just contain the parameter. Try to handle this with a FI. 399 400 // Try to get this in a register if nothing else has worked. 401 if (Addr.Base.Reg == 0) 402 Addr.Base.Reg = getRegForValue(Obj); 403 404 // Prevent assignment of base register to X0, which is inappropriate 405 // for loads and stores alike. 406 if (Addr.Base.Reg != 0) 407 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 408 409 return Addr.Base.Reg != 0; 410 } 411 412 // Fix up some addresses that can't be used directly. For example, if 413 // an offset won't fit in an instruction field, we may need to move it 414 // into an index register. 415 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 416 unsigned &IndexReg) { 417 418 // Check whether the offset fits in the instruction field. 419 if (!isInt<16>(Addr.Offset)) 420 UseOffset = false; 421 422 // If this is a stack pointer and the offset needs to be simplified then 423 // put the alloca address into a register, set the base type back to 424 // register and continue. This should almost never happen. 425 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 426 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 427 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 428 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 429 Addr.Base.Reg = ResultReg; 430 Addr.BaseType = Address::RegBase; 431 } 432 433 if (!UseOffset) { 434 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 435 : Type::getInt64Ty(*Context)); 436 const ConstantInt *Offset = 437 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 438 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 439 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 440 } 441 } 442 443 // Emit a load instruction if possible, returning true if we succeeded, 444 // otherwise false. See commentary below for how the register class of 445 // the load is determined. 446 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 447 const TargetRegisterClass *RC, 448 bool IsZExt, unsigned FP64LoadOpc) { 449 unsigned Opc; 450 bool UseOffset = true; 451 452 // If ResultReg is given, it determines the register class of the load. 453 // Otherwise, RC is the register class to use. If the result of the 454 // load isn't anticipated in this block, both may be zero, in which 455 // case we must make a conservative guess. In particular, don't assign 456 // R0 or X0 to the result register, as the result may be used in a load, 457 // store, add-immediate, or isel that won't permit this. (Though 458 // perhaps the spill and reload of live-exit values would handle this?) 459 const TargetRegisterClass *UseRC = 460 (ResultReg ? MRI.getRegClass(ResultReg) : 461 (RC ? RC : 462 (VT == MVT::f64 ? &PPC::F8RCRegClass : 463 (VT == MVT::f32 ? &PPC::F4RCRegClass : 464 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 465 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 466 467 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 468 469 switch (VT.SimpleTy) { 470 default: // e.g., vector types not handled 471 return false; 472 case MVT::i8: 473 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 474 break; 475 case MVT::i16: 476 Opc = (IsZExt ? 477 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 478 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 479 break; 480 case MVT::i32: 481 Opc = (IsZExt ? 482 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 483 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 484 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 485 UseOffset = false; 486 break; 487 case MVT::i64: 488 Opc = PPC::LD; 489 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 490 "64-bit load with 32-bit target??"); 491 UseOffset = ((Addr.Offset & 3) == 0); 492 break; 493 case MVT::f32: 494 Opc = PPC::LFS; 495 break; 496 case MVT::f64: 497 Opc = FP64LoadOpc; 498 break; 499 } 500 501 // If necessary, materialize the offset into a register and use 502 // the indexed form. Also handle stack pointers with special needs. 503 unsigned IndexReg = 0; 504 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 505 506 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 507 // be used. 508 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 509 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 510 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 511 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 512 if ((Is32VSXLoad || Is64VSXLoad) && 513 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 514 (Addr.Offset == 0)) { 515 UseOffset = false; 516 } 517 518 if (ResultReg == 0) 519 ResultReg = createResultReg(UseRC); 520 521 // Note: If we still have a frame index here, we know the offset is 522 // in range, as otherwise PPCSimplifyAddress would have converted it 523 // into a RegBase. 524 if (Addr.BaseType == Address::FrameIndexBase) { 525 // VSX only provides an indexed load. 526 if (Is32VSXLoad || Is64VSXLoad) return false; 527 528 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 529 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 530 Addr.Offset), 531 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 532 MFI.getObjectAlignment(Addr.Base.FI)); 533 534 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 535 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 536 537 // Base reg with offset in range. 538 } else if (UseOffset) { 539 // VSX only provides an indexed load. 540 if (Is32VSXLoad || Is64VSXLoad) return false; 541 542 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 543 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 544 545 // Indexed form. 546 } else { 547 // Get the RR opcode corresponding to the RI one. FIXME: It would be 548 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 549 // is hard to get at. 550 switch (Opc) { 551 default: llvm_unreachable("Unexpected opcode!"); 552 case PPC::LBZ: Opc = PPC::LBZX; break; 553 case PPC::LBZ8: Opc = PPC::LBZX8; break; 554 case PPC::LHZ: Opc = PPC::LHZX; break; 555 case PPC::LHZ8: Opc = PPC::LHZX8; break; 556 case PPC::LHA: Opc = PPC::LHAX; break; 557 case PPC::LHA8: Opc = PPC::LHAX8; break; 558 case PPC::LWZ: Opc = PPC::LWZX; break; 559 case PPC::LWZ8: Opc = PPC::LWZX8; break; 560 case PPC::LWA: Opc = PPC::LWAX; break; 561 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 562 case PPC::LD: Opc = PPC::LDX; break; 563 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 564 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 565 } 566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 567 .addReg(Addr.Base.Reg).addReg(IndexReg); 568 } 569 570 return true; 571 } 572 573 // Attempt to fast-select a load instruction. 574 bool PPCFastISel::SelectLoad(const Instruction *I) { 575 // FIXME: No atomic loads are supported. 576 if (cast<LoadInst>(I)->isAtomic()) 577 return false; 578 579 // Verify we have a legal type before going any further. 580 MVT VT; 581 if (!isLoadTypeLegal(I->getType(), VT)) 582 return false; 583 584 // See if we can handle this address. 585 Address Addr; 586 if (!PPCComputeAddress(I->getOperand(0), Addr)) 587 return false; 588 589 // Look at the currently assigned register for this instruction 590 // to determine the required register class. This is necessary 591 // to constrain RA from using R0/X0 when this is not legal. 592 unsigned AssignedReg = FuncInfo.ValueMap[I]; 593 const TargetRegisterClass *RC = 594 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 595 596 unsigned ResultReg = 0; 597 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 598 return false; 599 updateValueMap(I, ResultReg); 600 return true; 601 } 602 603 // Emit a store instruction to store SrcReg at Addr. 604 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 605 assert(SrcReg && "Nothing to store!"); 606 unsigned Opc; 607 bool UseOffset = true; 608 609 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 610 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 611 612 switch (VT.SimpleTy) { 613 default: // e.g., vector types not handled 614 return false; 615 case MVT::i8: 616 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 617 break; 618 case MVT::i16: 619 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 620 break; 621 case MVT::i32: 622 assert(Is32BitInt && "Not GPRC for i32??"); 623 Opc = PPC::STW; 624 break; 625 case MVT::i64: 626 Opc = PPC::STD; 627 UseOffset = ((Addr.Offset & 3) == 0); 628 break; 629 case MVT::f32: 630 Opc = PPC::STFS; 631 break; 632 case MVT::f64: 633 Opc = PPC::STFD; 634 break; 635 } 636 637 // If necessary, materialize the offset into a register and use 638 // the indexed form. Also handle stack pointers with special needs. 639 unsigned IndexReg = 0; 640 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 641 642 // If this is a potential VSX store with an offset of 0, a VSX indexed store 643 // can be used. 644 bool IsVSSRC = isVSSRCRegister(SrcReg); 645 bool IsVSFRC = isVSFRCRegister(SrcReg); 646 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 647 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 648 if ((Is32VSXStore || Is64VSXStore) && 649 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 650 (Addr.Offset == 0)) { 651 UseOffset = false; 652 } 653 654 // Note: If we still have a frame index here, we know the offset is 655 // in range, as otherwise PPCSimplifyAddress would have converted it 656 // into a RegBase. 657 if (Addr.BaseType == Address::FrameIndexBase) { 658 // VSX only provides an indexed store. 659 if (Is32VSXStore || Is64VSXStore) return false; 660 661 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 662 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 663 Addr.Offset), 664 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 665 MFI.getObjectAlignment(Addr.Base.FI)); 666 667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 668 .addReg(SrcReg) 669 .addImm(Addr.Offset) 670 .addFrameIndex(Addr.Base.FI) 671 .addMemOperand(MMO); 672 673 // Base reg with offset in range. 674 } else if (UseOffset) { 675 // VSX only provides an indexed store. 676 if (Is32VSXStore || Is64VSXStore) return false; 677 678 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 679 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 680 681 // Indexed form. 682 } else { 683 // Get the RR opcode corresponding to the RI one. FIXME: It would be 684 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 685 // is hard to get at. 686 switch (Opc) { 687 default: llvm_unreachable("Unexpected opcode!"); 688 case PPC::STB: Opc = PPC::STBX; break; 689 case PPC::STH : Opc = PPC::STHX; break; 690 case PPC::STW : Opc = PPC::STWX; break; 691 case PPC::STB8: Opc = PPC::STBX8; break; 692 case PPC::STH8: Opc = PPC::STHX8; break; 693 case PPC::STW8: Opc = PPC::STWX8; break; 694 case PPC::STD: Opc = PPC::STDX; break; 695 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 696 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 697 } 698 699 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 700 .addReg(SrcReg); 701 702 // If we have an index register defined we use it in the store inst, 703 // otherwise we use X0 as base as it makes the vector instructions to 704 // use zero in the computation of the effective address regardless the 705 // content of the register. 706 if (IndexReg) 707 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 708 else 709 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 710 } 711 712 return true; 713 } 714 715 // Attempt to fast-select a store instruction. 716 bool PPCFastISel::SelectStore(const Instruction *I) { 717 Value *Op0 = I->getOperand(0); 718 unsigned SrcReg = 0; 719 720 // FIXME: No atomics loads are supported. 721 if (cast<StoreInst>(I)->isAtomic()) 722 return false; 723 724 // Verify we have a legal type before going any further. 725 MVT VT; 726 if (!isLoadTypeLegal(Op0->getType(), VT)) 727 return false; 728 729 // Get the value to be stored into a register. 730 SrcReg = getRegForValue(Op0); 731 if (SrcReg == 0) 732 return false; 733 734 // See if we can handle this address. 735 Address Addr; 736 if (!PPCComputeAddress(I->getOperand(1), Addr)) 737 return false; 738 739 if (!PPCEmitStore(VT, SrcReg, Addr)) 740 return false; 741 742 return true; 743 } 744 745 // Attempt to fast-select a branch instruction. 746 bool PPCFastISel::SelectBranch(const Instruction *I) { 747 const BranchInst *BI = cast<BranchInst>(I); 748 MachineBasicBlock *BrBB = FuncInfo.MBB; 749 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 750 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 751 752 // For now, just try the simplest case where it's fed by a compare. 753 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 754 if (isValueAvailable(CI)) { 755 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 756 if (!OptPPCPred) 757 return false; 758 759 PPC::Predicate PPCPred = OptPPCPred.getValue(); 760 761 // Take advantage of fall-through opportunities. 762 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 763 std::swap(TBB, FBB); 764 PPCPred = PPC::InvertPredicate(PPCPred); 765 } 766 767 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 768 769 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 770 CondReg)) 771 return false; 772 773 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 774 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 775 finishCondBranch(BI->getParent(), TBB, FBB); 776 return true; 777 } 778 } else if (const ConstantInt *CI = 779 dyn_cast<ConstantInt>(BI->getCondition())) { 780 uint64_t Imm = CI->getZExtValue(); 781 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 782 fastEmitBranch(Target, DbgLoc); 783 return true; 784 } 785 786 // FIXME: ARM looks for a case where the block containing the compare 787 // has been split from the block containing the branch. If this happens, 788 // there is a vreg available containing the result of the compare. I'm 789 // not sure we can do much, as we've lost the predicate information with 790 // the compare instruction -- we have a 4-bit CR but don't know which bit 791 // to test here. 792 return false; 793 } 794 795 // Attempt to emit a compare of the two source values. Signed and unsigned 796 // comparisons are supported. Return false if we can't handle it. 797 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 798 bool IsZExt, unsigned DestReg) { 799 Type *Ty = SrcValue1->getType(); 800 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 801 if (!SrcEVT.isSimple()) 802 return false; 803 MVT SrcVT = SrcEVT.getSimpleVT(); 804 805 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 806 return false; 807 808 // See if operand 2 is an immediate encodeable in the compare. 809 // FIXME: Operands are not in canonical order at -O0, so an immediate 810 // operand in position 1 is a lost opportunity for now. We are 811 // similar to ARM in this regard. 812 long Imm = 0; 813 bool UseImm = false; 814 815 // Only 16-bit integer constants can be represented in compares for 816 // PowerPC. Others will be materialized into a register. 817 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 818 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 819 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 820 const APInt &CIVal = ConstInt->getValue(); 821 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 822 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 823 UseImm = true; 824 } 825 } 826 827 unsigned CmpOpc; 828 bool NeedsExt = false; 829 switch (SrcVT.SimpleTy) { 830 default: return false; 831 case MVT::f32: 832 CmpOpc = PPC::FCMPUS; 833 break; 834 case MVT::f64: 835 CmpOpc = PPC::FCMPUD; 836 break; 837 case MVT::i1: 838 case MVT::i8: 839 case MVT::i16: 840 NeedsExt = true; 841 // Intentional fall-through. 842 case MVT::i32: 843 if (!UseImm) 844 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 845 else 846 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 847 break; 848 case MVT::i64: 849 if (!UseImm) 850 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 851 else 852 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 853 break; 854 } 855 856 unsigned SrcReg1 = getRegForValue(SrcValue1); 857 if (SrcReg1 == 0) 858 return false; 859 860 unsigned SrcReg2 = 0; 861 if (!UseImm) { 862 SrcReg2 = getRegForValue(SrcValue2); 863 if (SrcReg2 == 0) 864 return false; 865 } 866 867 if (NeedsExt) { 868 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 869 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 870 return false; 871 SrcReg1 = ExtReg; 872 873 if (!UseImm) { 874 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 875 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 876 return false; 877 SrcReg2 = ExtReg; 878 } 879 } 880 881 if (!UseImm) 882 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 883 .addReg(SrcReg1).addReg(SrcReg2); 884 else 885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 886 .addReg(SrcReg1).addImm(Imm); 887 888 return true; 889 } 890 891 // Attempt to fast-select a floating-point extend instruction. 892 bool PPCFastISel::SelectFPExt(const Instruction *I) { 893 Value *Src = I->getOperand(0); 894 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 895 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 896 897 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 898 return false; 899 900 unsigned SrcReg = getRegForValue(Src); 901 if (!SrcReg) 902 return false; 903 904 // No code is generated for a FP extend. 905 updateValueMap(I, SrcReg); 906 return true; 907 } 908 909 // Attempt to fast-select a floating-point truncate instruction. 910 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 911 Value *Src = I->getOperand(0); 912 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 913 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 914 915 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 916 return false; 917 918 unsigned SrcReg = getRegForValue(Src); 919 if (!SrcReg) 920 return false; 921 922 // Round the result to single precision. 923 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 925 .addReg(SrcReg); 926 927 updateValueMap(I, DestReg); 928 return true; 929 } 930 931 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 932 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 933 // those should be used instead of moving via a stack slot when the 934 // subtarget permits. 935 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 936 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 937 // case to 8 bytes which produces tighter code but wastes stack space. 938 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 939 bool IsSigned) { 940 941 // If necessary, extend 32-bit int to 64-bit. 942 if (SrcVT == MVT::i32) { 943 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 944 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 945 return 0; 946 SrcReg = TmpReg; 947 } 948 949 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 950 Address Addr; 951 Addr.BaseType = Address::FrameIndexBase; 952 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 953 954 // Store the value from the GPR. 955 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 956 return 0; 957 958 // Load the integer value into an FPR. The kind of load used depends 959 // on a number of conditions. 960 unsigned LoadOpc = PPC::LFD; 961 962 if (SrcVT == MVT::i32) { 963 if (!IsSigned) { 964 LoadOpc = PPC::LFIWZX; 965 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 966 } else if (PPCSubTarget->hasLFIWAX()) { 967 LoadOpc = PPC::LFIWAX; 968 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 969 } 970 } 971 972 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 973 unsigned ResultReg = 0; 974 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 975 return 0; 976 977 return ResultReg; 978 } 979 980 // Attempt to fast-select an integer-to-floating-point conversion. 981 // FIXME: Once fast-isel has better support for VSX, conversions using 982 // direct moves should be implemented. 983 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 984 MVT DstVT; 985 Type *DstTy = I->getType(); 986 if (!isTypeLegal(DstTy, DstVT)) 987 return false; 988 989 if (DstVT != MVT::f32 && DstVT != MVT::f64) 990 return false; 991 992 Value *Src = I->getOperand(0); 993 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 994 if (!SrcEVT.isSimple()) 995 return false; 996 997 MVT SrcVT = SrcEVT.getSimpleVT(); 998 999 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1000 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1001 return false; 1002 1003 unsigned SrcReg = getRegForValue(Src); 1004 if (SrcReg == 0) 1005 return false; 1006 1007 // We can only lower an unsigned convert if we have the newer 1008 // floating-point conversion operations. 1009 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1010 return false; 1011 1012 // FIXME: For now we require the newer floating-point conversion operations 1013 // (which are present only on P7 and A2 server models) when converting 1014 // to single-precision float. Otherwise we have to generate a lot of 1015 // fiddly code to avoid double rounding. If necessary, the fiddly code 1016 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1017 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1018 return false; 1019 1020 // Extend the input if necessary. 1021 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1022 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1023 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1024 return false; 1025 SrcVT = MVT::i64; 1026 SrcReg = TmpReg; 1027 } 1028 1029 // Move the integer value to an FPR. 1030 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1031 if (FPReg == 0) 1032 return false; 1033 1034 // Determine the opcode for the conversion. 1035 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1036 unsigned DestReg = createResultReg(RC); 1037 unsigned Opc; 1038 1039 if (DstVT == MVT::f32) 1040 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1041 else 1042 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1043 1044 // Generate the convert. 1045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1046 .addReg(FPReg); 1047 1048 updateValueMap(I, DestReg); 1049 return true; 1050 } 1051 1052 // Move the floating-point value in SrcReg into an integer destination 1053 // register, and return the register (or zero if we can't handle it). 1054 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1055 // those should be used instead of moving via a stack slot when the 1056 // subtarget permits. 1057 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1058 unsigned SrcReg, bool IsSigned) { 1059 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1060 // Note that if have STFIWX available, we could use a 4-byte stack 1061 // slot for i32, but this being fast-isel we'll just go with the 1062 // easiest code gen possible. 1063 Address Addr; 1064 Addr.BaseType = Address::FrameIndexBase; 1065 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1066 1067 // Store the value from the FPR. 1068 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1069 return 0; 1070 1071 // Reload it into a GPR. If we want an i32, modify the address 1072 // to have a 4-byte offset so we load from the right place. 1073 if (VT == MVT::i32) 1074 Addr.Offset = 4; 1075 1076 // Look at the currently assigned register for this instruction 1077 // to determine the required register class. 1078 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1079 const TargetRegisterClass *RC = 1080 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1081 1082 unsigned ResultReg = 0; 1083 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1084 return 0; 1085 1086 return ResultReg; 1087 } 1088 1089 // Attempt to fast-select a floating-point-to-integer conversion. 1090 // FIXME: Once fast-isel has better support for VSX, conversions using 1091 // direct moves should be implemented. 1092 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1093 MVT DstVT, SrcVT; 1094 Type *DstTy = I->getType(); 1095 if (!isTypeLegal(DstTy, DstVT)) 1096 return false; 1097 1098 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1099 return false; 1100 1101 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1102 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1103 return false; 1104 1105 Value *Src = I->getOperand(0); 1106 Type *SrcTy = Src->getType(); 1107 if (!isTypeLegal(SrcTy, SrcVT)) 1108 return false; 1109 1110 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1111 return false; 1112 1113 unsigned SrcReg = getRegForValue(Src); 1114 if (SrcReg == 0) 1115 return false; 1116 1117 // Convert f32 to f64 if necessary. This is just a meaningless copy 1118 // to get the register class right. COPY_TO_REGCLASS is needed since 1119 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1120 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1121 if (InRC == &PPC::F4RCRegClass) { 1122 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1124 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1125 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1126 SrcReg = TmpReg; 1127 } 1128 1129 // Determine the opcode for the conversion, which takes place 1130 // entirely within FPRs. 1131 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1132 unsigned Opc; 1133 1134 if (DstVT == MVT::i32) 1135 if (IsSigned) 1136 Opc = PPC::FCTIWZ; 1137 else 1138 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1139 else 1140 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1141 1142 // Generate the convert. 1143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1144 .addReg(SrcReg); 1145 1146 // Now move the integer value from a float register to an integer register. 1147 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1148 if (IntReg == 0) 1149 return false; 1150 1151 updateValueMap(I, IntReg); 1152 return true; 1153 } 1154 1155 // Attempt to fast-select a binary integer operation that isn't already 1156 // handled automatically. 1157 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1158 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1159 1160 // We can get here in the case when we have a binary operation on a non-legal 1161 // type and the target independent selector doesn't know how to handle it. 1162 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1163 return false; 1164 1165 // Look at the currently assigned register for this instruction 1166 // to determine the required register class. If there is no register, 1167 // make a conservative choice (don't assign R0). 1168 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1169 const TargetRegisterClass *RC = 1170 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1171 &PPC::GPRC_and_GPRC_NOR0RegClass); 1172 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1173 1174 unsigned Opc; 1175 switch (ISDOpcode) { 1176 default: return false; 1177 case ISD::ADD: 1178 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1179 break; 1180 case ISD::OR: 1181 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1182 break; 1183 case ISD::SUB: 1184 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1185 break; 1186 } 1187 1188 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1189 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1190 if (SrcReg1 == 0) return false; 1191 1192 // Handle case of small immediate operand. 1193 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1194 const APInt &CIVal = ConstInt->getValue(); 1195 int Imm = (int)CIVal.getSExtValue(); 1196 bool UseImm = true; 1197 if (isInt<16>(Imm)) { 1198 switch (Opc) { 1199 default: 1200 llvm_unreachable("Missing case!"); 1201 case PPC::ADD4: 1202 Opc = PPC::ADDI; 1203 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1204 break; 1205 case PPC::ADD8: 1206 Opc = PPC::ADDI8; 1207 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1208 break; 1209 case PPC::OR: 1210 Opc = PPC::ORI; 1211 break; 1212 case PPC::OR8: 1213 Opc = PPC::ORI8; 1214 break; 1215 case PPC::SUBF: 1216 if (Imm == -32768) 1217 UseImm = false; 1218 else { 1219 Opc = PPC::ADDI; 1220 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1221 Imm = -Imm; 1222 } 1223 break; 1224 case PPC::SUBF8: 1225 if (Imm == -32768) 1226 UseImm = false; 1227 else { 1228 Opc = PPC::ADDI8; 1229 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1230 Imm = -Imm; 1231 } 1232 break; 1233 } 1234 1235 if (UseImm) { 1236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1237 ResultReg) 1238 .addReg(SrcReg1) 1239 .addImm(Imm); 1240 updateValueMap(I, ResultReg); 1241 return true; 1242 } 1243 } 1244 } 1245 1246 // Reg-reg case. 1247 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1248 if (SrcReg2 == 0) return false; 1249 1250 // Reverse operands for subtract-from. 1251 if (ISDOpcode == ISD::SUB) 1252 std::swap(SrcReg1, SrcReg2); 1253 1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1255 .addReg(SrcReg1).addReg(SrcReg2); 1256 updateValueMap(I, ResultReg); 1257 return true; 1258 } 1259 1260 // Handle arguments to a call that we're attempting to fast-select. 1261 // Return false if the arguments are too complex for us at the moment. 1262 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1263 SmallVectorImpl<unsigned> &ArgRegs, 1264 SmallVectorImpl<MVT> &ArgVTs, 1265 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1266 SmallVectorImpl<unsigned> &RegArgs, 1267 CallingConv::ID CC, 1268 unsigned &NumBytes, 1269 bool IsVarArg) { 1270 SmallVector<CCValAssign, 16> ArgLocs; 1271 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1272 1273 // Reserve space for the linkage area on the stack. 1274 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1275 CCInfo.AllocateStack(LinkageSize, 8); 1276 1277 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1278 1279 // Bail out if we can't handle any of the arguments. 1280 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1281 CCValAssign &VA = ArgLocs[I]; 1282 MVT ArgVT = ArgVTs[VA.getValNo()]; 1283 1284 // Skip vector arguments for now, as well as long double and 1285 // uint128_t, and anything that isn't passed in a register. 1286 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1287 !VA.isRegLoc() || VA.needsCustom()) 1288 return false; 1289 1290 // Skip bit-converted arguments for now. 1291 if (VA.getLocInfo() == CCValAssign::BCvt) 1292 return false; 1293 } 1294 1295 // Get a count of how many bytes are to be pushed onto the stack. 1296 NumBytes = CCInfo.getNextStackOffset(); 1297 1298 // The prolog code of the callee may store up to 8 GPR argument registers to 1299 // the stack, allowing va_start to index over them in memory if its varargs. 1300 // Because we cannot tell if this is needed on the caller side, we have to 1301 // conservatively assume that it is needed. As such, make sure we have at 1302 // least enough stack space for the caller to store the 8 GPRs. 1303 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1304 NumBytes = std::max(NumBytes, LinkageSize + 64); 1305 1306 // Issue CALLSEQ_START. 1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1308 TII.get(TII.getCallFrameSetupOpcode())) 1309 .addImm(NumBytes); 1310 1311 // Prepare to assign register arguments. Every argument uses up a 1312 // GPR protocol register even if it's passed in a floating-point 1313 // register (unless we're using the fast calling convention). 1314 unsigned NextGPR = PPC::X3; 1315 unsigned NextFPR = PPC::F1; 1316 1317 // Process arguments. 1318 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1319 CCValAssign &VA = ArgLocs[I]; 1320 unsigned Arg = ArgRegs[VA.getValNo()]; 1321 MVT ArgVT = ArgVTs[VA.getValNo()]; 1322 1323 // Handle argument promotion and bitcasts. 1324 switch (VA.getLocInfo()) { 1325 default: 1326 llvm_unreachable("Unknown loc info!"); 1327 case CCValAssign::Full: 1328 break; 1329 case CCValAssign::SExt: { 1330 MVT DestVT = VA.getLocVT(); 1331 const TargetRegisterClass *RC = 1332 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1333 unsigned TmpReg = createResultReg(RC); 1334 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1335 llvm_unreachable("Failed to emit a sext!"); 1336 ArgVT = DestVT; 1337 Arg = TmpReg; 1338 break; 1339 } 1340 case CCValAssign::AExt: 1341 case CCValAssign::ZExt: { 1342 MVT DestVT = VA.getLocVT(); 1343 const TargetRegisterClass *RC = 1344 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1345 unsigned TmpReg = createResultReg(RC); 1346 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1347 llvm_unreachable("Failed to emit a zext!"); 1348 ArgVT = DestVT; 1349 Arg = TmpReg; 1350 break; 1351 } 1352 case CCValAssign::BCvt: { 1353 // FIXME: Not yet handled. 1354 llvm_unreachable("Should have bailed before getting here!"); 1355 break; 1356 } 1357 } 1358 1359 // Copy this argument to the appropriate register. 1360 unsigned ArgReg; 1361 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1362 ArgReg = NextFPR++; 1363 if (CC != CallingConv::Fast) 1364 ++NextGPR; 1365 } else 1366 ArgReg = NextGPR++; 1367 1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1369 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1370 RegArgs.push_back(ArgReg); 1371 } 1372 1373 return true; 1374 } 1375 1376 // For a call that we've determined we can fast-select, finish the 1377 // call sequence and generate a copy to obtain the return value (if any). 1378 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1379 CallingConv::ID CC = CLI.CallConv; 1380 1381 // Issue CallSEQ_END. 1382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1383 TII.get(TII.getCallFrameDestroyOpcode())) 1384 .addImm(NumBytes).addImm(0); 1385 1386 // Next, generate a copy to obtain the return value. 1387 // FIXME: No multi-register return values yet, though I don't foresee 1388 // any real difficulties there. 1389 if (RetVT != MVT::isVoid) { 1390 SmallVector<CCValAssign, 16> RVLocs; 1391 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1392 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1393 CCValAssign &VA = RVLocs[0]; 1394 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1395 assert(VA.isRegLoc() && "Can only return in registers!"); 1396 1397 MVT DestVT = VA.getValVT(); 1398 MVT CopyVT = DestVT; 1399 1400 // Ints smaller than a register still arrive in a full 64-bit 1401 // register, so make sure we recognize this. 1402 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1403 CopyVT = MVT::i64; 1404 1405 unsigned SourcePhysReg = VA.getLocReg(); 1406 unsigned ResultReg = 0; 1407 1408 if (RetVT == CopyVT) { 1409 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1410 ResultReg = createResultReg(CpyRC); 1411 1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1413 TII.get(TargetOpcode::COPY), ResultReg) 1414 .addReg(SourcePhysReg); 1415 1416 // If necessary, round the floating result to single precision. 1417 } else if (CopyVT == MVT::f64) { 1418 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1420 ResultReg).addReg(SourcePhysReg); 1421 1422 // If only the low half of a general register is needed, generate 1423 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1424 // used along the fast-isel path (not lowered), and downstream logic 1425 // also doesn't like a direct subreg copy on a physical reg.) 1426 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1427 ResultReg = createResultReg(&PPC::GPRCRegClass); 1428 // Convert physical register from G8RC to GPRC. 1429 SourcePhysReg -= PPC::X0 - PPC::R0; 1430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1431 TII.get(TargetOpcode::COPY), ResultReg) 1432 .addReg(SourcePhysReg); 1433 } 1434 1435 assert(ResultReg && "ResultReg unset!"); 1436 CLI.InRegs.push_back(SourcePhysReg); 1437 CLI.ResultReg = ResultReg; 1438 CLI.NumResultRegs = 1; 1439 } 1440 1441 return true; 1442 } 1443 1444 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1445 CallingConv::ID CC = CLI.CallConv; 1446 bool IsTailCall = CLI.IsTailCall; 1447 bool IsVarArg = CLI.IsVarArg; 1448 const Value *Callee = CLI.Callee; 1449 const MCSymbol *Symbol = CLI.Symbol; 1450 1451 if (!Callee && !Symbol) 1452 return false; 1453 1454 // Allow SelectionDAG isel to handle tail calls. 1455 if (IsTailCall) 1456 return false; 1457 1458 // Let SDISel handle vararg functions. 1459 if (IsVarArg) 1460 return false; 1461 1462 // Handle simple calls for now, with legal return types and 1463 // those that can be extended. 1464 Type *RetTy = CLI.RetTy; 1465 MVT RetVT; 1466 if (RetTy->isVoidTy()) 1467 RetVT = MVT::isVoid; 1468 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1469 RetVT != MVT::i8) 1470 return false; 1471 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1472 // We can't handle boolean returns when CR bits are in use. 1473 return false; 1474 1475 // FIXME: No multi-register return values yet. 1476 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1477 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1478 RetVT != MVT::f64) { 1479 SmallVector<CCValAssign, 16> RVLocs; 1480 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1481 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1482 if (RVLocs.size() > 1) 1483 return false; 1484 } 1485 1486 // Bail early if more than 8 arguments, as we only currently 1487 // handle arguments passed in registers. 1488 unsigned NumArgs = CLI.OutVals.size(); 1489 if (NumArgs > 8) 1490 return false; 1491 1492 // Set up the argument vectors. 1493 SmallVector<Value*, 8> Args; 1494 SmallVector<unsigned, 8> ArgRegs; 1495 SmallVector<MVT, 8> ArgVTs; 1496 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1497 1498 Args.reserve(NumArgs); 1499 ArgRegs.reserve(NumArgs); 1500 ArgVTs.reserve(NumArgs); 1501 ArgFlags.reserve(NumArgs); 1502 1503 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1504 // Only handle easy calls for now. It would be reasonably easy 1505 // to handle <= 8-byte structures passed ByVal in registers, but we 1506 // have to ensure they are right-justified in the register. 1507 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1508 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1509 return false; 1510 1511 Value *ArgValue = CLI.OutVals[i]; 1512 Type *ArgTy = ArgValue->getType(); 1513 MVT ArgVT; 1514 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1515 return false; 1516 1517 if (ArgVT.isVector()) 1518 return false; 1519 1520 unsigned Arg = getRegForValue(ArgValue); 1521 if (Arg == 0) 1522 return false; 1523 1524 Args.push_back(ArgValue); 1525 ArgRegs.push_back(Arg); 1526 ArgVTs.push_back(ArgVT); 1527 ArgFlags.push_back(Flags); 1528 } 1529 1530 // Process the arguments. 1531 SmallVector<unsigned, 8> RegArgs; 1532 unsigned NumBytes; 1533 1534 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1535 RegArgs, CC, NumBytes, IsVarArg)) 1536 return false; 1537 1538 MachineInstrBuilder MIB; 1539 // FIXME: No handling for function pointers yet. This requires 1540 // implementing the function descriptor (OPD) setup. 1541 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1542 if (!GV) { 1543 // patchpoints are a special case; they always dispatch to a pointer value. 1544 // However, we don't actually want to generate the indirect call sequence 1545 // here (that will be generated, as necessary, during asm printing), and 1546 // the call we generate here will be erased by FastISel::selectPatchpoint, 1547 // so don't try very hard... 1548 if (CLI.IsPatchPoint) 1549 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1550 else 1551 return false; 1552 } else { 1553 // Build direct call with NOP for TOC restore. 1554 // FIXME: We can and should optimize away the NOP for local calls. 1555 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1556 TII.get(PPC::BL8_NOP)); 1557 // Add callee. 1558 MIB.addGlobalAddress(GV); 1559 } 1560 1561 // Add implicit physical register uses to the call. 1562 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1563 MIB.addReg(RegArgs[II], RegState::Implicit); 1564 1565 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1566 // into the call. 1567 PPCFuncInfo->setUsesTOCBasePtr(); 1568 MIB.addReg(PPC::X2, RegState::Implicit); 1569 1570 // Add a register mask with the call-preserved registers. Proper 1571 // defs for return values will be added by setPhysRegsDeadExcept(). 1572 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1573 1574 CLI.Call = MIB; 1575 1576 // Finish off the call including any return values. 1577 return finishCall(RetVT, CLI, NumBytes); 1578 } 1579 1580 // Attempt to fast-select a return instruction. 1581 bool PPCFastISel::SelectRet(const Instruction *I) { 1582 1583 if (!FuncInfo.CanLowerReturn) 1584 return false; 1585 1586 const ReturnInst *Ret = cast<ReturnInst>(I); 1587 const Function &F = *I->getParent()->getParent(); 1588 1589 // Build a list of return value registers. 1590 SmallVector<unsigned, 4> RetRegs; 1591 CallingConv::ID CC = F.getCallingConv(); 1592 1593 if (Ret->getNumOperands() > 0) { 1594 SmallVector<ISD::OutputArg, 4> Outs; 1595 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1596 1597 // Analyze operands of the call, assigning locations to each operand. 1598 SmallVector<CCValAssign, 16> ValLocs; 1599 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1600 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1601 const Value *RV = Ret->getOperand(0); 1602 1603 // FIXME: Only one output register for now. 1604 if (ValLocs.size() > 1) 1605 return false; 1606 1607 // Special case for returning a constant integer of any size - materialize 1608 // the constant as an i64 and copy it to the return register. 1609 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1610 CCValAssign &VA = ValLocs[0]; 1611 1612 unsigned RetReg = VA.getLocReg(); 1613 // We still need to worry about properly extending the sign. For example, 1614 // we could have only a single bit or a constant that needs zero 1615 // extension rather than sign extension. Make sure we pass the return 1616 // value extension property to integer materialization. 1617 unsigned SrcReg = 1618 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1619 1620 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1621 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1622 1623 RetRegs.push_back(RetReg); 1624 1625 } else { 1626 unsigned Reg = getRegForValue(RV); 1627 1628 if (Reg == 0) 1629 return false; 1630 1631 // Copy the result values into the output registers. 1632 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1633 1634 CCValAssign &VA = ValLocs[i]; 1635 assert(VA.isRegLoc() && "Can only return in registers!"); 1636 RetRegs.push_back(VA.getLocReg()); 1637 unsigned SrcReg = Reg + VA.getValNo(); 1638 1639 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1640 if (!RVEVT.isSimple()) 1641 return false; 1642 MVT RVVT = RVEVT.getSimpleVT(); 1643 MVT DestVT = VA.getLocVT(); 1644 1645 if (RVVT != DestVT && RVVT != MVT::i8 && 1646 RVVT != MVT::i16 && RVVT != MVT::i32) 1647 return false; 1648 1649 if (RVVT != DestVT) { 1650 switch (VA.getLocInfo()) { 1651 default: 1652 llvm_unreachable("Unknown loc info!"); 1653 case CCValAssign::Full: 1654 llvm_unreachable("Full value assign but types don't match?"); 1655 case CCValAssign::AExt: 1656 case CCValAssign::ZExt: { 1657 const TargetRegisterClass *RC = 1658 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1659 unsigned TmpReg = createResultReg(RC); 1660 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1661 return false; 1662 SrcReg = TmpReg; 1663 break; 1664 } 1665 case CCValAssign::SExt: { 1666 const TargetRegisterClass *RC = 1667 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1668 unsigned TmpReg = createResultReg(RC); 1669 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1670 return false; 1671 SrcReg = TmpReg; 1672 break; 1673 } 1674 } 1675 } 1676 1677 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1678 TII.get(TargetOpcode::COPY), RetRegs[i]) 1679 .addReg(SrcReg); 1680 } 1681 } 1682 } 1683 1684 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1685 TII.get(PPC::BLR8)); 1686 1687 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1688 MIB.addReg(RetRegs[i], RegState::Implicit); 1689 1690 return true; 1691 } 1692 1693 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1694 // signed and zero extensions are supported. Return false if we 1695 // can't handle it. 1696 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1697 unsigned DestReg, bool IsZExt) { 1698 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1699 return false; 1700 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1701 return false; 1702 1703 // Signed extensions use EXTSB, EXTSH, EXTSW. 1704 if (!IsZExt) { 1705 unsigned Opc; 1706 if (SrcVT == MVT::i8) 1707 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1708 else if (SrcVT == MVT::i16) 1709 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1710 else { 1711 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1712 Opc = PPC::EXTSW_32_64; 1713 } 1714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1715 .addReg(SrcReg); 1716 1717 // Unsigned 32-bit extensions use RLWINM. 1718 } else if (DestVT == MVT::i32) { 1719 unsigned MB; 1720 if (SrcVT == MVT::i8) 1721 MB = 24; 1722 else { 1723 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1724 MB = 16; 1725 } 1726 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1727 DestReg) 1728 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1729 1730 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1731 } else { 1732 unsigned MB; 1733 if (SrcVT == MVT::i8) 1734 MB = 56; 1735 else if (SrcVT == MVT::i16) 1736 MB = 48; 1737 else 1738 MB = 32; 1739 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1740 TII.get(PPC::RLDICL_32_64), DestReg) 1741 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1742 } 1743 1744 return true; 1745 } 1746 1747 // Attempt to fast-select an indirect branch instruction. 1748 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1749 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1750 if (AddrReg == 0) 1751 return false; 1752 1753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1754 .addReg(AddrReg); 1755 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1756 1757 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1758 for (const BasicBlock *SuccBB : IB->successors()) 1759 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1760 1761 return true; 1762 } 1763 1764 // Attempt to fast-select an integer truncate instruction. 1765 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1766 Value *Src = I->getOperand(0); 1767 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1768 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1769 1770 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1771 return false; 1772 1773 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1774 return false; 1775 1776 unsigned SrcReg = getRegForValue(Src); 1777 if (!SrcReg) 1778 return false; 1779 1780 // The only interesting case is when we need to switch register classes. 1781 if (SrcVT == MVT::i64) { 1782 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1784 TII.get(TargetOpcode::COPY), 1785 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1786 SrcReg = ResultReg; 1787 } 1788 1789 updateValueMap(I, SrcReg); 1790 return true; 1791 } 1792 1793 // Attempt to fast-select an integer extend instruction. 1794 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1795 Type *DestTy = I->getType(); 1796 Value *Src = I->getOperand(0); 1797 Type *SrcTy = Src->getType(); 1798 1799 bool IsZExt = isa<ZExtInst>(I); 1800 unsigned SrcReg = getRegForValue(Src); 1801 if (!SrcReg) return false; 1802 1803 EVT SrcEVT, DestEVT; 1804 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1805 DestEVT = TLI.getValueType(DL, DestTy, true); 1806 if (!SrcEVT.isSimple()) 1807 return false; 1808 if (!DestEVT.isSimple()) 1809 return false; 1810 1811 MVT SrcVT = SrcEVT.getSimpleVT(); 1812 MVT DestVT = DestEVT.getSimpleVT(); 1813 1814 // If we know the register class needed for the result of this 1815 // instruction, use it. Otherwise pick the register class of the 1816 // correct size that does not contain X0/R0, since we don't know 1817 // whether downstream uses permit that assignment. 1818 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1819 const TargetRegisterClass *RC = 1820 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1821 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1822 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1823 unsigned ResultReg = createResultReg(RC); 1824 1825 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1826 return false; 1827 1828 updateValueMap(I, ResultReg); 1829 return true; 1830 } 1831 1832 // Attempt to fast-select an instruction that wasn't handled by 1833 // the table-generated machinery. 1834 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1835 1836 switch (I->getOpcode()) { 1837 case Instruction::Load: 1838 return SelectLoad(I); 1839 case Instruction::Store: 1840 return SelectStore(I); 1841 case Instruction::Br: 1842 return SelectBranch(I); 1843 case Instruction::IndirectBr: 1844 return SelectIndirectBr(I); 1845 case Instruction::FPExt: 1846 return SelectFPExt(I); 1847 case Instruction::FPTrunc: 1848 return SelectFPTrunc(I); 1849 case Instruction::SIToFP: 1850 return SelectIToFP(I, /*IsSigned*/ true); 1851 case Instruction::UIToFP: 1852 return SelectIToFP(I, /*IsSigned*/ false); 1853 case Instruction::FPToSI: 1854 return SelectFPToI(I, /*IsSigned*/ true); 1855 case Instruction::FPToUI: 1856 return SelectFPToI(I, /*IsSigned*/ false); 1857 case Instruction::Add: 1858 return SelectBinaryIntOp(I, ISD::ADD); 1859 case Instruction::Or: 1860 return SelectBinaryIntOp(I, ISD::OR); 1861 case Instruction::Sub: 1862 return SelectBinaryIntOp(I, ISD::SUB); 1863 case Instruction::Call: 1864 return selectCall(I); 1865 case Instruction::Ret: 1866 return SelectRet(I); 1867 case Instruction::Trunc: 1868 return SelectTrunc(I); 1869 case Instruction::ZExt: 1870 case Instruction::SExt: 1871 return SelectIntExt(I); 1872 // Here add other flavors of Instruction::XXX that automated 1873 // cases don't catch. For example, switches are terminators 1874 // that aren't yet handled. 1875 default: 1876 break; 1877 } 1878 return false; 1879 } 1880 1881 // Materialize a floating-point constant into a register, and return 1882 // the register number (or zero if we failed to handle it). 1883 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1884 // No plans to handle long double here. 1885 if (VT != MVT::f32 && VT != MVT::f64) 1886 return 0; 1887 1888 // All FP constants are loaded from the constant pool. 1889 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1890 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1891 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1892 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1893 CodeModel::Model CModel = TM.getCodeModel(); 1894 1895 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1896 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1897 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1898 1899 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1900 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1901 1902 PPCFuncInfo->setUsesTOCBasePtr(); 1903 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1904 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1906 TmpReg) 1907 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1909 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1910 } else { 1911 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1913 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1914 // But for large code model, we must generate a LDtocL followed 1915 // by the LF[SD]. 1916 if (CModel == CodeModel::Large) { 1917 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1919 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1921 .addImm(0).addReg(TmpReg2); 1922 } else 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1924 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1925 .addReg(TmpReg) 1926 .addMemOperand(MMO); 1927 } 1928 1929 return DestReg; 1930 } 1931 1932 // Materialize the address of a global value into a register, and return 1933 // the register number (or zero if we failed to handle it). 1934 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1935 assert(VT == MVT::i64 && "Non-address!"); 1936 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1937 unsigned DestReg = createResultReg(RC); 1938 1939 // Global values may be plain old object addresses, TLS object 1940 // addresses, constant pool entries, or jump tables. How we generate 1941 // code for these may depend on small, medium, or large code model. 1942 CodeModel::Model CModel = TM.getCodeModel(); 1943 1944 // FIXME: Jump tables are not yet required because fast-isel doesn't 1945 // handle switches; if that changes, we need them as well. For now, 1946 // what follows assumes everything's a generic (or TLS) global address. 1947 1948 // FIXME: We don't yet handle the complexity of TLS. 1949 if (GV->isThreadLocal()) 1950 return 0; 1951 1952 PPCFuncInfo->setUsesTOCBasePtr(); 1953 // For small code model, generate a simple TOC load. 1954 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1956 DestReg) 1957 .addGlobalAddress(GV) 1958 .addReg(PPC::X2); 1959 else { 1960 // If the address is an externally defined symbol, a symbol with common 1961 // or externally available linkage, a non-local function address, or a 1962 // jump table address (not yet needed), or if we are generating code 1963 // for large code model, we generate: 1964 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1965 // Otherwise we generate: 1966 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1967 // Either way, start with the ADDIStocHA: 1968 unsigned HighPartReg = createResultReg(RC); 1969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1970 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1971 1972 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 1973 if (GVFlags & PPCII::MO_NLP_FLAG) { 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1975 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1976 } else { 1977 // Otherwise generate the ADDItocL. 1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1979 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1980 } 1981 } 1982 1983 return DestReg; 1984 } 1985 1986 // Materialize a 32-bit integer constant into a register, and return 1987 // the register number (or zero if we failed to handle it). 1988 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1989 const TargetRegisterClass *RC) { 1990 unsigned Lo = Imm & 0xFFFF; 1991 unsigned Hi = (Imm >> 16) & 0xFFFF; 1992 1993 unsigned ResultReg = createResultReg(RC); 1994 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1995 1996 if (isInt<16>(Imm)) 1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1998 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1999 .addImm(Imm); 2000 else if (Lo) { 2001 // Both Lo and Hi have nonzero bits. 2002 unsigned TmpReg = createResultReg(RC); 2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2004 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2005 .addImm(Hi); 2006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2007 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2008 .addReg(TmpReg).addImm(Lo); 2009 } else 2010 // Just Hi bits. 2011 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2012 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2013 .addImm(Hi); 2014 2015 return ResultReg; 2016 } 2017 2018 // Materialize a 64-bit integer constant into a register, and return 2019 // the register number (or zero if we failed to handle it). 2020 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2021 const TargetRegisterClass *RC) { 2022 unsigned Remainder = 0; 2023 unsigned Shift = 0; 2024 2025 // If the value doesn't fit in 32 bits, see if we can shift it 2026 // so that it fits in 32 bits. 2027 if (!isInt<32>(Imm)) { 2028 Shift = countTrailingZeros<uint64_t>(Imm); 2029 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2030 2031 if (isInt<32>(ImmSh)) 2032 Imm = ImmSh; 2033 else { 2034 Remainder = Imm; 2035 Shift = 32; 2036 Imm >>= 32; 2037 } 2038 } 2039 2040 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2041 // (if not shifted). 2042 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2043 if (!Shift) 2044 return TmpReg1; 2045 2046 // If upper 32 bits were not zero, we've built them and need to shift 2047 // them into place. 2048 unsigned TmpReg2; 2049 if (Imm) { 2050 TmpReg2 = createResultReg(RC); 2051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2052 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2053 } else 2054 TmpReg2 = TmpReg1; 2055 2056 unsigned TmpReg3, Hi, Lo; 2057 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2058 TmpReg3 = createResultReg(RC); 2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2060 TmpReg3).addReg(TmpReg2).addImm(Hi); 2061 } else 2062 TmpReg3 = TmpReg2; 2063 2064 if ((Lo = Remainder & 0xFFFF)) { 2065 unsigned ResultReg = createResultReg(RC); 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2067 ResultReg).addReg(TmpReg3).addImm(Lo); 2068 return ResultReg; 2069 } 2070 2071 return TmpReg3; 2072 } 2073 2074 // Materialize an integer constant into a register, and return 2075 // the register number (or zero if we failed to handle it). 2076 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2077 bool UseSExt) { 2078 // If we're using CR bit registers for i1 values, handle that as a special 2079 // case first. 2080 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2081 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2083 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2084 return ImmReg; 2085 } 2086 2087 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2088 VT != MVT::i1) 2089 return 0; 2090 2091 const TargetRegisterClass *RC = 2092 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2093 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2094 2095 // If the constant is in range, use a load-immediate. 2096 // Since LI will sign extend the constant we need to make sure that for 2097 // our zeroext constants that the sign extended constant fits into 16-bits - 2098 // a range of 0..0x7fff. 2099 if (isInt<16>(Imm)) { 2100 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2101 unsigned ImmReg = createResultReg(RC); 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2103 .addImm(Imm); 2104 return ImmReg; 2105 } 2106 2107 // Construct the constant piecewise. 2108 if (VT == MVT::i64) 2109 return PPCMaterialize64BitInt(Imm, RC); 2110 else if (VT == MVT::i32) 2111 return PPCMaterialize32BitInt(Imm, RC); 2112 2113 return 0; 2114 } 2115 2116 // Materialize a constant into a register, and return the register 2117 // number (or zero if we failed to handle it). 2118 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2119 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2120 2121 // Only handle simple types. 2122 if (!CEVT.isSimple()) return 0; 2123 MVT VT = CEVT.getSimpleVT(); 2124 2125 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2126 return PPCMaterializeFP(CFP, VT); 2127 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2128 return PPCMaterializeGV(GV, VT); 2129 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2130 return PPCMaterializeInt(CI, VT, VT != MVT::i1); 2131 2132 return 0; 2133 } 2134 2135 // Materialize the address created by an alloca into a register, and 2136 // return the register number (or zero if we failed to handle it). 2137 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2138 // Don't handle dynamic allocas. 2139 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2140 2141 MVT VT; 2142 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2143 2144 DenseMap<const AllocaInst*, int>::iterator SI = 2145 FuncInfo.StaticAllocaMap.find(AI); 2146 2147 if (SI != FuncInfo.StaticAllocaMap.end()) { 2148 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2150 ResultReg).addFrameIndex(SI->second).addImm(0); 2151 return ResultReg; 2152 } 2153 2154 return 0; 2155 } 2156 2157 // Fold loads into extends when possible. 2158 // FIXME: We can have multiple redundant extend/trunc instructions 2159 // following a load. The folding only picks up one. Extend this 2160 // to check subsequent instructions for the same pattern and remove 2161 // them. Thus ResultReg should be the def reg for the last redundant 2162 // instruction in a chain, and all intervening instructions can be 2163 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2164 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2165 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2166 const LoadInst *LI) { 2167 // Verify we have a legal type before going any further. 2168 MVT VT; 2169 if (!isLoadTypeLegal(LI->getType(), VT)) 2170 return false; 2171 2172 // Combine load followed by zero- or sign-extend. 2173 bool IsZExt = false; 2174 switch(MI->getOpcode()) { 2175 default: 2176 return false; 2177 2178 case PPC::RLDICL: 2179 case PPC::RLDICL_32_64: { 2180 IsZExt = true; 2181 unsigned MB = MI->getOperand(3).getImm(); 2182 if ((VT == MVT::i8 && MB <= 56) || 2183 (VT == MVT::i16 && MB <= 48) || 2184 (VT == MVT::i32 && MB <= 32)) 2185 break; 2186 return false; 2187 } 2188 2189 case PPC::RLWINM: 2190 case PPC::RLWINM8: { 2191 IsZExt = true; 2192 unsigned MB = MI->getOperand(3).getImm(); 2193 if ((VT == MVT::i8 && MB <= 24) || 2194 (VT == MVT::i16 && MB <= 16)) 2195 break; 2196 return false; 2197 } 2198 2199 case PPC::EXTSB: 2200 case PPC::EXTSB8: 2201 case PPC::EXTSB8_32_64: 2202 /* There is no sign-extending load-byte instruction. */ 2203 return false; 2204 2205 case PPC::EXTSH: 2206 case PPC::EXTSH8: 2207 case PPC::EXTSH8_32_64: { 2208 if (VT != MVT::i16 && VT != MVT::i8) 2209 return false; 2210 break; 2211 } 2212 2213 case PPC::EXTSW: 2214 case PPC::EXTSW_32_64: { 2215 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2216 return false; 2217 break; 2218 } 2219 } 2220 2221 // See if we can handle this address. 2222 Address Addr; 2223 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2224 return false; 2225 2226 unsigned ResultReg = MI->getOperand(0).getReg(); 2227 2228 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2229 return false; 2230 2231 MI->eraseFromParent(); 2232 return true; 2233 } 2234 2235 // Attempt to lower call arguments in a faster way than done by 2236 // the selection DAG code. 2237 bool PPCFastISel::fastLowerArguments() { 2238 // Defer to normal argument lowering for now. It's reasonably 2239 // efficient. Consider doing something like ARM to handle the 2240 // case where all args fit in registers, no varargs, no float 2241 // or vector args. 2242 return false; 2243 } 2244 2245 // Handle materializing integer constants into a register. This is not 2246 // automatically generated for PowerPC, so must be explicitly created here. 2247 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2248 2249 if (Opc != ISD::Constant) 2250 return 0; 2251 2252 // If we're using CR bit registers for i1 values, handle that as a special 2253 // case first. 2254 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2255 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2257 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2258 return ImmReg; 2259 } 2260 2261 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2262 VT != MVT::i8 && VT != MVT::i1) 2263 return 0; 2264 2265 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2266 &PPC::GPRCRegClass); 2267 if (VT == MVT::i64) 2268 return PPCMaterialize64BitInt(Imm, RC); 2269 else 2270 return PPCMaterialize32BitInt(Imm, RC); 2271 } 2272 2273 // Override for ADDI and ADDI8 to set the correct register class 2274 // on RHS operand 0. The automatic infrastructure naively assumes 2275 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2276 // for these cases. At the moment, none of the other automatically 2277 // generated RI instructions require special treatment. However, once 2278 // SelectSelect is implemented, "isel" requires similar handling. 2279 // 2280 // Also be conservative about the output register class. Avoid 2281 // assigning R0 or X0 to the output register for GPRC and G8RC 2282 // register classes, as any such result could be used in ADDI, etc., 2283 // where those regs have another meaning. 2284 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2285 const TargetRegisterClass *RC, 2286 unsigned Op0, bool Op0IsKill, 2287 uint64_t Imm) { 2288 if (MachineInstOpcode == PPC::ADDI) 2289 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2290 else if (MachineInstOpcode == PPC::ADDI8) 2291 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2292 2293 const TargetRegisterClass *UseRC = 2294 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2295 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2296 2297 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2298 Op0, Op0IsKill, Imm); 2299 } 2300 2301 // Override for instructions with one register operand to avoid use of 2302 // R0/X0. The automatic infrastructure isn't aware of the context so 2303 // we must be conservative. 2304 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2305 const TargetRegisterClass* RC, 2306 unsigned Op0, bool Op0IsKill) { 2307 const TargetRegisterClass *UseRC = 2308 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2309 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2310 2311 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2312 } 2313 2314 // Override for instructions with two register operands to avoid use 2315 // of R0/X0. The automatic infrastructure isn't aware of the context 2316 // so we must be conservative. 2317 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2318 const TargetRegisterClass* RC, 2319 unsigned Op0, bool Op0IsKill, 2320 unsigned Op1, bool Op1IsKill) { 2321 const TargetRegisterClass *UseRC = 2322 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2323 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2324 2325 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2326 Op1, Op1IsKill); 2327 } 2328 2329 namespace llvm { 2330 // Create the fast instruction selector for PowerPC64 ELF. 2331 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2332 const TargetLibraryInfo *LibInfo) { 2333 // Only available on 64-bit ELF for now. 2334 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2335 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2336 return new PPCFastISel(FuncInfo, LibInfo); 2337 return nullptr; 2338 } 2339 } 2340