1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "PPC.h"
17 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCCallingConv.h"
19 #include "PPCCCState.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCSubtarget.h"
23 #include "PPCTargetMachine.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetLowering.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 //===----------------------------------------------------------------------===//
43 //
44 // TBD:
45 //   fastLowerArguments: Handle simple cases.
46 //   PPCMaterializeGV: Handle TLS.
47 //   SelectCall: Handle function pointers.
48 //   SelectCall: Handle multi-register return values.
49 //   SelectCall: Optimize away nops for local calls.
50 //   processCallArgs: Handle bit-converted arguments.
51 //   finishCall: Handle multi-register return values.
52 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
53 //   PPCEmitCmp: Handle immediate as operand 1.
54 //   SelectCall: Handle small byval arguments.
55 //   SelectIntrinsicCall: Implement.
56 //   SelectSelect: Implement.
57 //   Consider factoring isTypeLegal into the base class.
58 //   Implement switches and jump tables.
59 //
60 //===----------------------------------------------------------------------===//
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "ppcfastisel"
64 
65 namespace {
66 
67 typedef struct Address {
68   enum {
69     RegBase,
70     FrameIndexBase
71   } BaseType;
72 
73   union {
74     unsigned Reg;
75     int FI;
76   } Base;
77 
78   long Offset;
79 
80   // Innocuous defaults for our address.
81   Address()
82    : BaseType(RegBase), Offset(0) {
83      Base.Reg = 0;
84    }
85 } Address;
86 
87 class PPCFastISel final : public FastISel {
88 
89   const TargetMachine &TM;
90   const PPCSubtarget *PPCSubTarget;
91   PPCFunctionInfo *PPCFuncInfo;
92   const TargetInstrInfo &TII;
93   const TargetLowering &TLI;
94   LLVMContext *Context;
95 
96   public:
97     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98                          const TargetLibraryInfo *LibInfo)
99         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
102           TII(*PPCSubTarget->getInstrInfo()),
103           TLI(*PPCSubTarget->getTargetLowering()),
104           Context(&FuncInfo.Fn->getContext()) {}
105 
106   // Backend specific FastISel code.
107   private:
108     bool fastSelectInstruction(const Instruction *I) override;
109     unsigned fastMaterializeConstant(const Constant *C) override;
110     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112                              const LoadInst *LI) override;
113     bool fastLowerArguments() override;
114     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116                              const TargetRegisterClass *RC,
117                              unsigned Op0, bool Op0IsKill,
118                              uint64_t Imm);
119     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120                             const TargetRegisterClass *RC,
121                             unsigned Op0, bool Op0IsKill);
122     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123                              const TargetRegisterClass *RC,
124                              unsigned Op0, bool Op0IsKill,
125                              unsigned Op1, bool Op1IsKill);
126 
127     bool fastLowerCall(CallLoweringInfo &CLI) override;
128 
129   // Instruction selection routines.
130   private:
131     bool SelectLoad(const Instruction *I);
132     bool SelectStore(const Instruction *I);
133     bool SelectBranch(const Instruction *I);
134     bool SelectIndirectBr(const Instruction *I);
135     bool SelectFPExt(const Instruction *I);
136     bool SelectFPTrunc(const Instruction *I);
137     bool SelectIToFP(const Instruction *I, bool IsSigned);
138     bool SelectFPToI(const Instruction *I, bool IsSigned);
139     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140     bool SelectRet(const Instruction *I);
141     bool SelectTrunc(const Instruction *I);
142     bool SelectIntExt(const Instruction *I);
143 
144   // Utility routines.
145   private:
146     bool isTypeLegal(Type *Ty, MVT &VT);
147     bool isLoadTypeLegal(Type *Ty, MVT &VT);
148     bool isValueAvailable(const Value *V) const;
149     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
150       return RC->getID() == PPC::VSFRCRegClassID;
151     }
152     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
153       return RC->getID() == PPC::VSSRCRegClassID;
154     }
155     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
156                     bool isZExt, unsigned DestReg);
157     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
158                      const TargetRegisterClass *RC, bool IsZExt = true,
159                      unsigned FP64LoadOpc = PPC::LFD);
160     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
161     bool PPCComputeAddress(const Value *Obj, Address &Addr);
162     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
163                             unsigned &IndexReg);
164     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
165                            unsigned DestReg, bool IsZExt);
166     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
167     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
168     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
169                                bool UseSExt = true);
170     unsigned PPCMaterialize32BitInt(int64_t Imm,
171                                     const TargetRegisterClass *RC);
172     unsigned PPCMaterialize64BitInt(int64_t Imm,
173                                     const TargetRegisterClass *RC);
174     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
175                              unsigned SrcReg, bool IsSigned);
176     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
177 
178   // Call handling routines.
179   private:
180     bool processCallArgs(SmallVectorImpl<Value*> &Args,
181                          SmallVectorImpl<unsigned> &ArgRegs,
182                          SmallVectorImpl<MVT> &ArgVTs,
183                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
184                          SmallVectorImpl<unsigned> &RegArgs,
185                          CallingConv::ID CC,
186                          unsigned &NumBytes,
187                          bool IsVarArg);
188     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
189     LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
190 
191   private:
192   #include "PPCGenFastISel.inc"
193 
194 };
195 
196 } // end anonymous namespace
197 
198 #include "PPCGenCallingConv.inc"
199 
200 // Function whose sole purpose is to kill compiler warnings
201 // stemming from unused functions included from PPCGenCallingConv.inc.
202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
203   if (Flag == 1)
204     return CC_PPC32_SVR4;
205   else if (Flag == 2)
206     return CC_PPC32_SVR4_ByVal;
207   else if (Flag == 3)
208     return CC_PPC32_SVR4_VarArg;
209   else
210     return RetCC_PPC;
211 }
212 
213 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
214   switch (Pred) {
215     // These are not representable with any single compare.
216     case CmpInst::FCMP_FALSE:
217     case CmpInst::FCMP_TRUE:
218     // Major concern about the following 6 cases is NaN result. The comparison
219     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
220     // only one of which will be set. The result is generated by fcmpu
221     // instruction. However, bc instruction only inspects one of the first 3
222     // bits, so when un is set, bc instruction may jump to to an undesired
223     // place.
224     //
225     // More specifically, if we expect an unordered comparison and un is set, we
226     // expect to always go to true branch; in such case UEQ, UGT and ULT still
227     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
228     // since they are tested by inspecting !eq, !lt, !gt, respectively.
229     //
230     // Similarly, for ordered comparison, when un is set, we always expect the
231     // result to be false. In such case OGT, OLT and OEQ is good, since they are
232     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
233     // and ONE are tested through !lt, !gt and !eq, and these are true.
234     case CmpInst::FCMP_UEQ:
235     case CmpInst::FCMP_UGT:
236     case CmpInst::FCMP_ULT:
237     case CmpInst::FCMP_OGE:
238     case CmpInst::FCMP_OLE:
239     case CmpInst::FCMP_ONE:
240     default:
241       return Optional<PPC::Predicate>();
242 
243     case CmpInst::FCMP_OEQ:
244     case CmpInst::ICMP_EQ:
245       return PPC::PRED_EQ;
246 
247     case CmpInst::FCMP_OGT:
248     case CmpInst::ICMP_UGT:
249     case CmpInst::ICMP_SGT:
250       return PPC::PRED_GT;
251 
252     case CmpInst::FCMP_UGE:
253     case CmpInst::ICMP_UGE:
254     case CmpInst::ICMP_SGE:
255       return PPC::PRED_GE;
256 
257     case CmpInst::FCMP_OLT:
258     case CmpInst::ICMP_ULT:
259     case CmpInst::ICMP_SLT:
260       return PPC::PRED_LT;
261 
262     case CmpInst::FCMP_ULE:
263     case CmpInst::ICMP_ULE:
264     case CmpInst::ICMP_SLE:
265       return PPC::PRED_LE;
266 
267     case CmpInst::FCMP_UNE:
268     case CmpInst::ICMP_NE:
269       return PPC::PRED_NE;
270 
271     case CmpInst::FCMP_ORD:
272       return PPC::PRED_NU;
273 
274     case CmpInst::FCMP_UNO:
275       return PPC::PRED_UN;
276   }
277 }
278 
279 // Determine whether the type Ty is simple enough to be handled by
280 // fast-isel, and return its equivalent machine type in VT.
281 // FIXME: Copied directly from ARM -- factor into base class?
282 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
283   EVT Evt = TLI.getValueType(DL, Ty, true);
284 
285   // Only handle simple types.
286   if (Evt == MVT::Other || !Evt.isSimple()) return false;
287   VT = Evt.getSimpleVT();
288 
289   // Handle all legal types, i.e. a register that will directly hold this
290   // value.
291   return TLI.isTypeLegal(VT);
292 }
293 
294 // Determine whether the type Ty is simple enough to be handled by
295 // fast-isel as a load target, and return its equivalent machine type in VT.
296 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
297   if (isTypeLegal(Ty, VT)) return true;
298 
299   // If this is a type than can be sign or zero-extended to a basic operation
300   // go ahead and accept it now.
301   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
302     return true;
303   }
304 
305   return false;
306 }
307 
308 bool PPCFastISel::isValueAvailable(const Value *V) const {
309   if (!isa<Instruction>(V))
310     return true;
311 
312   const auto *I = cast<Instruction>(V);
313   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
314 }
315 
316 // Given a value Obj, create an Address object Addr that represents its
317 // address.  Return false if we can't handle it.
318 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
319   const User *U = nullptr;
320   unsigned Opcode = Instruction::UserOp1;
321   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
322     // Don't walk into other basic blocks unless the object is an alloca from
323     // another block, otherwise it may not have a virtual register assigned.
324     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
325         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
326       Opcode = I->getOpcode();
327       U = I;
328     }
329   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
330     Opcode = C->getOpcode();
331     U = C;
332   }
333 
334   switch (Opcode) {
335     default:
336       break;
337     case Instruction::BitCast:
338       // Look through bitcasts.
339       return PPCComputeAddress(U->getOperand(0), Addr);
340     case Instruction::IntToPtr:
341       // Look past no-op inttoptrs.
342       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
343           TLI.getPointerTy(DL))
344         return PPCComputeAddress(U->getOperand(0), Addr);
345       break;
346     case Instruction::PtrToInt:
347       // Look past no-op ptrtoints.
348       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
349         return PPCComputeAddress(U->getOperand(0), Addr);
350       break;
351     case Instruction::GetElementPtr: {
352       Address SavedAddr = Addr;
353       long TmpOffset = Addr.Offset;
354 
355       // Iterate through the GEP folding the constants into offsets where
356       // we can.
357       gep_type_iterator GTI = gep_type_begin(U);
358       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
359            II != IE; ++II, ++GTI) {
360         const Value *Op = *II;
361         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
362           const StructLayout *SL = DL.getStructLayout(STy);
363           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
364           TmpOffset += SL->getElementOffset(Idx);
365         } else {
366           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
367           for (;;) {
368             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
369               // Constant-offset addressing.
370               TmpOffset += CI->getSExtValue() * S;
371               break;
372             }
373             if (canFoldAddIntoGEP(U, Op)) {
374               // A compatible add with a constant operand. Fold the constant.
375               ConstantInt *CI =
376               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
377               TmpOffset += CI->getSExtValue() * S;
378               // Iterate on the other operand.
379               Op = cast<AddOperator>(Op)->getOperand(0);
380               continue;
381             }
382             // Unsupported
383             goto unsupported_gep;
384           }
385         }
386       }
387 
388       // Try to grab the base operand now.
389       Addr.Offset = TmpOffset;
390       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
391 
392       // We failed, restore everything and try the other options.
393       Addr = SavedAddr;
394 
395       unsupported_gep:
396       break;
397     }
398     case Instruction::Alloca: {
399       const AllocaInst *AI = cast<AllocaInst>(Obj);
400       DenseMap<const AllocaInst*, int>::iterator SI =
401         FuncInfo.StaticAllocaMap.find(AI);
402       if (SI != FuncInfo.StaticAllocaMap.end()) {
403         Addr.BaseType = Address::FrameIndexBase;
404         Addr.Base.FI = SI->second;
405         return true;
406       }
407       break;
408     }
409   }
410 
411   // FIXME: References to parameters fall through to the behavior
412   // below.  They should be able to reference a frame index since
413   // they are stored to the stack, so we can get "ld rx, offset(r1)"
414   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
415   // just contain the parameter.  Try to handle this with a FI.
416 
417   // Try to get this in a register if nothing else has worked.
418   if (Addr.Base.Reg == 0)
419     Addr.Base.Reg = getRegForValue(Obj);
420 
421   // Prevent assignment of base register to X0, which is inappropriate
422   // for loads and stores alike.
423   if (Addr.Base.Reg != 0)
424     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
425 
426   return Addr.Base.Reg != 0;
427 }
428 
429 // Fix up some addresses that can't be used directly.  For example, if
430 // an offset won't fit in an instruction field, we may need to move it
431 // into an index register.
432 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
433                                      unsigned &IndexReg) {
434 
435   // Check whether the offset fits in the instruction field.
436   if (!isInt<16>(Addr.Offset))
437     UseOffset = false;
438 
439   // If this is a stack pointer and the offset needs to be simplified then
440   // put the alloca address into a register, set the base type back to
441   // register and continue. This should almost never happen.
442   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
443     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
444     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
445             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
446     Addr.Base.Reg = ResultReg;
447     Addr.BaseType = Address::RegBase;
448   }
449 
450   if (!UseOffset) {
451     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
452     const ConstantInt *Offset =
453       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
454     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
455     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
456   }
457 }
458 
459 // Emit a load instruction if possible, returning true if we succeeded,
460 // otherwise false.  See commentary below for how the register class of
461 // the load is determined.
462 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
463                               const TargetRegisterClass *RC,
464                               bool IsZExt, unsigned FP64LoadOpc) {
465   unsigned Opc;
466   bool UseOffset = true;
467 
468   // If ResultReg is given, it determines the register class of the load.
469   // Otherwise, RC is the register class to use.  If the result of the
470   // load isn't anticipated in this block, both may be zero, in which
471   // case we must make a conservative guess.  In particular, don't assign
472   // R0 or X0 to the result register, as the result may be used in a load,
473   // store, add-immediate, or isel that won't permit this.  (Though
474   // perhaps the spill and reload of live-exit values would handle this?)
475   const TargetRegisterClass *UseRC =
476     (ResultReg ? MRI.getRegClass(ResultReg) :
477      (RC ? RC :
478       (VT == MVT::f64 ? &PPC::F8RCRegClass :
479        (VT == MVT::f32 ? &PPC::F4RCRegClass :
480         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
481          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
482 
483   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
484 
485   switch (VT.SimpleTy) {
486     default: // e.g., vector types not handled
487       return false;
488     case MVT::i8:
489       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
490       break;
491     case MVT::i16:
492       Opc = (IsZExt ?
493              (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
494              (Is32BitInt ? PPC::LHA : PPC::LHA8));
495       break;
496     case MVT::i32:
497       Opc = (IsZExt ?
498              (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
499              (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
500       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
501         UseOffset = false;
502       break;
503     case MVT::i64:
504       Opc = PPC::LD;
505       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
506              "64-bit load with 32-bit target??");
507       UseOffset = ((Addr.Offset & 3) == 0);
508       break;
509     case MVT::f32:
510       Opc = PPC::LFS;
511       break;
512     case MVT::f64:
513       Opc = FP64LoadOpc;
514       break;
515   }
516 
517   // If necessary, materialize the offset into a register and use
518   // the indexed form.  Also handle stack pointers with special needs.
519   unsigned IndexReg = 0;
520   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
521 
522   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
523   // be used.
524   bool IsVSSRC = isVSSRCRegClass(UseRC);
525   bool IsVSFRC = isVSFRCRegClass(UseRC);
526   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
527   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
528   if ((Is32VSXLoad || Is64VSXLoad) &&
529       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
530       (Addr.Offset == 0)) {
531     UseOffset = false;
532   }
533 
534   if (ResultReg == 0)
535     ResultReg = createResultReg(UseRC);
536 
537   // Note: If we still have a frame index here, we know the offset is
538   // in range, as otherwise PPCSimplifyAddress would have converted it
539   // into a RegBase.
540   if (Addr.BaseType == Address::FrameIndexBase) {
541     // VSX only provides an indexed load.
542     if (Is32VSXLoad || Is64VSXLoad) return false;
543 
544     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
545         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
546                                           Addr.Offset),
547         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
548         MFI.getObjectAlignment(Addr.Base.FI));
549 
550     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
551       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
552 
553   // Base reg with offset in range.
554   } else if (UseOffset) {
555     // VSX only provides an indexed load.
556     if (Is32VSXLoad || Is64VSXLoad) return false;
557 
558     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
559       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
560 
561   // Indexed form.
562   } else {
563     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
564     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
565     // is hard to get at.
566     switch (Opc) {
567       default:        llvm_unreachable("Unexpected opcode!");
568       case PPC::LBZ:    Opc = PPC::LBZX;    break;
569       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
570       case PPC::LHZ:    Opc = PPC::LHZX;    break;
571       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
572       case PPC::LHA:    Opc = PPC::LHAX;    break;
573       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
574       case PPC::LWZ:    Opc = PPC::LWZX;    break;
575       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
576       case PPC::LWA:    Opc = PPC::LWAX;    break;
577       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
578       case PPC::LD:     Opc = PPC::LDX;     break;
579       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
580       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
581     }
582 
583     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
584 		       TII.get(Opc), ResultReg);
585 
586     // If we have an index register defined we use it in the store inst,
587     // otherwise we use X0 as base as it makes the vector instructions to
588     // use zero in the computation of the effective address regardless the
589     // content of the register.
590     if (IndexReg)
591       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
592     else
593       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
594   }
595 
596   return true;
597 }
598 
599 // Attempt to fast-select a load instruction.
600 bool PPCFastISel::SelectLoad(const Instruction *I) {
601   // FIXME: No atomic loads are supported.
602   if (cast<LoadInst>(I)->isAtomic())
603     return false;
604 
605   // Verify we have a legal type before going any further.
606   MVT VT;
607   if (!isLoadTypeLegal(I->getType(), VT))
608     return false;
609 
610   // See if we can handle this address.
611   Address Addr;
612   if (!PPCComputeAddress(I->getOperand(0), Addr))
613     return false;
614 
615   // Look at the currently assigned register for this instruction
616   // to determine the required register class.  This is necessary
617   // to constrain RA from using R0/X0 when this is not legal.
618   unsigned AssignedReg = FuncInfo.ValueMap[I];
619   const TargetRegisterClass *RC =
620     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
621 
622   unsigned ResultReg = 0;
623   if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
624     return false;
625   updateValueMap(I, ResultReg);
626   return true;
627 }
628 
629 // Emit a store instruction to store SrcReg at Addr.
630 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
631   assert(SrcReg && "Nothing to store!");
632   unsigned Opc;
633   bool UseOffset = true;
634 
635   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
636   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
637 
638   switch (VT.SimpleTy) {
639     default: // e.g., vector types not handled
640       return false;
641     case MVT::i8:
642       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
643       break;
644     case MVT::i16:
645       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
646       break;
647     case MVT::i32:
648       assert(Is32BitInt && "Not GPRC for i32??");
649       Opc = PPC::STW;
650       break;
651     case MVT::i64:
652       Opc = PPC::STD;
653       UseOffset = ((Addr.Offset & 3) == 0);
654       break;
655     case MVT::f32:
656       Opc = PPC::STFS;
657       break;
658     case MVT::f64:
659       Opc = PPC::STFD;
660       break;
661   }
662 
663   // If necessary, materialize the offset into a register and use
664   // the indexed form.  Also handle stack pointers with special needs.
665   unsigned IndexReg = 0;
666   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
667 
668   // If this is a potential VSX store with an offset of 0, a VSX indexed store
669   // can be used.
670   bool IsVSSRC = isVSSRCRegClass(RC);
671   bool IsVSFRC = isVSFRCRegClass(RC);
672   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
673   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
674   if ((Is32VSXStore || Is64VSXStore) &&
675       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
676       (Addr.Offset == 0)) {
677     UseOffset = false;
678   }
679 
680   // Note: If we still have a frame index here, we know the offset is
681   // in range, as otherwise PPCSimplifyAddress would have converted it
682   // into a RegBase.
683   if (Addr.BaseType == Address::FrameIndexBase) {
684     // VSX only provides an indexed store.
685     if (Is32VSXStore || Is64VSXStore) return false;
686 
687     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
688         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
689                                           Addr.Offset),
690         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
691         MFI.getObjectAlignment(Addr.Base.FI));
692 
693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
694         .addReg(SrcReg)
695         .addImm(Addr.Offset)
696         .addFrameIndex(Addr.Base.FI)
697         .addMemOperand(MMO);
698 
699   // Base reg with offset in range.
700   } else if (UseOffset) {
701     // VSX only provides an indexed store.
702     if (Is32VSXStore || Is64VSXStore) return false;
703 
704     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
705       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
706 
707   // Indexed form.
708   } else {
709     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
710     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
711     // is hard to get at.
712     switch (Opc) {
713       default:        llvm_unreachable("Unexpected opcode!");
714       case PPC::STB:  Opc = PPC::STBX;  break;
715       case PPC::STH : Opc = PPC::STHX;  break;
716       case PPC::STW : Opc = PPC::STWX;  break;
717       case PPC::STB8: Opc = PPC::STBX8; break;
718       case PPC::STH8: Opc = PPC::STHX8; break;
719       case PPC::STW8: Opc = PPC::STWX8; break;
720       case PPC::STD:  Opc = PPC::STDX;  break;
721       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
722       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
723     }
724 
725     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
726         .addReg(SrcReg);
727 
728     // If we have an index register defined we use it in the store inst,
729     // otherwise we use X0 as base as it makes the vector instructions to
730     // use zero in the computation of the effective address regardless the
731     // content of the register.
732     if (IndexReg)
733       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
734     else
735       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
736   }
737 
738   return true;
739 }
740 
741 // Attempt to fast-select a store instruction.
742 bool PPCFastISel::SelectStore(const Instruction *I) {
743   Value *Op0 = I->getOperand(0);
744   unsigned SrcReg = 0;
745 
746   // FIXME: No atomics loads are supported.
747   if (cast<StoreInst>(I)->isAtomic())
748     return false;
749 
750   // Verify we have a legal type before going any further.
751   MVT VT;
752   if (!isLoadTypeLegal(Op0->getType(), VT))
753     return false;
754 
755   // Get the value to be stored into a register.
756   SrcReg = getRegForValue(Op0);
757   if (SrcReg == 0)
758     return false;
759 
760   // See if we can handle this address.
761   Address Addr;
762   if (!PPCComputeAddress(I->getOperand(1), Addr))
763     return false;
764 
765   if (!PPCEmitStore(VT, SrcReg, Addr))
766     return false;
767 
768   return true;
769 }
770 
771 // Attempt to fast-select a branch instruction.
772 bool PPCFastISel::SelectBranch(const Instruction *I) {
773   const BranchInst *BI = cast<BranchInst>(I);
774   MachineBasicBlock *BrBB = FuncInfo.MBB;
775   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
776   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
777 
778   // For now, just try the simplest case where it's fed by a compare.
779   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
780     if (isValueAvailable(CI)) {
781       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
782       if (!OptPPCPred)
783         return false;
784 
785       PPC::Predicate PPCPred = OptPPCPred.getValue();
786 
787       // Take advantage of fall-through opportunities.
788       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
789         std::swap(TBB, FBB);
790         PPCPred = PPC::InvertPredicate(PPCPred);
791       }
792 
793       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
794 
795       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
796                       CondReg))
797         return false;
798 
799       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
800         .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
801       finishCondBranch(BI->getParent(), TBB, FBB);
802       return true;
803     }
804   } else if (const ConstantInt *CI =
805              dyn_cast<ConstantInt>(BI->getCondition())) {
806     uint64_t Imm = CI->getZExtValue();
807     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
808     fastEmitBranch(Target, DbgLoc);
809     return true;
810   }
811 
812   // FIXME: ARM looks for a case where the block containing the compare
813   // has been split from the block containing the branch.  If this happens,
814   // there is a vreg available containing the result of the compare.  I'm
815   // not sure we can do much, as we've lost the predicate information with
816   // the compare instruction -- we have a 4-bit CR but don't know which bit
817   // to test here.
818   return false;
819 }
820 
821 // Attempt to emit a compare of the two source values.  Signed and unsigned
822 // comparisons are supported.  Return false if we can't handle it.
823 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
824                              bool IsZExt, unsigned DestReg) {
825   Type *Ty = SrcValue1->getType();
826   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
827   if (!SrcEVT.isSimple())
828     return false;
829   MVT SrcVT = SrcEVT.getSimpleVT();
830 
831   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
832     return false;
833 
834   // See if operand 2 is an immediate encodeable in the compare.
835   // FIXME: Operands are not in canonical order at -O0, so an immediate
836   // operand in position 1 is a lost opportunity for now.  We are
837   // similar to ARM in this regard.
838   long Imm = 0;
839   bool UseImm = false;
840 
841   // Only 16-bit integer constants can be represented in compares for
842   // PowerPC.  Others will be materialized into a register.
843   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
844     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
845         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
846       const APInt &CIVal = ConstInt->getValue();
847       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
848       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
849         UseImm = true;
850     }
851   }
852 
853   unsigned CmpOpc;
854   bool NeedsExt = false;
855   switch (SrcVT.SimpleTy) {
856     default: return false;
857     case MVT::f32:
858       CmpOpc = PPC::FCMPUS;
859       break;
860     case MVT::f64:
861       CmpOpc = PPC::FCMPUD;
862       break;
863     case MVT::i1:
864     case MVT::i8:
865     case MVT::i16:
866       NeedsExt = true;
867       // Intentional fall-through.
868     case MVT::i32:
869       if (!UseImm)
870         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
871       else
872         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
873       break;
874     case MVT::i64:
875       if (!UseImm)
876         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
877       else
878         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
879       break;
880   }
881 
882   unsigned SrcReg1 = getRegForValue(SrcValue1);
883   if (SrcReg1 == 0)
884     return false;
885 
886   unsigned SrcReg2 = 0;
887   if (!UseImm) {
888     SrcReg2 = getRegForValue(SrcValue2);
889     if (SrcReg2 == 0)
890       return false;
891   }
892 
893   if (NeedsExt) {
894     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
895     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
896       return false;
897     SrcReg1 = ExtReg;
898 
899     if (!UseImm) {
900       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
901       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
902         return false;
903       SrcReg2 = ExtReg;
904     }
905   }
906 
907   if (!UseImm)
908     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
909       .addReg(SrcReg1).addReg(SrcReg2);
910   else
911     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
912       .addReg(SrcReg1).addImm(Imm);
913 
914   return true;
915 }
916 
917 // Attempt to fast-select a floating-point extend instruction.
918 bool PPCFastISel::SelectFPExt(const Instruction *I) {
919   Value *Src  = I->getOperand(0);
920   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
921   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
922 
923   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
924     return false;
925 
926   unsigned SrcReg = getRegForValue(Src);
927   if (!SrcReg)
928     return false;
929 
930   // No code is generated for a FP extend.
931   updateValueMap(I, SrcReg);
932   return true;
933 }
934 
935 // Attempt to fast-select a floating-point truncate instruction.
936 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
937   Value *Src  = I->getOperand(0);
938   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
939   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
940 
941   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
942     return false;
943 
944   unsigned SrcReg = getRegForValue(Src);
945   if (!SrcReg)
946     return false;
947 
948   // Round the result to single precision.
949   unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
950   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
951     .addReg(SrcReg);
952 
953   updateValueMap(I, DestReg);
954   return true;
955 }
956 
957 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
958 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
959 // those should be used instead of moving via a stack slot when the
960 // subtarget permits.
961 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
962 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
963 // case to 8 bytes which produces tighter code but wastes stack space.
964 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
965                                      bool IsSigned) {
966 
967   // If necessary, extend 32-bit int to 64-bit.
968   if (SrcVT == MVT::i32) {
969     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
970     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
971       return 0;
972     SrcReg = TmpReg;
973   }
974 
975   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
976   Address Addr;
977   Addr.BaseType = Address::FrameIndexBase;
978   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
979 
980   // Store the value from the GPR.
981   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
982     return 0;
983 
984   // Load the integer value into an FPR.  The kind of load used depends
985   // on a number of conditions.
986   unsigned LoadOpc = PPC::LFD;
987 
988   if (SrcVT == MVT::i32) {
989     if (!IsSigned) {
990       LoadOpc = PPC::LFIWZX;
991       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
992     } else if (PPCSubTarget->hasLFIWAX()) {
993       LoadOpc = PPC::LFIWAX;
994       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
995     }
996   }
997 
998   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
999   unsigned ResultReg = 0;
1000   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1001     return 0;
1002 
1003   return ResultReg;
1004 }
1005 
1006 // Attempt to fast-select an integer-to-floating-point conversion.
1007 // FIXME: Once fast-isel has better support for VSX, conversions using
1008 //        direct moves should be implemented.
1009 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1010   MVT DstVT;
1011   Type *DstTy = I->getType();
1012   if (!isTypeLegal(DstTy, DstVT))
1013     return false;
1014 
1015   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1016     return false;
1017 
1018   Value *Src = I->getOperand(0);
1019   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1020   if (!SrcEVT.isSimple())
1021     return false;
1022 
1023   MVT SrcVT = SrcEVT.getSimpleVT();
1024 
1025   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1026       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1027     return false;
1028 
1029   unsigned SrcReg = getRegForValue(Src);
1030   if (SrcReg == 0)
1031     return false;
1032 
1033   // We can only lower an unsigned convert if we have the newer
1034   // floating-point conversion operations.
1035   if (!IsSigned && !PPCSubTarget->hasFPCVT())
1036     return false;
1037 
1038   // FIXME: For now we require the newer floating-point conversion operations
1039   // (which are present only on P7 and A2 server models) when converting
1040   // to single-precision float.  Otherwise we have to generate a lot of
1041   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1042   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1043   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1044     return false;
1045 
1046   // Extend the input if necessary.
1047   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1048     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1049     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1050       return false;
1051     SrcVT = MVT::i64;
1052     SrcReg = TmpReg;
1053   }
1054 
1055   // Move the integer value to an FPR.
1056   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1057   if (FPReg == 0)
1058     return false;
1059 
1060   // Determine the opcode for the conversion.
1061   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1062   unsigned DestReg = createResultReg(RC);
1063   unsigned Opc;
1064 
1065   if (DstVT == MVT::f32)
1066     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1067   else
1068     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1069 
1070   // Generate the convert.
1071   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1072     .addReg(FPReg);
1073 
1074   updateValueMap(I, DestReg);
1075   return true;
1076 }
1077 
1078 // Move the floating-point value in SrcReg into an integer destination
1079 // register, and return the register (or zero if we can't handle it).
1080 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1081 // those should be used instead of moving via a stack slot when the
1082 // subtarget permits.
1083 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1084                                       unsigned SrcReg, bool IsSigned) {
1085   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1086   // Note that if have STFIWX available, we could use a 4-byte stack
1087   // slot for i32, but this being fast-isel we'll just go with the
1088   // easiest code gen possible.
1089   Address Addr;
1090   Addr.BaseType = Address::FrameIndexBase;
1091   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1092 
1093   // Store the value from the FPR.
1094   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1095     return 0;
1096 
1097   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1098   // address to have a 4-byte offset so we load from the right place.
1099   if (VT == MVT::i32)
1100     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1101 
1102   // Look at the currently assigned register for this instruction
1103   // to determine the required register class.
1104   unsigned AssignedReg = FuncInfo.ValueMap[I];
1105   const TargetRegisterClass *RC =
1106     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1107 
1108   unsigned ResultReg = 0;
1109   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1110     return 0;
1111 
1112   return ResultReg;
1113 }
1114 
1115 // Attempt to fast-select a floating-point-to-integer conversion.
1116 // FIXME: Once fast-isel has better support for VSX, conversions using
1117 //        direct moves should be implemented.
1118 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1119   MVT DstVT, SrcVT;
1120   Type *DstTy = I->getType();
1121   if (!isTypeLegal(DstTy, DstVT))
1122     return false;
1123 
1124   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1125     return false;
1126 
1127   // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1128   if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1129     return false;
1130 
1131   Value *Src = I->getOperand(0);
1132   Type *SrcTy = Src->getType();
1133   if (!isTypeLegal(SrcTy, SrcVT))
1134     return false;
1135 
1136   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1137     return false;
1138 
1139   unsigned SrcReg = getRegForValue(Src);
1140   if (SrcReg == 0)
1141     return false;
1142 
1143   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1144   // to get the register class right.
1145   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1146   if (InRC == &PPC::F4RCRegClass) {
1147     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1148     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1149             TII.get(TargetOpcode::COPY), TmpReg)
1150       .addReg(SrcReg);
1151     SrcReg = TmpReg;
1152   }
1153 
1154   // Determine the opcode for the conversion, which takes place
1155   // entirely within FPRs.
1156   unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1157   unsigned Opc;
1158 
1159   if (DstVT == MVT::i32)
1160     if (IsSigned)
1161       Opc = PPC::FCTIWZ;
1162     else
1163       Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1164   else
1165     Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1166 
1167   // Generate the convert.
1168   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1169     .addReg(SrcReg);
1170 
1171   // Now move the integer value from a float register to an integer register.
1172   unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1173   if (IntReg == 0)
1174     return false;
1175 
1176   updateValueMap(I, IntReg);
1177   return true;
1178 }
1179 
1180 // Attempt to fast-select a binary integer operation that isn't already
1181 // handled automatically.
1182 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1183   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1184 
1185   // We can get here in the case when we have a binary operation on a non-legal
1186   // type and the target independent selector doesn't know how to handle it.
1187   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1188     return false;
1189 
1190   // Look at the currently assigned register for this instruction
1191   // to determine the required register class.  If there is no register,
1192   // make a conservative choice (don't assign R0).
1193   unsigned AssignedReg = FuncInfo.ValueMap[I];
1194   const TargetRegisterClass *RC =
1195     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1196      &PPC::GPRC_and_GPRC_NOR0RegClass);
1197   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1198 
1199   unsigned Opc;
1200   switch (ISDOpcode) {
1201     default: return false;
1202     case ISD::ADD:
1203       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1204       break;
1205     case ISD::OR:
1206       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1207       break;
1208     case ISD::SUB:
1209       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1210       break;
1211   }
1212 
1213   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1214   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1215   if (SrcReg1 == 0) return false;
1216 
1217   // Handle case of small immediate operand.
1218   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1219     const APInt &CIVal = ConstInt->getValue();
1220     int Imm = (int)CIVal.getSExtValue();
1221     bool UseImm = true;
1222     if (isInt<16>(Imm)) {
1223       switch (Opc) {
1224         default:
1225           llvm_unreachable("Missing case!");
1226         case PPC::ADD4:
1227           Opc = PPC::ADDI;
1228           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1229           break;
1230         case PPC::ADD8:
1231           Opc = PPC::ADDI8;
1232           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1233           break;
1234         case PPC::OR:
1235           Opc = PPC::ORI;
1236           break;
1237         case PPC::OR8:
1238           Opc = PPC::ORI8;
1239           break;
1240         case PPC::SUBF:
1241           if (Imm == -32768)
1242             UseImm = false;
1243           else {
1244             Opc = PPC::ADDI;
1245             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1246             Imm = -Imm;
1247           }
1248           break;
1249         case PPC::SUBF8:
1250           if (Imm == -32768)
1251             UseImm = false;
1252           else {
1253             Opc = PPC::ADDI8;
1254             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1255             Imm = -Imm;
1256           }
1257           break;
1258       }
1259 
1260       if (UseImm) {
1261         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1262                 ResultReg)
1263             .addReg(SrcReg1)
1264             .addImm(Imm);
1265         updateValueMap(I, ResultReg);
1266         return true;
1267       }
1268     }
1269   }
1270 
1271   // Reg-reg case.
1272   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1273   if (SrcReg2 == 0) return false;
1274 
1275   // Reverse operands for subtract-from.
1276   if (ISDOpcode == ISD::SUB)
1277     std::swap(SrcReg1, SrcReg2);
1278 
1279   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1280     .addReg(SrcReg1).addReg(SrcReg2);
1281   updateValueMap(I, ResultReg);
1282   return true;
1283 }
1284 
1285 // Handle arguments to a call that we're attempting to fast-select.
1286 // Return false if the arguments are too complex for us at the moment.
1287 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1288                                   SmallVectorImpl<unsigned> &ArgRegs,
1289                                   SmallVectorImpl<MVT> &ArgVTs,
1290                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1291                                   SmallVectorImpl<unsigned> &RegArgs,
1292                                   CallingConv::ID CC,
1293                                   unsigned &NumBytes,
1294                                   bool IsVarArg) {
1295   SmallVector<CCValAssign, 16> ArgLocs;
1296   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1297 
1298   // Reserve space for the linkage area on the stack.
1299   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1300   CCInfo.AllocateStack(LinkageSize, 8);
1301 
1302   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1303 
1304   // Bail out if we can't handle any of the arguments.
1305   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1306     CCValAssign &VA = ArgLocs[I];
1307     MVT ArgVT = ArgVTs[VA.getValNo()];
1308 
1309     // Skip vector arguments for now, as well as long double and
1310     // uint128_t, and anything that isn't passed in a register.
1311     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1312         !VA.isRegLoc() || VA.needsCustom())
1313       return false;
1314 
1315     // Skip bit-converted arguments for now.
1316     if (VA.getLocInfo() == CCValAssign::BCvt)
1317       return false;
1318   }
1319 
1320   // Get a count of how many bytes are to be pushed onto the stack.
1321   NumBytes = CCInfo.getNextStackOffset();
1322 
1323   // The prolog code of the callee may store up to 8 GPR argument registers to
1324   // the stack, allowing va_start to index over them in memory if its varargs.
1325   // Because we cannot tell if this is needed on the caller side, we have to
1326   // conservatively assume that it is needed.  As such, make sure we have at
1327   // least enough stack space for the caller to store the 8 GPRs.
1328   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1329   NumBytes = std::max(NumBytes, LinkageSize + 64);
1330 
1331   // Issue CALLSEQ_START.
1332   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1333           TII.get(TII.getCallFrameSetupOpcode()))
1334     .addImm(NumBytes);
1335 
1336   // Prepare to assign register arguments.  Every argument uses up a
1337   // GPR protocol register even if it's passed in a floating-point
1338   // register (unless we're using the fast calling convention).
1339   unsigned NextGPR = PPC::X3;
1340   unsigned NextFPR = PPC::F1;
1341 
1342   // Process arguments.
1343   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1344     CCValAssign &VA = ArgLocs[I];
1345     unsigned Arg = ArgRegs[VA.getValNo()];
1346     MVT ArgVT = ArgVTs[VA.getValNo()];
1347 
1348     // Handle argument promotion and bitcasts.
1349     switch (VA.getLocInfo()) {
1350       default:
1351         llvm_unreachable("Unknown loc info!");
1352       case CCValAssign::Full:
1353         break;
1354       case CCValAssign::SExt: {
1355         MVT DestVT = VA.getLocVT();
1356         const TargetRegisterClass *RC =
1357           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1358         unsigned TmpReg = createResultReg(RC);
1359         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1360           llvm_unreachable("Failed to emit a sext!");
1361         ArgVT = DestVT;
1362         Arg = TmpReg;
1363         break;
1364       }
1365       case CCValAssign::AExt:
1366       case CCValAssign::ZExt: {
1367         MVT DestVT = VA.getLocVT();
1368         const TargetRegisterClass *RC =
1369           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1370         unsigned TmpReg = createResultReg(RC);
1371         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1372           llvm_unreachable("Failed to emit a zext!");
1373         ArgVT = DestVT;
1374         Arg = TmpReg;
1375         break;
1376       }
1377       case CCValAssign::BCvt: {
1378         // FIXME: Not yet handled.
1379         llvm_unreachable("Should have bailed before getting here!");
1380         break;
1381       }
1382     }
1383 
1384     // Copy this argument to the appropriate register.
1385     unsigned ArgReg;
1386     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1387       ArgReg = NextFPR++;
1388       if (CC != CallingConv::Fast)
1389         ++NextGPR;
1390     } else
1391       ArgReg = NextGPR++;
1392 
1393     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1394             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1395     RegArgs.push_back(ArgReg);
1396   }
1397 
1398   return true;
1399 }
1400 
1401 // For a call that we've determined we can fast-select, finish the
1402 // call sequence and generate a copy to obtain the return value (if any).
1403 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1404   CallingConv::ID CC = CLI.CallConv;
1405 
1406   // Issue CallSEQ_END.
1407   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1408           TII.get(TII.getCallFrameDestroyOpcode()))
1409     .addImm(NumBytes).addImm(0);
1410 
1411   // Next, generate a copy to obtain the return value.
1412   // FIXME: No multi-register return values yet, though I don't foresee
1413   // any real difficulties there.
1414   if (RetVT != MVT::isVoid) {
1415     SmallVector<CCValAssign, 16> RVLocs;
1416     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1417     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1418     CCValAssign &VA = RVLocs[0];
1419     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1420     assert(VA.isRegLoc() && "Can only return in registers!");
1421 
1422     MVT DestVT = VA.getValVT();
1423     MVT CopyVT = DestVT;
1424 
1425     // Ints smaller than a register still arrive in a full 64-bit
1426     // register, so make sure we recognize this.
1427     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1428       CopyVT = MVT::i64;
1429 
1430     unsigned SourcePhysReg = VA.getLocReg();
1431     unsigned ResultReg = 0;
1432 
1433     if (RetVT == CopyVT) {
1434       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1435       ResultReg = createResultReg(CpyRC);
1436 
1437       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1438               TII.get(TargetOpcode::COPY), ResultReg)
1439         .addReg(SourcePhysReg);
1440 
1441     // If necessary, round the floating result to single precision.
1442     } else if (CopyVT == MVT::f64) {
1443       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1444       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1445               ResultReg).addReg(SourcePhysReg);
1446 
1447     // If only the low half of a general register is needed, generate
1448     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1449     // used along the fast-isel path (not lowered), and downstream logic
1450     // also doesn't like a direct subreg copy on a physical reg.)
1451     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1452       ResultReg = createResultReg(&PPC::GPRCRegClass);
1453       // Convert physical register from G8RC to GPRC.
1454       SourcePhysReg -= PPC::X0 - PPC::R0;
1455       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1456               TII.get(TargetOpcode::COPY), ResultReg)
1457         .addReg(SourcePhysReg);
1458     }
1459 
1460     assert(ResultReg && "ResultReg unset!");
1461     CLI.InRegs.push_back(SourcePhysReg);
1462     CLI.ResultReg = ResultReg;
1463     CLI.NumResultRegs = 1;
1464   }
1465 
1466   return true;
1467 }
1468 
1469 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1470   CallingConv::ID CC  = CLI.CallConv;
1471   bool IsTailCall     = CLI.IsTailCall;
1472   bool IsVarArg       = CLI.IsVarArg;
1473   const Value *Callee = CLI.Callee;
1474   const MCSymbol *Symbol = CLI.Symbol;
1475 
1476   if (!Callee && !Symbol)
1477     return false;
1478 
1479   // Allow SelectionDAG isel to handle tail calls.
1480   if (IsTailCall)
1481     return false;
1482 
1483   // Let SDISel handle vararg functions.
1484   if (IsVarArg)
1485     return false;
1486 
1487   // Handle simple calls for now, with legal return types and
1488   // those that can be extended.
1489   Type *RetTy = CLI.RetTy;
1490   MVT RetVT;
1491   if (RetTy->isVoidTy())
1492     RetVT = MVT::isVoid;
1493   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1494            RetVT != MVT::i8)
1495     return false;
1496   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1497     // We can't handle boolean returns when CR bits are in use.
1498     return false;
1499 
1500   // FIXME: No multi-register return values yet.
1501   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1502       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1503       RetVT != MVT::f64) {
1504     SmallVector<CCValAssign, 16> RVLocs;
1505     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1506     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1507     if (RVLocs.size() > 1)
1508       return false;
1509   }
1510 
1511   // Bail early if more than 8 arguments, as we only currently
1512   // handle arguments passed in registers.
1513   unsigned NumArgs = CLI.OutVals.size();
1514   if (NumArgs > 8)
1515     return false;
1516 
1517   // Set up the argument vectors.
1518   SmallVector<Value*, 8> Args;
1519   SmallVector<unsigned, 8> ArgRegs;
1520   SmallVector<MVT, 8> ArgVTs;
1521   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1522 
1523   Args.reserve(NumArgs);
1524   ArgRegs.reserve(NumArgs);
1525   ArgVTs.reserve(NumArgs);
1526   ArgFlags.reserve(NumArgs);
1527 
1528   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1529     // Only handle easy calls for now.  It would be reasonably easy
1530     // to handle <= 8-byte structures passed ByVal in registers, but we
1531     // have to ensure they are right-justified in the register.
1532     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1533     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1534       return false;
1535 
1536     Value *ArgValue = CLI.OutVals[i];
1537     Type *ArgTy = ArgValue->getType();
1538     MVT ArgVT;
1539     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1540       return false;
1541 
1542     if (ArgVT.isVector())
1543       return false;
1544 
1545     unsigned Arg = getRegForValue(ArgValue);
1546     if (Arg == 0)
1547       return false;
1548 
1549     Args.push_back(ArgValue);
1550     ArgRegs.push_back(Arg);
1551     ArgVTs.push_back(ArgVT);
1552     ArgFlags.push_back(Flags);
1553   }
1554 
1555   // Process the arguments.
1556   SmallVector<unsigned, 8> RegArgs;
1557   unsigned NumBytes;
1558 
1559   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1560                        RegArgs, CC, NumBytes, IsVarArg))
1561     return false;
1562 
1563   MachineInstrBuilder MIB;
1564   // FIXME: No handling for function pointers yet.  This requires
1565   // implementing the function descriptor (OPD) setup.
1566   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1567   if (!GV) {
1568     // patchpoints are a special case; they always dispatch to a pointer value.
1569     // However, we don't actually want to generate the indirect call sequence
1570     // here (that will be generated, as necessary, during asm printing), and
1571     // the call we generate here will be erased by FastISel::selectPatchpoint,
1572     // so don't try very hard...
1573     if (CLI.IsPatchPoint)
1574       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1575     else
1576       return false;
1577   } else {
1578     // Build direct call with NOP for TOC restore.
1579     // FIXME: We can and should optimize away the NOP for local calls.
1580     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1581                   TII.get(PPC::BL8_NOP));
1582     // Add callee.
1583     MIB.addGlobalAddress(GV);
1584   }
1585 
1586   // Add implicit physical register uses to the call.
1587   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1588     MIB.addReg(RegArgs[II], RegState::Implicit);
1589 
1590   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1591   // into the call.
1592   PPCFuncInfo->setUsesTOCBasePtr();
1593   MIB.addReg(PPC::X2, RegState::Implicit);
1594 
1595   // Add a register mask with the call-preserved registers.  Proper
1596   // defs for return values will be added by setPhysRegsDeadExcept().
1597   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1598 
1599   CLI.Call = MIB;
1600 
1601   // Finish off the call including any return values.
1602   return finishCall(RetVT, CLI, NumBytes);
1603 }
1604 
1605 // Attempt to fast-select a return instruction.
1606 bool PPCFastISel::SelectRet(const Instruction *I) {
1607 
1608   if (!FuncInfo.CanLowerReturn)
1609     return false;
1610 
1611   if (TLI.supportSplitCSR(FuncInfo.MF))
1612     return false;
1613 
1614   const ReturnInst *Ret = cast<ReturnInst>(I);
1615   const Function &F = *I->getParent()->getParent();
1616 
1617   // Build a list of return value registers.
1618   SmallVector<unsigned, 4> RetRegs;
1619   CallingConv::ID CC = F.getCallingConv();
1620 
1621   if (Ret->getNumOperands() > 0) {
1622     SmallVector<ISD::OutputArg, 4> Outs;
1623     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1624 
1625     // Analyze operands of the call, assigning locations to each operand.
1626     SmallVector<CCValAssign, 16> ValLocs;
1627     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1628     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1629     const Value *RV = Ret->getOperand(0);
1630 
1631     // FIXME: Only one output register for now.
1632     if (ValLocs.size() > 1)
1633       return false;
1634 
1635     // Special case for returning a constant integer of any size - materialize
1636     // the constant as an i64 and copy it to the return register.
1637     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1638       CCValAssign &VA = ValLocs[0];
1639 
1640       unsigned RetReg = VA.getLocReg();
1641       // We still need to worry about properly extending the sign. For example,
1642       // we could have only a single bit or a constant that needs zero
1643       // extension rather than sign extension. Make sure we pass the return
1644       // value extension property to integer materialization.
1645       unsigned SrcReg =
1646           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1647 
1648       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1649             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1650 
1651       RetRegs.push_back(RetReg);
1652 
1653     } else {
1654       unsigned Reg = getRegForValue(RV);
1655 
1656       if (Reg == 0)
1657         return false;
1658 
1659       // Copy the result values into the output registers.
1660       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1661 
1662         CCValAssign &VA = ValLocs[i];
1663         assert(VA.isRegLoc() && "Can only return in registers!");
1664         RetRegs.push_back(VA.getLocReg());
1665         unsigned SrcReg = Reg + VA.getValNo();
1666 
1667         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1668         if (!RVEVT.isSimple())
1669           return false;
1670         MVT RVVT = RVEVT.getSimpleVT();
1671         MVT DestVT = VA.getLocVT();
1672 
1673         if (RVVT != DestVT && RVVT != MVT::i8 &&
1674             RVVT != MVT::i16 && RVVT != MVT::i32)
1675           return false;
1676 
1677         if (RVVT != DestVT) {
1678           switch (VA.getLocInfo()) {
1679             default:
1680               llvm_unreachable("Unknown loc info!");
1681             case CCValAssign::Full:
1682               llvm_unreachable("Full value assign but types don't match?");
1683             case CCValAssign::AExt:
1684             case CCValAssign::ZExt: {
1685               const TargetRegisterClass *RC =
1686                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1687               unsigned TmpReg = createResultReg(RC);
1688               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1689                 return false;
1690               SrcReg = TmpReg;
1691               break;
1692             }
1693             case CCValAssign::SExt: {
1694               const TargetRegisterClass *RC =
1695                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1696               unsigned TmpReg = createResultReg(RC);
1697               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1698                 return false;
1699               SrcReg = TmpReg;
1700               break;
1701             }
1702           }
1703         }
1704 
1705         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1706                 TII.get(TargetOpcode::COPY), RetRegs[i])
1707           .addReg(SrcReg);
1708       }
1709     }
1710   }
1711 
1712   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1713                                     TII.get(PPC::BLR8));
1714 
1715   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1716     MIB.addReg(RetRegs[i], RegState::Implicit);
1717 
1718   return true;
1719 }
1720 
1721 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1722 // signed and zero extensions are supported.  Return false if we
1723 // can't handle it.
1724 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1725                                 unsigned DestReg, bool IsZExt) {
1726   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1727     return false;
1728   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1729     return false;
1730 
1731   // Signed extensions use EXTSB, EXTSH, EXTSW.
1732   if (!IsZExt) {
1733     unsigned Opc;
1734     if (SrcVT == MVT::i8)
1735       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1736     else if (SrcVT == MVT::i16)
1737       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1738     else {
1739       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1740       Opc = PPC::EXTSW_32_64;
1741     }
1742     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1743       .addReg(SrcReg);
1744 
1745   // Unsigned 32-bit extensions use RLWINM.
1746   } else if (DestVT == MVT::i32) {
1747     unsigned MB;
1748     if (SrcVT == MVT::i8)
1749       MB = 24;
1750     else {
1751       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1752       MB = 16;
1753     }
1754     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1755             DestReg)
1756       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1757 
1758   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1759   } else {
1760     unsigned MB;
1761     if (SrcVT == MVT::i8)
1762       MB = 56;
1763     else if (SrcVT == MVT::i16)
1764       MB = 48;
1765     else
1766       MB = 32;
1767     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1768             TII.get(PPC::RLDICL_32_64), DestReg)
1769       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1770   }
1771 
1772   return true;
1773 }
1774 
1775 // Attempt to fast-select an indirect branch instruction.
1776 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1777   unsigned AddrReg = getRegForValue(I->getOperand(0));
1778   if (AddrReg == 0)
1779     return false;
1780 
1781   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1782     .addReg(AddrReg);
1783   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1784 
1785   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1786   for (const BasicBlock *SuccBB : IB->successors())
1787     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1788 
1789   return true;
1790 }
1791 
1792 // Attempt to fast-select an integer truncate instruction.
1793 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1794   Value *Src  = I->getOperand(0);
1795   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1796   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1797 
1798   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1799     return false;
1800 
1801   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1802     return false;
1803 
1804   unsigned SrcReg = getRegForValue(Src);
1805   if (!SrcReg)
1806     return false;
1807 
1808   // The only interesting case is when we need to switch register classes.
1809   if (SrcVT == MVT::i64) {
1810     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1811     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1812             TII.get(TargetOpcode::COPY),
1813             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1814     SrcReg = ResultReg;
1815   }
1816 
1817   updateValueMap(I, SrcReg);
1818   return true;
1819 }
1820 
1821 // Attempt to fast-select an integer extend instruction.
1822 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1823   Type *DestTy = I->getType();
1824   Value *Src = I->getOperand(0);
1825   Type *SrcTy = Src->getType();
1826 
1827   bool IsZExt = isa<ZExtInst>(I);
1828   unsigned SrcReg = getRegForValue(Src);
1829   if (!SrcReg) return false;
1830 
1831   EVT SrcEVT, DestEVT;
1832   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1833   DestEVT = TLI.getValueType(DL, DestTy, true);
1834   if (!SrcEVT.isSimple())
1835     return false;
1836   if (!DestEVT.isSimple())
1837     return false;
1838 
1839   MVT SrcVT = SrcEVT.getSimpleVT();
1840   MVT DestVT = DestEVT.getSimpleVT();
1841 
1842   // If we know the register class needed for the result of this
1843   // instruction, use it.  Otherwise pick the register class of the
1844   // correct size that does not contain X0/R0, since we don't know
1845   // whether downstream uses permit that assignment.
1846   unsigned AssignedReg = FuncInfo.ValueMap[I];
1847   const TargetRegisterClass *RC =
1848     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1849      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1850       &PPC::GPRC_and_GPRC_NOR0RegClass));
1851   unsigned ResultReg = createResultReg(RC);
1852 
1853   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1854     return false;
1855 
1856   updateValueMap(I, ResultReg);
1857   return true;
1858 }
1859 
1860 // Attempt to fast-select an instruction that wasn't handled by
1861 // the table-generated machinery.
1862 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1863 
1864   switch (I->getOpcode()) {
1865     case Instruction::Load:
1866       return SelectLoad(I);
1867     case Instruction::Store:
1868       return SelectStore(I);
1869     case Instruction::Br:
1870       return SelectBranch(I);
1871     case Instruction::IndirectBr:
1872       return SelectIndirectBr(I);
1873     case Instruction::FPExt:
1874       return SelectFPExt(I);
1875     case Instruction::FPTrunc:
1876       return SelectFPTrunc(I);
1877     case Instruction::SIToFP:
1878       return SelectIToFP(I, /*IsSigned*/ true);
1879     case Instruction::UIToFP:
1880       return SelectIToFP(I, /*IsSigned*/ false);
1881     case Instruction::FPToSI:
1882       return SelectFPToI(I, /*IsSigned*/ true);
1883     case Instruction::FPToUI:
1884       return SelectFPToI(I, /*IsSigned*/ false);
1885     case Instruction::Add:
1886       return SelectBinaryIntOp(I, ISD::ADD);
1887     case Instruction::Or:
1888       return SelectBinaryIntOp(I, ISD::OR);
1889     case Instruction::Sub:
1890       return SelectBinaryIntOp(I, ISD::SUB);
1891     case Instruction::Call:
1892       return selectCall(I);
1893     case Instruction::Ret:
1894       return SelectRet(I);
1895     case Instruction::Trunc:
1896       return SelectTrunc(I);
1897     case Instruction::ZExt:
1898     case Instruction::SExt:
1899       return SelectIntExt(I);
1900     // Here add other flavors of Instruction::XXX that automated
1901     // cases don't catch.  For example, switches are terminators
1902     // that aren't yet handled.
1903     default:
1904       break;
1905   }
1906   return false;
1907 }
1908 
1909 // Materialize a floating-point constant into a register, and return
1910 // the register number (or zero if we failed to handle it).
1911 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1912   // No plans to handle long double here.
1913   if (VT != MVT::f32 && VT != MVT::f64)
1914     return 0;
1915 
1916   // All FP constants are loaded from the constant pool.
1917   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1918   assert(Align > 0 && "Unexpectedly missing alignment information!");
1919   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1920   const TargetRegisterClass *RC =
1921     (VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass;
1922   unsigned DestReg = createResultReg(RC);
1923   CodeModel::Model CModel = TM.getCodeModel();
1924 
1925   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1926       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1927       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1928 
1929   unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1930   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1931 
1932   PPCFuncInfo->setUsesTOCBasePtr();
1933   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1934   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1935     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1936             TmpReg)
1937       .addConstantPoolIndex(Idx).addReg(PPC::X2);
1938     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1939       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1940   } else {
1941     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1942     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1943             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1944     // But for large code model, we must generate a LDtocL followed
1945     // by the LF[SD].
1946     if (CModel == CodeModel::Large) {
1947       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1948       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1949               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1950       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1951         .addImm(0).addReg(TmpReg2);
1952     } else
1953       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1954         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1955         .addReg(TmpReg)
1956         .addMemOperand(MMO);
1957   }
1958 
1959   return DestReg;
1960 }
1961 
1962 // Materialize the address of a global value into a register, and return
1963 // the register number (or zero if we failed to handle it).
1964 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1965   assert(VT == MVT::i64 && "Non-address!");
1966   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1967   unsigned DestReg = createResultReg(RC);
1968 
1969   // Global values may be plain old object addresses, TLS object
1970   // addresses, constant pool entries, or jump tables.  How we generate
1971   // code for these may depend on small, medium, or large code model.
1972   CodeModel::Model CModel = TM.getCodeModel();
1973 
1974   // FIXME: Jump tables are not yet required because fast-isel doesn't
1975   // handle switches; if that changes, we need them as well.  For now,
1976   // what follows assumes everything's a generic (or TLS) global address.
1977 
1978   // FIXME: We don't yet handle the complexity of TLS.
1979   if (GV->isThreadLocal())
1980     return 0;
1981 
1982   PPCFuncInfo->setUsesTOCBasePtr();
1983   // For small code model, generate a simple TOC load.
1984   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1986             DestReg)
1987         .addGlobalAddress(GV)
1988         .addReg(PPC::X2);
1989   else {
1990     // If the address is an externally defined symbol, a symbol with common
1991     // or externally available linkage, a non-local function address, or a
1992     // jump table address (not yet needed), or if we are generating code
1993     // for large code model, we generate:
1994     //       LDtocL(GV, ADDIStocHA(%X2, GV))
1995     // Otherwise we generate:
1996     //       ADDItocL(ADDIStocHA(%X2, GV), GV)
1997     // Either way, start with the ADDIStocHA:
1998     unsigned HighPartReg = createResultReg(RC);
1999     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2000             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2001 
2002     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2003     if (GVFlags & PPCII::MO_NLP_FLAG) {
2004       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2005               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2006     } else {
2007       // Otherwise generate the ADDItocL.
2008       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2009               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2010     }
2011   }
2012 
2013   return DestReg;
2014 }
2015 
2016 // Materialize a 32-bit integer constant into a register, and return
2017 // the register number (or zero if we failed to handle it).
2018 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2019                                              const TargetRegisterClass *RC) {
2020   unsigned Lo = Imm & 0xFFFF;
2021   unsigned Hi = (Imm >> 16) & 0xFFFF;
2022 
2023   unsigned ResultReg = createResultReg(RC);
2024   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2025 
2026   if (isInt<16>(Imm))
2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2028             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2029       .addImm(Imm);
2030   else if (Lo) {
2031     // Both Lo and Hi have nonzero bits.
2032     unsigned TmpReg = createResultReg(RC);
2033     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2034             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2035       .addImm(Hi);
2036     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2037             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2038       .addReg(TmpReg).addImm(Lo);
2039   } else
2040     // Just Hi bits.
2041     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2042             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2043       .addImm(Hi);
2044 
2045   return ResultReg;
2046 }
2047 
2048 // Materialize a 64-bit integer constant into a register, and return
2049 // the register number (or zero if we failed to handle it).
2050 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2051                                              const TargetRegisterClass *RC) {
2052   unsigned Remainder = 0;
2053   unsigned Shift = 0;
2054 
2055   // If the value doesn't fit in 32 bits, see if we can shift it
2056   // so that it fits in 32 bits.
2057   if (!isInt<32>(Imm)) {
2058     Shift = countTrailingZeros<uint64_t>(Imm);
2059     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2060 
2061     if (isInt<32>(ImmSh))
2062       Imm = ImmSh;
2063     else {
2064       Remainder = Imm;
2065       Shift = 32;
2066       Imm >>= 32;
2067     }
2068   }
2069 
2070   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2071   // (if not shifted).
2072   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2073   if (!Shift)
2074     return TmpReg1;
2075 
2076   // If upper 32 bits were not zero, we've built them and need to shift
2077   // them into place.
2078   unsigned TmpReg2;
2079   if (Imm) {
2080     TmpReg2 = createResultReg(RC);
2081     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2082             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2083   } else
2084     TmpReg2 = TmpReg1;
2085 
2086   unsigned TmpReg3, Hi, Lo;
2087   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2088     TmpReg3 = createResultReg(RC);
2089     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2090             TmpReg3).addReg(TmpReg2).addImm(Hi);
2091   } else
2092     TmpReg3 = TmpReg2;
2093 
2094   if ((Lo = Remainder & 0xFFFF)) {
2095     unsigned ResultReg = createResultReg(RC);
2096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2097             ResultReg).addReg(TmpReg3).addImm(Lo);
2098     return ResultReg;
2099   }
2100 
2101   return TmpReg3;
2102 }
2103 
2104 // Materialize an integer constant into a register, and return
2105 // the register number (or zero if we failed to handle it).
2106 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2107                                         bool UseSExt) {
2108   // If we're using CR bit registers for i1 values, handle that as a special
2109   // case first.
2110   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2111     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2112     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2113             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2114     return ImmReg;
2115   }
2116 
2117   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2118       VT != MVT::i1)
2119     return 0;
2120 
2121   const TargetRegisterClass *RC =
2122       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2123   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2124 
2125   // If the constant is in range, use a load-immediate.
2126   // Since LI will sign extend the constant we need to make sure that for
2127   // our zeroext constants that the sign extended constant fits into 16-bits -
2128   // a range of 0..0x7fff.
2129   if (isInt<16>(Imm)) {
2130     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2131     unsigned ImmReg = createResultReg(RC);
2132     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2133         .addImm(Imm);
2134     return ImmReg;
2135   }
2136 
2137   // Construct the constant piecewise.
2138   if (VT == MVT::i64)
2139     return PPCMaterialize64BitInt(Imm, RC);
2140   else if (VT == MVT::i32)
2141     return PPCMaterialize32BitInt(Imm, RC);
2142 
2143   return 0;
2144 }
2145 
2146 // Materialize a constant into a register, and return the register
2147 // number (or zero if we failed to handle it).
2148 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2149   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2150 
2151   // Only handle simple types.
2152   if (!CEVT.isSimple()) return 0;
2153   MVT VT = CEVT.getSimpleVT();
2154 
2155   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2156     return PPCMaterializeFP(CFP, VT);
2157   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2158     return PPCMaterializeGV(GV, VT);
2159   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2160     return PPCMaterializeInt(CI, VT, VT != MVT::i1);
2161 
2162   return 0;
2163 }
2164 
2165 // Materialize the address created by an alloca into a register, and
2166 // return the register number (or zero if we failed to handle it).
2167 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2168   // Don't handle dynamic allocas.
2169   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2170 
2171   MVT VT;
2172   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2173 
2174   DenseMap<const AllocaInst*, int>::iterator SI =
2175     FuncInfo.StaticAllocaMap.find(AI);
2176 
2177   if (SI != FuncInfo.StaticAllocaMap.end()) {
2178     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2179     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2180             ResultReg).addFrameIndex(SI->second).addImm(0);
2181     return ResultReg;
2182   }
2183 
2184   return 0;
2185 }
2186 
2187 // Fold loads into extends when possible.
2188 // FIXME: We can have multiple redundant extend/trunc instructions
2189 // following a load.  The folding only picks up one.  Extend this
2190 // to check subsequent instructions for the same pattern and remove
2191 // them.  Thus ResultReg should be the def reg for the last redundant
2192 // instruction in a chain, and all intervening instructions can be
2193 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2194 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2195 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2196                                       const LoadInst *LI) {
2197   // Verify we have a legal type before going any further.
2198   MVT VT;
2199   if (!isLoadTypeLegal(LI->getType(), VT))
2200     return false;
2201 
2202   // Combine load followed by zero- or sign-extend.
2203   bool IsZExt = false;
2204   switch(MI->getOpcode()) {
2205     default:
2206       return false;
2207 
2208     case PPC::RLDICL:
2209     case PPC::RLDICL_32_64: {
2210       IsZExt = true;
2211       unsigned MB = MI->getOperand(3).getImm();
2212       if ((VT == MVT::i8 && MB <= 56) ||
2213           (VT == MVT::i16 && MB <= 48) ||
2214           (VT == MVT::i32 && MB <= 32))
2215         break;
2216       return false;
2217     }
2218 
2219     case PPC::RLWINM:
2220     case PPC::RLWINM8: {
2221       IsZExt = true;
2222       unsigned MB = MI->getOperand(3).getImm();
2223       if ((VT == MVT::i8 && MB <= 24) ||
2224           (VT == MVT::i16 && MB <= 16))
2225         break;
2226       return false;
2227     }
2228 
2229     case PPC::EXTSB:
2230     case PPC::EXTSB8:
2231     case PPC::EXTSB8_32_64:
2232       /* There is no sign-extending load-byte instruction. */
2233       return false;
2234 
2235     case PPC::EXTSH:
2236     case PPC::EXTSH8:
2237     case PPC::EXTSH8_32_64: {
2238       if (VT != MVT::i16 && VT != MVT::i8)
2239         return false;
2240       break;
2241     }
2242 
2243     case PPC::EXTSW:
2244     case PPC::EXTSW_32_64: {
2245       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2246         return false;
2247       break;
2248     }
2249   }
2250 
2251   // See if we can handle this address.
2252   Address Addr;
2253   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2254     return false;
2255 
2256   unsigned ResultReg = MI->getOperand(0).getReg();
2257 
2258   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2259     return false;
2260 
2261   MI->eraseFromParent();
2262   return true;
2263 }
2264 
2265 // Attempt to lower call arguments in a faster way than done by
2266 // the selection DAG code.
2267 bool PPCFastISel::fastLowerArguments() {
2268   // Defer to normal argument lowering for now.  It's reasonably
2269   // efficient.  Consider doing something like ARM to handle the
2270   // case where all args fit in registers, no varargs, no float
2271   // or vector args.
2272   return false;
2273 }
2274 
2275 // Handle materializing integer constants into a register.  This is not
2276 // automatically generated for PowerPC, so must be explicitly created here.
2277 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2278 
2279   if (Opc != ISD::Constant)
2280     return 0;
2281 
2282   // If we're using CR bit registers for i1 values, handle that as a special
2283   // case first.
2284   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2285     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2286     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2287             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2288     return ImmReg;
2289   }
2290 
2291   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2292       VT != MVT::i8 && VT != MVT::i1)
2293     return 0;
2294 
2295   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2296                                    &PPC::GPRCRegClass);
2297   if (VT == MVT::i64)
2298     return PPCMaterialize64BitInt(Imm, RC);
2299   else
2300     return PPCMaterialize32BitInt(Imm, RC);
2301 }
2302 
2303 // Override for ADDI and ADDI8 to set the correct register class
2304 // on RHS operand 0.  The automatic infrastructure naively assumes
2305 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2306 // for these cases.  At the moment, none of the other automatically
2307 // generated RI instructions require special treatment.  However, once
2308 // SelectSelect is implemented, "isel" requires similar handling.
2309 //
2310 // Also be conservative about the output register class.  Avoid
2311 // assigning R0 or X0 to the output register for GPRC and G8RC
2312 // register classes, as any such result could be used in ADDI, etc.,
2313 // where those regs have another meaning.
2314 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2315                                       const TargetRegisterClass *RC,
2316                                       unsigned Op0, bool Op0IsKill,
2317                                       uint64_t Imm) {
2318   if (MachineInstOpcode == PPC::ADDI)
2319     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2320   else if (MachineInstOpcode == PPC::ADDI8)
2321     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2322 
2323   const TargetRegisterClass *UseRC =
2324     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2325      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2326 
2327   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2328                                    Op0, Op0IsKill, Imm);
2329 }
2330 
2331 // Override for instructions with one register operand to avoid use of
2332 // R0/X0.  The automatic infrastructure isn't aware of the context so
2333 // we must be conservative.
2334 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2335                                      const TargetRegisterClass* RC,
2336                                      unsigned Op0, bool Op0IsKill) {
2337   const TargetRegisterClass *UseRC =
2338     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2339      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2340 
2341   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2342 }
2343 
2344 // Override for instructions with two register operands to avoid use
2345 // of R0/X0.  The automatic infrastructure isn't aware of the context
2346 // so we must be conservative.
2347 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2348                                       const TargetRegisterClass* RC,
2349                                       unsigned Op0, bool Op0IsKill,
2350                                       unsigned Op1, bool Op1IsKill) {
2351   const TargetRegisterClass *UseRC =
2352     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2353      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2354 
2355   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2356                                    Op1, Op1IsKill);
2357 }
2358 
2359 namespace llvm {
2360   // Create the fast instruction selector for PowerPC64 ELF.
2361   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2362                                 const TargetLibraryInfo *LibInfo) {
2363     // Only available on 64-bit ELF for now.
2364     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2365     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2366       return new PPCFastISel(FuncInfo, LibInfo);
2367     return nullptr;
2368   }
2369 }
2370