1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "ppcfastisel" 17 #include "PPC.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "PPCISelLowering.h" 20 #include "PPCSubtarget.h" 21 #include "PPCTargetMachine.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 //===----------------------------------------------------------------------===// 41 // 42 // TBD: 43 // FastLowerArguments: Handle simple cases. 44 // PPCMaterializeGV: Handle TLS. 45 // SelectCall: Handle function pointers. 46 // SelectCall: Handle multi-register return values. 47 // SelectCall: Optimize away nops for local calls. 48 // processCallArgs: Handle bit-converted arguments. 49 // finishCall: Handle multi-register return values. 50 // PPCComputeAddress: Handle parameter references as FrameIndex's. 51 // PPCEmitCmp: Handle immediate as operand 1. 52 // SelectCall: Handle small byval arguments. 53 // SelectIntrinsicCall: Implement. 54 // SelectSelect: Implement. 55 // Consider factoring isTypeLegal into the base class. 56 // Implement switches and jump tables. 57 // 58 //===----------------------------------------------------------------------===// 59 using namespace llvm; 60 61 namespace { 62 63 typedef struct Address { 64 enum { 65 RegBase, 66 FrameIndexBase 67 } BaseType; 68 69 union { 70 unsigned Reg; 71 int FI; 72 } Base; 73 74 long Offset; 75 76 // Innocuous defaults for our address. 77 Address() 78 : BaseType(RegBase), Offset(0) { 79 Base.Reg = 0; 80 } 81 } Address; 82 83 class PPCFastISel final : public FastISel { 84 85 const TargetMachine &TM; 86 const TargetInstrInfo &TII; 87 const TargetLowering &TLI; 88 const PPCSubtarget &PPCSubTarget; 89 LLVMContext *Context; 90 91 public: 92 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 93 const TargetLibraryInfo *LibInfo) 94 : FastISel(FuncInfo, LibInfo), 95 TM(FuncInfo.MF->getTarget()), 96 TII(*TM.getInstrInfo()), 97 TLI(*TM.getTargetLowering()), 98 PPCSubTarget( 99 *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl()) 100 ), 101 Context(&FuncInfo.Fn->getContext()) { } 102 103 // Backend specific FastISel code. 104 private: 105 virtual bool TargetSelectInstruction(const Instruction *I); 106 virtual unsigned TargetMaterializeConstant(const Constant *C); 107 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 108 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 109 const LoadInst *LI); 110 virtual bool FastLowerArguments(); 111 virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm); 112 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 uint64_t Imm); 116 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill); 119 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill, 122 unsigned Op1, bool Op1IsKill); 123 124 // Instruction selection routines. 125 private: 126 bool SelectLoad(const Instruction *I); 127 bool SelectStore(const Instruction *I); 128 bool SelectBranch(const Instruction *I); 129 bool SelectIndirectBr(const Instruction *I); 130 bool SelectFPExt(const Instruction *I); 131 bool SelectFPTrunc(const Instruction *I); 132 bool SelectIToFP(const Instruction *I, bool IsSigned); 133 bool SelectFPToI(const Instruction *I, bool IsSigned); 134 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 135 bool SelectCall(const Instruction *I); 136 bool SelectRet(const Instruction *I); 137 bool SelectTrunc(const Instruction *I); 138 bool SelectIntExt(const Instruction *I); 139 140 // Utility routines. 141 private: 142 bool isTypeLegal(Type *Ty, MVT &VT); 143 bool isLoadTypeLegal(Type *Ty, MVT &VT); 144 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 145 bool isZExt, unsigned DestReg); 146 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 147 const TargetRegisterClass *RC, bool IsZExt = true, 148 unsigned FP64LoadOpc = PPC::LFD); 149 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 150 bool PPCComputeAddress(const Value *Obj, Address &Addr); 151 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 152 unsigned &IndexReg); 153 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 154 unsigned DestReg, bool IsZExt); 155 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 156 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 157 unsigned PPCMaterializeInt(const Constant *C, MVT VT); 158 unsigned PPCMaterialize32BitInt(int64_t Imm, 159 const TargetRegisterClass *RC); 160 unsigned PPCMaterialize64BitInt(int64_t Imm, 161 const TargetRegisterClass *RC); 162 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 163 unsigned SrcReg, bool IsSigned); 164 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 165 166 // Call handling routines. 167 private: 168 bool processCallArgs(SmallVectorImpl<Value*> &Args, 169 SmallVectorImpl<unsigned> &ArgRegs, 170 SmallVectorImpl<MVT> &ArgVTs, 171 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 172 SmallVectorImpl<unsigned> &RegArgs, 173 CallingConv::ID CC, 174 unsigned &NumBytes, 175 bool IsVarArg); 176 void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 177 const Instruction *I, CallingConv::ID CC, 178 unsigned &NumBytes, bool IsVarArg); 179 CCAssignFn *usePPC32CCs(unsigned Flag); 180 181 private: 182 #include "PPCGenFastISel.inc" 183 184 }; 185 186 } // end anonymous namespace 187 188 #include "PPCGenCallingConv.inc" 189 190 // Function whose sole purpose is to kill compiler warnings 191 // stemming from unused functions included from PPCGenCallingConv.inc. 192 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 193 if (Flag == 1) 194 return CC_PPC32_SVR4; 195 else if (Flag == 2) 196 return CC_PPC32_SVR4_ByVal; 197 else if (Flag == 3) 198 return CC_PPC32_SVR4_VarArg; 199 else 200 return RetCC_PPC; 201 } 202 203 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 204 switch (Pred) { 205 // These are not representable with any single compare. 206 case CmpInst::FCMP_FALSE: 207 case CmpInst::FCMP_UEQ: 208 case CmpInst::FCMP_UGT: 209 case CmpInst::FCMP_UGE: 210 case CmpInst::FCMP_ULT: 211 case CmpInst::FCMP_ULE: 212 case CmpInst::FCMP_UNE: 213 case CmpInst::FCMP_TRUE: 214 default: 215 return Optional<PPC::Predicate>(); 216 217 case CmpInst::FCMP_OEQ: 218 case CmpInst::ICMP_EQ: 219 return PPC::PRED_EQ; 220 221 case CmpInst::FCMP_OGT: 222 case CmpInst::ICMP_UGT: 223 case CmpInst::ICMP_SGT: 224 return PPC::PRED_GT; 225 226 case CmpInst::FCMP_OGE: 227 case CmpInst::ICMP_UGE: 228 case CmpInst::ICMP_SGE: 229 return PPC::PRED_GE; 230 231 case CmpInst::FCMP_OLT: 232 case CmpInst::ICMP_ULT: 233 case CmpInst::ICMP_SLT: 234 return PPC::PRED_LT; 235 236 case CmpInst::FCMP_OLE: 237 case CmpInst::ICMP_ULE: 238 case CmpInst::ICMP_SLE: 239 return PPC::PRED_LE; 240 241 case CmpInst::FCMP_ONE: 242 case CmpInst::ICMP_NE: 243 return PPC::PRED_NE; 244 245 case CmpInst::FCMP_ORD: 246 return PPC::PRED_NU; 247 248 case CmpInst::FCMP_UNO: 249 return PPC::PRED_UN; 250 } 251 } 252 253 // Determine whether the type Ty is simple enough to be handled by 254 // fast-isel, and return its equivalent machine type in VT. 255 // FIXME: Copied directly from ARM -- factor into base class? 256 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 257 EVT Evt = TLI.getValueType(Ty, true); 258 259 // Only handle simple types. 260 if (Evt == MVT::Other || !Evt.isSimple()) return false; 261 VT = Evt.getSimpleVT(); 262 263 // Handle all legal types, i.e. a register that will directly hold this 264 // value. 265 return TLI.isTypeLegal(VT); 266 } 267 268 // Determine whether the type Ty is simple enough to be handled by 269 // fast-isel as a load target, and return its equivalent machine type in VT. 270 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 271 if (isTypeLegal(Ty, VT)) return true; 272 273 // If this is a type than can be sign or zero-extended to a basic operation 274 // go ahead and accept it now. 275 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 276 return true; 277 } 278 279 return false; 280 } 281 282 // Given a value Obj, create an Address object Addr that represents its 283 // address. Return false if we can't handle it. 284 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 285 const User *U = NULL; 286 unsigned Opcode = Instruction::UserOp1; 287 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 288 // Don't walk into other basic blocks unless the object is an alloca from 289 // another block, otherwise it may not have a virtual register assigned. 290 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 291 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 292 Opcode = I->getOpcode(); 293 U = I; 294 } 295 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 296 Opcode = C->getOpcode(); 297 U = C; 298 } 299 300 switch (Opcode) { 301 default: 302 break; 303 case Instruction::BitCast: 304 // Look through bitcasts. 305 return PPCComputeAddress(U->getOperand(0), Addr); 306 case Instruction::IntToPtr: 307 // Look past no-op inttoptrs. 308 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 309 return PPCComputeAddress(U->getOperand(0), Addr); 310 break; 311 case Instruction::PtrToInt: 312 // Look past no-op ptrtoints. 313 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 314 return PPCComputeAddress(U->getOperand(0), Addr); 315 break; 316 case Instruction::GetElementPtr: { 317 Address SavedAddr = Addr; 318 long TmpOffset = Addr.Offset; 319 320 // Iterate through the GEP folding the constants into offsets where 321 // we can. 322 gep_type_iterator GTI = gep_type_begin(U); 323 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 324 II != IE; ++II, ++GTI) { 325 const Value *Op = *II; 326 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 327 const StructLayout *SL = DL.getStructLayout(STy); 328 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 329 TmpOffset += SL->getElementOffset(Idx); 330 } else { 331 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 332 for (;;) { 333 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 334 // Constant-offset addressing. 335 TmpOffset += CI->getSExtValue() * S; 336 break; 337 } 338 if (canFoldAddIntoGEP(U, Op)) { 339 // A compatible add with a constant operand. Fold the constant. 340 ConstantInt *CI = 341 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 342 TmpOffset += CI->getSExtValue() * S; 343 // Iterate on the other operand. 344 Op = cast<AddOperator>(Op)->getOperand(0); 345 continue; 346 } 347 // Unsupported 348 goto unsupported_gep; 349 } 350 } 351 } 352 353 // Try to grab the base operand now. 354 Addr.Offset = TmpOffset; 355 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 356 357 // We failed, restore everything and try the other options. 358 Addr = SavedAddr; 359 360 unsupported_gep: 361 break; 362 } 363 case Instruction::Alloca: { 364 const AllocaInst *AI = cast<AllocaInst>(Obj); 365 DenseMap<const AllocaInst*, int>::iterator SI = 366 FuncInfo.StaticAllocaMap.find(AI); 367 if (SI != FuncInfo.StaticAllocaMap.end()) { 368 Addr.BaseType = Address::FrameIndexBase; 369 Addr.Base.FI = SI->second; 370 return true; 371 } 372 break; 373 } 374 } 375 376 // FIXME: References to parameters fall through to the behavior 377 // below. They should be able to reference a frame index since 378 // they are stored to the stack, so we can get "ld rx, offset(r1)" 379 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 380 // just contain the parameter. Try to handle this with a FI. 381 382 // Try to get this in a register if nothing else has worked. 383 if (Addr.Base.Reg == 0) 384 Addr.Base.Reg = getRegForValue(Obj); 385 386 // Prevent assignment of base register to X0, which is inappropriate 387 // for loads and stores alike. 388 if (Addr.Base.Reg != 0) 389 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 390 391 return Addr.Base.Reg != 0; 392 } 393 394 // Fix up some addresses that can't be used directly. For example, if 395 // an offset won't fit in an instruction field, we may need to move it 396 // into an index register. 397 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 398 unsigned &IndexReg) { 399 400 // Check whether the offset fits in the instruction field. 401 if (!isInt<16>(Addr.Offset)) 402 UseOffset = false; 403 404 // If this is a stack pointer and the offset needs to be simplified then 405 // put the alloca address into a register, set the base type back to 406 // register and continue. This should almost never happen. 407 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 408 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 410 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 411 Addr.Base.Reg = ResultReg; 412 Addr.BaseType = Address::RegBase; 413 } 414 415 if (!UseOffset) { 416 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 417 : Type::getInt64Ty(*Context)); 418 const ConstantInt *Offset = 419 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 420 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 421 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 422 } 423 } 424 425 // Emit a load instruction if possible, returning true if we succeeded, 426 // otherwise false. See commentary below for how the register class of 427 // the load is determined. 428 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 429 const TargetRegisterClass *RC, 430 bool IsZExt, unsigned FP64LoadOpc) { 431 unsigned Opc; 432 bool UseOffset = true; 433 434 // If ResultReg is given, it determines the register class of the load. 435 // Otherwise, RC is the register class to use. If the result of the 436 // load isn't anticipated in this block, both may be zero, in which 437 // case we must make a conservative guess. In particular, don't assign 438 // R0 or X0 to the result register, as the result may be used in a load, 439 // store, add-immediate, or isel that won't permit this. (Though 440 // perhaps the spill and reload of live-exit values would handle this?) 441 const TargetRegisterClass *UseRC = 442 (ResultReg ? MRI.getRegClass(ResultReg) : 443 (RC ? RC : 444 (VT == MVT::f64 ? &PPC::F8RCRegClass : 445 (VT == MVT::f32 ? &PPC::F4RCRegClass : 446 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 447 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 448 449 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 450 451 switch (VT.SimpleTy) { 452 default: // e.g., vector types not handled 453 return false; 454 case MVT::i8: 455 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 456 break; 457 case MVT::i16: 458 Opc = (IsZExt ? 459 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 460 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 461 break; 462 case MVT::i32: 463 Opc = (IsZExt ? 464 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 465 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 466 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 467 UseOffset = false; 468 break; 469 case MVT::i64: 470 Opc = PPC::LD; 471 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 472 "64-bit load with 32-bit target??"); 473 UseOffset = ((Addr.Offset & 3) == 0); 474 break; 475 case MVT::f32: 476 Opc = PPC::LFS; 477 break; 478 case MVT::f64: 479 Opc = FP64LoadOpc; 480 break; 481 } 482 483 // If necessary, materialize the offset into a register and use 484 // the indexed form. Also handle stack pointers with special needs. 485 unsigned IndexReg = 0; 486 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 487 if (ResultReg == 0) 488 ResultReg = createResultReg(UseRC); 489 490 // Note: If we still have a frame index here, we know the offset is 491 // in range, as otherwise PPCSimplifyAddress would have converted it 492 // into a RegBase. 493 if (Addr.BaseType == Address::FrameIndexBase) { 494 495 MachineMemOperand *MMO = 496 FuncInfo.MF->getMachineMemOperand( 497 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 498 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 499 MFI.getObjectAlignment(Addr.Base.FI)); 500 501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 502 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 503 504 // Base reg with offset in range. 505 } else if (UseOffset) { 506 507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 508 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 509 510 // Indexed form. 511 } else { 512 // Get the RR opcode corresponding to the RI one. FIXME: It would be 513 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 514 // is hard to get at. 515 switch (Opc) { 516 default: llvm_unreachable("Unexpected opcode!"); 517 case PPC::LBZ: Opc = PPC::LBZX; break; 518 case PPC::LBZ8: Opc = PPC::LBZX8; break; 519 case PPC::LHZ: Opc = PPC::LHZX; break; 520 case PPC::LHZ8: Opc = PPC::LHZX8; break; 521 case PPC::LHA: Opc = PPC::LHAX; break; 522 case PPC::LHA8: Opc = PPC::LHAX8; break; 523 case PPC::LWZ: Opc = PPC::LWZX; break; 524 case PPC::LWZ8: Opc = PPC::LWZX8; break; 525 case PPC::LWA: Opc = PPC::LWAX; break; 526 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 527 case PPC::LD: Opc = PPC::LDX; break; 528 case PPC::LFS: Opc = PPC::LFSX; break; 529 case PPC::LFD: Opc = PPC::LFDX; break; 530 } 531 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 532 .addReg(Addr.Base.Reg).addReg(IndexReg); 533 } 534 535 return true; 536 } 537 538 // Attempt to fast-select a load instruction. 539 bool PPCFastISel::SelectLoad(const Instruction *I) { 540 // FIXME: No atomic loads are supported. 541 if (cast<LoadInst>(I)->isAtomic()) 542 return false; 543 544 // Verify we have a legal type before going any further. 545 MVT VT; 546 if (!isLoadTypeLegal(I->getType(), VT)) 547 return false; 548 549 // See if we can handle this address. 550 Address Addr; 551 if (!PPCComputeAddress(I->getOperand(0), Addr)) 552 return false; 553 554 // Look at the currently assigned register for this instruction 555 // to determine the required register class. This is necessary 556 // to constrain RA from using R0/X0 when this is not legal. 557 unsigned AssignedReg = FuncInfo.ValueMap[I]; 558 const TargetRegisterClass *RC = 559 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 560 561 unsigned ResultReg = 0; 562 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 563 return false; 564 UpdateValueMap(I, ResultReg); 565 return true; 566 } 567 568 // Emit a store instruction to store SrcReg at Addr. 569 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 570 assert(SrcReg && "Nothing to store!"); 571 unsigned Opc; 572 bool UseOffset = true; 573 574 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 575 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 576 577 switch (VT.SimpleTy) { 578 default: // e.g., vector types not handled 579 return false; 580 case MVT::i8: 581 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 582 break; 583 case MVT::i16: 584 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 585 break; 586 case MVT::i32: 587 assert(Is32BitInt && "Not GPRC for i32??"); 588 Opc = PPC::STW; 589 break; 590 case MVT::i64: 591 Opc = PPC::STD; 592 UseOffset = ((Addr.Offset & 3) == 0); 593 break; 594 case MVT::f32: 595 Opc = PPC::STFS; 596 break; 597 case MVT::f64: 598 Opc = PPC::STFD; 599 break; 600 } 601 602 // If necessary, materialize the offset into a register and use 603 // the indexed form. Also handle stack pointers with special needs. 604 unsigned IndexReg = 0; 605 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 606 607 // Note: If we still have a frame index here, we know the offset is 608 // in range, as otherwise PPCSimplifyAddress would have converted it 609 // into a RegBase. 610 if (Addr.BaseType == Address::FrameIndexBase) { 611 MachineMemOperand *MMO = 612 FuncInfo.MF->getMachineMemOperand( 613 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 614 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 615 MFI.getObjectAlignment(Addr.Base.FI)); 616 617 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 618 .addReg(SrcReg) 619 .addImm(Addr.Offset) 620 .addFrameIndex(Addr.Base.FI) 621 .addMemOperand(MMO); 622 623 // Base reg with offset in range. 624 } else if (UseOffset) 625 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 626 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 627 628 // Indexed form. 629 else { 630 // Get the RR opcode corresponding to the RI one. FIXME: It would be 631 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 632 // is hard to get at. 633 switch (Opc) { 634 default: llvm_unreachable("Unexpected opcode!"); 635 case PPC::STB: Opc = PPC::STBX; break; 636 case PPC::STH : Opc = PPC::STHX; break; 637 case PPC::STW : Opc = PPC::STWX; break; 638 case PPC::STB8: Opc = PPC::STBX8; break; 639 case PPC::STH8: Opc = PPC::STHX8; break; 640 case PPC::STW8: Opc = PPC::STWX8; break; 641 case PPC::STD: Opc = PPC::STDX; break; 642 case PPC::STFS: Opc = PPC::STFSX; break; 643 case PPC::STFD: Opc = PPC::STFDX; break; 644 } 645 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 646 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 647 } 648 649 return true; 650 } 651 652 // Attempt to fast-select a store instruction. 653 bool PPCFastISel::SelectStore(const Instruction *I) { 654 Value *Op0 = I->getOperand(0); 655 unsigned SrcReg = 0; 656 657 // FIXME: No atomics loads are supported. 658 if (cast<StoreInst>(I)->isAtomic()) 659 return false; 660 661 // Verify we have a legal type before going any further. 662 MVT VT; 663 if (!isLoadTypeLegal(Op0->getType(), VT)) 664 return false; 665 666 // Get the value to be stored into a register. 667 SrcReg = getRegForValue(Op0); 668 if (SrcReg == 0) 669 return false; 670 671 // See if we can handle this address. 672 Address Addr; 673 if (!PPCComputeAddress(I->getOperand(1), Addr)) 674 return false; 675 676 if (!PPCEmitStore(VT, SrcReg, Addr)) 677 return false; 678 679 return true; 680 } 681 682 // Attempt to fast-select a branch instruction. 683 bool PPCFastISel::SelectBranch(const Instruction *I) { 684 const BranchInst *BI = cast<BranchInst>(I); 685 MachineBasicBlock *BrBB = FuncInfo.MBB; 686 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 687 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 688 689 // For now, just try the simplest case where it's fed by a compare. 690 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 691 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 692 if (!OptPPCPred) 693 return false; 694 695 PPC::Predicate PPCPred = OptPPCPred.getValue(); 696 697 // Take advantage of fall-through opportunities. 698 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 699 std::swap(TBB, FBB); 700 PPCPred = PPC::InvertPredicate(PPCPred); 701 } 702 703 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 704 705 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 706 CondReg)) 707 return false; 708 709 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 710 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 711 FastEmitBranch(FBB, DbgLoc); 712 FuncInfo.MBB->addSuccessor(TBB); 713 return true; 714 715 } else if (const ConstantInt *CI = 716 dyn_cast<ConstantInt>(BI->getCondition())) { 717 uint64_t Imm = CI->getZExtValue(); 718 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 719 FastEmitBranch(Target, DbgLoc); 720 return true; 721 } 722 723 // FIXME: ARM looks for a case where the block containing the compare 724 // has been split from the block containing the branch. If this happens, 725 // there is a vreg available containing the result of the compare. I'm 726 // not sure we can do much, as we've lost the predicate information with 727 // the compare instruction -- we have a 4-bit CR but don't know which bit 728 // to test here. 729 return false; 730 } 731 732 // Attempt to emit a compare of the two source values. Signed and unsigned 733 // comparisons are supported. Return false if we can't handle it. 734 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 735 bool IsZExt, unsigned DestReg) { 736 Type *Ty = SrcValue1->getType(); 737 EVT SrcEVT = TLI.getValueType(Ty, true); 738 if (!SrcEVT.isSimple()) 739 return false; 740 MVT SrcVT = SrcEVT.getSimpleVT(); 741 742 if (SrcVT == MVT::i1 && PPCSubTarget.useCRBits()) 743 return false; 744 745 // See if operand 2 is an immediate encodeable in the compare. 746 // FIXME: Operands are not in canonical order at -O0, so an immediate 747 // operand in position 1 is a lost opportunity for now. We are 748 // similar to ARM in this regard. 749 long Imm = 0; 750 bool UseImm = false; 751 752 // Only 16-bit integer constants can be represented in compares for 753 // PowerPC. Others will be materialized into a register. 754 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 755 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 756 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 757 const APInt &CIVal = ConstInt->getValue(); 758 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 759 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 760 UseImm = true; 761 } 762 } 763 764 unsigned CmpOpc; 765 bool NeedsExt = false; 766 switch (SrcVT.SimpleTy) { 767 default: return false; 768 case MVT::f32: 769 CmpOpc = PPC::FCMPUS; 770 break; 771 case MVT::f64: 772 CmpOpc = PPC::FCMPUD; 773 break; 774 case MVT::i1: 775 case MVT::i8: 776 case MVT::i16: 777 NeedsExt = true; 778 // Intentional fall-through. 779 case MVT::i32: 780 if (!UseImm) 781 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 782 else 783 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 784 break; 785 case MVT::i64: 786 if (!UseImm) 787 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 788 else 789 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 790 break; 791 } 792 793 unsigned SrcReg1 = getRegForValue(SrcValue1); 794 if (SrcReg1 == 0) 795 return false; 796 797 unsigned SrcReg2 = 0; 798 if (!UseImm) { 799 SrcReg2 = getRegForValue(SrcValue2); 800 if (SrcReg2 == 0) 801 return false; 802 } 803 804 if (NeedsExt) { 805 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 806 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 807 return false; 808 SrcReg1 = ExtReg; 809 810 if (!UseImm) { 811 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 812 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 813 return false; 814 SrcReg2 = ExtReg; 815 } 816 } 817 818 if (!UseImm) 819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 820 .addReg(SrcReg1).addReg(SrcReg2); 821 else 822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 823 .addReg(SrcReg1).addImm(Imm); 824 825 return true; 826 } 827 828 // Attempt to fast-select a floating-point extend instruction. 829 bool PPCFastISel::SelectFPExt(const Instruction *I) { 830 Value *Src = I->getOperand(0); 831 EVT SrcVT = TLI.getValueType(Src->getType(), true); 832 EVT DestVT = TLI.getValueType(I->getType(), true); 833 834 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 835 return false; 836 837 unsigned SrcReg = getRegForValue(Src); 838 if (!SrcReg) 839 return false; 840 841 // No code is generated for a FP extend. 842 UpdateValueMap(I, SrcReg); 843 return true; 844 } 845 846 // Attempt to fast-select a floating-point truncate instruction. 847 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 848 Value *Src = I->getOperand(0); 849 EVT SrcVT = TLI.getValueType(Src->getType(), true); 850 EVT DestVT = TLI.getValueType(I->getType(), true); 851 852 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 853 return false; 854 855 unsigned SrcReg = getRegForValue(Src); 856 if (!SrcReg) 857 return false; 858 859 // Round the result to single precision. 860 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 861 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 862 .addReg(SrcReg); 863 864 UpdateValueMap(I, DestReg); 865 return true; 866 } 867 868 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 869 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 870 // those should be used instead of moving via a stack slot when the 871 // subtarget permits. 872 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 873 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 874 // case to 8 bytes which produces tighter code but wastes stack space. 875 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 876 bool IsSigned) { 877 878 // If necessary, extend 32-bit int to 64-bit. 879 if (SrcVT == MVT::i32) { 880 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 881 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 882 return 0; 883 SrcReg = TmpReg; 884 } 885 886 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 887 Address Addr; 888 Addr.BaseType = Address::FrameIndexBase; 889 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 890 891 // Store the value from the GPR. 892 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 893 return 0; 894 895 // Load the integer value into an FPR. The kind of load used depends 896 // on a number of conditions. 897 unsigned LoadOpc = PPC::LFD; 898 899 if (SrcVT == MVT::i32) { 900 if (!IsSigned) { 901 LoadOpc = PPC::LFIWZX; 902 Addr.Offset = 4; 903 } else if (PPCSubTarget.hasLFIWAX()) { 904 LoadOpc = PPC::LFIWAX; 905 Addr.Offset = 4; 906 } 907 } 908 909 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 910 unsigned ResultReg = 0; 911 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 912 return 0; 913 914 return ResultReg; 915 } 916 917 // Attempt to fast-select an integer-to-floating-point conversion. 918 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 919 MVT DstVT; 920 Type *DstTy = I->getType(); 921 if (!isTypeLegal(DstTy, DstVT)) 922 return false; 923 924 if (DstVT != MVT::f32 && DstVT != MVT::f64) 925 return false; 926 927 Value *Src = I->getOperand(0); 928 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 929 if (!SrcEVT.isSimple()) 930 return false; 931 932 MVT SrcVT = SrcEVT.getSimpleVT(); 933 934 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 935 SrcVT != MVT::i32 && SrcVT != MVT::i64) 936 return false; 937 938 unsigned SrcReg = getRegForValue(Src); 939 if (SrcReg == 0) 940 return false; 941 942 // We can only lower an unsigned convert if we have the newer 943 // floating-point conversion operations. 944 if (!IsSigned && !PPCSubTarget.hasFPCVT()) 945 return false; 946 947 // FIXME: For now we require the newer floating-point conversion operations 948 // (which are present only on P7 and A2 server models) when converting 949 // to single-precision float. Otherwise we have to generate a lot of 950 // fiddly code to avoid double rounding. If necessary, the fiddly code 951 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 952 if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT()) 953 return false; 954 955 // Extend the input if necessary. 956 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 957 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 958 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 959 return false; 960 SrcVT = MVT::i64; 961 SrcReg = TmpReg; 962 } 963 964 // Move the integer value to an FPR. 965 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 966 if (FPReg == 0) 967 return false; 968 969 // Determine the opcode for the conversion. 970 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 971 unsigned DestReg = createResultReg(RC); 972 unsigned Opc; 973 974 if (DstVT == MVT::f32) 975 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 976 else 977 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 978 979 // Generate the convert. 980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 981 .addReg(FPReg); 982 983 UpdateValueMap(I, DestReg); 984 return true; 985 } 986 987 // Move the floating-point value in SrcReg into an integer destination 988 // register, and return the register (or zero if we can't handle it). 989 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 990 // those should be used instead of moving via a stack slot when the 991 // subtarget permits. 992 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 993 unsigned SrcReg, bool IsSigned) { 994 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 995 // Note that if have STFIWX available, we could use a 4-byte stack 996 // slot for i32, but this being fast-isel we'll just go with the 997 // easiest code gen possible. 998 Address Addr; 999 Addr.BaseType = Address::FrameIndexBase; 1000 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1001 1002 // Store the value from the FPR. 1003 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1004 return 0; 1005 1006 // Reload it into a GPR. If we want an i32, modify the address 1007 // to have a 4-byte offset so we load from the right place. 1008 if (VT == MVT::i32) 1009 Addr.Offset = 4; 1010 1011 // Look at the currently assigned register for this instruction 1012 // to determine the required register class. 1013 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1014 const TargetRegisterClass *RC = 1015 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 1016 1017 unsigned ResultReg = 0; 1018 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1019 return 0; 1020 1021 return ResultReg; 1022 } 1023 1024 // Attempt to fast-select a floating-point-to-integer conversion. 1025 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1026 MVT DstVT, SrcVT; 1027 Type *DstTy = I->getType(); 1028 if (!isTypeLegal(DstTy, DstVT)) 1029 return false; 1030 1031 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1032 return false; 1033 1034 Value *Src = I->getOperand(0); 1035 Type *SrcTy = Src->getType(); 1036 if (!isTypeLegal(SrcTy, SrcVT)) 1037 return false; 1038 1039 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1040 return false; 1041 1042 unsigned SrcReg = getRegForValue(Src); 1043 if (SrcReg == 0) 1044 return false; 1045 1046 // Convert f32 to f64 if necessary. This is just a meaningless copy 1047 // to get the register class right. COPY_TO_REGCLASS is needed since 1048 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1049 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1050 if (InRC == &PPC::F4RCRegClass) { 1051 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1053 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1054 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1055 SrcReg = TmpReg; 1056 } 1057 1058 // Determine the opcode for the conversion, which takes place 1059 // entirely within FPRs. 1060 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1061 unsigned Opc; 1062 1063 if (DstVT == MVT::i32) 1064 if (IsSigned) 1065 Opc = PPC::FCTIWZ; 1066 else 1067 Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1068 else 1069 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1070 1071 // Generate the convert. 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1073 .addReg(SrcReg); 1074 1075 // Now move the integer value from a float register to an integer register. 1076 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1077 if (IntReg == 0) 1078 return false; 1079 1080 UpdateValueMap(I, IntReg); 1081 return true; 1082 } 1083 1084 // Attempt to fast-select a binary integer operation that isn't already 1085 // handled automatically. 1086 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1087 EVT DestVT = TLI.getValueType(I->getType(), true); 1088 1089 // We can get here in the case when we have a binary operation on a non-legal 1090 // type and the target independent selector doesn't know how to handle it. 1091 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1092 return false; 1093 1094 // Look at the currently assigned register for this instruction 1095 // to determine the required register class. If there is no register, 1096 // make a conservative choice (don't assign R0). 1097 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1098 const TargetRegisterClass *RC = 1099 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1100 &PPC::GPRC_and_GPRC_NOR0RegClass); 1101 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1102 1103 unsigned Opc; 1104 switch (ISDOpcode) { 1105 default: return false; 1106 case ISD::ADD: 1107 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1108 break; 1109 case ISD::OR: 1110 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1111 break; 1112 case ISD::SUB: 1113 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1114 break; 1115 } 1116 1117 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1118 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1119 if (SrcReg1 == 0) return false; 1120 1121 // Handle case of small immediate operand. 1122 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1123 const APInt &CIVal = ConstInt->getValue(); 1124 int Imm = (int)CIVal.getSExtValue(); 1125 bool UseImm = true; 1126 if (isInt<16>(Imm)) { 1127 switch (Opc) { 1128 default: 1129 llvm_unreachable("Missing case!"); 1130 case PPC::ADD4: 1131 Opc = PPC::ADDI; 1132 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1133 break; 1134 case PPC::ADD8: 1135 Opc = PPC::ADDI8; 1136 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1137 break; 1138 case PPC::OR: 1139 Opc = PPC::ORI; 1140 break; 1141 case PPC::OR8: 1142 Opc = PPC::ORI8; 1143 break; 1144 case PPC::SUBF: 1145 if (Imm == -32768) 1146 UseImm = false; 1147 else { 1148 Opc = PPC::ADDI; 1149 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1150 Imm = -Imm; 1151 } 1152 break; 1153 case PPC::SUBF8: 1154 if (Imm == -32768) 1155 UseImm = false; 1156 else { 1157 Opc = PPC::ADDI8; 1158 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1159 Imm = -Imm; 1160 } 1161 break; 1162 } 1163 1164 if (UseImm) { 1165 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1166 ResultReg) 1167 .addReg(SrcReg1) 1168 .addImm(Imm); 1169 UpdateValueMap(I, ResultReg); 1170 return true; 1171 } 1172 } 1173 } 1174 1175 // Reg-reg case. 1176 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1177 if (SrcReg2 == 0) return false; 1178 1179 // Reverse operands for subtract-from. 1180 if (ISDOpcode == ISD::SUB) 1181 std::swap(SrcReg1, SrcReg2); 1182 1183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1184 .addReg(SrcReg1).addReg(SrcReg2); 1185 UpdateValueMap(I, ResultReg); 1186 return true; 1187 } 1188 1189 // Handle arguments to a call that we're attempting to fast-select. 1190 // Return false if the arguments are too complex for us at the moment. 1191 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1192 SmallVectorImpl<unsigned> &ArgRegs, 1193 SmallVectorImpl<MVT> &ArgVTs, 1194 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1195 SmallVectorImpl<unsigned> &RegArgs, 1196 CallingConv::ID CC, 1197 unsigned &NumBytes, 1198 bool IsVarArg) { 1199 SmallVector<CCValAssign, 16> ArgLocs; 1200 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1201 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1202 1203 // Bail out if we can't handle any of the arguments. 1204 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1205 CCValAssign &VA = ArgLocs[I]; 1206 MVT ArgVT = ArgVTs[VA.getValNo()]; 1207 1208 // Skip vector arguments for now, as well as long double and 1209 // uint128_t, and anything that isn't passed in a register. 1210 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1211 !VA.isRegLoc() || VA.needsCustom()) 1212 return false; 1213 1214 // Skip bit-converted arguments for now. 1215 if (VA.getLocInfo() == CCValAssign::BCvt) 1216 return false; 1217 } 1218 1219 // Get a count of how many bytes are to be pushed onto the stack. 1220 NumBytes = CCInfo.getNextStackOffset(); 1221 1222 // Issue CALLSEQ_START. 1223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1224 TII.get(TII.getCallFrameSetupOpcode())) 1225 .addImm(NumBytes); 1226 1227 // Prepare to assign register arguments. Every argument uses up a 1228 // GPR protocol register even if it's passed in a floating-point 1229 // register. 1230 unsigned NextGPR = PPC::X3; 1231 unsigned NextFPR = PPC::F1; 1232 1233 // Process arguments. 1234 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1235 CCValAssign &VA = ArgLocs[I]; 1236 unsigned Arg = ArgRegs[VA.getValNo()]; 1237 MVT ArgVT = ArgVTs[VA.getValNo()]; 1238 1239 // Handle argument promotion and bitcasts. 1240 switch (VA.getLocInfo()) { 1241 default: 1242 llvm_unreachable("Unknown loc info!"); 1243 case CCValAssign::Full: 1244 break; 1245 case CCValAssign::SExt: { 1246 MVT DestVT = VA.getLocVT(); 1247 const TargetRegisterClass *RC = 1248 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1249 unsigned TmpReg = createResultReg(RC); 1250 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1251 llvm_unreachable("Failed to emit a sext!"); 1252 ArgVT = DestVT; 1253 Arg = TmpReg; 1254 break; 1255 } 1256 case CCValAssign::AExt: 1257 case CCValAssign::ZExt: { 1258 MVT DestVT = VA.getLocVT(); 1259 const TargetRegisterClass *RC = 1260 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1261 unsigned TmpReg = createResultReg(RC); 1262 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1263 llvm_unreachable("Failed to emit a zext!"); 1264 ArgVT = DestVT; 1265 Arg = TmpReg; 1266 break; 1267 } 1268 case CCValAssign::BCvt: { 1269 // FIXME: Not yet handled. 1270 llvm_unreachable("Should have bailed before getting here!"); 1271 break; 1272 } 1273 } 1274 1275 // Copy this argument to the appropriate register. 1276 unsigned ArgReg; 1277 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1278 ArgReg = NextFPR++; 1279 ++NextGPR; 1280 } else 1281 ArgReg = NextGPR++; 1282 1283 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1284 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1285 RegArgs.push_back(ArgReg); 1286 } 1287 1288 return true; 1289 } 1290 1291 // For a call that we've determined we can fast-select, finish the 1292 // call sequence and generate a copy to obtain the return value (if any). 1293 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1294 const Instruction *I, CallingConv::ID CC, 1295 unsigned &NumBytes, bool IsVarArg) { 1296 // Issue CallSEQ_END. 1297 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1298 TII.get(TII.getCallFrameDestroyOpcode())) 1299 .addImm(NumBytes).addImm(0); 1300 1301 // Next, generate a copy to obtain the return value. 1302 // FIXME: No multi-register return values yet, though I don't foresee 1303 // any real difficulties there. 1304 if (RetVT != MVT::isVoid) { 1305 SmallVector<CCValAssign, 16> RVLocs; 1306 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1307 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1308 CCValAssign &VA = RVLocs[0]; 1309 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1310 assert(VA.isRegLoc() && "Can only return in registers!"); 1311 1312 MVT DestVT = VA.getValVT(); 1313 MVT CopyVT = DestVT; 1314 1315 // Ints smaller than a register still arrive in a full 64-bit 1316 // register, so make sure we recognize this. 1317 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1318 CopyVT = MVT::i64; 1319 1320 unsigned SourcePhysReg = VA.getLocReg(); 1321 unsigned ResultReg = 0; 1322 1323 if (RetVT == CopyVT) { 1324 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1325 ResultReg = createResultReg(CpyRC); 1326 1327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1328 TII.get(TargetOpcode::COPY), ResultReg) 1329 .addReg(SourcePhysReg); 1330 1331 // If necessary, round the floating result to single precision. 1332 } else if (CopyVT == MVT::f64) { 1333 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1335 ResultReg).addReg(SourcePhysReg); 1336 1337 // If only the low half of a general register is needed, generate 1338 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1339 // used along the fast-isel path (not lowered), and downstream logic 1340 // also doesn't like a direct subreg copy on a physical reg.) 1341 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1342 ResultReg = createResultReg(&PPC::GPRCRegClass); 1343 // Convert physical register from G8RC to GPRC. 1344 SourcePhysReg -= PPC::X0 - PPC::R0; 1345 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1346 TII.get(TargetOpcode::COPY), ResultReg) 1347 .addReg(SourcePhysReg); 1348 } 1349 1350 assert(ResultReg && "ResultReg unset!"); 1351 UsedRegs.push_back(SourcePhysReg); 1352 UpdateValueMap(I, ResultReg); 1353 } 1354 } 1355 1356 // Attempt to fast-select a call instruction. 1357 bool PPCFastISel::SelectCall(const Instruction *I) { 1358 const CallInst *CI = cast<CallInst>(I); 1359 const Value *Callee = CI->getCalledValue(); 1360 1361 // Can't handle inline asm. 1362 if (isa<InlineAsm>(Callee)) 1363 return false; 1364 1365 // Allow SelectionDAG isel to handle tail calls. 1366 if (CI->isTailCall()) 1367 return false; 1368 1369 // Obtain calling convention. 1370 ImmutableCallSite CS(CI); 1371 CallingConv::ID CC = CS.getCallingConv(); 1372 1373 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1374 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 1375 bool IsVarArg = FTy->isVarArg(); 1376 1377 // Not ready for varargs yet. 1378 if (IsVarArg) 1379 return false; 1380 1381 // Handle simple calls for now, with legal return types and 1382 // those that can be extended. 1383 Type *RetTy = I->getType(); 1384 MVT RetVT; 1385 if (RetTy->isVoidTy()) 1386 RetVT = MVT::isVoid; 1387 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1388 RetVT != MVT::i8) 1389 return false; 1390 1391 // FIXME: No multi-register return values yet. 1392 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1393 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1394 RetVT != MVT::f64) { 1395 SmallVector<CCValAssign, 16> RVLocs; 1396 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1397 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1398 if (RVLocs.size() > 1) 1399 return false; 1400 } 1401 1402 // Bail early if more than 8 arguments, as we only currently 1403 // handle arguments passed in registers. 1404 unsigned NumArgs = CS.arg_size(); 1405 if (NumArgs > 8) 1406 return false; 1407 1408 // Set up the argument vectors. 1409 SmallVector<Value*, 8> Args; 1410 SmallVector<unsigned, 8> ArgRegs; 1411 SmallVector<MVT, 8> ArgVTs; 1412 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1413 1414 Args.reserve(NumArgs); 1415 ArgRegs.reserve(NumArgs); 1416 ArgVTs.reserve(NumArgs); 1417 ArgFlags.reserve(NumArgs); 1418 1419 for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end(); 1420 II != IE; ++II) { 1421 // FIXME: ARM does something for intrinsic calls here, check into that. 1422 1423 unsigned AttrIdx = II - CS.arg_begin() + 1; 1424 1425 // Only handle easy calls for now. It would be reasonably easy 1426 // to handle <= 8-byte structures passed ByVal in registers, but we 1427 // have to ensure they are right-justified in the register. 1428 if (CS.paramHasAttr(AttrIdx, Attribute::InReg) || 1429 CS.paramHasAttr(AttrIdx, Attribute::StructRet) || 1430 CS.paramHasAttr(AttrIdx, Attribute::Nest) || 1431 CS.paramHasAttr(AttrIdx, Attribute::ByVal)) 1432 return false; 1433 1434 ISD::ArgFlagsTy Flags; 1435 if (CS.paramHasAttr(AttrIdx, Attribute::SExt)) 1436 Flags.setSExt(); 1437 if (CS.paramHasAttr(AttrIdx, Attribute::ZExt)) 1438 Flags.setZExt(); 1439 1440 Type *ArgTy = (*II)->getType(); 1441 MVT ArgVT; 1442 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1443 return false; 1444 1445 if (ArgVT.isVector()) 1446 return false; 1447 1448 unsigned Arg = getRegForValue(*II); 1449 if (Arg == 0) 1450 return false; 1451 1452 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 1453 Flags.setOrigAlign(OriginalAlignment); 1454 1455 Args.push_back(*II); 1456 ArgRegs.push_back(Arg); 1457 ArgVTs.push_back(ArgVT); 1458 ArgFlags.push_back(Flags); 1459 } 1460 1461 // Process the arguments. 1462 SmallVector<unsigned, 8> RegArgs; 1463 unsigned NumBytes; 1464 1465 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1466 RegArgs, CC, NumBytes, IsVarArg)) 1467 return false; 1468 1469 // FIXME: No handling for function pointers yet. This requires 1470 // implementing the function descriptor (OPD) setup. 1471 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1472 if (!GV) 1473 return false; 1474 1475 // Build direct call with NOP for TOC restore. 1476 // FIXME: We can and should optimize away the NOP for local calls. 1477 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1478 TII.get(PPC::BL8_NOP)); 1479 // Add callee. 1480 MIB.addGlobalAddress(GV); 1481 1482 // Add implicit physical register uses to the call. 1483 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1484 MIB.addReg(RegArgs[II], RegState::Implicit); 1485 1486 // Add a register mask with the call-preserved registers. Proper 1487 // defs for return values will be added by setPhysRegsDeadExcept(). 1488 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1489 1490 // Finish off the call including any return values. 1491 SmallVector<unsigned, 4> UsedRegs; 1492 finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg); 1493 1494 // Set all unused physregs defs as dead. 1495 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1496 1497 return true; 1498 } 1499 1500 // Attempt to fast-select a return instruction. 1501 bool PPCFastISel::SelectRet(const Instruction *I) { 1502 1503 if (!FuncInfo.CanLowerReturn) 1504 return false; 1505 1506 const ReturnInst *Ret = cast<ReturnInst>(I); 1507 const Function &F = *I->getParent()->getParent(); 1508 1509 // Build a list of return value registers. 1510 SmallVector<unsigned, 4> RetRegs; 1511 CallingConv::ID CC = F.getCallingConv(); 1512 1513 if (Ret->getNumOperands() > 0) { 1514 SmallVector<ISD::OutputArg, 4> Outs; 1515 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1516 1517 // Analyze operands of the call, assigning locations to each operand. 1518 SmallVector<CCValAssign, 16> ValLocs; 1519 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context); 1520 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1521 const Value *RV = Ret->getOperand(0); 1522 1523 // FIXME: Only one output register for now. 1524 if (ValLocs.size() > 1) 1525 return false; 1526 1527 // Special case for returning a constant integer of any size. 1528 // Materialize the constant as an i64 and copy it to the return 1529 // register. This avoids an unnecessary extend or truncate. 1530 if (isa<ConstantInt>(*RV)) { 1531 const Constant *C = cast<Constant>(RV); 1532 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64); 1533 unsigned RetReg = ValLocs[0].getLocReg(); 1534 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1535 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1536 RetRegs.push_back(RetReg); 1537 1538 } else { 1539 unsigned Reg = getRegForValue(RV); 1540 1541 if (Reg == 0) 1542 return false; 1543 1544 // Copy the result values into the output registers. 1545 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1546 1547 CCValAssign &VA = ValLocs[i]; 1548 assert(VA.isRegLoc() && "Can only return in registers!"); 1549 RetRegs.push_back(VA.getLocReg()); 1550 unsigned SrcReg = Reg + VA.getValNo(); 1551 1552 EVT RVEVT = TLI.getValueType(RV->getType()); 1553 if (!RVEVT.isSimple()) 1554 return false; 1555 MVT RVVT = RVEVT.getSimpleVT(); 1556 MVT DestVT = VA.getLocVT(); 1557 1558 if (RVVT != DestVT && RVVT != MVT::i8 && 1559 RVVT != MVT::i16 && RVVT != MVT::i32) 1560 return false; 1561 1562 if (RVVT != DestVT) { 1563 switch (VA.getLocInfo()) { 1564 default: 1565 llvm_unreachable("Unknown loc info!"); 1566 case CCValAssign::Full: 1567 llvm_unreachable("Full value assign but types don't match?"); 1568 case CCValAssign::AExt: 1569 case CCValAssign::ZExt: { 1570 const TargetRegisterClass *RC = 1571 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1572 unsigned TmpReg = createResultReg(RC); 1573 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1574 return false; 1575 SrcReg = TmpReg; 1576 break; 1577 } 1578 case CCValAssign::SExt: { 1579 const TargetRegisterClass *RC = 1580 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1581 unsigned TmpReg = createResultReg(RC); 1582 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1583 return false; 1584 SrcReg = TmpReg; 1585 break; 1586 } 1587 } 1588 } 1589 1590 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1591 TII.get(TargetOpcode::COPY), RetRegs[i]) 1592 .addReg(SrcReg); 1593 } 1594 } 1595 } 1596 1597 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1598 TII.get(PPC::BLR)); 1599 1600 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1601 MIB.addReg(RetRegs[i], RegState::Implicit); 1602 1603 return true; 1604 } 1605 1606 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1607 // signed and zero extensions are supported. Return false if we 1608 // can't handle it. 1609 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1610 unsigned DestReg, bool IsZExt) { 1611 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1612 return false; 1613 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1614 return false; 1615 1616 // Signed extensions use EXTSB, EXTSH, EXTSW. 1617 if (!IsZExt) { 1618 unsigned Opc; 1619 if (SrcVT == MVT::i8) 1620 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1621 else if (SrcVT == MVT::i16) 1622 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1623 else { 1624 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1625 Opc = PPC::EXTSW_32_64; 1626 } 1627 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1628 .addReg(SrcReg); 1629 1630 // Unsigned 32-bit extensions use RLWINM. 1631 } else if (DestVT == MVT::i32) { 1632 unsigned MB; 1633 if (SrcVT == MVT::i8) 1634 MB = 24; 1635 else { 1636 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1637 MB = 16; 1638 } 1639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1640 DestReg) 1641 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1642 1643 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1644 } else { 1645 unsigned MB; 1646 if (SrcVT == MVT::i8) 1647 MB = 56; 1648 else if (SrcVT == MVT::i16) 1649 MB = 48; 1650 else 1651 MB = 32; 1652 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1653 TII.get(PPC::RLDICL_32_64), DestReg) 1654 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1655 } 1656 1657 return true; 1658 } 1659 1660 // Attempt to fast-select an indirect branch instruction. 1661 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1662 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1663 if (AddrReg == 0) 1664 return false; 1665 1666 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1667 .addReg(AddrReg); 1668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1669 1670 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1671 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1672 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1673 1674 return true; 1675 } 1676 1677 // Attempt to fast-select an integer truncate instruction. 1678 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1679 Value *Src = I->getOperand(0); 1680 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1681 EVT DestVT = TLI.getValueType(I->getType(), true); 1682 1683 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1684 return false; 1685 1686 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1687 return false; 1688 1689 unsigned SrcReg = getRegForValue(Src); 1690 if (!SrcReg) 1691 return false; 1692 1693 // The only interesting case is when we need to switch register classes. 1694 if (SrcVT == MVT::i64) { 1695 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1696 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1697 TII.get(TargetOpcode::COPY), 1698 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1699 SrcReg = ResultReg; 1700 } 1701 1702 UpdateValueMap(I, SrcReg); 1703 return true; 1704 } 1705 1706 // Attempt to fast-select an integer extend instruction. 1707 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1708 Type *DestTy = I->getType(); 1709 Value *Src = I->getOperand(0); 1710 Type *SrcTy = Src->getType(); 1711 1712 bool IsZExt = isa<ZExtInst>(I); 1713 unsigned SrcReg = getRegForValue(Src); 1714 if (!SrcReg) return false; 1715 1716 EVT SrcEVT, DestEVT; 1717 SrcEVT = TLI.getValueType(SrcTy, true); 1718 DestEVT = TLI.getValueType(DestTy, true); 1719 if (!SrcEVT.isSimple()) 1720 return false; 1721 if (!DestEVT.isSimple()) 1722 return false; 1723 1724 MVT SrcVT = SrcEVT.getSimpleVT(); 1725 MVT DestVT = DestEVT.getSimpleVT(); 1726 1727 // If we know the register class needed for the result of this 1728 // instruction, use it. Otherwise pick the register class of the 1729 // correct size that does not contain X0/R0, since we don't know 1730 // whether downstream uses permit that assignment. 1731 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1732 const TargetRegisterClass *RC = 1733 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1734 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1735 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1736 unsigned ResultReg = createResultReg(RC); 1737 1738 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1739 return false; 1740 1741 UpdateValueMap(I, ResultReg); 1742 return true; 1743 } 1744 1745 // Attempt to fast-select an instruction that wasn't handled by 1746 // the table-generated machinery. 1747 bool PPCFastISel::TargetSelectInstruction(const Instruction *I) { 1748 1749 switch (I->getOpcode()) { 1750 case Instruction::Load: 1751 return SelectLoad(I); 1752 case Instruction::Store: 1753 return SelectStore(I); 1754 case Instruction::Br: 1755 return SelectBranch(I); 1756 case Instruction::IndirectBr: 1757 return SelectIndirectBr(I); 1758 case Instruction::FPExt: 1759 return SelectFPExt(I); 1760 case Instruction::FPTrunc: 1761 return SelectFPTrunc(I); 1762 case Instruction::SIToFP: 1763 return SelectIToFP(I, /*IsSigned*/ true); 1764 case Instruction::UIToFP: 1765 return SelectIToFP(I, /*IsSigned*/ false); 1766 case Instruction::FPToSI: 1767 return SelectFPToI(I, /*IsSigned*/ true); 1768 case Instruction::FPToUI: 1769 return SelectFPToI(I, /*IsSigned*/ false); 1770 case Instruction::Add: 1771 return SelectBinaryIntOp(I, ISD::ADD); 1772 case Instruction::Or: 1773 return SelectBinaryIntOp(I, ISD::OR); 1774 case Instruction::Sub: 1775 return SelectBinaryIntOp(I, ISD::SUB); 1776 case Instruction::Call: 1777 if (dyn_cast<IntrinsicInst>(I)) 1778 return false; 1779 return SelectCall(I); 1780 case Instruction::Ret: 1781 return SelectRet(I); 1782 case Instruction::Trunc: 1783 return SelectTrunc(I); 1784 case Instruction::ZExt: 1785 case Instruction::SExt: 1786 return SelectIntExt(I); 1787 // Here add other flavors of Instruction::XXX that automated 1788 // cases don't catch. For example, switches are terminators 1789 // that aren't yet handled. 1790 default: 1791 break; 1792 } 1793 return false; 1794 } 1795 1796 // Materialize a floating-point constant into a register, and return 1797 // the register number (or zero if we failed to handle it). 1798 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1799 // No plans to handle long double here. 1800 if (VT != MVT::f32 && VT != MVT::f64) 1801 return 0; 1802 1803 // All FP constants are loaded from the constant pool. 1804 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1805 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1806 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1807 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1808 CodeModel::Model CModel = TM.getCodeModel(); 1809 1810 MachineMemOperand *MMO = 1811 FuncInfo.MF->getMachineMemOperand( 1812 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1813 (VT == MVT::f32) ? 4 : 8, Align); 1814 1815 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1816 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1817 1818 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1819 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1820 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1821 TmpReg) 1822 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1824 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1825 } else { 1826 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1828 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1829 // But for large code model, we must generate a LDtocL followed 1830 // by the LF[SD]. 1831 if (CModel == CodeModel::Large) { 1832 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1833 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1834 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1836 .addImm(0).addReg(TmpReg2); 1837 } else 1838 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1839 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1840 .addReg(TmpReg) 1841 .addMemOperand(MMO); 1842 } 1843 1844 return DestReg; 1845 } 1846 1847 // Materialize the address of a global value into a register, and return 1848 // the register number (or zero if we failed to handle it). 1849 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1850 assert(VT == MVT::i64 && "Non-address!"); 1851 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1852 unsigned DestReg = createResultReg(RC); 1853 1854 // Global values may be plain old object addresses, TLS object 1855 // addresses, constant pool entries, or jump tables. How we generate 1856 // code for these may depend on small, medium, or large code model. 1857 CodeModel::Model CModel = TM.getCodeModel(); 1858 1859 // FIXME: Jump tables are not yet required because fast-isel doesn't 1860 // handle switches; if that changes, we need them as well. For now, 1861 // what follows assumes everything's a generic (or TLS) global address. 1862 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1863 if (!GVar) { 1864 // If GV is an alias, use the aliasee for determining thread-locality. 1865 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 1866 GVar = dyn_cast_or_null<GlobalVariable>(GA->getAliasedGlobal()); 1867 } 1868 1869 // FIXME: We don't yet handle the complexity of TLS. 1870 bool IsTLS = GVar && GVar->isThreadLocal(); 1871 if (IsTLS) 1872 return 0; 1873 1874 // For small code model, generate a simple TOC load. 1875 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1876 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1877 DestReg) 1878 .addGlobalAddress(GV) 1879 .addReg(PPC::X2); 1880 else { 1881 // If the address is an externally defined symbol, a symbol with 1882 // common or externally available linkage, a function address, or a 1883 // jump table address (not yet needed), or if we are generating code 1884 // for large code model, we generate: 1885 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1886 // Otherwise we generate: 1887 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1888 // Either way, start with the ADDIStocHA: 1889 unsigned HighPartReg = createResultReg(RC); 1890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1891 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1892 1893 // !GVar implies a function address. An external variable is one 1894 // without an initializer. 1895 // If/when switches are implemented, jump tables should be handled 1896 // on the "if" path here. 1897 if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() || 1898 GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage()) 1899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1900 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1901 else 1902 // Otherwise generate the ADDItocL. 1903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1904 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1905 } 1906 1907 return DestReg; 1908 } 1909 1910 // Materialize a 32-bit integer constant into a register, and return 1911 // the register number (or zero if we failed to handle it). 1912 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1913 const TargetRegisterClass *RC) { 1914 unsigned Lo = Imm & 0xFFFF; 1915 unsigned Hi = (Imm >> 16) & 0xFFFF; 1916 1917 unsigned ResultReg = createResultReg(RC); 1918 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1919 1920 if (isInt<16>(Imm)) 1921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1922 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1923 .addImm(Imm); 1924 else if (Lo) { 1925 // Both Lo and Hi have nonzero bits. 1926 unsigned TmpReg = createResultReg(RC); 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1928 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1929 .addImm(Hi); 1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1931 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1932 .addReg(TmpReg).addImm(Lo); 1933 } else 1934 // Just Hi bits. 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1936 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1937 .addImm(Hi); 1938 1939 return ResultReg; 1940 } 1941 1942 // Materialize a 64-bit integer constant into a register, and return 1943 // the register number (or zero if we failed to handle it). 1944 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 1945 const TargetRegisterClass *RC) { 1946 unsigned Remainder = 0; 1947 unsigned Shift = 0; 1948 1949 // If the value doesn't fit in 32 bits, see if we can shift it 1950 // so that it fits in 32 bits. 1951 if (!isInt<32>(Imm)) { 1952 Shift = countTrailingZeros<uint64_t>(Imm); 1953 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 1954 1955 if (isInt<32>(ImmSh)) 1956 Imm = ImmSh; 1957 else { 1958 Remainder = Imm; 1959 Shift = 32; 1960 Imm >>= 32; 1961 } 1962 } 1963 1964 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 1965 // (if not shifted). 1966 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 1967 if (!Shift) 1968 return TmpReg1; 1969 1970 // If upper 32 bits were not zero, we've built them and need to shift 1971 // them into place. 1972 unsigned TmpReg2; 1973 if (Imm) { 1974 TmpReg2 = createResultReg(RC); 1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 1976 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 1977 } else 1978 TmpReg2 = TmpReg1; 1979 1980 unsigned TmpReg3, Hi, Lo; 1981 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 1982 TmpReg3 = createResultReg(RC); 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 1984 TmpReg3).addReg(TmpReg2).addImm(Hi); 1985 } else 1986 TmpReg3 = TmpReg2; 1987 1988 if ((Lo = Remainder & 0xFFFF)) { 1989 unsigned ResultReg = createResultReg(RC); 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 1991 ResultReg).addReg(TmpReg3).addImm(Lo); 1992 return ResultReg; 1993 } 1994 1995 return TmpReg3; 1996 } 1997 1998 1999 // Materialize an integer constant into a register, and return 2000 // the register number (or zero if we failed to handle it). 2001 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) { 2002 // If we're using CR bit registers for i1 values, handle that as a special 2003 // case first. 2004 if (VT == MVT::i1 && PPCSubTarget.useCRBits()) { 2005 const ConstantInt *CI = cast<ConstantInt>(C); 2006 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2008 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2009 return ImmReg; 2010 } 2011 2012 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2013 VT != MVT::i8 && VT != MVT::i1) 2014 return 0; 2015 2016 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2017 &PPC::GPRCRegClass); 2018 2019 // If the constant is in range, use a load-immediate. 2020 const ConstantInt *CI = cast<ConstantInt>(C); 2021 if (isInt<16>(CI->getSExtValue())) { 2022 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2023 unsigned ImmReg = createResultReg(RC); 2024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2025 .addImm(CI->getSExtValue()); 2026 return ImmReg; 2027 } 2028 2029 // Construct the constant piecewise. 2030 int64_t Imm = CI->getZExtValue(); 2031 2032 if (VT == MVT::i64) 2033 return PPCMaterialize64BitInt(Imm, RC); 2034 else if (VT == MVT::i32) 2035 return PPCMaterialize32BitInt(Imm, RC); 2036 2037 return 0; 2038 } 2039 2040 // Materialize a constant into a register, and return the register 2041 // number (or zero if we failed to handle it). 2042 unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) { 2043 EVT CEVT = TLI.getValueType(C->getType(), true); 2044 2045 // Only handle simple types. 2046 if (!CEVT.isSimple()) return 0; 2047 MVT VT = CEVT.getSimpleVT(); 2048 2049 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2050 return PPCMaterializeFP(CFP, VT); 2051 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2052 return PPCMaterializeGV(GV, VT); 2053 else if (isa<ConstantInt>(C)) 2054 return PPCMaterializeInt(C, VT); 2055 2056 return 0; 2057 } 2058 2059 // Materialize the address created by an alloca into a register, and 2060 // return the register number (or zero if we failed to handle it). 2061 unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 2062 // Don't handle dynamic allocas. 2063 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2064 2065 MVT VT; 2066 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2067 2068 DenseMap<const AllocaInst*, int>::iterator SI = 2069 FuncInfo.StaticAllocaMap.find(AI); 2070 2071 if (SI != FuncInfo.StaticAllocaMap.end()) { 2072 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2074 ResultReg).addFrameIndex(SI->second).addImm(0); 2075 return ResultReg; 2076 } 2077 2078 return 0; 2079 } 2080 2081 // Fold loads into extends when possible. 2082 // FIXME: We can have multiple redundant extend/trunc instructions 2083 // following a load. The folding only picks up one. Extend this 2084 // to check subsequent instructions for the same pattern and remove 2085 // them. Thus ResultReg should be the def reg for the last redundant 2086 // instruction in a chain, and all intervening instructions can be 2087 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2088 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2089 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2090 const LoadInst *LI) { 2091 // Verify we have a legal type before going any further. 2092 MVT VT; 2093 if (!isLoadTypeLegal(LI->getType(), VT)) 2094 return false; 2095 2096 // Combine load followed by zero- or sign-extend. 2097 bool IsZExt = false; 2098 switch(MI->getOpcode()) { 2099 default: 2100 return false; 2101 2102 case PPC::RLDICL: 2103 case PPC::RLDICL_32_64: { 2104 IsZExt = true; 2105 unsigned MB = MI->getOperand(3).getImm(); 2106 if ((VT == MVT::i8 && MB <= 56) || 2107 (VT == MVT::i16 && MB <= 48) || 2108 (VT == MVT::i32 && MB <= 32)) 2109 break; 2110 return false; 2111 } 2112 2113 case PPC::RLWINM: 2114 case PPC::RLWINM8: { 2115 IsZExt = true; 2116 unsigned MB = MI->getOperand(3).getImm(); 2117 if ((VT == MVT::i8 && MB <= 24) || 2118 (VT == MVT::i16 && MB <= 16)) 2119 break; 2120 return false; 2121 } 2122 2123 case PPC::EXTSB: 2124 case PPC::EXTSB8: 2125 case PPC::EXTSB8_32_64: 2126 /* There is no sign-extending load-byte instruction. */ 2127 return false; 2128 2129 case PPC::EXTSH: 2130 case PPC::EXTSH8: 2131 case PPC::EXTSH8_32_64: { 2132 if (VT != MVT::i16 && VT != MVT::i8) 2133 return false; 2134 break; 2135 } 2136 2137 case PPC::EXTSW: 2138 case PPC::EXTSW_32_64: { 2139 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2140 return false; 2141 break; 2142 } 2143 } 2144 2145 // See if we can handle this address. 2146 Address Addr; 2147 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2148 return false; 2149 2150 unsigned ResultReg = MI->getOperand(0).getReg(); 2151 2152 if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt)) 2153 return false; 2154 2155 MI->eraseFromParent(); 2156 return true; 2157 } 2158 2159 // Attempt to lower call arguments in a faster way than done by 2160 // the selection DAG code. 2161 bool PPCFastISel::FastLowerArguments() { 2162 // Defer to normal argument lowering for now. It's reasonably 2163 // efficient. Consider doing something like ARM to handle the 2164 // case where all args fit in registers, no varargs, no float 2165 // or vector args. 2166 return false; 2167 } 2168 2169 // Handle materializing integer constants into a register. This is not 2170 // automatically generated for PowerPC, so must be explicitly created here. 2171 unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2172 2173 if (Opc != ISD::Constant) 2174 return 0; 2175 2176 // If we're using CR bit registers for i1 values, handle that as a special 2177 // case first. 2178 if (VT == MVT::i1 && PPCSubTarget.useCRBits()) { 2179 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2181 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2182 return ImmReg; 2183 } 2184 2185 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2186 VT != MVT::i8 && VT != MVT::i1) 2187 return 0; 2188 2189 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2190 &PPC::GPRCRegClass); 2191 if (VT == MVT::i64) 2192 return PPCMaterialize64BitInt(Imm, RC); 2193 else 2194 return PPCMaterialize32BitInt(Imm, RC); 2195 } 2196 2197 // Override for ADDI and ADDI8 to set the correct register class 2198 // on RHS operand 0. The automatic infrastructure naively assumes 2199 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2200 // for these cases. At the moment, none of the other automatically 2201 // generated RI instructions require special treatment. However, once 2202 // SelectSelect is implemented, "isel" requires similar handling. 2203 // 2204 // Also be conservative about the output register class. Avoid 2205 // assigning R0 or X0 to the output register for GPRC and G8RC 2206 // register classes, as any such result could be used in ADDI, etc., 2207 // where those regs have another meaning. 2208 unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 2209 const TargetRegisterClass *RC, 2210 unsigned Op0, bool Op0IsKill, 2211 uint64_t Imm) { 2212 if (MachineInstOpcode == PPC::ADDI) 2213 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2214 else if (MachineInstOpcode == PPC::ADDI8) 2215 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2216 2217 const TargetRegisterClass *UseRC = 2218 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2219 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2220 2221 return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC, 2222 Op0, Op0IsKill, Imm); 2223 } 2224 2225 // Override for instructions with one register operand to avoid use of 2226 // R0/X0. The automatic infrastructure isn't aware of the context so 2227 // we must be conservative. 2228 unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 2229 const TargetRegisterClass* RC, 2230 unsigned Op0, bool Op0IsKill) { 2231 const TargetRegisterClass *UseRC = 2232 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2233 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2234 2235 return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2236 } 2237 2238 // Override for instructions with two register operands to avoid use 2239 // of R0/X0. The automatic infrastructure isn't aware of the context 2240 // so we must be conservative. 2241 unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 2242 const TargetRegisterClass* RC, 2243 unsigned Op0, bool Op0IsKill, 2244 unsigned Op1, bool Op1IsKill) { 2245 const TargetRegisterClass *UseRC = 2246 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2247 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2248 2249 return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2250 Op1, Op1IsKill); 2251 } 2252 2253 namespace llvm { 2254 // Create the fast instruction selector for PowerPC64 ELF. 2255 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2256 const TargetLibraryInfo *LibInfo) { 2257 const TargetMachine &TM = FuncInfo.MF->getTarget(); 2258 2259 // Only available on 64-bit ELF for now. 2260 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 2261 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) 2262 return new PPCFastISel(FuncInfo, LibInfo); 2263 2264 return 0; 2265 } 2266 } 2267