1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isVSFRCRegister(unsigned Register) const { 148 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 149 } 150 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 151 bool isZExt, unsigned DestReg); 152 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 153 const TargetRegisterClass *RC, bool IsZExt = true, 154 unsigned FP64LoadOpc = PPC::LFD); 155 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 156 bool PPCComputeAddress(const Value *Obj, Address &Addr); 157 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 158 unsigned &IndexReg); 159 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 160 unsigned DestReg, bool IsZExt); 161 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 162 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 163 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 164 unsigned PPCMaterialize32BitInt(int64_t Imm, 165 const TargetRegisterClass *RC); 166 unsigned PPCMaterialize64BitInt(int64_t Imm, 167 const TargetRegisterClass *RC); 168 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 169 unsigned SrcReg, bool IsSigned); 170 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 171 172 // Call handling routines. 173 private: 174 bool processCallArgs(SmallVectorImpl<Value*> &Args, 175 SmallVectorImpl<unsigned> &ArgRegs, 176 SmallVectorImpl<MVT> &ArgVTs, 177 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 178 SmallVectorImpl<unsigned> &RegArgs, 179 CallingConv::ID CC, 180 unsigned &NumBytes, 181 bool IsVarArg); 182 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 183 CCAssignFn *usePPC32CCs(unsigned Flag); 184 185 private: 186 #include "PPCGenFastISel.inc" 187 188 }; 189 190 } // end anonymous namespace 191 192 #include "PPCGenCallingConv.inc" 193 194 // Function whose sole purpose is to kill compiler warnings 195 // stemming from unused functions included from PPCGenCallingConv.inc. 196 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 197 if (Flag == 1) 198 return CC_PPC32_SVR4; 199 else if (Flag == 2) 200 return CC_PPC32_SVR4_ByVal; 201 else if (Flag == 3) 202 return CC_PPC32_SVR4_VarArg; 203 else 204 return RetCC_PPC; 205 } 206 207 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 208 switch (Pred) { 209 // These are not representable with any single compare. 210 case CmpInst::FCMP_FALSE: 211 case CmpInst::FCMP_UEQ: 212 case CmpInst::FCMP_UGT: 213 case CmpInst::FCMP_UGE: 214 case CmpInst::FCMP_ULT: 215 case CmpInst::FCMP_ULE: 216 case CmpInst::FCMP_UNE: 217 case CmpInst::FCMP_TRUE: 218 default: 219 return Optional<PPC::Predicate>(); 220 221 case CmpInst::FCMP_OEQ: 222 case CmpInst::ICMP_EQ: 223 return PPC::PRED_EQ; 224 225 case CmpInst::FCMP_OGT: 226 case CmpInst::ICMP_UGT: 227 case CmpInst::ICMP_SGT: 228 return PPC::PRED_GT; 229 230 case CmpInst::FCMP_OGE: 231 case CmpInst::ICMP_UGE: 232 case CmpInst::ICMP_SGE: 233 return PPC::PRED_GE; 234 235 case CmpInst::FCMP_OLT: 236 case CmpInst::ICMP_ULT: 237 case CmpInst::ICMP_SLT: 238 return PPC::PRED_LT; 239 240 case CmpInst::FCMP_OLE: 241 case CmpInst::ICMP_ULE: 242 case CmpInst::ICMP_SLE: 243 return PPC::PRED_LE; 244 245 case CmpInst::FCMP_ONE: 246 case CmpInst::ICMP_NE: 247 return PPC::PRED_NE; 248 249 case CmpInst::FCMP_ORD: 250 return PPC::PRED_NU; 251 252 case CmpInst::FCMP_UNO: 253 return PPC::PRED_UN; 254 } 255 } 256 257 // Determine whether the type Ty is simple enough to be handled by 258 // fast-isel, and return its equivalent machine type in VT. 259 // FIXME: Copied directly from ARM -- factor into base class? 260 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 261 EVT Evt = TLI.getValueType(Ty, true); 262 263 // Only handle simple types. 264 if (Evt == MVT::Other || !Evt.isSimple()) return false; 265 VT = Evt.getSimpleVT(); 266 267 // Handle all legal types, i.e. a register that will directly hold this 268 // value. 269 return TLI.isTypeLegal(VT); 270 } 271 272 // Determine whether the type Ty is simple enough to be handled by 273 // fast-isel as a load target, and return its equivalent machine type in VT. 274 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 275 if (isTypeLegal(Ty, VT)) return true; 276 277 // If this is a type than can be sign or zero-extended to a basic operation 278 // go ahead and accept it now. 279 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 280 return true; 281 } 282 283 return false; 284 } 285 286 // Given a value Obj, create an Address object Addr that represents its 287 // address. Return false if we can't handle it. 288 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 289 const User *U = nullptr; 290 unsigned Opcode = Instruction::UserOp1; 291 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 292 // Don't walk into other basic blocks unless the object is an alloca from 293 // another block, otherwise it may not have a virtual register assigned. 294 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 295 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 296 Opcode = I->getOpcode(); 297 U = I; 298 } 299 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 300 Opcode = C->getOpcode(); 301 U = C; 302 } 303 304 switch (Opcode) { 305 default: 306 break; 307 case Instruction::BitCast: 308 // Look through bitcasts. 309 return PPCComputeAddress(U->getOperand(0), Addr); 310 case Instruction::IntToPtr: 311 // Look past no-op inttoptrs. 312 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 313 return PPCComputeAddress(U->getOperand(0), Addr); 314 break; 315 case Instruction::PtrToInt: 316 // Look past no-op ptrtoints. 317 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 318 return PPCComputeAddress(U->getOperand(0), Addr); 319 break; 320 case Instruction::GetElementPtr: { 321 Address SavedAddr = Addr; 322 long TmpOffset = Addr.Offset; 323 324 // Iterate through the GEP folding the constants into offsets where 325 // we can. 326 gep_type_iterator GTI = gep_type_begin(U); 327 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 328 II != IE; ++II, ++GTI) { 329 const Value *Op = *II; 330 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 331 const StructLayout *SL = DL.getStructLayout(STy); 332 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 333 TmpOffset += SL->getElementOffset(Idx); 334 } else { 335 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 336 for (;;) { 337 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 338 // Constant-offset addressing. 339 TmpOffset += CI->getSExtValue() * S; 340 break; 341 } 342 if (canFoldAddIntoGEP(U, Op)) { 343 // A compatible add with a constant operand. Fold the constant. 344 ConstantInt *CI = 345 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 346 TmpOffset += CI->getSExtValue() * S; 347 // Iterate on the other operand. 348 Op = cast<AddOperator>(Op)->getOperand(0); 349 continue; 350 } 351 // Unsupported 352 goto unsupported_gep; 353 } 354 } 355 } 356 357 // Try to grab the base operand now. 358 Addr.Offset = TmpOffset; 359 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 360 361 // We failed, restore everything and try the other options. 362 Addr = SavedAddr; 363 364 unsupported_gep: 365 break; 366 } 367 case Instruction::Alloca: { 368 const AllocaInst *AI = cast<AllocaInst>(Obj); 369 DenseMap<const AllocaInst*, int>::iterator SI = 370 FuncInfo.StaticAllocaMap.find(AI); 371 if (SI != FuncInfo.StaticAllocaMap.end()) { 372 Addr.BaseType = Address::FrameIndexBase; 373 Addr.Base.FI = SI->second; 374 return true; 375 } 376 break; 377 } 378 } 379 380 // FIXME: References to parameters fall through to the behavior 381 // below. They should be able to reference a frame index since 382 // they are stored to the stack, so we can get "ld rx, offset(r1)" 383 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 384 // just contain the parameter. Try to handle this with a FI. 385 386 // Try to get this in a register if nothing else has worked. 387 if (Addr.Base.Reg == 0) 388 Addr.Base.Reg = getRegForValue(Obj); 389 390 // Prevent assignment of base register to X0, which is inappropriate 391 // for loads and stores alike. 392 if (Addr.Base.Reg != 0) 393 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 394 395 return Addr.Base.Reg != 0; 396 } 397 398 // Fix up some addresses that can't be used directly. For example, if 399 // an offset won't fit in an instruction field, we may need to move it 400 // into an index register. 401 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 402 unsigned &IndexReg) { 403 404 // Check whether the offset fits in the instruction field. 405 if (!isInt<16>(Addr.Offset)) 406 UseOffset = false; 407 408 // If this is a stack pointer and the offset needs to be simplified then 409 // put the alloca address into a register, set the base type back to 410 // register and continue. This should almost never happen. 411 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 412 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 414 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 415 Addr.Base.Reg = ResultReg; 416 Addr.BaseType = Address::RegBase; 417 } 418 419 if (!UseOffset) { 420 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 421 : Type::getInt64Ty(*Context)); 422 const ConstantInt *Offset = 423 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 424 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 425 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 426 } 427 } 428 429 // Emit a load instruction if possible, returning true if we succeeded, 430 // otherwise false. See commentary below for how the register class of 431 // the load is determined. 432 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 433 const TargetRegisterClass *RC, 434 bool IsZExt, unsigned FP64LoadOpc) { 435 unsigned Opc; 436 bool UseOffset = true; 437 438 // If ResultReg is given, it determines the register class of the load. 439 // Otherwise, RC is the register class to use. If the result of the 440 // load isn't anticipated in this block, both may be zero, in which 441 // case we must make a conservative guess. In particular, don't assign 442 // R0 or X0 to the result register, as the result may be used in a load, 443 // store, add-immediate, or isel that won't permit this. (Though 444 // perhaps the spill and reload of live-exit values would handle this?) 445 const TargetRegisterClass *UseRC = 446 (ResultReg ? MRI.getRegClass(ResultReg) : 447 (RC ? RC : 448 (VT == MVT::f64 ? &PPC::F8RCRegClass : 449 (VT == MVT::f32 ? &PPC::F4RCRegClass : 450 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 451 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 452 453 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 454 455 switch (VT.SimpleTy) { 456 default: // e.g., vector types not handled 457 return false; 458 case MVT::i8: 459 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 460 break; 461 case MVT::i16: 462 Opc = (IsZExt ? 463 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 464 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 465 break; 466 case MVT::i32: 467 Opc = (IsZExt ? 468 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 469 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 470 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 471 UseOffset = false; 472 break; 473 case MVT::i64: 474 Opc = PPC::LD; 475 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 476 "64-bit load with 32-bit target??"); 477 UseOffset = ((Addr.Offset & 3) == 0); 478 break; 479 case MVT::f32: 480 Opc = PPC::LFS; 481 break; 482 case MVT::f64: 483 Opc = FP64LoadOpc; 484 break; 485 } 486 487 // If necessary, materialize the offset into a register and use 488 // the indexed form. Also handle stack pointers with special needs. 489 unsigned IndexReg = 0; 490 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 491 492 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 493 // be used. 494 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 495 if (IsVSFRC && (Opc == PPC::LFD) && 496 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 497 (Addr.Offset == 0)) { 498 UseOffset = false; 499 } 500 501 if (ResultReg == 0) 502 ResultReg = createResultReg(UseRC); 503 504 // Note: If we still have a frame index here, we know the offset is 505 // in range, as otherwise PPCSimplifyAddress would have converted it 506 // into a RegBase. 507 if (Addr.BaseType == Address::FrameIndexBase) { 508 // VSX only provides an indexed load. 509 if (IsVSFRC && Opc == PPC::LFD) return false; 510 511 MachineMemOperand *MMO = 512 FuncInfo.MF->getMachineMemOperand( 513 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 514 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 515 MFI.getObjectAlignment(Addr.Base.FI)); 516 517 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 518 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 519 520 // Base reg with offset in range. 521 } else if (UseOffset) { 522 // VSX only provides an indexed load. 523 if (IsVSFRC && Opc == PPC::LFD) return false; 524 525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 526 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 527 528 // Indexed form. 529 } else { 530 // Get the RR opcode corresponding to the RI one. FIXME: It would be 531 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 532 // is hard to get at. 533 switch (Opc) { 534 default: llvm_unreachable("Unexpected opcode!"); 535 case PPC::LBZ: Opc = PPC::LBZX; break; 536 case PPC::LBZ8: Opc = PPC::LBZX8; break; 537 case PPC::LHZ: Opc = PPC::LHZX; break; 538 case PPC::LHZ8: Opc = PPC::LHZX8; break; 539 case PPC::LHA: Opc = PPC::LHAX; break; 540 case PPC::LHA8: Opc = PPC::LHAX8; break; 541 case PPC::LWZ: Opc = PPC::LWZX; break; 542 case PPC::LWZ8: Opc = PPC::LWZX8; break; 543 case PPC::LWA: Opc = PPC::LWAX; break; 544 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 545 case PPC::LD: Opc = PPC::LDX; break; 546 case PPC::LFS: Opc = PPC::LFSX; break; 547 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 548 } 549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 550 .addReg(Addr.Base.Reg).addReg(IndexReg); 551 } 552 553 return true; 554 } 555 556 // Attempt to fast-select a load instruction. 557 bool PPCFastISel::SelectLoad(const Instruction *I) { 558 // FIXME: No atomic loads are supported. 559 if (cast<LoadInst>(I)->isAtomic()) 560 return false; 561 562 // Verify we have a legal type before going any further. 563 MVT VT; 564 if (!isLoadTypeLegal(I->getType(), VT)) 565 return false; 566 567 // See if we can handle this address. 568 Address Addr; 569 if (!PPCComputeAddress(I->getOperand(0), Addr)) 570 return false; 571 572 // Look at the currently assigned register for this instruction 573 // to determine the required register class. This is necessary 574 // to constrain RA from using R0/X0 when this is not legal. 575 unsigned AssignedReg = FuncInfo.ValueMap[I]; 576 const TargetRegisterClass *RC = 577 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 578 579 unsigned ResultReg = 0; 580 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 581 return false; 582 updateValueMap(I, ResultReg); 583 return true; 584 } 585 586 // Emit a store instruction to store SrcReg at Addr. 587 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 588 assert(SrcReg && "Nothing to store!"); 589 unsigned Opc; 590 bool UseOffset = true; 591 592 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 593 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 594 595 switch (VT.SimpleTy) { 596 default: // e.g., vector types not handled 597 return false; 598 case MVT::i8: 599 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 600 break; 601 case MVT::i16: 602 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 603 break; 604 case MVT::i32: 605 assert(Is32BitInt && "Not GPRC for i32??"); 606 Opc = PPC::STW; 607 break; 608 case MVT::i64: 609 Opc = PPC::STD; 610 UseOffset = ((Addr.Offset & 3) == 0); 611 break; 612 case MVT::f32: 613 Opc = PPC::STFS; 614 break; 615 case MVT::f64: 616 Opc = PPC::STFD; 617 break; 618 } 619 620 // If necessary, materialize the offset into a register and use 621 // the indexed form. Also handle stack pointers with special needs. 622 unsigned IndexReg = 0; 623 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 624 625 // If this is a potential VSX store with an offset of 0, a VSX indexed store 626 // can be used. 627 bool IsVSFRC = isVSFRCRegister(SrcReg); 628 if (IsVSFRC && (Opc == PPC::STFD) && 629 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 630 (Addr.Offset == 0)) { 631 UseOffset = false; 632 } 633 634 // Note: If we still have a frame index here, we know the offset is 635 // in range, as otherwise PPCSimplifyAddress would have converted it 636 // into a RegBase. 637 if (Addr.BaseType == Address::FrameIndexBase) { 638 // VSX only provides an indexed store. 639 if (IsVSFRC && Opc == PPC::STFD) return false; 640 641 MachineMemOperand *MMO = 642 FuncInfo.MF->getMachineMemOperand( 643 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 644 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 645 MFI.getObjectAlignment(Addr.Base.FI)); 646 647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 648 .addReg(SrcReg) 649 .addImm(Addr.Offset) 650 .addFrameIndex(Addr.Base.FI) 651 .addMemOperand(MMO); 652 653 // Base reg with offset in range. 654 } else if (UseOffset) { 655 // VSX only provides an indexed store. 656 if (IsVSFRC && Opc == PPC::STFD) return false; 657 658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 659 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 660 661 // Indexed form. 662 } else { 663 // Get the RR opcode corresponding to the RI one. FIXME: It would be 664 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 665 // is hard to get at. 666 switch (Opc) { 667 default: llvm_unreachable("Unexpected opcode!"); 668 case PPC::STB: Opc = PPC::STBX; break; 669 case PPC::STH : Opc = PPC::STHX; break; 670 case PPC::STW : Opc = PPC::STWX; break; 671 case PPC::STB8: Opc = PPC::STBX8; break; 672 case PPC::STH8: Opc = PPC::STHX8; break; 673 case PPC::STW8: Opc = PPC::STWX8; break; 674 case PPC::STD: Opc = PPC::STDX; break; 675 case PPC::STFS: Opc = PPC::STFSX; break; 676 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 677 } 678 679 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 680 .addReg(SrcReg); 681 682 // If we have an index register defined we use it in the store inst, 683 // otherwise we use X0 as base as it makes the vector instructions to 684 // use zero in the computation of the effective address regardless the 685 // content of the register. 686 if (IndexReg) 687 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 688 else 689 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 690 } 691 692 return true; 693 } 694 695 // Attempt to fast-select a store instruction. 696 bool PPCFastISel::SelectStore(const Instruction *I) { 697 Value *Op0 = I->getOperand(0); 698 unsigned SrcReg = 0; 699 700 // FIXME: No atomics loads are supported. 701 if (cast<StoreInst>(I)->isAtomic()) 702 return false; 703 704 // Verify we have a legal type before going any further. 705 MVT VT; 706 if (!isLoadTypeLegal(Op0->getType(), VT)) 707 return false; 708 709 // Get the value to be stored into a register. 710 SrcReg = getRegForValue(Op0); 711 if (SrcReg == 0) 712 return false; 713 714 // See if we can handle this address. 715 Address Addr; 716 if (!PPCComputeAddress(I->getOperand(1), Addr)) 717 return false; 718 719 if (!PPCEmitStore(VT, SrcReg, Addr)) 720 return false; 721 722 return true; 723 } 724 725 // Attempt to fast-select a branch instruction. 726 bool PPCFastISel::SelectBranch(const Instruction *I) { 727 const BranchInst *BI = cast<BranchInst>(I); 728 MachineBasicBlock *BrBB = FuncInfo.MBB; 729 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 730 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 731 732 // For now, just try the simplest case where it's fed by a compare. 733 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 734 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 735 if (!OptPPCPred) 736 return false; 737 738 PPC::Predicate PPCPred = OptPPCPred.getValue(); 739 740 // Take advantage of fall-through opportunities. 741 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 742 std::swap(TBB, FBB); 743 PPCPred = PPC::InvertPredicate(PPCPred); 744 } 745 746 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 747 748 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 749 CondReg)) 750 return false; 751 752 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 753 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 754 fastEmitBranch(FBB, DbgLoc); 755 FuncInfo.MBB->addSuccessor(TBB); 756 return true; 757 758 } else if (const ConstantInt *CI = 759 dyn_cast<ConstantInt>(BI->getCondition())) { 760 uint64_t Imm = CI->getZExtValue(); 761 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 762 fastEmitBranch(Target, DbgLoc); 763 return true; 764 } 765 766 // FIXME: ARM looks for a case where the block containing the compare 767 // has been split from the block containing the branch. If this happens, 768 // there is a vreg available containing the result of the compare. I'm 769 // not sure we can do much, as we've lost the predicate information with 770 // the compare instruction -- we have a 4-bit CR but don't know which bit 771 // to test here. 772 return false; 773 } 774 775 // Attempt to emit a compare of the two source values. Signed and unsigned 776 // comparisons are supported. Return false if we can't handle it. 777 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 778 bool IsZExt, unsigned DestReg) { 779 Type *Ty = SrcValue1->getType(); 780 EVT SrcEVT = TLI.getValueType(Ty, true); 781 if (!SrcEVT.isSimple()) 782 return false; 783 MVT SrcVT = SrcEVT.getSimpleVT(); 784 785 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 786 return false; 787 788 // See if operand 2 is an immediate encodeable in the compare. 789 // FIXME: Operands are not in canonical order at -O0, so an immediate 790 // operand in position 1 is a lost opportunity for now. We are 791 // similar to ARM in this regard. 792 long Imm = 0; 793 bool UseImm = false; 794 795 // Only 16-bit integer constants can be represented in compares for 796 // PowerPC. Others will be materialized into a register. 797 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 798 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 799 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 800 const APInt &CIVal = ConstInt->getValue(); 801 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 802 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 803 UseImm = true; 804 } 805 } 806 807 unsigned CmpOpc; 808 bool NeedsExt = false; 809 switch (SrcVT.SimpleTy) { 810 default: return false; 811 case MVT::f32: 812 CmpOpc = PPC::FCMPUS; 813 break; 814 case MVT::f64: 815 CmpOpc = PPC::FCMPUD; 816 break; 817 case MVT::i1: 818 case MVT::i8: 819 case MVT::i16: 820 NeedsExt = true; 821 // Intentional fall-through. 822 case MVT::i32: 823 if (!UseImm) 824 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 825 else 826 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 827 break; 828 case MVT::i64: 829 if (!UseImm) 830 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 831 else 832 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 833 break; 834 } 835 836 unsigned SrcReg1 = getRegForValue(SrcValue1); 837 if (SrcReg1 == 0) 838 return false; 839 840 unsigned SrcReg2 = 0; 841 if (!UseImm) { 842 SrcReg2 = getRegForValue(SrcValue2); 843 if (SrcReg2 == 0) 844 return false; 845 } 846 847 if (NeedsExt) { 848 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 849 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 850 return false; 851 SrcReg1 = ExtReg; 852 853 if (!UseImm) { 854 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 855 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 856 return false; 857 SrcReg2 = ExtReg; 858 } 859 } 860 861 if (!UseImm) 862 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 863 .addReg(SrcReg1).addReg(SrcReg2); 864 else 865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 866 .addReg(SrcReg1).addImm(Imm); 867 868 return true; 869 } 870 871 // Attempt to fast-select a floating-point extend instruction. 872 bool PPCFastISel::SelectFPExt(const Instruction *I) { 873 Value *Src = I->getOperand(0); 874 EVT SrcVT = TLI.getValueType(Src->getType(), true); 875 EVT DestVT = TLI.getValueType(I->getType(), true); 876 877 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 878 return false; 879 880 unsigned SrcReg = getRegForValue(Src); 881 if (!SrcReg) 882 return false; 883 884 // No code is generated for a FP extend. 885 updateValueMap(I, SrcReg); 886 return true; 887 } 888 889 // Attempt to fast-select a floating-point truncate instruction. 890 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 891 Value *Src = I->getOperand(0); 892 EVT SrcVT = TLI.getValueType(Src->getType(), true); 893 EVT DestVT = TLI.getValueType(I->getType(), true); 894 895 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 896 return false; 897 898 unsigned SrcReg = getRegForValue(Src); 899 if (!SrcReg) 900 return false; 901 902 // Round the result to single precision. 903 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 905 .addReg(SrcReg); 906 907 updateValueMap(I, DestReg); 908 return true; 909 } 910 911 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 912 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 913 // those should be used instead of moving via a stack slot when the 914 // subtarget permits. 915 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 916 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 917 // case to 8 bytes which produces tighter code but wastes stack space. 918 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 919 bool IsSigned) { 920 921 // If necessary, extend 32-bit int to 64-bit. 922 if (SrcVT == MVT::i32) { 923 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 924 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 925 return 0; 926 SrcReg = TmpReg; 927 } 928 929 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 930 Address Addr; 931 Addr.BaseType = Address::FrameIndexBase; 932 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 933 934 // Store the value from the GPR. 935 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 936 return 0; 937 938 // Load the integer value into an FPR. The kind of load used depends 939 // on a number of conditions. 940 unsigned LoadOpc = PPC::LFD; 941 942 if (SrcVT == MVT::i32) { 943 if (!IsSigned) { 944 LoadOpc = PPC::LFIWZX; 945 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 946 } else if (PPCSubTarget->hasLFIWAX()) { 947 LoadOpc = PPC::LFIWAX; 948 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 949 } 950 } 951 952 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 953 unsigned ResultReg = 0; 954 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 955 return 0; 956 957 return ResultReg; 958 } 959 960 // Attempt to fast-select an integer-to-floating-point conversion. 961 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 962 MVT DstVT; 963 Type *DstTy = I->getType(); 964 if (!isTypeLegal(DstTy, DstVT)) 965 return false; 966 967 if (DstVT != MVT::f32 && DstVT != MVT::f64) 968 return false; 969 970 Value *Src = I->getOperand(0); 971 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 972 if (!SrcEVT.isSimple()) 973 return false; 974 975 MVT SrcVT = SrcEVT.getSimpleVT(); 976 977 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 978 SrcVT != MVT::i32 && SrcVT != MVT::i64) 979 return false; 980 981 unsigned SrcReg = getRegForValue(Src); 982 if (SrcReg == 0) 983 return false; 984 985 // We can only lower an unsigned convert if we have the newer 986 // floating-point conversion operations. 987 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 988 return false; 989 990 // FIXME: For now we require the newer floating-point conversion operations 991 // (which are present only on P7 and A2 server models) when converting 992 // to single-precision float. Otherwise we have to generate a lot of 993 // fiddly code to avoid double rounding. If necessary, the fiddly code 994 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 995 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 996 return false; 997 998 // Extend the input if necessary. 999 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1000 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1001 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1002 return false; 1003 SrcVT = MVT::i64; 1004 SrcReg = TmpReg; 1005 } 1006 1007 // Move the integer value to an FPR. 1008 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1009 if (FPReg == 0) 1010 return false; 1011 1012 // Determine the opcode for the conversion. 1013 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1014 unsigned DestReg = createResultReg(RC); 1015 unsigned Opc; 1016 1017 if (DstVT == MVT::f32) 1018 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1019 else 1020 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1021 1022 // Generate the convert. 1023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1024 .addReg(FPReg); 1025 1026 updateValueMap(I, DestReg); 1027 return true; 1028 } 1029 1030 // Move the floating-point value in SrcReg into an integer destination 1031 // register, and return the register (or zero if we can't handle it). 1032 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1033 // those should be used instead of moving via a stack slot when the 1034 // subtarget permits. 1035 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1036 unsigned SrcReg, bool IsSigned) { 1037 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1038 // Note that if have STFIWX available, we could use a 4-byte stack 1039 // slot for i32, but this being fast-isel we'll just go with the 1040 // easiest code gen possible. 1041 Address Addr; 1042 Addr.BaseType = Address::FrameIndexBase; 1043 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1044 1045 // Store the value from the FPR. 1046 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1047 return 0; 1048 1049 // Reload it into a GPR. If we want an i32, modify the address 1050 // to have a 4-byte offset so we load from the right place. 1051 if (VT == MVT::i32) 1052 Addr.Offset = 4; 1053 1054 // Look at the currently assigned register for this instruction 1055 // to determine the required register class. 1056 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1057 const TargetRegisterClass *RC = 1058 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1059 1060 unsigned ResultReg = 0; 1061 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1062 return 0; 1063 1064 return ResultReg; 1065 } 1066 1067 // Attempt to fast-select a floating-point-to-integer conversion. 1068 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1069 MVT DstVT, SrcVT; 1070 Type *DstTy = I->getType(); 1071 if (!isTypeLegal(DstTy, DstVT)) 1072 return false; 1073 1074 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1075 return false; 1076 1077 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1078 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1079 return false; 1080 1081 Value *Src = I->getOperand(0); 1082 Type *SrcTy = Src->getType(); 1083 if (!isTypeLegal(SrcTy, SrcVT)) 1084 return false; 1085 1086 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1087 return false; 1088 1089 unsigned SrcReg = getRegForValue(Src); 1090 if (SrcReg == 0) 1091 return false; 1092 1093 // Convert f32 to f64 if necessary. This is just a meaningless copy 1094 // to get the register class right. COPY_TO_REGCLASS is needed since 1095 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1096 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1097 if (InRC == &PPC::F4RCRegClass) { 1098 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1100 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1101 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1102 SrcReg = TmpReg; 1103 } 1104 1105 // Determine the opcode for the conversion, which takes place 1106 // entirely within FPRs. 1107 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1108 unsigned Opc; 1109 1110 if (DstVT == MVT::i32) 1111 if (IsSigned) 1112 Opc = PPC::FCTIWZ; 1113 else 1114 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1115 else 1116 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1117 1118 // Generate the convert. 1119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1120 .addReg(SrcReg); 1121 1122 // Now move the integer value from a float register to an integer register. 1123 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1124 if (IntReg == 0) 1125 return false; 1126 1127 updateValueMap(I, IntReg); 1128 return true; 1129 } 1130 1131 // Attempt to fast-select a binary integer operation that isn't already 1132 // handled automatically. 1133 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1134 EVT DestVT = TLI.getValueType(I->getType(), true); 1135 1136 // We can get here in the case when we have a binary operation on a non-legal 1137 // type and the target independent selector doesn't know how to handle it. 1138 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1139 return false; 1140 1141 // Look at the currently assigned register for this instruction 1142 // to determine the required register class. If there is no register, 1143 // make a conservative choice (don't assign R0). 1144 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1145 const TargetRegisterClass *RC = 1146 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1147 &PPC::GPRC_and_GPRC_NOR0RegClass); 1148 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1149 1150 unsigned Opc; 1151 switch (ISDOpcode) { 1152 default: return false; 1153 case ISD::ADD: 1154 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1155 break; 1156 case ISD::OR: 1157 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1158 break; 1159 case ISD::SUB: 1160 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1161 break; 1162 } 1163 1164 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1165 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1166 if (SrcReg1 == 0) return false; 1167 1168 // Handle case of small immediate operand. 1169 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1170 const APInt &CIVal = ConstInt->getValue(); 1171 int Imm = (int)CIVal.getSExtValue(); 1172 bool UseImm = true; 1173 if (isInt<16>(Imm)) { 1174 switch (Opc) { 1175 default: 1176 llvm_unreachable("Missing case!"); 1177 case PPC::ADD4: 1178 Opc = PPC::ADDI; 1179 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1180 break; 1181 case PPC::ADD8: 1182 Opc = PPC::ADDI8; 1183 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1184 break; 1185 case PPC::OR: 1186 Opc = PPC::ORI; 1187 break; 1188 case PPC::OR8: 1189 Opc = PPC::ORI8; 1190 break; 1191 case PPC::SUBF: 1192 if (Imm == -32768) 1193 UseImm = false; 1194 else { 1195 Opc = PPC::ADDI; 1196 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1197 Imm = -Imm; 1198 } 1199 break; 1200 case PPC::SUBF8: 1201 if (Imm == -32768) 1202 UseImm = false; 1203 else { 1204 Opc = PPC::ADDI8; 1205 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1206 Imm = -Imm; 1207 } 1208 break; 1209 } 1210 1211 if (UseImm) { 1212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1213 ResultReg) 1214 .addReg(SrcReg1) 1215 .addImm(Imm); 1216 updateValueMap(I, ResultReg); 1217 return true; 1218 } 1219 } 1220 } 1221 1222 // Reg-reg case. 1223 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1224 if (SrcReg2 == 0) return false; 1225 1226 // Reverse operands for subtract-from. 1227 if (ISDOpcode == ISD::SUB) 1228 std::swap(SrcReg1, SrcReg2); 1229 1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1231 .addReg(SrcReg1).addReg(SrcReg2); 1232 updateValueMap(I, ResultReg); 1233 return true; 1234 } 1235 1236 // Handle arguments to a call that we're attempting to fast-select. 1237 // Return false if the arguments are too complex for us at the moment. 1238 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1239 SmallVectorImpl<unsigned> &ArgRegs, 1240 SmallVectorImpl<MVT> &ArgVTs, 1241 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1242 SmallVectorImpl<unsigned> &RegArgs, 1243 CallingConv::ID CC, 1244 unsigned &NumBytes, 1245 bool IsVarArg) { 1246 SmallVector<CCValAssign, 16> ArgLocs; 1247 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1248 1249 // Reserve space for the linkage area on the stack. 1250 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1251 CCInfo.AllocateStack(LinkageSize, 8); 1252 1253 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1254 1255 // Bail out if we can't handle any of the arguments. 1256 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1257 CCValAssign &VA = ArgLocs[I]; 1258 MVT ArgVT = ArgVTs[VA.getValNo()]; 1259 1260 // Skip vector arguments for now, as well as long double and 1261 // uint128_t, and anything that isn't passed in a register. 1262 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1263 !VA.isRegLoc() || VA.needsCustom()) 1264 return false; 1265 1266 // Skip bit-converted arguments for now. 1267 if (VA.getLocInfo() == CCValAssign::BCvt) 1268 return false; 1269 } 1270 1271 // Get a count of how many bytes are to be pushed onto the stack. 1272 NumBytes = CCInfo.getNextStackOffset(); 1273 1274 // The prolog code of the callee may store up to 8 GPR argument registers to 1275 // the stack, allowing va_start to index over them in memory if its varargs. 1276 // Because we cannot tell if this is needed on the caller side, we have to 1277 // conservatively assume that it is needed. As such, make sure we have at 1278 // least enough stack space for the caller to store the 8 GPRs. 1279 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1280 NumBytes = std::max(NumBytes, LinkageSize + 64); 1281 1282 // Issue CALLSEQ_START. 1283 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1284 TII.get(TII.getCallFrameSetupOpcode())) 1285 .addImm(NumBytes); 1286 1287 // Prepare to assign register arguments. Every argument uses up a 1288 // GPR protocol register even if it's passed in a floating-point 1289 // register (unless we're using the fast calling convention). 1290 unsigned NextGPR = PPC::X3; 1291 unsigned NextFPR = PPC::F1; 1292 1293 // Process arguments. 1294 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1295 CCValAssign &VA = ArgLocs[I]; 1296 unsigned Arg = ArgRegs[VA.getValNo()]; 1297 MVT ArgVT = ArgVTs[VA.getValNo()]; 1298 1299 // Handle argument promotion and bitcasts. 1300 switch (VA.getLocInfo()) { 1301 default: 1302 llvm_unreachable("Unknown loc info!"); 1303 case CCValAssign::Full: 1304 break; 1305 case CCValAssign::SExt: { 1306 MVT DestVT = VA.getLocVT(); 1307 const TargetRegisterClass *RC = 1308 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1309 unsigned TmpReg = createResultReg(RC); 1310 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1311 llvm_unreachable("Failed to emit a sext!"); 1312 ArgVT = DestVT; 1313 Arg = TmpReg; 1314 break; 1315 } 1316 case CCValAssign::AExt: 1317 case CCValAssign::ZExt: { 1318 MVT DestVT = VA.getLocVT(); 1319 const TargetRegisterClass *RC = 1320 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1321 unsigned TmpReg = createResultReg(RC); 1322 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1323 llvm_unreachable("Failed to emit a zext!"); 1324 ArgVT = DestVT; 1325 Arg = TmpReg; 1326 break; 1327 } 1328 case CCValAssign::BCvt: { 1329 // FIXME: Not yet handled. 1330 llvm_unreachable("Should have bailed before getting here!"); 1331 break; 1332 } 1333 } 1334 1335 // Copy this argument to the appropriate register. 1336 unsigned ArgReg; 1337 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1338 ArgReg = NextFPR++; 1339 if (CC != CallingConv::Fast) 1340 ++NextGPR; 1341 } else 1342 ArgReg = NextGPR++; 1343 1344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1345 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1346 RegArgs.push_back(ArgReg); 1347 } 1348 1349 return true; 1350 } 1351 1352 // For a call that we've determined we can fast-select, finish the 1353 // call sequence and generate a copy to obtain the return value (if any). 1354 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1355 CallingConv::ID CC = CLI.CallConv; 1356 1357 // Issue CallSEQ_END. 1358 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1359 TII.get(TII.getCallFrameDestroyOpcode())) 1360 .addImm(NumBytes).addImm(0); 1361 1362 // Next, generate a copy to obtain the return value. 1363 // FIXME: No multi-register return values yet, though I don't foresee 1364 // any real difficulties there. 1365 if (RetVT != MVT::isVoid) { 1366 SmallVector<CCValAssign, 16> RVLocs; 1367 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1368 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1369 CCValAssign &VA = RVLocs[0]; 1370 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1371 assert(VA.isRegLoc() && "Can only return in registers!"); 1372 1373 MVT DestVT = VA.getValVT(); 1374 MVT CopyVT = DestVT; 1375 1376 // Ints smaller than a register still arrive in a full 64-bit 1377 // register, so make sure we recognize this. 1378 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1379 CopyVT = MVT::i64; 1380 1381 unsigned SourcePhysReg = VA.getLocReg(); 1382 unsigned ResultReg = 0; 1383 1384 if (RetVT == CopyVT) { 1385 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1386 ResultReg = createResultReg(CpyRC); 1387 1388 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1389 TII.get(TargetOpcode::COPY), ResultReg) 1390 .addReg(SourcePhysReg); 1391 1392 // If necessary, round the floating result to single precision. 1393 } else if (CopyVT == MVT::f64) { 1394 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1396 ResultReg).addReg(SourcePhysReg); 1397 1398 // If only the low half of a general register is needed, generate 1399 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1400 // used along the fast-isel path (not lowered), and downstream logic 1401 // also doesn't like a direct subreg copy on a physical reg.) 1402 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1403 ResultReg = createResultReg(&PPC::GPRCRegClass); 1404 // Convert physical register from G8RC to GPRC. 1405 SourcePhysReg -= PPC::X0 - PPC::R0; 1406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1407 TII.get(TargetOpcode::COPY), ResultReg) 1408 .addReg(SourcePhysReg); 1409 } 1410 1411 assert(ResultReg && "ResultReg unset!"); 1412 CLI.InRegs.push_back(SourcePhysReg); 1413 CLI.ResultReg = ResultReg; 1414 CLI.NumResultRegs = 1; 1415 } 1416 1417 return true; 1418 } 1419 1420 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1421 CallingConv::ID CC = CLI.CallConv; 1422 bool IsTailCall = CLI.IsTailCall; 1423 bool IsVarArg = CLI.IsVarArg; 1424 const Value *Callee = CLI.Callee; 1425 const char *SymName = CLI.SymName; 1426 1427 if (!Callee && !SymName) 1428 return false; 1429 1430 // Allow SelectionDAG isel to handle tail calls. 1431 if (IsTailCall) 1432 return false; 1433 1434 // Let SDISel handle vararg functions. 1435 if (IsVarArg) 1436 return false; 1437 1438 // Handle simple calls for now, with legal return types and 1439 // those that can be extended. 1440 Type *RetTy = CLI.RetTy; 1441 MVT RetVT; 1442 if (RetTy->isVoidTy()) 1443 RetVT = MVT::isVoid; 1444 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1445 RetVT != MVT::i8) 1446 return false; 1447 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1448 // We can't handle boolean returns when CR bits are in use. 1449 return false; 1450 1451 // FIXME: No multi-register return values yet. 1452 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1453 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1454 RetVT != MVT::f64) { 1455 SmallVector<CCValAssign, 16> RVLocs; 1456 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1457 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1458 if (RVLocs.size() > 1) 1459 return false; 1460 } 1461 1462 // Bail early if more than 8 arguments, as we only currently 1463 // handle arguments passed in registers. 1464 unsigned NumArgs = CLI.OutVals.size(); 1465 if (NumArgs > 8) 1466 return false; 1467 1468 // Set up the argument vectors. 1469 SmallVector<Value*, 8> Args; 1470 SmallVector<unsigned, 8> ArgRegs; 1471 SmallVector<MVT, 8> ArgVTs; 1472 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1473 1474 Args.reserve(NumArgs); 1475 ArgRegs.reserve(NumArgs); 1476 ArgVTs.reserve(NumArgs); 1477 ArgFlags.reserve(NumArgs); 1478 1479 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1480 // Only handle easy calls for now. It would be reasonably easy 1481 // to handle <= 8-byte structures passed ByVal in registers, but we 1482 // have to ensure they are right-justified in the register. 1483 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1484 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1485 return false; 1486 1487 Value *ArgValue = CLI.OutVals[i]; 1488 Type *ArgTy = ArgValue->getType(); 1489 MVT ArgVT; 1490 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1491 return false; 1492 1493 if (ArgVT.isVector()) 1494 return false; 1495 1496 unsigned Arg = getRegForValue(ArgValue); 1497 if (Arg == 0) 1498 return false; 1499 1500 Args.push_back(ArgValue); 1501 ArgRegs.push_back(Arg); 1502 ArgVTs.push_back(ArgVT); 1503 ArgFlags.push_back(Flags); 1504 } 1505 1506 // Process the arguments. 1507 SmallVector<unsigned, 8> RegArgs; 1508 unsigned NumBytes; 1509 1510 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1511 RegArgs, CC, NumBytes, IsVarArg)) 1512 return false; 1513 1514 MachineInstrBuilder MIB; 1515 // FIXME: No handling for function pointers yet. This requires 1516 // implementing the function descriptor (OPD) setup. 1517 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1518 if (!GV) { 1519 // patchpoints are a special case; they always dispatch to a pointer value. 1520 // However, we don't actually want to generate the indirect call sequence 1521 // here (that will be generated, as necessary, during asm printing), and 1522 // the call we generate here will be erased by FastISel::selectPatchpoint, 1523 // so don't try very hard... 1524 if (CLI.IsPatchPoint) 1525 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1526 else 1527 return false; 1528 } else { 1529 // Build direct call with NOP for TOC restore. 1530 // FIXME: We can and should optimize away the NOP for local calls. 1531 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1532 TII.get(PPC::BL8_NOP)); 1533 // Add callee. 1534 MIB.addGlobalAddress(GV); 1535 } 1536 1537 // Add implicit physical register uses to the call. 1538 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1539 MIB.addReg(RegArgs[II], RegState::Implicit); 1540 1541 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1542 // into the call. 1543 PPCFuncInfo->setUsesTOCBasePtr(); 1544 MIB.addReg(PPC::X2, RegState::Implicit); 1545 1546 // Add a register mask with the call-preserved registers. Proper 1547 // defs for return values will be added by setPhysRegsDeadExcept(). 1548 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1549 1550 CLI.Call = MIB; 1551 1552 // Finish off the call including any return values. 1553 return finishCall(RetVT, CLI, NumBytes); 1554 } 1555 1556 // Attempt to fast-select a return instruction. 1557 bool PPCFastISel::SelectRet(const Instruction *I) { 1558 1559 if (!FuncInfo.CanLowerReturn) 1560 return false; 1561 1562 const ReturnInst *Ret = cast<ReturnInst>(I); 1563 const Function &F = *I->getParent()->getParent(); 1564 1565 // Build a list of return value registers. 1566 SmallVector<unsigned, 4> RetRegs; 1567 CallingConv::ID CC = F.getCallingConv(); 1568 1569 if (Ret->getNumOperands() > 0) { 1570 SmallVector<ISD::OutputArg, 4> Outs; 1571 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1572 1573 // Analyze operands of the call, assigning locations to each operand. 1574 SmallVector<CCValAssign, 16> ValLocs; 1575 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1576 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1577 const Value *RV = Ret->getOperand(0); 1578 1579 // FIXME: Only one output register for now. 1580 if (ValLocs.size() > 1) 1581 return false; 1582 1583 // Special case for returning a constant integer of any size. 1584 // Materialize the constant as an i64 and copy it to the return 1585 // register. We still need to worry about properly extending the sign. E.g: 1586 // If the constant has only one bit, it means it is a boolean. Therefore 1587 // we can't use PPCMaterializeInt because it extends the sign which will 1588 // cause negations of the returned value to be incorrect as they are 1589 // implemented as the flip of the least significant bit. 1590 if (isa<ConstantInt>(*RV)) { 1591 const Constant *C = cast<Constant>(RV); 1592 1593 CCValAssign &VA = ValLocs[0]; 1594 1595 unsigned RetReg = VA.getLocReg(); 1596 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1597 VA.getLocInfo() == CCValAssign::SExt); 1598 1599 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1600 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1601 1602 RetRegs.push_back(RetReg); 1603 1604 } else { 1605 unsigned Reg = getRegForValue(RV); 1606 1607 if (Reg == 0) 1608 return false; 1609 1610 // Copy the result values into the output registers. 1611 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1612 1613 CCValAssign &VA = ValLocs[i]; 1614 assert(VA.isRegLoc() && "Can only return in registers!"); 1615 RetRegs.push_back(VA.getLocReg()); 1616 unsigned SrcReg = Reg + VA.getValNo(); 1617 1618 EVT RVEVT = TLI.getValueType(RV->getType()); 1619 if (!RVEVT.isSimple()) 1620 return false; 1621 MVT RVVT = RVEVT.getSimpleVT(); 1622 MVT DestVT = VA.getLocVT(); 1623 1624 if (RVVT != DestVT && RVVT != MVT::i8 && 1625 RVVT != MVT::i16 && RVVT != MVT::i32) 1626 return false; 1627 1628 if (RVVT != DestVT) { 1629 switch (VA.getLocInfo()) { 1630 default: 1631 llvm_unreachable("Unknown loc info!"); 1632 case CCValAssign::Full: 1633 llvm_unreachable("Full value assign but types don't match?"); 1634 case CCValAssign::AExt: 1635 case CCValAssign::ZExt: { 1636 const TargetRegisterClass *RC = 1637 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1638 unsigned TmpReg = createResultReg(RC); 1639 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1640 return false; 1641 SrcReg = TmpReg; 1642 break; 1643 } 1644 case CCValAssign::SExt: { 1645 const TargetRegisterClass *RC = 1646 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1647 unsigned TmpReg = createResultReg(RC); 1648 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1649 return false; 1650 SrcReg = TmpReg; 1651 break; 1652 } 1653 } 1654 } 1655 1656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1657 TII.get(TargetOpcode::COPY), RetRegs[i]) 1658 .addReg(SrcReg); 1659 } 1660 } 1661 } 1662 1663 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1664 TII.get(PPC::BLR8)); 1665 1666 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1667 MIB.addReg(RetRegs[i], RegState::Implicit); 1668 1669 return true; 1670 } 1671 1672 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1673 // signed and zero extensions are supported. Return false if we 1674 // can't handle it. 1675 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1676 unsigned DestReg, bool IsZExt) { 1677 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1678 return false; 1679 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1680 return false; 1681 1682 // Signed extensions use EXTSB, EXTSH, EXTSW. 1683 if (!IsZExt) { 1684 unsigned Opc; 1685 if (SrcVT == MVT::i8) 1686 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1687 else if (SrcVT == MVT::i16) 1688 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1689 else { 1690 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1691 Opc = PPC::EXTSW_32_64; 1692 } 1693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1694 .addReg(SrcReg); 1695 1696 // Unsigned 32-bit extensions use RLWINM. 1697 } else if (DestVT == MVT::i32) { 1698 unsigned MB; 1699 if (SrcVT == MVT::i8) 1700 MB = 24; 1701 else { 1702 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1703 MB = 16; 1704 } 1705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1706 DestReg) 1707 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1708 1709 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1710 } else { 1711 unsigned MB; 1712 if (SrcVT == MVT::i8) 1713 MB = 56; 1714 else if (SrcVT == MVT::i16) 1715 MB = 48; 1716 else 1717 MB = 32; 1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1719 TII.get(PPC::RLDICL_32_64), DestReg) 1720 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1721 } 1722 1723 return true; 1724 } 1725 1726 // Attempt to fast-select an indirect branch instruction. 1727 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1728 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1729 if (AddrReg == 0) 1730 return false; 1731 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1733 .addReg(AddrReg); 1734 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1735 1736 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1737 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1738 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1739 1740 return true; 1741 } 1742 1743 // Attempt to fast-select an integer truncate instruction. 1744 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1745 Value *Src = I->getOperand(0); 1746 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1747 EVT DestVT = TLI.getValueType(I->getType(), true); 1748 1749 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1750 return false; 1751 1752 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1753 return false; 1754 1755 unsigned SrcReg = getRegForValue(Src); 1756 if (!SrcReg) 1757 return false; 1758 1759 // The only interesting case is when we need to switch register classes. 1760 if (SrcVT == MVT::i64) { 1761 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1762 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1763 TII.get(TargetOpcode::COPY), 1764 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1765 SrcReg = ResultReg; 1766 } 1767 1768 updateValueMap(I, SrcReg); 1769 return true; 1770 } 1771 1772 // Attempt to fast-select an integer extend instruction. 1773 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1774 Type *DestTy = I->getType(); 1775 Value *Src = I->getOperand(0); 1776 Type *SrcTy = Src->getType(); 1777 1778 bool IsZExt = isa<ZExtInst>(I); 1779 unsigned SrcReg = getRegForValue(Src); 1780 if (!SrcReg) return false; 1781 1782 EVT SrcEVT, DestEVT; 1783 SrcEVT = TLI.getValueType(SrcTy, true); 1784 DestEVT = TLI.getValueType(DestTy, true); 1785 if (!SrcEVT.isSimple()) 1786 return false; 1787 if (!DestEVT.isSimple()) 1788 return false; 1789 1790 MVT SrcVT = SrcEVT.getSimpleVT(); 1791 MVT DestVT = DestEVT.getSimpleVT(); 1792 1793 // If we know the register class needed for the result of this 1794 // instruction, use it. Otherwise pick the register class of the 1795 // correct size that does not contain X0/R0, since we don't know 1796 // whether downstream uses permit that assignment. 1797 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1798 const TargetRegisterClass *RC = 1799 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1800 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1801 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1802 unsigned ResultReg = createResultReg(RC); 1803 1804 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1805 return false; 1806 1807 updateValueMap(I, ResultReg); 1808 return true; 1809 } 1810 1811 // Attempt to fast-select an instruction that wasn't handled by 1812 // the table-generated machinery. 1813 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1814 1815 switch (I->getOpcode()) { 1816 case Instruction::Load: 1817 return SelectLoad(I); 1818 case Instruction::Store: 1819 return SelectStore(I); 1820 case Instruction::Br: 1821 return SelectBranch(I); 1822 case Instruction::IndirectBr: 1823 return SelectIndirectBr(I); 1824 case Instruction::FPExt: 1825 return SelectFPExt(I); 1826 case Instruction::FPTrunc: 1827 return SelectFPTrunc(I); 1828 case Instruction::SIToFP: 1829 return SelectIToFP(I, /*IsSigned*/ true); 1830 case Instruction::UIToFP: 1831 return SelectIToFP(I, /*IsSigned*/ false); 1832 case Instruction::FPToSI: 1833 return SelectFPToI(I, /*IsSigned*/ true); 1834 case Instruction::FPToUI: 1835 return SelectFPToI(I, /*IsSigned*/ false); 1836 case Instruction::Add: 1837 return SelectBinaryIntOp(I, ISD::ADD); 1838 case Instruction::Or: 1839 return SelectBinaryIntOp(I, ISD::OR); 1840 case Instruction::Sub: 1841 return SelectBinaryIntOp(I, ISD::SUB); 1842 case Instruction::Call: 1843 return selectCall(I); 1844 case Instruction::Ret: 1845 return SelectRet(I); 1846 case Instruction::Trunc: 1847 return SelectTrunc(I); 1848 case Instruction::ZExt: 1849 case Instruction::SExt: 1850 return SelectIntExt(I); 1851 // Here add other flavors of Instruction::XXX that automated 1852 // cases don't catch. For example, switches are terminators 1853 // that aren't yet handled. 1854 default: 1855 break; 1856 } 1857 return false; 1858 } 1859 1860 // Materialize a floating-point constant into a register, and return 1861 // the register number (or zero if we failed to handle it). 1862 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1863 // No plans to handle long double here. 1864 if (VT != MVT::f32 && VT != MVT::f64) 1865 return 0; 1866 1867 // All FP constants are loaded from the constant pool. 1868 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1869 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1870 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1871 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1872 CodeModel::Model CModel = TM.getCodeModel(); 1873 1874 MachineMemOperand *MMO = 1875 FuncInfo.MF->getMachineMemOperand( 1876 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1877 (VT == MVT::f32) ? 4 : 8, Align); 1878 1879 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1880 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1881 1882 PPCFuncInfo->setUsesTOCBasePtr(); 1883 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1884 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1886 TmpReg) 1887 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1889 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1890 } else { 1891 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1892 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1893 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1894 // But for large code model, we must generate a LDtocL followed 1895 // by the LF[SD]. 1896 if (CModel == CodeModel::Large) { 1897 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1899 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1901 .addImm(0).addReg(TmpReg2); 1902 } else 1903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1904 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1905 .addReg(TmpReg) 1906 .addMemOperand(MMO); 1907 } 1908 1909 return DestReg; 1910 } 1911 1912 // Materialize the address of a global value into a register, and return 1913 // the register number (or zero if we failed to handle it). 1914 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1915 assert(VT == MVT::i64 && "Non-address!"); 1916 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1917 unsigned DestReg = createResultReg(RC); 1918 1919 // Global values may be plain old object addresses, TLS object 1920 // addresses, constant pool entries, or jump tables. How we generate 1921 // code for these may depend on small, medium, or large code model. 1922 CodeModel::Model CModel = TM.getCodeModel(); 1923 1924 // FIXME: Jump tables are not yet required because fast-isel doesn't 1925 // handle switches; if that changes, we need them as well. For now, 1926 // what follows assumes everything's a generic (or TLS) global address. 1927 1928 // FIXME: We don't yet handle the complexity of TLS. 1929 if (GV->isThreadLocal()) 1930 return 0; 1931 1932 PPCFuncInfo->setUsesTOCBasePtr(); 1933 // For small code model, generate a simple TOC load. 1934 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1936 DestReg) 1937 .addGlobalAddress(GV) 1938 .addReg(PPC::X2); 1939 else { 1940 // If the address is an externally defined symbol, a symbol with common 1941 // or externally available linkage, a non-local function address, or a 1942 // jump table address (not yet needed), or if we are generating code 1943 // for large code model, we generate: 1944 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1945 // Otherwise we generate: 1946 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1947 // Either way, start with the ADDIStocHA: 1948 unsigned HighPartReg = createResultReg(RC); 1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1950 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1951 1952 // If/when switches are implemented, jump tables should be handled 1953 // on the "if" path here. 1954 if (CModel == CodeModel::Large || 1955 (GV->getType()->getElementType()->isFunctionTy() && 1956 (GV->isDeclaration() || GV->isWeakForLinker())) || 1957 GV->isDeclaration() || GV->hasCommonLinkage() || 1958 GV->hasAvailableExternallyLinkage()) 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1960 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1961 else 1962 // Otherwise generate the ADDItocL. 1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1964 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1965 } 1966 1967 return DestReg; 1968 } 1969 1970 // Materialize a 32-bit integer constant into a register, and return 1971 // the register number (or zero if we failed to handle it). 1972 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1973 const TargetRegisterClass *RC) { 1974 unsigned Lo = Imm & 0xFFFF; 1975 unsigned Hi = (Imm >> 16) & 0xFFFF; 1976 1977 unsigned ResultReg = createResultReg(RC); 1978 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1979 1980 if (isInt<16>(Imm)) 1981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1982 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1983 .addImm(Imm); 1984 else if (Lo) { 1985 // Both Lo and Hi have nonzero bits. 1986 unsigned TmpReg = createResultReg(RC); 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1988 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1989 .addImm(Hi); 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1991 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1992 .addReg(TmpReg).addImm(Lo); 1993 } else 1994 // Just Hi bits. 1995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1996 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1997 .addImm(Hi); 1998 1999 return ResultReg; 2000 } 2001 2002 // Materialize a 64-bit integer constant into a register, and return 2003 // the register number (or zero if we failed to handle it). 2004 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2005 const TargetRegisterClass *RC) { 2006 unsigned Remainder = 0; 2007 unsigned Shift = 0; 2008 2009 // If the value doesn't fit in 32 bits, see if we can shift it 2010 // so that it fits in 32 bits. 2011 if (!isInt<32>(Imm)) { 2012 Shift = countTrailingZeros<uint64_t>(Imm); 2013 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2014 2015 if (isInt<32>(ImmSh)) 2016 Imm = ImmSh; 2017 else { 2018 Remainder = Imm; 2019 Shift = 32; 2020 Imm >>= 32; 2021 } 2022 } 2023 2024 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2025 // (if not shifted). 2026 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2027 if (!Shift) 2028 return TmpReg1; 2029 2030 // If upper 32 bits were not zero, we've built them and need to shift 2031 // them into place. 2032 unsigned TmpReg2; 2033 if (Imm) { 2034 TmpReg2 = createResultReg(RC); 2035 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2036 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2037 } else 2038 TmpReg2 = TmpReg1; 2039 2040 unsigned TmpReg3, Hi, Lo; 2041 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2042 TmpReg3 = createResultReg(RC); 2043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2044 TmpReg3).addReg(TmpReg2).addImm(Hi); 2045 } else 2046 TmpReg3 = TmpReg2; 2047 2048 if ((Lo = Remainder & 0xFFFF)) { 2049 unsigned ResultReg = createResultReg(RC); 2050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2051 ResultReg).addReg(TmpReg3).addImm(Lo); 2052 return ResultReg; 2053 } 2054 2055 return TmpReg3; 2056 } 2057 2058 2059 // Materialize an integer constant into a register, and return 2060 // the register number (or zero if we failed to handle it). 2061 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2062 bool UseSExt) { 2063 // If we're using CR bit registers for i1 values, handle that as a special 2064 // case first. 2065 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2066 const ConstantInt *CI = cast<ConstantInt>(C); 2067 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2069 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2070 return ImmReg; 2071 } 2072 2073 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2074 VT != MVT::i8 && VT != MVT::i1) 2075 return 0; 2076 2077 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2078 &PPC::GPRCRegClass); 2079 2080 // If the constant is in range, use a load-immediate. 2081 const ConstantInt *CI = cast<ConstantInt>(C); 2082 if (isInt<16>(CI->getSExtValue())) { 2083 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2084 unsigned ImmReg = createResultReg(RC); 2085 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2086 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2087 return ImmReg; 2088 } 2089 2090 // Construct the constant piecewise. 2091 int64_t Imm = CI->getZExtValue(); 2092 2093 if (VT == MVT::i64) 2094 return PPCMaterialize64BitInt(Imm, RC); 2095 else if (VT == MVT::i32) 2096 return PPCMaterialize32BitInt(Imm, RC); 2097 2098 return 0; 2099 } 2100 2101 // Materialize a constant into a register, and return the register 2102 // number (or zero if we failed to handle it). 2103 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2104 EVT CEVT = TLI.getValueType(C->getType(), true); 2105 2106 // Only handle simple types. 2107 if (!CEVT.isSimple()) return 0; 2108 MVT VT = CEVT.getSimpleVT(); 2109 2110 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2111 return PPCMaterializeFP(CFP, VT); 2112 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2113 return PPCMaterializeGV(GV, VT); 2114 else if (isa<ConstantInt>(C)) 2115 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2116 2117 return 0; 2118 } 2119 2120 // Materialize the address created by an alloca into a register, and 2121 // return the register number (or zero if we failed to handle it). 2122 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2123 // Don't handle dynamic allocas. 2124 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2125 2126 MVT VT; 2127 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2128 2129 DenseMap<const AllocaInst*, int>::iterator SI = 2130 FuncInfo.StaticAllocaMap.find(AI); 2131 2132 if (SI != FuncInfo.StaticAllocaMap.end()) { 2133 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2135 ResultReg).addFrameIndex(SI->second).addImm(0); 2136 return ResultReg; 2137 } 2138 2139 return 0; 2140 } 2141 2142 // Fold loads into extends when possible. 2143 // FIXME: We can have multiple redundant extend/trunc instructions 2144 // following a load. The folding only picks up one. Extend this 2145 // to check subsequent instructions for the same pattern and remove 2146 // them. Thus ResultReg should be the def reg for the last redundant 2147 // instruction in a chain, and all intervening instructions can be 2148 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2149 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2150 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2151 const LoadInst *LI) { 2152 // Verify we have a legal type before going any further. 2153 MVT VT; 2154 if (!isLoadTypeLegal(LI->getType(), VT)) 2155 return false; 2156 2157 // Combine load followed by zero- or sign-extend. 2158 bool IsZExt = false; 2159 switch(MI->getOpcode()) { 2160 default: 2161 return false; 2162 2163 case PPC::RLDICL: 2164 case PPC::RLDICL_32_64: { 2165 IsZExt = true; 2166 unsigned MB = MI->getOperand(3).getImm(); 2167 if ((VT == MVT::i8 && MB <= 56) || 2168 (VT == MVT::i16 && MB <= 48) || 2169 (VT == MVT::i32 && MB <= 32)) 2170 break; 2171 return false; 2172 } 2173 2174 case PPC::RLWINM: 2175 case PPC::RLWINM8: { 2176 IsZExt = true; 2177 unsigned MB = MI->getOperand(3).getImm(); 2178 if ((VT == MVT::i8 && MB <= 24) || 2179 (VT == MVT::i16 && MB <= 16)) 2180 break; 2181 return false; 2182 } 2183 2184 case PPC::EXTSB: 2185 case PPC::EXTSB8: 2186 case PPC::EXTSB8_32_64: 2187 /* There is no sign-extending load-byte instruction. */ 2188 return false; 2189 2190 case PPC::EXTSH: 2191 case PPC::EXTSH8: 2192 case PPC::EXTSH8_32_64: { 2193 if (VT != MVT::i16 && VT != MVT::i8) 2194 return false; 2195 break; 2196 } 2197 2198 case PPC::EXTSW: 2199 case PPC::EXTSW_32_64: { 2200 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2201 return false; 2202 break; 2203 } 2204 } 2205 2206 // See if we can handle this address. 2207 Address Addr; 2208 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2209 return false; 2210 2211 unsigned ResultReg = MI->getOperand(0).getReg(); 2212 2213 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2214 return false; 2215 2216 MI->eraseFromParent(); 2217 return true; 2218 } 2219 2220 // Attempt to lower call arguments in a faster way than done by 2221 // the selection DAG code. 2222 bool PPCFastISel::fastLowerArguments() { 2223 // Defer to normal argument lowering for now. It's reasonably 2224 // efficient. Consider doing something like ARM to handle the 2225 // case where all args fit in registers, no varargs, no float 2226 // or vector args. 2227 return false; 2228 } 2229 2230 // Handle materializing integer constants into a register. This is not 2231 // automatically generated for PowerPC, so must be explicitly created here. 2232 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2233 2234 if (Opc != ISD::Constant) 2235 return 0; 2236 2237 // If we're using CR bit registers for i1 values, handle that as a special 2238 // case first. 2239 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2240 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2242 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2243 return ImmReg; 2244 } 2245 2246 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2247 VT != MVT::i8 && VT != MVT::i1) 2248 return 0; 2249 2250 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2251 &PPC::GPRCRegClass); 2252 if (VT == MVT::i64) 2253 return PPCMaterialize64BitInt(Imm, RC); 2254 else 2255 return PPCMaterialize32BitInt(Imm, RC); 2256 } 2257 2258 // Override for ADDI and ADDI8 to set the correct register class 2259 // on RHS operand 0. The automatic infrastructure naively assumes 2260 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2261 // for these cases. At the moment, none of the other automatically 2262 // generated RI instructions require special treatment. However, once 2263 // SelectSelect is implemented, "isel" requires similar handling. 2264 // 2265 // Also be conservative about the output register class. Avoid 2266 // assigning R0 or X0 to the output register for GPRC and G8RC 2267 // register classes, as any such result could be used in ADDI, etc., 2268 // where those regs have another meaning. 2269 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2270 const TargetRegisterClass *RC, 2271 unsigned Op0, bool Op0IsKill, 2272 uint64_t Imm) { 2273 if (MachineInstOpcode == PPC::ADDI) 2274 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2275 else if (MachineInstOpcode == PPC::ADDI8) 2276 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2277 2278 const TargetRegisterClass *UseRC = 2279 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2280 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2281 2282 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2283 Op0, Op0IsKill, Imm); 2284 } 2285 2286 // Override for instructions with one register operand to avoid use of 2287 // R0/X0. The automatic infrastructure isn't aware of the context so 2288 // we must be conservative. 2289 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2290 const TargetRegisterClass* RC, 2291 unsigned Op0, bool Op0IsKill) { 2292 const TargetRegisterClass *UseRC = 2293 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2294 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2295 2296 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2297 } 2298 2299 // Override for instructions with two register operands to avoid use 2300 // of R0/X0. The automatic infrastructure isn't aware of the context 2301 // so we must be conservative. 2302 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2303 const TargetRegisterClass* RC, 2304 unsigned Op0, bool Op0IsKill, 2305 unsigned Op1, bool Op1IsKill) { 2306 const TargetRegisterClass *UseRC = 2307 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2308 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2309 2310 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2311 Op1, Op1IsKill); 2312 } 2313 2314 namespace llvm { 2315 // Create the fast instruction selector for PowerPC64 ELF. 2316 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2317 const TargetLibraryInfo *LibInfo) { 2318 // Only available on 64-bit ELF for now. 2319 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2320 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2321 return new PPCFastISel(FuncInfo, LibInfo); 2322 return nullptr; 2323 } 2324 } 2325