1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 168 unsigned PPCMaterialize32BitInt(int64_t Imm, 169 const TargetRegisterClass *RC); 170 unsigned PPCMaterialize64BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 173 unsigned SrcReg, bool IsSigned); 174 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 175 176 // Call handling routines. 177 private: 178 bool processCallArgs(SmallVectorImpl<Value*> &Args, 179 SmallVectorImpl<unsigned> &ArgRegs, 180 SmallVectorImpl<MVT> &ArgVTs, 181 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 182 SmallVectorImpl<unsigned> &RegArgs, 183 CallingConv::ID CC, 184 unsigned &NumBytes, 185 bool IsVarArg); 186 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 187 CCAssignFn *usePPC32CCs(unsigned Flag); 188 189 private: 190 #include "PPCGenFastISel.inc" 191 192 }; 193 194 } // end anonymous namespace 195 196 #include "PPCGenCallingConv.inc" 197 198 // Function whose sole purpose is to kill compiler warnings 199 // stemming from unused functions included from PPCGenCallingConv.inc. 200 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 201 if (Flag == 1) 202 return CC_PPC32_SVR4; 203 else if (Flag == 2) 204 return CC_PPC32_SVR4_ByVal; 205 else if (Flag == 3) 206 return CC_PPC32_SVR4_VarArg; 207 else 208 return RetCC_PPC; 209 } 210 211 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 212 switch (Pred) { 213 // These are not representable with any single compare. 214 case CmpInst::FCMP_FALSE: 215 case CmpInst::FCMP_UEQ: 216 case CmpInst::FCMP_UGT: 217 case CmpInst::FCMP_UGE: 218 case CmpInst::FCMP_ULT: 219 case CmpInst::FCMP_ULE: 220 case CmpInst::FCMP_UNE: 221 case CmpInst::FCMP_TRUE: 222 default: 223 return Optional<PPC::Predicate>(); 224 225 case CmpInst::FCMP_OEQ: 226 case CmpInst::ICMP_EQ: 227 return PPC::PRED_EQ; 228 229 case CmpInst::FCMP_OGT: 230 case CmpInst::ICMP_UGT: 231 case CmpInst::ICMP_SGT: 232 return PPC::PRED_GT; 233 234 case CmpInst::FCMP_OGE: 235 case CmpInst::ICMP_UGE: 236 case CmpInst::ICMP_SGE: 237 return PPC::PRED_GE; 238 239 case CmpInst::FCMP_OLT: 240 case CmpInst::ICMP_ULT: 241 case CmpInst::ICMP_SLT: 242 return PPC::PRED_LT; 243 244 case CmpInst::FCMP_OLE: 245 case CmpInst::ICMP_ULE: 246 case CmpInst::ICMP_SLE: 247 return PPC::PRED_LE; 248 249 case CmpInst::FCMP_ONE: 250 case CmpInst::ICMP_NE: 251 return PPC::PRED_NE; 252 253 case CmpInst::FCMP_ORD: 254 return PPC::PRED_NU; 255 256 case CmpInst::FCMP_UNO: 257 return PPC::PRED_UN; 258 } 259 } 260 261 // Determine whether the type Ty is simple enough to be handled by 262 // fast-isel, and return its equivalent machine type in VT. 263 // FIXME: Copied directly from ARM -- factor into base class? 264 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 265 EVT Evt = TLI.getValueType(Ty, true); 266 267 // Only handle simple types. 268 if (Evt == MVT::Other || !Evt.isSimple()) return false; 269 VT = Evt.getSimpleVT(); 270 271 // Handle all legal types, i.e. a register that will directly hold this 272 // value. 273 return TLI.isTypeLegal(VT); 274 } 275 276 // Determine whether the type Ty is simple enough to be handled by 277 // fast-isel as a load target, and return its equivalent machine type in VT. 278 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 279 if (isTypeLegal(Ty, VT)) return true; 280 281 // If this is a type than can be sign or zero-extended to a basic operation 282 // go ahead and accept it now. 283 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 284 return true; 285 } 286 287 return false; 288 } 289 290 bool PPCFastISel::isValueAvailable(const Value *V) const { 291 if (!isa<Instruction>(V)) 292 return true; 293 294 const auto *I = cast<Instruction>(V); 295 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) 296 return true; 297 298 return false; 299 } 300 301 // Given a value Obj, create an Address object Addr that represents its 302 // address. Return false if we can't handle it. 303 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 304 const User *U = nullptr; 305 unsigned Opcode = Instruction::UserOp1; 306 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 307 // Don't walk into other basic blocks unless the object is an alloca from 308 // another block, otherwise it may not have a virtual register assigned. 309 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 310 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 311 Opcode = I->getOpcode(); 312 U = I; 313 } 314 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 315 Opcode = C->getOpcode(); 316 U = C; 317 } 318 319 switch (Opcode) { 320 default: 321 break; 322 case Instruction::BitCast: 323 // Look through bitcasts. 324 return PPCComputeAddress(U->getOperand(0), Addr); 325 case Instruction::IntToPtr: 326 // Look past no-op inttoptrs. 327 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 328 return PPCComputeAddress(U->getOperand(0), Addr); 329 break; 330 case Instruction::PtrToInt: 331 // Look past no-op ptrtoints. 332 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 333 return PPCComputeAddress(U->getOperand(0), Addr); 334 break; 335 case Instruction::GetElementPtr: { 336 Address SavedAddr = Addr; 337 long TmpOffset = Addr.Offset; 338 339 // Iterate through the GEP folding the constants into offsets where 340 // we can. 341 gep_type_iterator GTI = gep_type_begin(U); 342 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 343 II != IE; ++II, ++GTI) { 344 const Value *Op = *II; 345 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 346 const StructLayout *SL = DL.getStructLayout(STy); 347 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 348 TmpOffset += SL->getElementOffset(Idx); 349 } else { 350 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 351 for (;;) { 352 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 353 // Constant-offset addressing. 354 TmpOffset += CI->getSExtValue() * S; 355 break; 356 } 357 if (canFoldAddIntoGEP(U, Op)) { 358 // A compatible add with a constant operand. Fold the constant. 359 ConstantInt *CI = 360 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 361 TmpOffset += CI->getSExtValue() * S; 362 // Iterate on the other operand. 363 Op = cast<AddOperator>(Op)->getOperand(0); 364 continue; 365 } 366 // Unsupported 367 goto unsupported_gep; 368 } 369 } 370 } 371 372 // Try to grab the base operand now. 373 Addr.Offset = TmpOffset; 374 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 375 376 // We failed, restore everything and try the other options. 377 Addr = SavedAddr; 378 379 unsupported_gep: 380 break; 381 } 382 case Instruction::Alloca: { 383 const AllocaInst *AI = cast<AllocaInst>(Obj); 384 DenseMap<const AllocaInst*, int>::iterator SI = 385 FuncInfo.StaticAllocaMap.find(AI); 386 if (SI != FuncInfo.StaticAllocaMap.end()) { 387 Addr.BaseType = Address::FrameIndexBase; 388 Addr.Base.FI = SI->second; 389 return true; 390 } 391 break; 392 } 393 } 394 395 // FIXME: References to parameters fall through to the behavior 396 // below. They should be able to reference a frame index since 397 // they are stored to the stack, so we can get "ld rx, offset(r1)" 398 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 399 // just contain the parameter. Try to handle this with a FI. 400 401 // Try to get this in a register if nothing else has worked. 402 if (Addr.Base.Reg == 0) 403 Addr.Base.Reg = getRegForValue(Obj); 404 405 // Prevent assignment of base register to X0, which is inappropriate 406 // for loads and stores alike. 407 if (Addr.Base.Reg != 0) 408 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 409 410 return Addr.Base.Reg != 0; 411 } 412 413 // Fix up some addresses that can't be used directly. For example, if 414 // an offset won't fit in an instruction field, we may need to move it 415 // into an index register. 416 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 417 unsigned &IndexReg) { 418 419 // Check whether the offset fits in the instruction field. 420 if (!isInt<16>(Addr.Offset)) 421 UseOffset = false; 422 423 // If this is a stack pointer and the offset needs to be simplified then 424 // put the alloca address into a register, set the base type back to 425 // register and continue. This should almost never happen. 426 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 427 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 429 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 430 Addr.Base.Reg = ResultReg; 431 Addr.BaseType = Address::RegBase; 432 } 433 434 if (!UseOffset) { 435 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 436 : Type::getInt64Ty(*Context)); 437 const ConstantInt *Offset = 438 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 439 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 440 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 441 } 442 } 443 444 // Emit a load instruction if possible, returning true if we succeeded, 445 // otherwise false. See commentary below for how the register class of 446 // the load is determined. 447 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 448 const TargetRegisterClass *RC, 449 bool IsZExt, unsigned FP64LoadOpc) { 450 unsigned Opc; 451 bool UseOffset = true; 452 453 // If ResultReg is given, it determines the register class of the load. 454 // Otherwise, RC is the register class to use. If the result of the 455 // load isn't anticipated in this block, both may be zero, in which 456 // case we must make a conservative guess. In particular, don't assign 457 // R0 or X0 to the result register, as the result may be used in a load, 458 // store, add-immediate, or isel that won't permit this. (Though 459 // perhaps the spill and reload of live-exit values would handle this?) 460 const TargetRegisterClass *UseRC = 461 (ResultReg ? MRI.getRegClass(ResultReg) : 462 (RC ? RC : 463 (VT == MVT::f64 ? &PPC::F8RCRegClass : 464 (VT == MVT::f32 ? &PPC::F4RCRegClass : 465 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 466 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 467 468 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 469 470 switch (VT.SimpleTy) { 471 default: // e.g., vector types not handled 472 return false; 473 case MVT::i8: 474 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 475 break; 476 case MVT::i16: 477 Opc = (IsZExt ? 478 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 479 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 480 break; 481 case MVT::i32: 482 Opc = (IsZExt ? 483 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 484 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 485 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 486 UseOffset = false; 487 break; 488 case MVT::i64: 489 Opc = PPC::LD; 490 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 491 "64-bit load with 32-bit target??"); 492 UseOffset = ((Addr.Offset & 3) == 0); 493 break; 494 case MVT::f32: 495 Opc = PPC::LFS; 496 break; 497 case MVT::f64: 498 Opc = FP64LoadOpc; 499 break; 500 } 501 502 // If necessary, materialize the offset into a register and use 503 // the indexed form. Also handle stack pointers with special needs. 504 unsigned IndexReg = 0; 505 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 506 507 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 508 // be used. 509 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 510 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 511 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 512 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 513 if ((Is32VSXLoad || Is64VSXLoad) && 514 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 515 (Addr.Offset == 0)) { 516 UseOffset = false; 517 } 518 519 if (ResultReg == 0) 520 ResultReg = createResultReg(UseRC); 521 522 // Note: If we still have a frame index here, we know the offset is 523 // in range, as otherwise PPCSimplifyAddress would have converted it 524 // into a RegBase. 525 if (Addr.BaseType == Address::FrameIndexBase) { 526 // VSX only provides an indexed load. 527 if (Is32VSXLoad || Is64VSXLoad) return false; 528 529 MachineMemOperand *MMO = 530 FuncInfo.MF->getMachineMemOperand( 531 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 532 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 533 MFI.getObjectAlignment(Addr.Base.FI)); 534 535 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 536 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 537 538 // Base reg with offset in range. 539 } else if (UseOffset) { 540 // VSX only provides an indexed load. 541 if (Is32VSXLoad || Is64VSXLoad) return false; 542 543 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 544 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 545 546 // Indexed form. 547 } else { 548 // Get the RR opcode corresponding to the RI one. FIXME: It would be 549 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 550 // is hard to get at. 551 switch (Opc) { 552 default: llvm_unreachable("Unexpected opcode!"); 553 case PPC::LBZ: Opc = PPC::LBZX; break; 554 case PPC::LBZ8: Opc = PPC::LBZX8; break; 555 case PPC::LHZ: Opc = PPC::LHZX; break; 556 case PPC::LHZ8: Opc = PPC::LHZX8; break; 557 case PPC::LHA: Opc = PPC::LHAX; break; 558 case PPC::LHA8: Opc = PPC::LHAX8; break; 559 case PPC::LWZ: Opc = PPC::LWZX; break; 560 case PPC::LWZ8: Opc = PPC::LWZX8; break; 561 case PPC::LWA: Opc = PPC::LWAX; break; 562 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 563 case PPC::LD: Opc = PPC::LDX; break; 564 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 565 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 566 } 567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 568 .addReg(Addr.Base.Reg).addReg(IndexReg); 569 } 570 571 return true; 572 } 573 574 // Attempt to fast-select a load instruction. 575 bool PPCFastISel::SelectLoad(const Instruction *I) { 576 // FIXME: No atomic loads are supported. 577 if (cast<LoadInst>(I)->isAtomic()) 578 return false; 579 580 // Verify we have a legal type before going any further. 581 MVT VT; 582 if (!isLoadTypeLegal(I->getType(), VT)) 583 return false; 584 585 // See if we can handle this address. 586 Address Addr; 587 if (!PPCComputeAddress(I->getOperand(0), Addr)) 588 return false; 589 590 // Look at the currently assigned register for this instruction 591 // to determine the required register class. This is necessary 592 // to constrain RA from using R0/X0 when this is not legal. 593 unsigned AssignedReg = FuncInfo.ValueMap[I]; 594 const TargetRegisterClass *RC = 595 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 596 597 unsigned ResultReg = 0; 598 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 599 return false; 600 updateValueMap(I, ResultReg); 601 return true; 602 } 603 604 // Emit a store instruction to store SrcReg at Addr. 605 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 606 assert(SrcReg && "Nothing to store!"); 607 unsigned Opc; 608 bool UseOffset = true; 609 610 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 611 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 612 613 switch (VT.SimpleTy) { 614 default: // e.g., vector types not handled 615 return false; 616 case MVT::i8: 617 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 618 break; 619 case MVT::i16: 620 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 621 break; 622 case MVT::i32: 623 assert(Is32BitInt && "Not GPRC for i32??"); 624 Opc = PPC::STW; 625 break; 626 case MVT::i64: 627 Opc = PPC::STD; 628 UseOffset = ((Addr.Offset & 3) == 0); 629 break; 630 case MVT::f32: 631 Opc = PPC::STFS; 632 break; 633 case MVT::f64: 634 Opc = PPC::STFD; 635 break; 636 } 637 638 // If necessary, materialize the offset into a register and use 639 // the indexed form. Also handle stack pointers with special needs. 640 unsigned IndexReg = 0; 641 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 642 643 // If this is a potential VSX store with an offset of 0, a VSX indexed store 644 // can be used. 645 bool IsVSSRC = isVSSRCRegister(SrcReg); 646 bool IsVSFRC = isVSFRCRegister(SrcReg); 647 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 648 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 649 if ((Is32VSXStore || Is64VSXStore) && 650 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 651 (Addr.Offset == 0)) { 652 UseOffset = false; 653 } 654 655 // Note: If we still have a frame index here, we know the offset is 656 // in range, as otherwise PPCSimplifyAddress would have converted it 657 // into a RegBase. 658 if (Addr.BaseType == Address::FrameIndexBase) { 659 // VSX only provides an indexed store. 660 if (Is32VSXStore || Is64VSXStore) return false; 661 662 MachineMemOperand *MMO = 663 FuncInfo.MF->getMachineMemOperand( 664 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 665 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 666 MFI.getObjectAlignment(Addr.Base.FI)); 667 668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 669 .addReg(SrcReg) 670 .addImm(Addr.Offset) 671 .addFrameIndex(Addr.Base.FI) 672 .addMemOperand(MMO); 673 674 // Base reg with offset in range. 675 } else if (UseOffset) { 676 // VSX only provides an indexed store. 677 if (Is32VSXStore || Is64VSXStore) return false; 678 679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 680 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 681 682 // Indexed form. 683 } else { 684 // Get the RR opcode corresponding to the RI one. FIXME: It would be 685 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 686 // is hard to get at. 687 switch (Opc) { 688 default: llvm_unreachable("Unexpected opcode!"); 689 case PPC::STB: Opc = PPC::STBX; break; 690 case PPC::STH : Opc = PPC::STHX; break; 691 case PPC::STW : Opc = PPC::STWX; break; 692 case PPC::STB8: Opc = PPC::STBX8; break; 693 case PPC::STH8: Opc = PPC::STHX8; break; 694 case PPC::STW8: Opc = PPC::STWX8; break; 695 case PPC::STD: Opc = PPC::STDX; break; 696 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 697 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 698 } 699 700 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 701 .addReg(SrcReg); 702 703 // If we have an index register defined we use it in the store inst, 704 // otherwise we use X0 as base as it makes the vector instructions to 705 // use zero in the computation of the effective address regardless the 706 // content of the register. 707 if (IndexReg) 708 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 709 else 710 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 711 } 712 713 return true; 714 } 715 716 // Attempt to fast-select a store instruction. 717 bool PPCFastISel::SelectStore(const Instruction *I) { 718 Value *Op0 = I->getOperand(0); 719 unsigned SrcReg = 0; 720 721 // FIXME: No atomics loads are supported. 722 if (cast<StoreInst>(I)->isAtomic()) 723 return false; 724 725 // Verify we have a legal type before going any further. 726 MVT VT; 727 if (!isLoadTypeLegal(Op0->getType(), VT)) 728 return false; 729 730 // Get the value to be stored into a register. 731 SrcReg = getRegForValue(Op0); 732 if (SrcReg == 0) 733 return false; 734 735 // See if we can handle this address. 736 Address Addr; 737 if (!PPCComputeAddress(I->getOperand(1), Addr)) 738 return false; 739 740 if (!PPCEmitStore(VT, SrcReg, Addr)) 741 return false; 742 743 return true; 744 } 745 746 // Attempt to fast-select a branch instruction. 747 bool PPCFastISel::SelectBranch(const Instruction *I) { 748 const BranchInst *BI = cast<BranchInst>(I); 749 MachineBasicBlock *BrBB = FuncInfo.MBB; 750 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 751 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 752 753 // For now, just try the simplest case where it's fed by a compare. 754 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 755 if (isValueAvailable(CI)) { 756 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 757 if (!OptPPCPred) 758 return false; 759 760 PPC::Predicate PPCPred = OptPPCPred.getValue(); 761 762 // Take advantage of fall-through opportunities. 763 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 764 std::swap(TBB, FBB); 765 PPCPred = PPC::InvertPredicate(PPCPred); 766 } 767 768 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 769 770 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 771 CondReg)) 772 return false; 773 774 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 775 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 776 fastEmitBranch(FBB, DbgLoc); 777 FuncInfo.MBB->addSuccessor(TBB); 778 return true; 779 } 780 } else if (const ConstantInt *CI = 781 dyn_cast<ConstantInt>(BI->getCondition())) { 782 uint64_t Imm = CI->getZExtValue(); 783 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 784 fastEmitBranch(Target, DbgLoc); 785 return true; 786 } 787 788 // FIXME: ARM looks for a case where the block containing the compare 789 // has been split from the block containing the branch. If this happens, 790 // there is a vreg available containing the result of the compare. I'm 791 // not sure we can do much, as we've lost the predicate information with 792 // the compare instruction -- we have a 4-bit CR but don't know which bit 793 // to test here. 794 return false; 795 } 796 797 // Attempt to emit a compare of the two source values. Signed and unsigned 798 // comparisons are supported. Return false if we can't handle it. 799 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 800 bool IsZExt, unsigned DestReg) { 801 Type *Ty = SrcValue1->getType(); 802 EVT SrcEVT = TLI.getValueType(Ty, true); 803 if (!SrcEVT.isSimple()) 804 return false; 805 MVT SrcVT = SrcEVT.getSimpleVT(); 806 807 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 808 return false; 809 810 // See if operand 2 is an immediate encodeable in the compare. 811 // FIXME: Operands are not in canonical order at -O0, so an immediate 812 // operand in position 1 is a lost opportunity for now. We are 813 // similar to ARM in this regard. 814 long Imm = 0; 815 bool UseImm = false; 816 817 // Only 16-bit integer constants can be represented in compares for 818 // PowerPC. Others will be materialized into a register. 819 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 820 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 821 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 822 const APInt &CIVal = ConstInt->getValue(); 823 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 824 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 825 UseImm = true; 826 } 827 } 828 829 unsigned CmpOpc; 830 bool NeedsExt = false; 831 switch (SrcVT.SimpleTy) { 832 default: return false; 833 case MVT::f32: 834 CmpOpc = PPC::FCMPUS; 835 break; 836 case MVT::f64: 837 CmpOpc = PPC::FCMPUD; 838 break; 839 case MVT::i1: 840 case MVT::i8: 841 case MVT::i16: 842 NeedsExt = true; 843 // Intentional fall-through. 844 case MVT::i32: 845 if (!UseImm) 846 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 847 else 848 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 849 break; 850 case MVT::i64: 851 if (!UseImm) 852 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 853 else 854 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 855 break; 856 } 857 858 unsigned SrcReg1 = getRegForValue(SrcValue1); 859 if (SrcReg1 == 0) 860 return false; 861 862 unsigned SrcReg2 = 0; 863 if (!UseImm) { 864 SrcReg2 = getRegForValue(SrcValue2); 865 if (SrcReg2 == 0) 866 return false; 867 } 868 869 if (NeedsExt) { 870 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 871 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 872 return false; 873 SrcReg1 = ExtReg; 874 875 if (!UseImm) { 876 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 877 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 878 return false; 879 SrcReg2 = ExtReg; 880 } 881 } 882 883 if (!UseImm) 884 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 885 .addReg(SrcReg1).addReg(SrcReg2); 886 else 887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 888 .addReg(SrcReg1).addImm(Imm); 889 890 return true; 891 } 892 893 // Attempt to fast-select a floating-point extend instruction. 894 bool PPCFastISel::SelectFPExt(const Instruction *I) { 895 Value *Src = I->getOperand(0); 896 EVT SrcVT = TLI.getValueType(Src->getType(), true); 897 EVT DestVT = TLI.getValueType(I->getType(), true); 898 899 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 900 return false; 901 902 unsigned SrcReg = getRegForValue(Src); 903 if (!SrcReg) 904 return false; 905 906 // No code is generated for a FP extend. 907 updateValueMap(I, SrcReg); 908 return true; 909 } 910 911 // Attempt to fast-select a floating-point truncate instruction. 912 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 913 Value *Src = I->getOperand(0); 914 EVT SrcVT = TLI.getValueType(Src->getType(), true); 915 EVT DestVT = TLI.getValueType(I->getType(), true); 916 917 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 918 return false; 919 920 unsigned SrcReg = getRegForValue(Src); 921 if (!SrcReg) 922 return false; 923 924 // Round the result to single precision. 925 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 927 .addReg(SrcReg); 928 929 updateValueMap(I, DestReg); 930 return true; 931 } 932 933 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 934 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 935 // those should be used instead of moving via a stack slot when the 936 // subtarget permits. 937 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 938 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 939 // case to 8 bytes which produces tighter code but wastes stack space. 940 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 941 bool IsSigned) { 942 943 // If necessary, extend 32-bit int to 64-bit. 944 if (SrcVT == MVT::i32) { 945 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 946 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 947 return 0; 948 SrcReg = TmpReg; 949 } 950 951 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 952 Address Addr; 953 Addr.BaseType = Address::FrameIndexBase; 954 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 955 956 // Store the value from the GPR. 957 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 958 return 0; 959 960 // Load the integer value into an FPR. The kind of load used depends 961 // on a number of conditions. 962 unsigned LoadOpc = PPC::LFD; 963 964 if (SrcVT == MVT::i32) { 965 if (!IsSigned) { 966 LoadOpc = PPC::LFIWZX; 967 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 968 } else if (PPCSubTarget->hasLFIWAX()) { 969 LoadOpc = PPC::LFIWAX; 970 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 971 } 972 } 973 974 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 975 unsigned ResultReg = 0; 976 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 977 return 0; 978 979 return ResultReg; 980 } 981 982 // Attempt to fast-select an integer-to-floating-point conversion. 983 // FIXME: Once fast-isel has better support for VSX, conversions using 984 // direct moves should be implemented. 985 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 986 MVT DstVT; 987 Type *DstTy = I->getType(); 988 if (!isTypeLegal(DstTy, DstVT)) 989 return false; 990 991 if (DstVT != MVT::f32 && DstVT != MVT::f64) 992 return false; 993 994 Value *Src = I->getOperand(0); 995 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 996 if (!SrcEVT.isSimple()) 997 return false; 998 999 MVT SrcVT = SrcEVT.getSimpleVT(); 1000 1001 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1002 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1003 return false; 1004 1005 unsigned SrcReg = getRegForValue(Src); 1006 if (SrcReg == 0) 1007 return false; 1008 1009 // We can only lower an unsigned convert if we have the newer 1010 // floating-point conversion operations. 1011 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1012 return false; 1013 1014 // FIXME: For now we require the newer floating-point conversion operations 1015 // (which are present only on P7 and A2 server models) when converting 1016 // to single-precision float. Otherwise we have to generate a lot of 1017 // fiddly code to avoid double rounding. If necessary, the fiddly code 1018 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1019 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1020 return false; 1021 1022 // Extend the input if necessary. 1023 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1024 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1025 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1026 return false; 1027 SrcVT = MVT::i64; 1028 SrcReg = TmpReg; 1029 } 1030 1031 // Move the integer value to an FPR. 1032 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1033 if (FPReg == 0) 1034 return false; 1035 1036 // Determine the opcode for the conversion. 1037 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1038 unsigned DestReg = createResultReg(RC); 1039 unsigned Opc; 1040 1041 if (DstVT == MVT::f32) 1042 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1043 else 1044 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1045 1046 // Generate the convert. 1047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1048 .addReg(FPReg); 1049 1050 updateValueMap(I, DestReg); 1051 return true; 1052 } 1053 1054 // Move the floating-point value in SrcReg into an integer destination 1055 // register, and return the register (or zero if we can't handle it). 1056 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1057 // those should be used instead of moving via a stack slot when the 1058 // subtarget permits. 1059 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1060 unsigned SrcReg, bool IsSigned) { 1061 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1062 // Note that if have STFIWX available, we could use a 4-byte stack 1063 // slot for i32, but this being fast-isel we'll just go with the 1064 // easiest code gen possible. 1065 Address Addr; 1066 Addr.BaseType = Address::FrameIndexBase; 1067 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1068 1069 // Store the value from the FPR. 1070 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1071 return 0; 1072 1073 // Reload it into a GPR. If we want an i32, modify the address 1074 // to have a 4-byte offset so we load from the right place. 1075 if (VT == MVT::i32) 1076 Addr.Offset = 4; 1077 1078 // Look at the currently assigned register for this instruction 1079 // to determine the required register class. 1080 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1081 const TargetRegisterClass *RC = 1082 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1083 1084 unsigned ResultReg = 0; 1085 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1086 return 0; 1087 1088 return ResultReg; 1089 } 1090 1091 // Attempt to fast-select a floating-point-to-integer conversion. 1092 // FIXME: Once fast-isel has better support for VSX, conversions using 1093 // direct moves should be implemented. 1094 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1095 MVT DstVT, SrcVT; 1096 Type *DstTy = I->getType(); 1097 if (!isTypeLegal(DstTy, DstVT)) 1098 return false; 1099 1100 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1101 return false; 1102 1103 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1104 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1105 return false; 1106 1107 Value *Src = I->getOperand(0); 1108 Type *SrcTy = Src->getType(); 1109 if (!isTypeLegal(SrcTy, SrcVT)) 1110 return false; 1111 1112 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1113 return false; 1114 1115 unsigned SrcReg = getRegForValue(Src); 1116 if (SrcReg == 0) 1117 return false; 1118 1119 // Convert f32 to f64 if necessary. This is just a meaningless copy 1120 // to get the register class right. COPY_TO_REGCLASS is needed since 1121 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1122 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1123 if (InRC == &PPC::F4RCRegClass) { 1124 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1125 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1126 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1127 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1128 SrcReg = TmpReg; 1129 } 1130 1131 // Determine the opcode for the conversion, which takes place 1132 // entirely within FPRs. 1133 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1134 unsigned Opc; 1135 1136 if (DstVT == MVT::i32) 1137 if (IsSigned) 1138 Opc = PPC::FCTIWZ; 1139 else 1140 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1141 else 1142 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1143 1144 // Generate the convert. 1145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1146 .addReg(SrcReg); 1147 1148 // Now move the integer value from a float register to an integer register. 1149 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1150 if (IntReg == 0) 1151 return false; 1152 1153 updateValueMap(I, IntReg); 1154 return true; 1155 } 1156 1157 // Attempt to fast-select a binary integer operation that isn't already 1158 // handled automatically. 1159 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1160 EVT DestVT = TLI.getValueType(I->getType(), true); 1161 1162 // We can get here in the case when we have a binary operation on a non-legal 1163 // type and the target independent selector doesn't know how to handle it. 1164 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1165 return false; 1166 1167 // Look at the currently assigned register for this instruction 1168 // to determine the required register class. If there is no register, 1169 // make a conservative choice (don't assign R0). 1170 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1171 const TargetRegisterClass *RC = 1172 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1173 &PPC::GPRC_and_GPRC_NOR0RegClass); 1174 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1175 1176 unsigned Opc; 1177 switch (ISDOpcode) { 1178 default: return false; 1179 case ISD::ADD: 1180 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1181 break; 1182 case ISD::OR: 1183 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1184 break; 1185 case ISD::SUB: 1186 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1187 break; 1188 } 1189 1190 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1191 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1192 if (SrcReg1 == 0) return false; 1193 1194 // Handle case of small immediate operand. 1195 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1196 const APInt &CIVal = ConstInt->getValue(); 1197 int Imm = (int)CIVal.getSExtValue(); 1198 bool UseImm = true; 1199 if (isInt<16>(Imm)) { 1200 switch (Opc) { 1201 default: 1202 llvm_unreachable("Missing case!"); 1203 case PPC::ADD4: 1204 Opc = PPC::ADDI; 1205 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1206 break; 1207 case PPC::ADD8: 1208 Opc = PPC::ADDI8; 1209 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1210 break; 1211 case PPC::OR: 1212 Opc = PPC::ORI; 1213 break; 1214 case PPC::OR8: 1215 Opc = PPC::ORI8; 1216 break; 1217 case PPC::SUBF: 1218 if (Imm == -32768) 1219 UseImm = false; 1220 else { 1221 Opc = PPC::ADDI; 1222 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1223 Imm = -Imm; 1224 } 1225 break; 1226 case PPC::SUBF8: 1227 if (Imm == -32768) 1228 UseImm = false; 1229 else { 1230 Opc = PPC::ADDI8; 1231 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1232 Imm = -Imm; 1233 } 1234 break; 1235 } 1236 1237 if (UseImm) { 1238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1239 ResultReg) 1240 .addReg(SrcReg1) 1241 .addImm(Imm); 1242 updateValueMap(I, ResultReg); 1243 return true; 1244 } 1245 } 1246 } 1247 1248 // Reg-reg case. 1249 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1250 if (SrcReg2 == 0) return false; 1251 1252 // Reverse operands for subtract-from. 1253 if (ISDOpcode == ISD::SUB) 1254 std::swap(SrcReg1, SrcReg2); 1255 1256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1257 .addReg(SrcReg1).addReg(SrcReg2); 1258 updateValueMap(I, ResultReg); 1259 return true; 1260 } 1261 1262 // Handle arguments to a call that we're attempting to fast-select. 1263 // Return false if the arguments are too complex for us at the moment. 1264 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1265 SmallVectorImpl<unsigned> &ArgRegs, 1266 SmallVectorImpl<MVT> &ArgVTs, 1267 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1268 SmallVectorImpl<unsigned> &RegArgs, 1269 CallingConv::ID CC, 1270 unsigned &NumBytes, 1271 bool IsVarArg) { 1272 SmallVector<CCValAssign, 16> ArgLocs; 1273 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1274 1275 // Reserve space for the linkage area on the stack. 1276 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1277 CCInfo.AllocateStack(LinkageSize, 8); 1278 1279 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1280 1281 // Bail out if we can't handle any of the arguments. 1282 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1283 CCValAssign &VA = ArgLocs[I]; 1284 MVT ArgVT = ArgVTs[VA.getValNo()]; 1285 1286 // Skip vector arguments for now, as well as long double and 1287 // uint128_t, and anything that isn't passed in a register. 1288 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1289 !VA.isRegLoc() || VA.needsCustom()) 1290 return false; 1291 1292 // Skip bit-converted arguments for now. 1293 if (VA.getLocInfo() == CCValAssign::BCvt) 1294 return false; 1295 } 1296 1297 // Get a count of how many bytes are to be pushed onto the stack. 1298 NumBytes = CCInfo.getNextStackOffset(); 1299 1300 // The prolog code of the callee may store up to 8 GPR argument registers to 1301 // the stack, allowing va_start to index over them in memory if its varargs. 1302 // Because we cannot tell if this is needed on the caller side, we have to 1303 // conservatively assume that it is needed. As such, make sure we have at 1304 // least enough stack space for the caller to store the 8 GPRs. 1305 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1306 NumBytes = std::max(NumBytes, LinkageSize + 64); 1307 1308 // Issue CALLSEQ_START. 1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1310 TII.get(TII.getCallFrameSetupOpcode())) 1311 .addImm(NumBytes); 1312 1313 // Prepare to assign register arguments. Every argument uses up a 1314 // GPR protocol register even if it's passed in a floating-point 1315 // register (unless we're using the fast calling convention). 1316 unsigned NextGPR = PPC::X3; 1317 unsigned NextFPR = PPC::F1; 1318 1319 // Process arguments. 1320 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1321 CCValAssign &VA = ArgLocs[I]; 1322 unsigned Arg = ArgRegs[VA.getValNo()]; 1323 MVT ArgVT = ArgVTs[VA.getValNo()]; 1324 1325 // Handle argument promotion and bitcasts. 1326 switch (VA.getLocInfo()) { 1327 default: 1328 llvm_unreachable("Unknown loc info!"); 1329 case CCValAssign::Full: 1330 break; 1331 case CCValAssign::SExt: { 1332 MVT DestVT = VA.getLocVT(); 1333 const TargetRegisterClass *RC = 1334 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1335 unsigned TmpReg = createResultReg(RC); 1336 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1337 llvm_unreachable("Failed to emit a sext!"); 1338 ArgVT = DestVT; 1339 Arg = TmpReg; 1340 break; 1341 } 1342 case CCValAssign::AExt: 1343 case CCValAssign::ZExt: { 1344 MVT DestVT = VA.getLocVT(); 1345 const TargetRegisterClass *RC = 1346 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1347 unsigned TmpReg = createResultReg(RC); 1348 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1349 llvm_unreachable("Failed to emit a zext!"); 1350 ArgVT = DestVT; 1351 Arg = TmpReg; 1352 break; 1353 } 1354 case CCValAssign::BCvt: { 1355 // FIXME: Not yet handled. 1356 llvm_unreachable("Should have bailed before getting here!"); 1357 break; 1358 } 1359 } 1360 1361 // Copy this argument to the appropriate register. 1362 unsigned ArgReg; 1363 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1364 ArgReg = NextFPR++; 1365 if (CC != CallingConv::Fast) 1366 ++NextGPR; 1367 } else 1368 ArgReg = NextGPR++; 1369 1370 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1371 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1372 RegArgs.push_back(ArgReg); 1373 } 1374 1375 return true; 1376 } 1377 1378 // For a call that we've determined we can fast-select, finish the 1379 // call sequence and generate a copy to obtain the return value (if any). 1380 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1381 CallingConv::ID CC = CLI.CallConv; 1382 1383 // Issue CallSEQ_END. 1384 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1385 TII.get(TII.getCallFrameDestroyOpcode())) 1386 .addImm(NumBytes).addImm(0); 1387 1388 // Next, generate a copy to obtain the return value. 1389 // FIXME: No multi-register return values yet, though I don't foresee 1390 // any real difficulties there. 1391 if (RetVT != MVT::isVoid) { 1392 SmallVector<CCValAssign, 16> RVLocs; 1393 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1394 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1395 CCValAssign &VA = RVLocs[0]; 1396 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1397 assert(VA.isRegLoc() && "Can only return in registers!"); 1398 1399 MVT DestVT = VA.getValVT(); 1400 MVT CopyVT = DestVT; 1401 1402 // Ints smaller than a register still arrive in a full 64-bit 1403 // register, so make sure we recognize this. 1404 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1405 CopyVT = MVT::i64; 1406 1407 unsigned SourcePhysReg = VA.getLocReg(); 1408 unsigned ResultReg = 0; 1409 1410 if (RetVT == CopyVT) { 1411 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1412 ResultReg = createResultReg(CpyRC); 1413 1414 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1415 TII.get(TargetOpcode::COPY), ResultReg) 1416 .addReg(SourcePhysReg); 1417 1418 // If necessary, round the floating result to single precision. 1419 } else if (CopyVT == MVT::f64) { 1420 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1421 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1422 ResultReg).addReg(SourcePhysReg); 1423 1424 // If only the low half of a general register is needed, generate 1425 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1426 // used along the fast-isel path (not lowered), and downstream logic 1427 // also doesn't like a direct subreg copy on a physical reg.) 1428 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1429 ResultReg = createResultReg(&PPC::GPRCRegClass); 1430 // Convert physical register from G8RC to GPRC. 1431 SourcePhysReg -= PPC::X0 - PPC::R0; 1432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1433 TII.get(TargetOpcode::COPY), ResultReg) 1434 .addReg(SourcePhysReg); 1435 } 1436 1437 assert(ResultReg && "ResultReg unset!"); 1438 CLI.InRegs.push_back(SourcePhysReg); 1439 CLI.ResultReg = ResultReg; 1440 CLI.NumResultRegs = 1; 1441 } 1442 1443 return true; 1444 } 1445 1446 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1447 CallingConv::ID CC = CLI.CallConv; 1448 bool IsTailCall = CLI.IsTailCall; 1449 bool IsVarArg = CLI.IsVarArg; 1450 const Value *Callee = CLI.Callee; 1451 const MCSymbol *Symbol = CLI.Symbol; 1452 1453 if (!Callee && !Symbol) 1454 return false; 1455 1456 // Allow SelectionDAG isel to handle tail calls. 1457 if (IsTailCall) 1458 return false; 1459 1460 // Let SDISel handle vararg functions. 1461 if (IsVarArg) 1462 return false; 1463 1464 // Handle simple calls for now, with legal return types and 1465 // those that can be extended. 1466 Type *RetTy = CLI.RetTy; 1467 MVT RetVT; 1468 if (RetTy->isVoidTy()) 1469 RetVT = MVT::isVoid; 1470 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1471 RetVT != MVT::i8) 1472 return false; 1473 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1474 // We can't handle boolean returns when CR bits are in use. 1475 return false; 1476 1477 // FIXME: No multi-register return values yet. 1478 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1479 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1480 RetVT != MVT::f64) { 1481 SmallVector<CCValAssign, 16> RVLocs; 1482 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1483 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1484 if (RVLocs.size() > 1) 1485 return false; 1486 } 1487 1488 // Bail early if more than 8 arguments, as we only currently 1489 // handle arguments passed in registers. 1490 unsigned NumArgs = CLI.OutVals.size(); 1491 if (NumArgs > 8) 1492 return false; 1493 1494 // Set up the argument vectors. 1495 SmallVector<Value*, 8> Args; 1496 SmallVector<unsigned, 8> ArgRegs; 1497 SmallVector<MVT, 8> ArgVTs; 1498 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1499 1500 Args.reserve(NumArgs); 1501 ArgRegs.reserve(NumArgs); 1502 ArgVTs.reserve(NumArgs); 1503 ArgFlags.reserve(NumArgs); 1504 1505 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1506 // Only handle easy calls for now. It would be reasonably easy 1507 // to handle <= 8-byte structures passed ByVal in registers, but we 1508 // have to ensure they are right-justified in the register. 1509 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1510 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1511 return false; 1512 1513 Value *ArgValue = CLI.OutVals[i]; 1514 Type *ArgTy = ArgValue->getType(); 1515 MVT ArgVT; 1516 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1517 return false; 1518 1519 if (ArgVT.isVector()) 1520 return false; 1521 1522 unsigned Arg = getRegForValue(ArgValue); 1523 if (Arg == 0) 1524 return false; 1525 1526 Args.push_back(ArgValue); 1527 ArgRegs.push_back(Arg); 1528 ArgVTs.push_back(ArgVT); 1529 ArgFlags.push_back(Flags); 1530 } 1531 1532 // Process the arguments. 1533 SmallVector<unsigned, 8> RegArgs; 1534 unsigned NumBytes; 1535 1536 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1537 RegArgs, CC, NumBytes, IsVarArg)) 1538 return false; 1539 1540 MachineInstrBuilder MIB; 1541 // FIXME: No handling for function pointers yet. This requires 1542 // implementing the function descriptor (OPD) setup. 1543 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1544 if (!GV) { 1545 // patchpoints are a special case; they always dispatch to a pointer value. 1546 // However, we don't actually want to generate the indirect call sequence 1547 // here (that will be generated, as necessary, during asm printing), and 1548 // the call we generate here will be erased by FastISel::selectPatchpoint, 1549 // so don't try very hard... 1550 if (CLI.IsPatchPoint) 1551 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1552 else 1553 return false; 1554 } else { 1555 // Build direct call with NOP for TOC restore. 1556 // FIXME: We can and should optimize away the NOP for local calls. 1557 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1558 TII.get(PPC::BL8_NOP)); 1559 // Add callee. 1560 MIB.addGlobalAddress(GV); 1561 } 1562 1563 // Add implicit physical register uses to the call. 1564 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1565 MIB.addReg(RegArgs[II], RegState::Implicit); 1566 1567 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1568 // into the call. 1569 PPCFuncInfo->setUsesTOCBasePtr(); 1570 MIB.addReg(PPC::X2, RegState::Implicit); 1571 1572 // Add a register mask with the call-preserved registers. Proper 1573 // defs for return values will be added by setPhysRegsDeadExcept(). 1574 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1575 1576 CLI.Call = MIB; 1577 1578 // Finish off the call including any return values. 1579 return finishCall(RetVT, CLI, NumBytes); 1580 } 1581 1582 // Attempt to fast-select a return instruction. 1583 bool PPCFastISel::SelectRet(const Instruction *I) { 1584 1585 if (!FuncInfo.CanLowerReturn) 1586 return false; 1587 1588 const ReturnInst *Ret = cast<ReturnInst>(I); 1589 const Function &F = *I->getParent()->getParent(); 1590 1591 // Build a list of return value registers. 1592 SmallVector<unsigned, 4> RetRegs; 1593 CallingConv::ID CC = F.getCallingConv(); 1594 1595 if (Ret->getNumOperands() > 0) { 1596 SmallVector<ISD::OutputArg, 4> Outs; 1597 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1598 1599 // Analyze operands of the call, assigning locations to each operand. 1600 SmallVector<CCValAssign, 16> ValLocs; 1601 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1602 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1603 const Value *RV = Ret->getOperand(0); 1604 1605 // FIXME: Only one output register for now. 1606 if (ValLocs.size() > 1) 1607 return false; 1608 1609 // Special case for returning a constant integer of any size. 1610 // Materialize the constant as an i64 and copy it to the return 1611 // register. We still need to worry about properly extending the sign. E.g: 1612 // If the constant has only one bit, it means it is a boolean. Therefore 1613 // we can't use PPCMaterializeInt because it extends the sign which will 1614 // cause negations of the returned value to be incorrect as they are 1615 // implemented as the flip of the least significant bit. 1616 if (isa<ConstantInt>(*RV)) { 1617 const Constant *C = cast<Constant>(RV); 1618 1619 CCValAssign &VA = ValLocs[0]; 1620 1621 unsigned RetReg = VA.getLocReg(); 1622 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1623 VA.getLocInfo() == CCValAssign::SExt); 1624 1625 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1626 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1627 1628 RetRegs.push_back(RetReg); 1629 1630 } else { 1631 unsigned Reg = getRegForValue(RV); 1632 1633 if (Reg == 0) 1634 return false; 1635 1636 // Copy the result values into the output registers. 1637 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1638 1639 CCValAssign &VA = ValLocs[i]; 1640 assert(VA.isRegLoc() && "Can only return in registers!"); 1641 RetRegs.push_back(VA.getLocReg()); 1642 unsigned SrcReg = Reg + VA.getValNo(); 1643 1644 EVT RVEVT = TLI.getValueType(RV->getType()); 1645 if (!RVEVT.isSimple()) 1646 return false; 1647 MVT RVVT = RVEVT.getSimpleVT(); 1648 MVT DestVT = VA.getLocVT(); 1649 1650 if (RVVT != DestVT && RVVT != MVT::i8 && 1651 RVVT != MVT::i16 && RVVT != MVT::i32) 1652 return false; 1653 1654 if (RVVT != DestVT) { 1655 switch (VA.getLocInfo()) { 1656 default: 1657 llvm_unreachable("Unknown loc info!"); 1658 case CCValAssign::Full: 1659 llvm_unreachable("Full value assign but types don't match?"); 1660 case CCValAssign::AExt: 1661 case CCValAssign::ZExt: { 1662 const TargetRegisterClass *RC = 1663 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1664 unsigned TmpReg = createResultReg(RC); 1665 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1666 return false; 1667 SrcReg = TmpReg; 1668 break; 1669 } 1670 case CCValAssign::SExt: { 1671 const TargetRegisterClass *RC = 1672 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1673 unsigned TmpReg = createResultReg(RC); 1674 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1675 return false; 1676 SrcReg = TmpReg; 1677 break; 1678 } 1679 } 1680 } 1681 1682 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1683 TII.get(TargetOpcode::COPY), RetRegs[i]) 1684 .addReg(SrcReg); 1685 } 1686 } 1687 } 1688 1689 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1690 TII.get(PPC::BLR8)); 1691 1692 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1693 MIB.addReg(RetRegs[i], RegState::Implicit); 1694 1695 return true; 1696 } 1697 1698 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1699 // signed and zero extensions are supported. Return false if we 1700 // can't handle it. 1701 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1702 unsigned DestReg, bool IsZExt) { 1703 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1704 return false; 1705 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1706 return false; 1707 1708 // Signed extensions use EXTSB, EXTSH, EXTSW. 1709 if (!IsZExt) { 1710 unsigned Opc; 1711 if (SrcVT == MVT::i8) 1712 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1713 else if (SrcVT == MVT::i16) 1714 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1715 else { 1716 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1717 Opc = PPC::EXTSW_32_64; 1718 } 1719 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1720 .addReg(SrcReg); 1721 1722 // Unsigned 32-bit extensions use RLWINM. 1723 } else if (DestVT == MVT::i32) { 1724 unsigned MB; 1725 if (SrcVT == MVT::i8) 1726 MB = 24; 1727 else { 1728 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1729 MB = 16; 1730 } 1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1732 DestReg) 1733 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1734 1735 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1736 } else { 1737 unsigned MB; 1738 if (SrcVT == MVT::i8) 1739 MB = 56; 1740 else if (SrcVT == MVT::i16) 1741 MB = 48; 1742 else 1743 MB = 32; 1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1745 TII.get(PPC::RLDICL_32_64), DestReg) 1746 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1747 } 1748 1749 return true; 1750 } 1751 1752 // Attempt to fast-select an indirect branch instruction. 1753 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1754 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1755 if (AddrReg == 0) 1756 return false; 1757 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1759 .addReg(AddrReg); 1760 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1761 1762 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1763 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1764 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1765 1766 return true; 1767 } 1768 1769 // Attempt to fast-select an integer truncate instruction. 1770 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1771 Value *Src = I->getOperand(0); 1772 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1773 EVT DestVT = TLI.getValueType(I->getType(), true); 1774 1775 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1776 return false; 1777 1778 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1779 return false; 1780 1781 unsigned SrcReg = getRegForValue(Src); 1782 if (!SrcReg) 1783 return false; 1784 1785 // The only interesting case is when we need to switch register classes. 1786 if (SrcVT == MVT::i64) { 1787 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1789 TII.get(TargetOpcode::COPY), 1790 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1791 SrcReg = ResultReg; 1792 } 1793 1794 updateValueMap(I, SrcReg); 1795 return true; 1796 } 1797 1798 // Attempt to fast-select an integer extend instruction. 1799 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1800 Type *DestTy = I->getType(); 1801 Value *Src = I->getOperand(0); 1802 Type *SrcTy = Src->getType(); 1803 1804 bool IsZExt = isa<ZExtInst>(I); 1805 unsigned SrcReg = getRegForValue(Src); 1806 if (!SrcReg) return false; 1807 1808 EVT SrcEVT, DestEVT; 1809 SrcEVT = TLI.getValueType(SrcTy, true); 1810 DestEVT = TLI.getValueType(DestTy, true); 1811 if (!SrcEVT.isSimple()) 1812 return false; 1813 if (!DestEVT.isSimple()) 1814 return false; 1815 1816 MVT SrcVT = SrcEVT.getSimpleVT(); 1817 MVT DestVT = DestEVT.getSimpleVT(); 1818 1819 // If we know the register class needed for the result of this 1820 // instruction, use it. Otherwise pick the register class of the 1821 // correct size that does not contain X0/R0, since we don't know 1822 // whether downstream uses permit that assignment. 1823 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1824 const TargetRegisterClass *RC = 1825 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1826 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1827 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1828 unsigned ResultReg = createResultReg(RC); 1829 1830 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1831 return false; 1832 1833 updateValueMap(I, ResultReg); 1834 return true; 1835 } 1836 1837 // Attempt to fast-select an instruction that wasn't handled by 1838 // the table-generated machinery. 1839 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1840 1841 switch (I->getOpcode()) { 1842 case Instruction::Load: 1843 return SelectLoad(I); 1844 case Instruction::Store: 1845 return SelectStore(I); 1846 case Instruction::Br: 1847 return SelectBranch(I); 1848 case Instruction::IndirectBr: 1849 return SelectIndirectBr(I); 1850 case Instruction::FPExt: 1851 return SelectFPExt(I); 1852 case Instruction::FPTrunc: 1853 return SelectFPTrunc(I); 1854 case Instruction::SIToFP: 1855 return SelectIToFP(I, /*IsSigned*/ true); 1856 case Instruction::UIToFP: 1857 return SelectIToFP(I, /*IsSigned*/ false); 1858 case Instruction::FPToSI: 1859 return SelectFPToI(I, /*IsSigned*/ true); 1860 case Instruction::FPToUI: 1861 return SelectFPToI(I, /*IsSigned*/ false); 1862 case Instruction::Add: 1863 return SelectBinaryIntOp(I, ISD::ADD); 1864 case Instruction::Or: 1865 return SelectBinaryIntOp(I, ISD::OR); 1866 case Instruction::Sub: 1867 return SelectBinaryIntOp(I, ISD::SUB); 1868 case Instruction::Call: 1869 return selectCall(I); 1870 case Instruction::Ret: 1871 return SelectRet(I); 1872 case Instruction::Trunc: 1873 return SelectTrunc(I); 1874 case Instruction::ZExt: 1875 case Instruction::SExt: 1876 return SelectIntExt(I); 1877 // Here add other flavors of Instruction::XXX that automated 1878 // cases don't catch. For example, switches are terminators 1879 // that aren't yet handled. 1880 default: 1881 break; 1882 } 1883 return false; 1884 } 1885 1886 // Materialize a floating-point constant into a register, and return 1887 // the register number (or zero if we failed to handle it). 1888 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1889 // No plans to handle long double here. 1890 if (VT != MVT::f32 && VT != MVT::f64) 1891 return 0; 1892 1893 // All FP constants are loaded from the constant pool. 1894 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1895 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1896 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1897 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1898 CodeModel::Model CModel = TM.getCodeModel(); 1899 1900 MachineMemOperand *MMO = 1901 FuncInfo.MF->getMachineMemOperand( 1902 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1903 (VT == MVT::f32) ? 4 : 8, Align); 1904 1905 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1906 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1907 1908 PPCFuncInfo->setUsesTOCBasePtr(); 1909 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1910 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1912 TmpReg) 1913 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1914 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1915 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1916 } else { 1917 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1919 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1920 // But for large code model, we must generate a LDtocL followed 1921 // by the LF[SD]. 1922 if (CModel == CodeModel::Large) { 1923 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1925 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1927 .addImm(0).addReg(TmpReg2); 1928 } else 1929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1930 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1931 .addReg(TmpReg) 1932 .addMemOperand(MMO); 1933 } 1934 1935 return DestReg; 1936 } 1937 1938 // Materialize the address of a global value into a register, and return 1939 // the register number (or zero if we failed to handle it). 1940 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1941 assert(VT == MVT::i64 && "Non-address!"); 1942 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1943 unsigned DestReg = createResultReg(RC); 1944 1945 // Global values may be plain old object addresses, TLS object 1946 // addresses, constant pool entries, or jump tables. How we generate 1947 // code for these may depend on small, medium, or large code model. 1948 CodeModel::Model CModel = TM.getCodeModel(); 1949 1950 // FIXME: Jump tables are not yet required because fast-isel doesn't 1951 // handle switches; if that changes, we need them as well. For now, 1952 // what follows assumes everything's a generic (or TLS) global address. 1953 1954 // FIXME: We don't yet handle the complexity of TLS. 1955 if (GV->isThreadLocal()) 1956 return 0; 1957 1958 PPCFuncInfo->setUsesTOCBasePtr(); 1959 // For small code model, generate a simple TOC load. 1960 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1962 DestReg) 1963 .addGlobalAddress(GV) 1964 .addReg(PPC::X2); 1965 else { 1966 // If the address is an externally defined symbol, a symbol with common 1967 // or externally available linkage, a non-local function address, or a 1968 // jump table address (not yet needed), or if we are generating code 1969 // for large code model, we generate: 1970 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1971 // Otherwise we generate: 1972 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1973 // Either way, start with the ADDIStocHA: 1974 unsigned HighPartReg = createResultReg(RC); 1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1976 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1977 1978 // If/when switches are implemented, jump tables should be handled 1979 // on the "if" path here. 1980 if (CModel == CodeModel::Large || 1981 (GV->getType()->getElementType()->isFunctionTy() && 1982 (GV->isDeclaration() || GV->isWeakForLinker())) || 1983 GV->isDeclaration() || GV->hasCommonLinkage() || 1984 GV->hasAvailableExternallyLinkage()) 1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1986 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1987 else 1988 // Otherwise generate the ADDItocL. 1989 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1990 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1991 } 1992 1993 return DestReg; 1994 } 1995 1996 // Materialize a 32-bit integer constant into a register, and return 1997 // the register number (or zero if we failed to handle it). 1998 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1999 const TargetRegisterClass *RC) { 2000 unsigned Lo = Imm & 0xFFFF; 2001 unsigned Hi = (Imm >> 16) & 0xFFFF; 2002 2003 unsigned ResultReg = createResultReg(RC); 2004 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2005 2006 if (isInt<16>(Imm)) 2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2008 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2009 .addImm(Imm); 2010 else if (Lo) { 2011 // Both Lo and Hi have nonzero bits. 2012 unsigned TmpReg = createResultReg(RC); 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2014 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2015 .addImm(Hi); 2016 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2017 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2018 .addReg(TmpReg).addImm(Lo); 2019 } else 2020 // Just Hi bits. 2021 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2022 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2023 .addImm(Hi); 2024 2025 return ResultReg; 2026 } 2027 2028 // Materialize a 64-bit integer constant into a register, and return 2029 // the register number (or zero if we failed to handle it). 2030 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2031 const TargetRegisterClass *RC) { 2032 unsigned Remainder = 0; 2033 unsigned Shift = 0; 2034 2035 // If the value doesn't fit in 32 bits, see if we can shift it 2036 // so that it fits in 32 bits. 2037 if (!isInt<32>(Imm)) { 2038 Shift = countTrailingZeros<uint64_t>(Imm); 2039 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2040 2041 if (isInt<32>(ImmSh)) 2042 Imm = ImmSh; 2043 else { 2044 Remainder = Imm; 2045 Shift = 32; 2046 Imm >>= 32; 2047 } 2048 } 2049 2050 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2051 // (if not shifted). 2052 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2053 if (!Shift) 2054 return TmpReg1; 2055 2056 // If upper 32 bits were not zero, we've built them and need to shift 2057 // them into place. 2058 unsigned TmpReg2; 2059 if (Imm) { 2060 TmpReg2 = createResultReg(RC); 2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2062 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2063 } else 2064 TmpReg2 = TmpReg1; 2065 2066 unsigned TmpReg3, Hi, Lo; 2067 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2068 TmpReg3 = createResultReg(RC); 2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2070 TmpReg3).addReg(TmpReg2).addImm(Hi); 2071 } else 2072 TmpReg3 = TmpReg2; 2073 2074 if ((Lo = Remainder & 0xFFFF)) { 2075 unsigned ResultReg = createResultReg(RC); 2076 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2077 ResultReg).addReg(TmpReg3).addImm(Lo); 2078 return ResultReg; 2079 } 2080 2081 return TmpReg3; 2082 } 2083 2084 2085 // Materialize an integer constant into a register, and return 2086 // the register number (or zero if we failed to handle it). 2087 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2088 bool UseSExt) { 2089 // If we're using CR bit registers for i1 values, handle that as a special 2090 // case first. 2091 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2092 const ConstantInt *CI = cast<ConstantInt>(C); 2093 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2095 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2096 return ImmReg; 2097 } 2098 2099 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2100 VT != MVT::i8 && VT != MVT::i1) 2101 return 0; 2102 2103 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2104 &PPC::GPRCRegClass); 2105 2106 // If the constant is in range, use a load-immediate. 2107 const ConstantInt *CI = cast<ConstantInt>(C); 2108 if (isInt<16>(CI->getSExtValue())) { 2109 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2110 unsigned ImmReg = createResultReg(RC); 2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2112 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2113 return ImmReg; 2114 } 2115 2116 // Construct the constant piecewise. 2117 int64_t Imm = CI->getZExtValue(); 2118 2119 if (VT == MVT::i64) 2120 return PPCMaterialize64BitInt(Imm, RC); 2121 else if (VT == MVT::i32) 2122 return PPCMaterialize32BitInt(Imm, RC); 2123 2124 return 0; 2125 } 2126 2127 // Materialize a constant into a register, and return the register 2128 // number (or zero if we failed to handle it). 2129 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2130 EVT CEVT = TLI.getValueType(C->getType(), true); 2131 2132 // Only handle simple types. 2133 if (!CEVT.isSimple()) return 0; 2134 MVT VT = CEVT.getSimpleVT(); 2135 2136 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2137 return PPCMaterializeFP(CFP, VT); 2138 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2139 return PPCMaterializeGV(GV, VT); 2140 else if (isa<ConstantInt>(C)) 2141 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2142 2143 return 0; 2144 } 2145 2146 // Materialize the address created by an alloca into a register, and 2147 // return the register number (or zero if we failed to handle it). 2148 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2149 // Don't handle dynamic allocas. 2150 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2151 2152 MVT VT; 2153 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2154 2155 DenseMap<const AllocaInst*, int>::iterator SI = 2156 FuncInfo.StaticAllocaMap.find(AI); 2157 2158 if (SI != FuncInfo.StaticAllocaMap.end()) { 2159 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2161 ResultReg).addFrameIndex(SI->second).addImm(0); 2162 return ResultReg; 2163 } 2164 2165 return 0; 2166 } 2167 2168 // Fold loads into extends when possible. 2169 // FIXME: We can have multiple redundant extend/trunc instructions 2170 // following a load. The folding only picks up one. Extend this 2171 // to check subsequent instructions for the same pattern and remove 2172 // them. Thus ResultReg should be the def reg for the last redundant 2173 // instruction in a chain, and all intervening instructions can be 2174 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2175 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2176 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2177 const LoadInst *LI) { 2178 // Verify we have a legal type before going any further. 2179 MVT VT; 2180 if (!isLoadTypeLegal(LI->getType(), VT)) 2181 return false; 2182 2183 // Combine load followed by zero- or sign-extend. 2184 bool IsZExt = false; 2185 switch(MI->getOpcode()) { 2186 default: 2187 return false; 2188 2189 case PPC::RLDICL: 2190 case PPC::RLDICL_32_64: { 2191 IsZExt = true; 2192 unsigned MB = MI->getOperand(3).getImm(); 2193 if ((VT == MVT::i8 && MB <= 56) || 2194 (VT == MVT::i16 && MB <= 48) || 2195 (VT == MVT::i32 && MB <= 32)) 2196 break; 2197 return false; 2198 } 2199 2200 case PPC::RLWINM: 2201 case PPC::RLWINM8: { 2202 IsZExt = true; 2203 unsigned MB = MI->getOperand(3).getImm(); 2204 if ((VT == MVT::i8 && MB <= 24) || 2205 (VT == MVT::i16 && MB <= 16)) 2206 break; 2207 return false; 2208 } 2209 2210 case PPC::EXTSB: 2211 case PPC::EXTSB8: 2212 case PPC::EXTSB8_32_64: 2213 /* There is no sign-extending load-byte instruction. */ 2214 return false; 2215 2216 case PPC::EXTSH: 2217 case PPC::EXTSH8: 2218 case PPC::EXTSH8_32_64: { 2219 if (VT != MVT::i16 && VT != MVT::i8) 2220 return false; 2221 break; 2222 } 2223 2224 case PPC::EXTSW: 2225 case PPC::EXTSW_32_64: { 2226 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2227 return false; 2228 break; 2229 } 2230 } 2231 2232 // See if we can handle this address. 2233 Address Addr; 2234 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2235 return false; 2236 2237 unsigned ResultReg = MI->getOperand(0).getReg(); 2238 2239 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2240 return false; 2241 2242 MI->eraseFromParent(); 2243 return true; 2244 } 2245 2246 // Attempt to lower call arguments in a faster way than done by 2247 // the selection DAG code. 2248 bool PPCFastISel::fastLowerArguments() { 2249 // Defer to normal argument lowering for now. It's reasonably 2250 // efficient. Consider doing something like ARM to handle the 2251 // case where all args fit in registers, no varargs, no float 2252 // or vector args. 2253 return false; 2254 } 2255 2256 // Handle materializing integer constants into a register. This is not 2257 // automatically generated for PowerPC, so must be explicitly created here. 2258 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2259 2260 if (Opc != ISD::Constant) 2261 return 0; 2262 2263 // If we're using CR bit registers for i1 values, handle that as a special 2264 // case first. 2265 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2266 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2268 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2269 return ImmReg; 2270 } 2271 2272 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2273 VT != MVT::i8 && VT != MVT::i1) 2274 return 0; 2275 2276 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2277 &PPC::GPRCRegClass); 2278 if (VT == MVT::i64) 2279 return PPCMaterialize64BitInt(Imm, RC); 2280 else 2281 return PPCMaterialize32BitInt(Imm, RC); 2282 } 2283 2284 // Override for ADDI and ADDI8 to set the correct register class 2285 // on RHS operand 0. The automatic infrastructure naively assumes 2286 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2287 // for these cases. At the moment, none of the other automatically 2288 // generated RI instructions require special treatment. However, once 2289 // SelectSelect is implemented, "isel" requires similar handling. 2290 // 2291 // Also be conservative about the output register class. Avoid 2292 // assigning R0 or X0 to the output register for GPRC and G8RC 2293 // register classes, as any such result could be used in ADDI, etc., 2294 // where those regs have another meaning. 2295 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2296 const TargetRegisterClass *RC, 2297 unsigned Op0, bool Op0IsKill, 2298 uint64_t Imm) { 2299 if (MachineInstOpcode == PPC::ADDI) 2300 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2301 else if (MachineInstOpcode == PPC::ADDI8) 2302 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2303 2304 const TargetRegisterClass *UseRC = 2305 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2306 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2307 2308 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2309 Op0, Op0IsKill, Imm); 2310 } 2311 2312 // Override for instructions with one register operand to avoid use of 2313 // R0/X0. The automatic infrastructure isn't aware of the context so 2314 // we must be conservative. 2315 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2316 const TargetRegisterClass* RC, 2317 unsigned Op0, bool Op0IsKill) { 2318 const TargetRegisterClass *UseRC = 2319 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2320 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2321 2322 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2323 } 2324 2325 // Override for instructions with two register operands to avoid use 2326 // of R0/X0. The automatic infrastructure isn't aware of the context 2327 // so we must be conservative. 2328 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2329 const TargetRegisterClass* RC, 2330 unsigned Op0, bool Op0IsKill, 2331 unsigned Op1, bool Op1IsKill) { 2332 const TargetRegisterClass *UseRC = 2333 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2334 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2335 2336 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2337 Op1, Op1IsKill); 2338 } 2339 2340 namespace llvm { 2341 // Create the fast instruction selector for PowerPC64 ELF. 2342 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2343 const TargetLibraryInfo *LibInfo) { 2344 // Only available on 64-bit ELF for now. 2345 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2346 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2347 return new PPCFastISel(FuncInfo, LibInfo); 2348 return nullptr; 2349 } 2350 } 2351