1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "ppcfastisel" 17 #include "PPC.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "PPCISelLowering.h" 20 #include "PPCSubtarget.h" 21 #include "PPCTargetMachine.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 //===----------------------------------------------------------------------===// 41 // 42 // TBD: 43 // FastLowerArguments: Handle simple cases. 44 // PPCMaterializeGV: Handle TLS. 45 // SelectCall: Handle function pointers. 46 // SelectCall: Handle multi-register return values. 47 // SelectCall: Optimize away nops for local calls. 48 // processCallArgs: Handle bit-converted arguments. 49 // finishCall: Handle multi-register return values. 50 // PPCComputeAddress: Handle parameter references as FrameIndex's. 51 // PPCEmitCmp: Handle immediate as operand 1. 52 // SelectCall: Handle small byval arguments. 53 // SelectIntrinsicCall: Implement. 54 // SelectSelect: Implement. 55 // Consider factoring isTypeLegal into the base class. 56 // Implement switches and jump tables. 57 // 58 //===----------------------------------------------------------------------===// 59 using namespace llvm; 60 61 namespace { 62 63 typedef struct Address { 64 enum { 65 RegBase, 66 FrameIndexBase 67 } BaseType; 68 69 union { 70 unsigned Reg; 71 int FI; 72 } Base; 73 74 long Offset; 75 76 // Innocuous defaults for our address. 77 Address() 78 : BaseType(RegBase), Offset(0) { 79 Base.Reg = 0; 80 } 81 } Address; 82 83 class PPCFastISel final : public FastISel { 84 85 const TargetMachine &TM; 86 const TargetInstrInfo &TII; 87 const TargetLowering &TLI; 88 const PPCSubtarget &PPCSubTarget; 89 LLVMContext *Context; 90 91 public: 92 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 93 const TargetLibraryInfo *LibInfo) 94 : FastISel(FuncInfo, LibInfo), 95 TM(FuncInfo.MF->getTarget()), 96 TII(*TM.getInstrInfo()), 97 TLI(*TM.getTargetLowering()), 98 PPCSubTarget( 99 *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl()) 100 ), 101 Context(&FuncInfo.Fn->getContext()) { } 102 103 // Backend specific FastISel code. 104 private: 105 virtual bool TargetSelectInstruction(const Instruction *I); 106 virtual unsigned TargetMaterializeConstant(const Constant *C); 107 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 108 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 109 const LoadInst *LI); 110 virtual bool FastLowerArguments(); 111 virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm); 112 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 uint64_t Imm); 116 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill); 119 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill, 122 unsigned Op1, bool Op1IsKill); 123 124 // Instruction selection routines. 125 private: 126 bool SelectLoad(const Instruction *I); 127 bool SelectStore(const Instruction *I); 128 bool SelectBranch(const Instruction *I); 129 bool SelectIndirectBr(const Instruction *I); 130 bool SelectCmp(const Instruction *I); 131 bool SelectFPExt(const Instruction *I); 132 bool SelectFPTrunc(const Instruction *I); 133 bool SelectIToFP(const Instruction *I, bool IsSigned); 134 bool SelectFPToI(const Instruction *I, bool IsSigned); 135 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 136 bool SelectCall(const Instruction *I); 137 bool SelectRet(const Instruction *I); 138 bool SelectTrunc(const Instruction *I); 139 bool SelectIntExt(const Instruction *I); 140 141 // Utility routines. 142 private: 143 bool isTypeLegal(Type *Ty, MVT &VT); 144 bool isLoadTypeLegal(Type *Ty, MVT &VT); 145 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 146 bool isZExt, unsigned DestReg); 147 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 148 const TargetRegisterClass *RC, bool IsZExt = true, 149 unsigned FP64LoadOpc = PPC::LFD); 150 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 151 bool PPCComputeAddress(const Value *Obj, Address &Addr); 152 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 153 unsigned &IndexReg); 154 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 155 unsigned DestReg, bool IsZExt); 156 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 157 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 158 unsigned PPCMaterializeInt(const Constant *C, MVT VT); 159 unsigned PPCMaterialize32BitInt(int64_t Imm, 160 const TargetRegisterClass *RC); 161 unsigned PPCMaterialize64BitInt(int64_t Imm, 162 const TargetRegisterClass *RC); 163 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 164 unsigned SrcReg, bool IsSigned); 165 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 166 167 // Call handling routines. 168 private: 169 bool processCallArgs(SmallVectorImpl<Value*> &Args, 170 SmallVectorImpl<unsigned> &ArgRegs, 171 SmallVectorImpl<MVT> &ArgVTs, 172 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 173 SmallVectorImpl<unsigned> &RegArgs, 174 CallingConv::ID CC, 175 unsigned &NumBytes, 176 bool IsVarArg); 177 void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 178 const Instruction *I, CallingConv::ID CC, 179 unsigned &NumBytes, bool IsVarArg); 180 CCAssignFn *usePPC32CCs(unsigned Flag); 181 182 private: 183 #include "PPCGenFastISel.inc" 184 185 }; 186 187 } // end anonymous namespace 188 189 #include "PPCGenCallingConv.inc" 190 191 // Function whose sole purpose is to kill compiler warnings 192 // stemming from unused functions included from PPCGenCallingConv.inc. 193 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 194 if (Flag == 1) 195 return CC_PPC32_SVR4; 196 else if (Flag == 2) 197 return CC_PPC32_SVR4_ByVal; 198 else if (Flag == 3) 199 return CC_PPC32_SVR4_VarArg; 200 else 201 return RetCC_PPC; 202 } 203 204 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 205 switch (Pred) { 206 // These are not representable with any single compare. 207 case CmpInst::FCMP_FALSE: 208 case CmpInst::FCMP_UEQ: 209 case CmpInst::FCMP_UGT: 210 case CmpInst::FCMP_UGE: 211 case CmpInst::FCMP_ULT: 212 case CmpInst::FCMP_ULE: 213 case CmpInst::FCMP_UNE: 214 case CmpInst::FCMP_TRUE: 215 default: 216 return Optional<PPC::Predicate>(); 217 218 case CmpInst::FCMP_OEQ: 219 case CmpInst::ICMP_EQ: 220 return PPC::PRED_EQ; 221 222 case CmpInst::FCMP_OGT: 223 case CmpInst::ICMP_UGT: 224 case CmpInst::ICMP_SGT: 225 return PPC::PRED_GT; 226 227 case CmpInst::FCMP_OGE: 228 case CmpInst::ICMP_UGE: 229 case CmpInst::ICMP_SGE: 230 return PPC::PRED_GE; 231 232 case CmpInst::FCMP_OLT: 233 case CmpInst::ICMP_ULT: 234 case CmpInst::ICMP_SLT: 235 return PPC::PRED_LT; 236 237 case CmpInst::FCMP_OLE: 238 case CmpInst::ICMP_ULE: 239 case CmpInst::ICMP_SLE: 240 return PPC::PRED_LE; 241 242 case CmpInst::FCMP_ONE: 243 case CmpInst::ICMP_NE: 244 return PPC::PRED_NE; 245 246 case CmpInst::FCMP_ORD: 247 return PPC::PRED_NU; 248 249 case CmpInst::FCMP_UNO: 250 return PPC::PRED_UN; 251 } 252 } 253 254 // Determine whether the type Ty is simple enough to be handled by 255 // fast-isel, and return its equivalent machine type in VT. 256 // FIXME: Copied directly from ARM -- factor into base class? 257 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 258 EVT Evt = TLI.getValueType(Ty, true); 259 260 // Only handle simple types. 261 if (Evt == MVT::Other || !Evt.isSimple()) return false; 262 VT = Evt.getSimpleVT(); 263 264 // Handle all legal types, i.e. a register that will directly hold this 265 // value. 266 return TLI.isTypeLegal(VT); 267 } 268 269 // Determine whether the type Ty is simple enough to be handled by 270 // fast-isel as a load target, and return its equivalent machine type in VT. 271 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 272 if (isTypeLegal(Ty, VT)) return true; 273 274 // If this is a type than can be sign or zero-extended to a basic operation 275 // go ahead and accept it now. 276 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 277 return true; 278 } 279 280 return false; 281 } 282 283 // Given a value Obj, create an Address object Addr that represents its 284 // address. Return false if we can't handle it. 285 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 286 const User *U = NULL; 287 unsigned Opcode = Instruction::UserOp1; 288 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 289 // Don't walk into other basic blocks unless the object is an alloca from 290 // another block, otherwise it may not have a virtual register assigned. 291 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 292 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 293 Opcode = I->getOpcode(); 294 U = I; 295 } 296 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 297 Opcode = C->getOpcode(); 298 U = C; 299 } 300 301 switch (Opcode) { 302 default: 303 break; 304 case Instruction::BitCast: 305 // Look through bitcasts. 306 return PPCComputeAddress(U->getOperand(0), Addr); 307 case Instruction::IntToPtr: 308 // Look past no-op inttoptrs. 309 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 310 return PPCComputeAddress(U->getOperand(0), Addr); 311 break; 312 case Instruction::PtrToInt: 313 // Look past no-op ptrtoints. 314 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 315 return PPCComputeAddress(U->getOperand(0), Addr); 316 break; 317 case Instruction::GetElementPtr: { 318 Address SavedAddr = Addr; 319 long TmpOffset = Addr.Offset; 320 321 // Iterate through the GEP folding the constants into offsets where 322 // we can. 323 gep_type_iterator GTI = gep_type_begin(U); 324 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 325 II != IE; ++II, ++GTI) { 326 const Value *Op = *II; 327 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 328 const StructLayout *SL = DL.getStructLayout(STy); 329 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 330 TmpOffset += SL->getElementOffset(Idx); 331 } else { 332 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 333 for (;;) { 334 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 335 // Constant-offset addressing. 336 TmpOffset += CI->getSExtValue() * S; 337 break; 338 } 339 if (canFoldAddIntoGEP(U, Op)) { 340 // A compatible add with a constant operand. Fold the constant. 341 ConstantInt *CI = 342 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 343 TmpOffset += CI->getSExtValue() * S; 344 // Iterate on the other operand. 345 Op = cast<AddOperator>(Op)->getOperand(0); 346 continue; 347 } 348 // Unsupported 349 goto unsupported_gep; 350 } 351 } 352 } 353 354 // Try to grab the base operand now. 355 Addr.Offset = TmpOffset; 356 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 357 358 // We failed, restore everything and try the other options. 359 Addr = SavedAddr; 360 361 unsupported_gep: 362 break; 363 } 364 case Instruction::Alloca: { 365 const AllocaInst *AI = cast<AllocaInst>(Obj); 366 DenseMap<const AllocaInst*, int>::iterator SI = 367 FuncInfo.StaticAllocaMap.find(AI); 368 if (SI != FuncInfo.StaticAllocaMap.end()) { 369 Addr.BaseType = Address::FrameIndexBase; 370 Addr.Base.FI = SI->second; 371 return true; 372 } 373 break; 374 } 375 } 376 377 // FIXME: References to parameters fall through to the behavior 378 // below. They should be able to reference a frame index since 379 // they are stored to the stack, so we can get "ld rx, offset(r1)" 380 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 381 // just contain the parameter. Try to handle this with a FI. 382 383 // Try to get this in a register if nothing else has worked. 384 if (Addr.Base.Reg == 0) 385 Addr.Base.Reg = getRegForValue(Obj); 386 387 // Prevent assignment of base register to X0, which is inappropriate 388 // for loads and stores alike. 389 if (Addr.Base.Reg != 0) 390 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 391 392 return Addr.Base.Reg != 0; 393 } 394 395 // Fix up some addresses that can't be used directly. For example, if 396 // an offset won't fit in an instruction field, we may need to move it 397 // into an index register. 398 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 399 unsigned &IndexReg) { 400 401 // Check whether the offset fits in the instruction field. 402 if (!isInt<16>(Addr.Offset)) 403 UseOffset = false; 404 405 // If this is a stack pointer and the offset needs to be simplified then 406 // put the alloca address into a register, set the base type back to 407 // register and continue. This should almost never happen. 408 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 409 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 411 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 412 Addr.Base.Reg = ResultReg; 413 Addr.BaseType = Address::RegBase; 414 } 415 416 if (!UseOffset) { 417 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 418 : Type::getInt64Ty(*Context)); 419 const ConstantInt *Offset = 420 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 421 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 422 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 423 } 424 } 425 426 // Emit a load instruction if possible, returning true if we succeeded, 427 // otherwise false. See commentary below for how the register class of 428 // the load is determined. 429 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 430 const TargetRegisterClass *RC, 431 bool IsZExt, unsigned FP64LoadOpc) { 432 unsigned Opc; 433 bool UseOffset = true; 434 435 // If ResultReg is given, it determines the register class of the load. 436 // Otherwise, RC is the register class to use. If the result of the 437 // load isn't anticipated in this block, both may be zero, in which 438 // case we must make a conservative guess. In particular, don't assign 439 // R0 or X0 to the result register, as the result may be used in a load, 440 // store, add-immediate, or isel that won't permit this. (Though 441 // perhaps the spill and reload of live-exit values would handle this?) 442 const TargetRegisterClass *UseRC = 443 (ResultReg ? MRI.getRegClass(ResultReg) : 444 (RC ? RC : 445 (VT == MVT::f64 ? &PPC::F8RCRegClass : 446 (VT == MVT::f32 ? &PPC::F4RCRegClass : 447 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 448 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 449 450 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 451 452 switch (VT.SimpleTy) { 453 default: // e.g., vector types not handled 454 return false; 455 case MVT::i8: 456 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 457 break; 458 case MVT::i16: 459 Opc = (IsZExt ? 460 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 461 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 462 break; 463 case MVT::i32: 464 Opc = (IsZExt ? 465 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 466 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 467 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 468 UseOffset = false; 469 break; 470 case MVT::i64: 471 Opc = PPC::LD; 472 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 473 "64-bit load with 32-bit target??"); 474 UseOffset = ((Addr.Offset & 3) == 0); 475 break; 476 case MVT::f32: 477 Opc = PPC::LFS; 478 break; 479 case MVT::f64: 480 Opc = FP64LoadOpc; 481 break; 482 } 483 484 // If necessary, materialize the offset into a register and use 485 // the indexed form. Also handle stack pointers with special needs. 486 unsigned IndexReg = 0; 487 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 488 if (ResultReg == 0) 489 ResultReg = createResultReg(UseRC); 490 491 // Note: If we still have a frame index here, we know the offset is 492 // in range, as otherwise PPCSimplifyAddress would have converted it 493 // into a RegBase. 494 if (Addr.BaseType == Address::FrameIndexBase) { 495 496 MachineMemOperand *MMO = 497 FuncInfo.MF->getMachineMemOperand( 498 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 499 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 500 MFI.getObjectAlignment(Addr.Base.FI)); 501 502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 503 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 504 505 // Base reg with offset in range. 506 } else if (UseOffset) { 507 508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 509 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 510 511 // Indexed form. 512 } else { 513 // Get the RR opcode corresponding to the RI one. FIXME: It would be 514 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 515 // is hard to get at. 516 switch (Opc) { 517 default: llvm_unreachable("Unexpected opcode!"); 518 case PPC::LBZ: Opc = PPC::LBZX; break; 519 case PPC::LBZ8: Opc = PPC::LBZX8; break; 520 case PPC::LHZ: Opc = PPC::LHZX; break; 521 case PPC::LHZ8: Opc = PPC::LHZX8; break; 522 case PPC::LHA: Opc = PPC::LHAX; break; 523 case PPC::LHA8: Opc = PPC::LHAX8; break; 524 case PPC::LWZ: Opc = PPC::LWZX; break; 525 case PPC::LWZ8: Opc = PPC::LWZX8; break; 526 case PPC::LWA: Opc = PPC::LWAX; break; 527 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 528 case PPC::LD: Opc = PPC::LDX; break; 529 case PPC::LFS: Opc = PPC::LFSX; break; 530 case PPC::LFD: Opc = PPC::LFDX; break; 531 } 532 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 533 .addReg(Addr.Base.Reg).addReg(IndexReg); 534 } 535 536 return true; 537 } 538 539 // Attempt to fast-select a load instruction. 540 bool PPCFastISel::SelectLoad(const Instruction *I) { 541 // FIXME: No atomic loads are supported. 542 if (cast<LoadInst>(I)->isAtomic()) 543 return false; 544 545 // Verify we have a legal type before going any further. 546 MVT VT; 547 if (!isLoadTypeLegal(I->getType(), VT)) 548 return false; 549 550 // See if we can handle this address. 551 Address Addr; 552 if (!PPCComputeAddress(I->getOperand(0), Addr)) 553 return false; 554 555 // Look at the currently assigned register for this instruction 556 // to determine the required register class. This is necessary 557 // to constrain RA from using R0/X0 when this is not legal. 558 unsigned AssignedReg = FuncInfo.ValueMap[I]; 559 const TargetRegisterClass *RC = 560 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 561 562 unsigned ResultReg = 0; 563 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 564 return false; 565 UpdateValueMap(I, ResultReg); 566 return true; 567 } 568 569 // Emit a store instruction to store SrcReg at Addr. 570 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 571 assert(SrcReg && "Nothing to store!"); 572 unsigned Opc; 573 bool UseOffset = true; 574 575 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 576 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 577 578 switch (VT.SimpleTy) { 579 default: // e.g., vector types not handled 580 return false; 581 case MVT::i8: 582 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 583 break; 584 case MVT::i16: 585 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 586 break; 587 case MVT::i32: 588 assert(Is32BitInt && "Not GPRC for i32??"); 589 Opc = PPC::STW; 590 break; 591 case MVT::i64: 592 Opc = PPC::STD; 593 UseOffset = ((Addr.Offset & 3) == 0); 594 break; 595 case MVT::f32: 596 Opc = PPC::STFS; 597 break; 598 case MVT::f64: 599 Opc = PPC::STFD; 600 break; 601 } 602 603 // If necessary, materialize the offset into a register and use 604 // the indexed form. Also handle stack pointers with special needs. 605 unsigned IndexReg = 0; 606 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 607 608 // Note: If we still have a frame index here, we know the offset is 609 // in range, as otherwise PPCSimplifyAddress would have converted it 610 // into a RegBase. 611 if (Addr.BaseType == Address::FrameIndexBase) { 612 MachineMemOperand *MMO = 613 FuncInfo.MF->getMachineMemOperand( 614 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 615 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 616 MFI.getObjectAlignment(Addr.Base.FI)); 617 618 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 619 .addReg(SrcReg) 620 .addImm(Addr.Offset) 621 .addFrameIndex(Addr.Base.FI) 622 .addMemOperand(MMO); 623 624 // Base reg with offset in range. 625 } else if (UseOffset) 626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 627 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 628 629 // Indexed form. 630 else { 631 // Get the RR opcode corresponding to the RI one. FIXME: It would be 632 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 633 // is hard to get at. 634 switch (Opc) { 635 default: llvm_unreachable("Unexpected opcode!"); 636 case PPC::STB: Opc = PPC::STBX; break; 637 case PPC::STH : Opc = PPC::STHX; break; 638 case PPC::STW : Opc = PPC::STWX; break; 639 case PPC::STB8: Opc = PPC::STBX8; break; 640 case PPC::STH8: Opc = PPC::STHX8; break; 641 case PPC::STW8: Opc = PPC::STWX8; break; 642 case PPC::STD: Opc = PPC::STDX; break; 643 case PPC::STFS: Opc = PPC::STFSX; break; 644 case PPC::STFD: Opc = PPC::STFDX; break; 645 } 646 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 647 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 648 } 649 650 return true; 651 } 652 653 // Attempt to fast-select a store instruction. 654 bool PPCFastISel::SelectStore(const Instruction *I) { 655 Value *Op0 = I->getOperand(0); 656 unsigned SrcReg = 0; 657 658 // FIXME: No atomics loads are supported. 659 if (cast<StoreInst>(I)->isAtomic()) 660 return false; 661 662 // Verify we have a legal type before going any further. 663 MVT VT; 664 if (!isLoadTypeLegal(Op0->getType(), VT)) 665 return false; 666 667 // Get the value to be stored into a register. 668 SrcReg = getRegForValue(Op0); 669 if (SrcReg == 0) 670 return false; 671 672 // See if we can handle this address. 673 Address Addr; 674 if (!PPCComputeAddress(I->getOperand(1), Addr)) 675 return false; 676 677 if (!PPCEmitStore(VT, SrcReg, Addr)) 678 return false; 679 680 return true; 681 } 682 683 // Attempt to fast-select a branch instruction. 684 bool PPCFastISel::SelectBranch(const Instruction *I) { 685 const BranchInst *BI = cast<BranchInst>(I); 686 MachineBasicBlock *BrBB = FuncInfo.MBB; 687 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 688 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 689 690 // For now, just try the simplest case where it's fed by a compare. 691 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 692 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 693 if (!OptPPCPred) 694 return false; 695 696 PPC::Predicate PPCPred = OptPPCPred.getValue(); 697 698 // Take advantage of fall-through opportunities. 699 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 700 std::swap(TBB, FBB); 701 PPCPred = PPC::InvertPredicate(PPCPred); 702 } 703 704 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 705 706 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 707 CondReg)) 708 return false; 709 710 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 711 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 712 FastEmitBranch(FBB, DbgLoc); 713 FuncInfo.MBB->addSuccessor(TBB); 714 return true; 715 716 } else if (const ConstantInt *CI = 717 dyn_cast<ConstantInt>(BI->getCondition())) { 718 uint64_t Imm = CI->getZExtValue(); 719 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 720 FastEmitBranch(Target, DbgLoc); 721 return true; 722 } 723 724 // FIXME: ARM looks for a case where the block containing the compare 725 // has been split from the block containing the branch. If this happens, 726 // there is a vreg available containing the result of the compare. I'm 727 // not sure we can do much, as we've lost the predicate information with 728 // the compare instruction -- we have a 4-bit CR but don't know which bit 729 // to test here. 730 return false; 731 } 732 733 // Attempt to emit a compare of the two source values. Signed and unsigned 734 // comparisons are supported. Return false if we can't handle it. 735 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 736 bool IsZExt, unsigned DestReg) { 737 Type *Ty = SrcValue1->getType(); 738 EVT SrcEVT = TLI.getValueType(Ty, true); 739 if (!SrcEVT.isSimple()) 740 return false; 741 MVT SrcVT = SrcEVT.getSimpleVT(); 742 743 if (SrcVT == MVT::i1 && PPCSubTarget.useCRBits()) 744 return false; 745 746 // See if operand 2 is an immediate encodeable in the compare. 747 // FIXME: Operands are not in canonical order at -O0, so an immediate 748 // operand in position 1 is a lost opportunity for now. We are 749 // similar to ARM in this regard. 750 long Imm = 0; 751 bool UseImm = false; 752 753 // Only 16-bit integer constants can be represented in compares for 754 // PowerPC. Others will be materialized into a register. 755 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 756 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 757 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 758 const APInt &CIVal = ConstInt->getValue(); 759 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 760 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 761 UseImm = true; 762 } 763 } 764 765 unsigned CmpOpc; 766 bool NeedsExt = false; 767 switch (SrcVT.SimpleTy) { 768 default: return false; 769 case MVT::f32: 770 CmpOpc = PPC::FCMPUS; 771 break; 772 case MVT::f64: 773 CmpOpc = PPC::FCMPUD; 774 break; 775 case MVT::i1: 776 case MVT::i8: 777 case MVT::i16: 778 NeedsExt = true; 779 // Intentional fall-through. 780 case MVT::i32: 781 if (!UseImm) 782 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 783 else 784 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 785 break; 786 case MVT::i64: 787 if (!UseImm) 788 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 789 else 790 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 791 break; 792 } 793 794 unsigned SrcReg1 = getRegForValue(SrcValue1); 795 if (SrcReg1 == 0) 796 return false; 797 798 unsigned SrcReg2 = 0; 799 if (!UseImm) { 800 SrcReg2 = getRegForValue(SrcValue2); 801 if (SrcReg2 == 0) 802 return false; 803 } 804 805 if (NeedsExt) { 806 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 807 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 808 return false; 809 SrcReg1 = ExtReg; 810 811 if (!UseImm) { 812 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 813 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 814 return false; 815 SrcReg2 = ExtReg; 816 } 817 } 818 819 if (!UseImm) 820 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 821 .addReg(SrcReg1).addReg(SrcReg2); 822 else 823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 824 .addReg(SrcReg1).addImm(Imm); 825 826 return true; 827 } 828 829 // Attempt to fast-select a floating-point extend instruction. 830 bool PPCFastISel::SelectFPExt(const Instruction *I) { 831 Value *Src = I->getOperand(0); 832 EVT SrcVT = TLI.getValueType(Src->getType(), true); 833 EVT DestVT = TLI.getValueType(I->getType(), true); 834 835 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 836 return false; 837 838 unsigned SrcReg = getRegForValue(Src); 839 if (!SrcReg) 840 return false; 841 842 // No code is generated for a FP extend. 843 UpdateValueMap(I, SrcReg); 844 return true; 845 } 846 847 // Attempt to fast-select a floating-point truncate instruction. 848 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 849 Value *Src = I->getOperand(0); 850 EVT SrcVT = TLI.getValueType(Src->getType(), true); 851 EVT DestVT = TLI.getValueType(I->getType(), true); 852 853 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 854 return false; 855 856 unsigned SrcReg = getRegForValue(Src); 857 if (!SrcReg) 858 return false; 859 860 // Round the result to single precision. 861 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 862 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 863 .addReg(SrcReg); 864 865 UpdateValueMap(I, DestReg); 866 return true; 867 } 868 869 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 870 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 871 // those should be used instead of moving via a stack slot when the 872 // subtarget permits. 873 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 874 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 875 // case to 8 bytes which produces tighter code but wastes stack space. 876 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 877 bool IsSigned) { 878 879 // If necessary, extend 32-bit int to 64-bit. 880 if (SrcVT == MVT::i32) { 881 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 882 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 883 return 0; 884 SrcReg = TmpReg; 885 } 886 887 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 888 Address Addr; 889 Addr.BaseType = Address::FrameIndexBase; 890 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 891 892 // Store the value from the GPR. 893 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 894 return 0; 895 896 // Load the integer value into an FPR. The kind of load used depends 897 // on a number of conditions. 898 unsigned LoadOpc = PPC::LFD; 899 900 if (SrcVT == MVT::i32) { 901 if (!IsSigned) { 902 LoadOpc = PPC::LFIWZX; 903 Addr.Offset = 4; 904 } else if (PPCSubTarget.hasLFIWAX()) { 905 LoadOpc = PPC::LFIWAX; 906 Addr.Offset = 4; 907 } 908 } 909 910 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 911 unsigned ResultReg = 0; 912 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 913 return 0; 914 915 return ResultReg; 916 } 917 918 // Attempt to fast-select an integer-to-floating-point conversion. 919 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 920 MVT DstVT; 921 Type *DstTy = I->getType(); 922 if (!isTypeLegal(DstTy, DstVT)) 923 return false; 924 925 if (DstVT != MVT::f32 && DstVT != MVT::f64) 926 return false; 927 928 Value *Src = I->getOperand(0); 929 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 930 if (!SrcEVT.isSimple()) 931 return false; 932 933 MVT SrcVT = SrcEVT.getSimpleVT(); 934 935 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 936 SrcVT != MVT::i32 && SrcVT != MVT::i64) 937 return false; 938 939 unsigned SrcReg = getRegForValue(Src); 940 if (SrcReg == 0) 941 return false; 942 943 // We can only lower an unsigned convert if we have the newer 944 // floating-point conversion operations. 945 if (!IsSigned && !PPCSubTarget.hasFPCVT()) 946 return false; 947 948 // FIXME: For now we require the newer floating-point conversion operations 949 // (which are present only on P7 and A2 server models) when converting 950 // to single-precision float. Otherwise we have to generate a lot of 951 // fiddly code to avoid double rounding. If necessary, the fiddly code 952 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 953 if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT()) 954 return false; 955 956 // Extend the input if necessary. 957 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 958 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 959 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 960 return false; 961 SrcVT = MVT::i64; 962 SrcReg = TmpReg; 963 } 964 965 // Move the integer value to an FPR. 966 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 967 if (FPReg == 0) 968 return false; 969 970 // Determine the opcode for the conversion. 971 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 972 unsigned DestReg = createResultReg(RC); 973 unsigned Opc; 974 975 if (DstVT == MVT::f32) 976 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 977 else 978 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 979 980 // Generate the convert. 981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 982 .addReg(FPReg); 983 984 UpdateValueMap(I, DestReg); 985 return true; 986 } 987 988 // Move the floating-point value in SrcReg into an integer destination 989 // register, and return the register (or zero if we can't handle it). 990 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 991 // those should be used instead of moving via a stack slot when the 992 // subtarget permits. 993 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 994 unsigned SrcReg, bool IsSigned) { 995 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 996 // Note that if have STFIWX available, we could use a 4-byte stack 997 // slot for i32, but this being fast-isel we'll just go with the 998 // easiest code gen possible. 999 Address Addr; 1000 Addr.BaseType = Address::FrameIndexBase; 1001 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1002 1003 // Store the value from the FPR. 1004 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1005 return 0; 1006 1007 // Reload it into a GPR. If we want an i32, modify the address 1008 // to have a 4-byte offset so we load from the right place. 1009 if (VT == MVT::i32) 1010 Addr.Offset = 4; 1011 1012 // Look at the currently assigned register for this instruction 1013 // to determine the required register class. 1014 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1015 const TargetRegisterClass *RC = 1016 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 1017 1018 unsigned ResultReg = 0; 1019 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1020 return 0; 1021 1022 return ResultReg; 1023 } 1024 1025 // Attempt to fast-select a floating-point-to-integer conversion. 1026 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1027 MVT DstVT, SrcVT; 1028 Type *DstTy = I->getType(); 1029 if (!isTypeLegal(DstTy, DstVT)) 1030 return false; 1031 1032 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1033 return false; 1034 1035 Value *Src = I->getOperand(0); 1036 Type *SrcTy = Src->getType(); 1037 if (!isTypeLegal(SrcTy, SrcVT)) 1038 return false; 1039 1040 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1041 return false; 1042 1043 unsigned SrcReg = getRegForValue(Src); 1044 if (SrcReg == 0) 1045 return false; 1046 1047 // Convert f32 to f64 if necessary. This is just a meaningless copy 1048 // to get the register class right. COPY_TO_REGCLASS is needed since 1049 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1050 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1051 if (InRC == &PPC::F4RCRegClass) { 1052 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1053 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1054 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1055 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1056 SrcReg = TmpReg; 1057 } 1058 1059 // Determine the opcode for the conversion, which takes place 1060 // entirely within FPRs. 1061 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1062 unsigned Opc; 1063 1064 if (DstVT == MVT::i32) 1065 if (IsSigned) 1066 Opc = PPC::FCTIWZ; 1067 else 1068 Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1069 else 1070 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1071 1072 // Generate the convert. 1073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1074 .addReg(SrcReg); 1075 1076 // Now move the integer value from a float register to an integer register. 1077 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1078 if (IntReg == 0) 1079 return false; 1080 1081 UpdateValueMap(I, IntReg); 1082 return true; 1083 } 1084 1085 // Attempt to fast-select a binary integer operation that isn't already 1086 // handled automatically. 1087 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1088 EVT DestVT = TLI.getValueType(I->getType(), true); 1089 1090 // We can get here in the case when we have a binary operation on a non-legal 1091 // type and the target independent selector doesn't know how to handle it. 1092 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1093 return false; 1094 1095 // Look at the currently assigned register for this instruction 1096 // to determine the required register class. If there is no register, 1097 // make a conservative choice (don't assign R0). 1098 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1099 const TargetRegisterClass *RC = 1100 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1101 &PPC::GPRC_and_GPRC_NOR0RegClass); 1102 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1103 1104 unsigned Opc; 1105 switch (ISDOpcode) { 1106 default: return false; 1107 case ISD::ADD: 1108 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1109 break; 1110 case ISD::OR: 1111 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1112 break; 1113 case ISD::SUB: 1114 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1115 break; 1116 } 1117 1118 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1119 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1120 if (SrcReg1 == 0) return false; 1121 1122 // Handle case of small immediate operand. 1123 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1124 const APInt &CIVal = ConstInt->getValue(); 1125 int Imm = (int)CIVal.getSExtValue(); 1126 bool UseImm = true; 1127 if (isInt<16>(Imm)) { 1128 switch (Opc) { 1129 default: 1130 llvm_unreachable("Missing case!"); 1131 case PPC::ADD4: 1132 Opc = PPC::ADDI; 1133 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1134 break; 1135 case PPC::ADD8: 1136 Opc = PPC::ADDI8; 1137 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1138 break; 1139 case PPC::OR: 1140 Opc = PPC::ORI; 1141 break; 1142 case PPC::OR8: 1143 Opc = PPC::ORI8; 1144 break; 1145 case PPC::SUBF: 1146 if (Imm == -32768) 1147 UseImm = false; 1148 else { 1149 Opc = PPC::ADDI; 1150 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1151 Imm = -Imm; 1152 } 1153 break; 1154 case PPC::SUBF8: 1155 if (Imm == -32768) 1156 UseImm = false; 1157 else { 1158 Opc = PPC::ADDI8; 1159 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1160 Imm = -Imm; 1161 } 1162 break; 1163 } 1164 1165 if (UseImm) { 1166 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1167 ResultReg) 1168 .addReg(SrcReg1) 1169 .addImm(Imm); 1170 UpdateValueMap(I, ResultReg); 1171 return true; 1172 } 1173 } 1174 } 1175 1176 // Reg-reg case. 1177 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1178 if (SrcReg2 == 0) return false; 1179 1180 // Reverse operands for subtract-from. 1181 if (ISDOpcode == ISD::SUB) 1182 std::swap(SrcReg1, SrcReg2); 1183 1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1185 .addReg(SrcReg1).addReg(SrcReg2); 1186 UpdateValueMap(I, ResultReg); 1187 return true; 1188 } 1189 1190 // Handle arguments to a call that we're attempting to fast-select. 1191 // Return false if the arguments are too complex for us at the moment. 1192 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1193 SmallVectorImpl<unsigned> &ArgRegs, 1194 SmallVectorImpl<MVT> &ArgVTs, 1195 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1196 SmallVectorImpl<unsigned> &RegArgs, 1197 CallingConv::ID CC, 1198 unsigned &NumBytes, 1199 bool IsVarArg) { 1200 SmallVector<CCValAssign, 16> ArgLocs; 1201 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1202 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1203 1204 // Bail out if we can't handle any of the arguments. 1205 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1206 CCValAssign &VA = ArgLocs[I]; 1207 MVT ArgVT = ArgVTs[VA.getValNo()]; 1208 1209 // Skip vector arguments for now, as well as long double and 1210 // uint128_t, and anything that isn't passed in a register. 1211 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1212 !VA.isRegLoc() || VA.needsCustom()) 1213 return false; 1214 1215 // Skip bit-converted arguments for now. 1216 if (VA.getLocInfo() == CCValAssign::BCvt) 1217 return false; 1218 } 1219 1220 // Get a count of how many bytes are to be pushed onto the stack. 1221 NumBytes = CCInfo.getNextStackOffset(); 1222 1223 // Issue CALLSEQ_START. 1224 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1225 TII.get(TII.getCallFrameSetupOpcode())) 1226 .addImm(NumBytes); 1227 1228 // Prepare to assign register arguments. Every argument uses up a 1229 // GPR protocol register even if it's passed in a floating-point 1230 // register. 1231 unsigned NextGPR = PPC::X3; 1232 unsigned NextFPR = PPC::F1; 1233 1234 // Process arguments. 1235 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1236 CCValAssign &VA = ArgLocs[I]; 1237 unsigned Arg = ArgRegs[VA.getValNo()]; 1238 MVT ArgVT = ArgVTs[VA.getValNo()]; 1239 1240 // Handle argument promotion and bitcasts. 1241 switch (VA.getLocInfo()) { 1242 default: 1243 llvm_unreachable("Unknown loc info!"); 1244 case CCValAssign::Full: 1245 break; 1246 case CCValAssign::SExt: { 1247 MVT DestVT = VA.getLocVT(); 1248 const TargetRegisterClass *RC = 1249 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1250 unsigned TmpReg = createResultReg(RC); 1251 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1252 llvm_unreachable("Failed to emit a sext!"); 1253 ArgVT = DestVT; 1254 Arg = TmpReg; 1255 break; 1256 } 1257 case CCValAssign::AExt: 1258 case CCValAssign::ZExt: { 1259 MVT DestVT = VA.getLocVT(); 1260 const TargetRegisterClass *RC = 1261 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1262 unsigned TmpReg = createResultReg(RC); 1263 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1264 llvm_unreachable("Failed to emit a zext!"); 1265 ArgVT = DestVT; 1266 Arg = TmpReg; 1267 break; 1268 } 1269 case CCValAssign::BCvt: { 1270 // FIXME: Not yet handled. 1271 llvm_unreachable("Should have bailed before getting here!"); 1272 break; 1273 } 1274 } 1275 1276 // Copy this argument to the appropriate register. 1277 unsigned ArgReg; 1278 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1279 ArgReg = NextFPR++; 1280 ++NextGPR; 1281 } else 1282 ArgReg = NextGPR++; 1283 1284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1285 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1286 RegArgs.push_back(ArgReg); 1287 } 1288 1289 return true; 1290 } 1291 1292 // For a call that we've determined we can fast-select, finish the 1293 // call sequence and generate a copy to obtain the return value (if any). 1294 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1295 const Instruction *I, CallingConv::ID CC, 1296 unsigned &NumBytes, bool IsVarArg) { 1297 // Issue CallSEQ_END. 1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1299 TII.get(TII.getCallFrameDestroyOpcode())) 1300 .addImm(NumBytes).addImm(0); 1301 1302 // Next, generate a copy to obtain the return value. 1303 // FIXME: No multi-register return values yet, though I don't foresee 1304 // any real difficulties there. 1305 if (RetVT != MVT::isVoid) { 1306 SmallVector<CCValAssign, 16> RVLocs; 1307 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1308 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1309 CCValAssign &VA = RVLocs[0]; 1310 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1311 assert(VA.isRegLoc() && "Can only return in registers!"); 1312 1313 MVT DestVT = VA.getValVT(); 1314 MVT CopyVT = DestVT; 1315 1316 // Ints smaller than a register still arrive in a full 64-bit 1317 // register, so make sure we recognize this. 1318 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1319 CopyVT = MVT::i64; 1320 1321 unsigned SourcePhysReg = VA.getLocReg(); 1322 unsigned ResultReg = 0; 1323 1324 if (RetVT == CopyVT) { 1325 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1326 ResultReg = createResultReg(CpyRC); 1327 1328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1329 TII.get(TargetOpcode::COPY), ResultReg) 1330 .addReg(SourcePhysReg); 1331 1332 // If necessary, round the floating result to single precision. 1333 } else if (CopyVT == MVT::f64) { 1334 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1336 ResultReg).addReg(SourcePhysReg); 1337 1338 // If only the low half of a general register is needed, generate 1339 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1340 // used along the fast-isel path (not lowered), and downstream logic 1341 // also doesn't like a direct subreg copy on a physical reg.) 1342 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1343 ResultReg = createResultReg(&PPC::GPRCRegClass); 1344 // Convert physical register from G8RC to GPRC. 1345 SourcePhysReg -= PPC::X0 - PPC::R0; 1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1347 TII.get(TargetOpcode::COPY), ResultReg) 1348 .addReg(SourcePhysReg); 1349 } 1350 1351 assert(ResultReg && "ResultReg unset!"); 1352 UsedRegs.push_back(SourcePhysReg); 1353 UpdateValueMap(I, ResultReg); 1354 } 1355 } 1356 1357 // Attempt to fast-select a call instruction. 1358 bool PPCFastISel::SelectCall(const Instruction *I) { 1359 const CallInst *CI = cast<CallInst>(I); 1360 const Value *Callee = CI->getCalledValue(); 1361 1362 // Can't handle inline asm. 1363 if (isa<InlineAsm>(Callee)) 1364 return false; 1365 1366 // Allow SelectionDAG isel to handle tail calls. 1367 if (CI->isTailCall()) 1368 return false; 1369 1370 // Obtain calling convention. 1371 ImmutableCallSite CS(CI); 1372 CallingConv::ID CC = CS.getCallingConv(); 1373 1374 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1375 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 1376 bool IsVarArg = FTy->isVarArg(); 1377 1378 // Not ready for varargs yet. 1379 if (IsVarArg) 1380 return false; 1381 1382 // Handle simple calls for now, with legal return types and 1383 // those that can be extended. 1384 Type *RetTy = I->getType(); 1385 MVT RetVT; 1386 if (RetTy->isVoidTy()) 1387 RetVT = MVT::isVoid; 1388 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1389 RetVT != MVT::i8) 1390 return false; 1391 1392 // FIXME: No multi-register return values yet. 1393 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1394 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1395 RetVT != MVT::f64) { 1396 SmallVector<CCValAssign, 16> RVLocs; 1397 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1398 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1399 if (RVLocs.size() > 1) 1400 return false; 1401 } 1402 1403 // Bail early if more than 8 arguments, as we only currently 1404 // handle arguments passed in registers. 1405 unsigned NumArgs = CS.arg_size(); 1406 if (NumArgs > 8) 1407 return false; 1408 1409 // Set up the argument vectors. 1410 SmallVector<Value*, 8> Args; 1411 SmallVector<unsigned, 8> ArgRegs; 1412 SmallVector<MVT, 8> ArgVTs; 1413 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1414 1415 Args.reserve(NumArgs); 1416 ArgRegs.reserve(NumArgs); 1417 ArgVTs.reserve(NumArgs); 1418 ArgFlags.reserve(NumArgs); 1419 1420 for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end(); 1421 II != IE; ++II) { 1422 // FIXME: ARM does something for intrinsic calls here, check into that. 1423 1424 unsigned AttrIdx = II - CS.arg_begin() + 1; 1425 1426 // Only handle easy calls for now. It would be reasonably easy 1427 // to handle <= 8-byte structures passed ByVal in registers, but we 1428 // have to ensure they are right-justified in the register. 1429 if (CS.paramHasAttr(AttrIdx, Attribute::InReg) || 1430 CS.paramHasAttr(AttrIdx, Attribute::StructRet) || 1431 CS.paramHasAttr(AttrIdx, Attribute::Nest) || 1432 CS.paramHasAttr(AttrIdx, Attribute::ByVal)) 1433 return false; 1434 1435 ISD::ArgFlagsTy Flags; 1436 if (CS.paramHasAttr(AttrIdx, Attribute::SExt)) 1437 Flags.setSExt(); 1438 if (CS.paramHasAttr(AttrIdx, Attribute::ZExt)) 1439 Flags.setZExt(); 1440 1441 Type *ArgTy = (*II)->getType(); 1442 MVT ArgVT; 1443 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1444 return false; 1445 1446 if (ArgVT.isVector()) 1447 return false; 1448 1449 unsigned Arg = getRegForValue(*II); 1450 if (Arg == 0) 1451 return false; 1452 1453 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 1454 Flags.setOrigAlign(OriginalAlignment); 1455 1456 Args.push_back(*II); 1457 ArgRegs.push_back(Arg); 1458 ArgVTs.push_back(ArgVT); 1459 ArgFlags.push_back(Flags); 1460 } 1461 1462 // Process the arguments. 1463 SmallVector<unsigned, 8> RegArgs; 1464 unsigned NumBytes; 1465 1466 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1467 RegArgs, CC, NumBytes, IsVarArg)) 1468 return false; 1469 1470 // FIXME: No handling for function pointers yet. This requires 1471 // implementing the function descriptor (OPD) setup. 1472 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1473 if (!GV) 1474 return false; 1475 1476 // Build direct call with NOP for TOC restore. 1477 // FIXME: We can and should optimize away the NOP for local calls. 1478 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1479 TII.get(PPC::BL8_NOP)); 1480 // Add callee. 1481 MIB.addGlobalAddress(GV); 1482 1483 // Add implicit physical register uses to the call. 1484 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1485 MIB.addReg(RegArgs[II], RegState::Implicit); 1486 1487 // Add a register mask with the call-preserved registers. Proper 1488 // defs for return values will be added by setPhysRegsDeadExcept(). 1489 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1490 1491 // Finish off the call including any return values. 1492 SmallVector<unsigned, 4> UsedRegs; 1493 finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg); 1494 1495 // Set all unused physregs defs as dead. 1496 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1497 1498 return true; 1499 } 1500 1501 // Attempt to fast-select a return instruction. 1502 bool PPCFastISel::SelectRet(const Instruction *I) { 1503 1504 if (!FuncInfo.CanLowerReturn) 1505 return false; 1506 1507 const ReturnInst *Ret = cast<ReturnInst>(I); 1508 const Function &F = *I->getParent()->getParent(); 1509 1510 // Build a list of return value registers. 1511 SmallVector<unsigned, 4> RetRegs; 1512 CallingConv::ID CC = F.getCallingConv(); 1513 1514 if (Ret->getNumOperands() > 0) { 1515 SmallVector<ISD::OutputArg, 4> Outs; 1516 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1517 1518 // Analyze operands of the call, assigning locations to each operand. 1519 SmallVector<CCValAssign, 16> ValLocs; 1520 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context); 1521 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1522 const Value *RV = Ret->getOperand(0); 1523 1524 // FIXME: Only one output register for now. 1525 if (ValLocs.size() > 1) 1526 return false; 1527 1528 // Special case for returning a constant integer of any size. 1529 // Materialize the constant as an i64 and copy it to the return 1530 // register. This avoids an unnecessary extend or truncate. 1531 if (isa<ConstantInt>(*RV)) { 1532 const Constant *C = cast<Constant>(RV); 1533 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64); 1534 unsigned RetReg = ValLocs[0].getLocReg(); 1535 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1536 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1537 RetRegs.push_back(RetReg); 1538 1539 } else { 1540 unsigned Reg = getRegForValue(RV); 1541 1542 if (Reg == 0) 1543 return false; 1544 1545 // Copy the result values into the output registers. 1546 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1547 1548 CCValAssign &VA = ValLocs[i]; 1549 assert(VA.isRegLoc() && "Can only return in registers!"); 1550 RetRegs.push_back(VA.getLocReg()); 1551 unsigned SrcReg = Reg + VA.getValNo(); 1552 1553 EVT RVEVT = TLI.getValueType(RV->getType()); 1554 if (!RVEVT.isSimple()) 1555 return false; 1556 MVT RVVT = RVEVT.getSimpleVT(); 1557 MVT DestVT = VA.getLocVT(); 1558 1559 if (RVVT != DestVT && RVVT != MVT::i8 && 1560 RVVT != MVT::i16 && RVVT != MVT::i32) 1561 return false; 1562 1563 if (RVVT != DestVT) { 1564 switch (VA.getLocInfo()) { 1565 default: 1566 llvm_unreachable("Unknown loc info!"); 1567 case CCValAssign::Full: 1568 llvm_unreachable("Full value assign but types don't match?"); 1569 case CCValAssign::AExt: 1570 case CCValAssign::ZExt: { 1571 const TargetRegisterClass *RC = 1572 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1573 unsigned TmpReg = createResultReg(RC); 1574 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1575 return false; 1576 SrcReg = TmpReg; 1577 break; 1578 } 1579 case CCValAssign::SExt: { 1580 const TargetRegisterClass *RC = 1581 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1582 unsigned TmpReg = createResultReg(RC); 1583 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1584 return false; 1585 SrcReg = TmpReg; 1586 break; 1587 } 1588 } 1589 } 1590 1591 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1592 TII.get(TargetOpcode::COPY), RetRegs[i]) 1593 .addReg(SrcReg); 1594 } 1595 } 1596 } 1597 1598 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1599 TII.get(PPC::BLR)); 1600 1601 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1602 MIB.addReg(RetRegs[i], RegState::Implicit); 1603 1604 return true; 1605 } 1606 1607 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1608 // signed and zero extensions are supported. Return false if we 1609 // can't handle it. 1610 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1611 unsigned DestReg, bool IsZExt) { 1612 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1613 return false; 1614 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1615 return false; 1616 1617 // Signed extensions use EXTSB, EXTSH, EXTSW. 1618 if (!IsZExt) { 1619 unsigned Opc; 1620 if (SrcVT == MVT::i8) 1621 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1622 else if (SrcVT == MVT::i16) 1623 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1624 else { 1625 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1626 Opc = PPC::EXTSW_32_64; 1627 } 1628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1629 .addReg(SrcReg); 1630 1631 // Unsigned 32-bit extensions use RLWINM. 1632 } else if (DestVT == MVT::i32) { 1633 unsigned MB; 1634 if (SrcVT == MVT::i8) 1635 MB = 24; 1636 else { 1637 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1638 MB = 16; 1639 } 1640 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1641 DestReg) 1642 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1643 1644 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1645 } else { 1646 unsigned MB; 1647 if (SrcVT == MVT::i8) 1648 MB = 56; 1649 else if (SrcVT == MVT::i16) 1650 MB = 48; 1651 else 1652 MB = 32; 1653 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1654 TII.get(PPC::RLDICL_32_64), DestReg) 1655 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1656 } 1657 1658 return true; 1659 } 1660 1661 // Attempt to fast-select an indirect branch instruction. 1662 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1663 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1664 if (AddrReg == 0) 1665 return false; 1666 1667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1668 .addReg(AddrReg); 1669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1670 1671 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1672 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1673 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1674 1675 return true; 1676 } 1677 1678 // Attempt to fast-select an integer truncate instruction. 1679 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1680 Value *Src = I->getOperand(0); 1681 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1682 EVT DestVT = TLI.getValueType(I->getType(), true); 1683 1684 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1685 return false; 1686 1687 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1688 return false; 1689 1690 unsigned SrcReg = getRegForValue(Src); 1691 if (!SrcReg) 1692 return false; 1693 1694 // The only interesting case is when we need to switch register classes. 1695 if (SrcVT == MVT::i64) { 1696 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1698 TII.get(TargetOpcode::COPY), 1699 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1700 SrcReg = ResultReg; 1701 } 1702 1703 UpdateValueMap(I, SrcReg); 1704 return true; 1705 } 1706 1707 // Attempt to fast-select an integer extend instruction. 1708 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1709 Type *DestTy = I->getType(); 1710 Value *Src = I->getOperand(0); 1711 Type *SrcTy = Src->getType(); 1712 1713 bool IsZExt = isa<ZExtInst>(I); 1714 unsigned SrcReg = getRegForValue(Src); 1715 if (!SrcReg) return false; 1716 1717 EVT SrcEVT, DestEVT; 1718 SrcEVT = TLI.getValueType(SrcTy, true); 1719 DestEVT = TLI.getValueType(DestTy, true); 1720 if (!SrcEVT.isSimple()) 1721 return false; 1722 if (!DestEVT.isSimple()) 1723 return false; 1724 1725 MVT SrcVT = SrcEVT.getSimpleVT(); 1726 MVT DestVT = DestEVT.getSimpleVT(); 1727 1728 // If we know the register class needed for the result of this 1729 // instruction, use it. Otherwise pick the register class of the 1730 // correct size that does not contain X0/R0, since we don't know 1731 // whether downstream uses permit that assignment. 1732 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1733 const TargetRegisterClass *RC = 1734 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1735 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1736 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1737 unsigned ResultReg = createResultReg(RC); 1738 1739 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1740 return false; 1741 1742 UpdateValueMap(I, ResultReg); 1743 return true; 1744 } 1745 1746 // Attempt to fast-select an instruction that wasn't handled by 1747 // the table-generated machinery. 1748 bool PPCFastISel::TargetSelectInstruction(const Instruction *I) { 1749 1750 switch (I->getOpcode()) { 1751 case Instruction::Load: 1752 return SelectLoad(I); 1753 case Instruction::Store: 1754 return SelectStore(I); 1755 case Instruction::Br: 1756 return SelectBranch(I); 1757 case Instruction::IndirectBr: 1758 return SelectIndirectBr(I); 1759 case Instruction::FPExt: 1760 return SelectFPExt(I); 1761 case Instruction::FPTrunc: 1762 return SelectFPTrunc(I); 1763 case Instruction::SIToFP: 1764 return SelectIToFP(I, /*IsSigned*/ true); 1765 case Instruction::UIToFP: 1766 return SelectIToFP(I, /*IsSigned*/ false); 1767 case Instruction::FPToSI: 1768 return SelectFPToI(I, /*IsSigned*/ true); 1769 case Instruction::FPToUI: 1770 return SelectFPToI(I, /*IsSigned*/ false); 1771 case Instruction::Add: 1772 return SelectBinaryIntOp(I, ISD::ADD); 1773 case Instruction::Or: 1774 return SelectBinaryIntOp(I, ISD::OR); 1775 case Instruction::Sub: 1776 return SelectBinaryIntOp(I, ISD::SUB); 1777 case Instruction::Call: 1778 if (dyn_cast<IntrinsicInst>(I)) 1779 return false; 1780 return SelectCall(I); 1781 case Instruction::Ret: 1782 return SelectRet(I); 1783 case Instruction::Trunc: 1784 return SelectTrunc(I); 1785 case Instruction::ZExt: 1786 case Instruction::SExt: 1787 return SelectIntExt(I); 1788 // Here add other flavors of Instruction::XXX that automated 1789 // cases don't catch. For example, switches are terminators 1790 // that aren't yet handled. 1791 default: 1792 break; 1793 } 1794 return false; 1795 } 1796 1797 // Materialize a floating-point constant into a register, and return 1798 // the register number (or zero if we failed to handle it). 1799 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1800 // No plans to handle long double here. 1801 if (VT != MVT::f32 && VT != MVT::f64) 1802 return 0; 1803 1804 // All FP constants are loaded from the constant pool. 1805 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1806 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1807 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1808 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1809 CodeModel::Model CModel = TM.getCodeModel(); 1810 1811 MachineMemOperand *MMO = 1812 FuncInfo.MF->getMachineMemOperand( 1813 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1814 (VT == MVT::f32) ? 4 : 8, Align); 1815 1816 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1817 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1818 1819 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1820 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1822 TmpReg) 1823 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1825 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1826 } else { 1827 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1829 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1830 // But for large code model, we must generate a LDtocL followed 1831 // by the LF[SD]. 1832 if (CModel == CodeModel::Large) { 1833 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1834 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1835 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1837 .addImm(0).addReg(TmpReg2); 1838 } else 1839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1840 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1841 .addReg(TmpReg) 1842 .addMemOperand(MMO); 1843 } 1844 1845 return DestReg; 1846 } 1847 1848 // Materialize the address of a global value into a register, and return 1849 // the register number (or zero if we failed to handle it). 1850 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1851 assert(VT == MVT::i64 && "Non-address!"); 1852 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1853 unsigned DestReg = createResultReg(RC); 1854 1855 // Global values may be plain old object addresses, TLS object 1856 // addresses, constant pool entries, or jump tables. How we generate 1857 // code for these may depend on small, medium, or large code model. 1858 CodeModel::Model CModel = TM.getCodeModel(); 1859 1860 // FIXME: Jump tables are not yet required because fast-isel doesn't 1861 // handle switches; if that changes, we need them as well. For now, 1862 // what follows assumes everything's a generic (or TLS) global address. 1863 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1864 if (!GVar) { 1865 // If GV is an alias, use the aliasee for determining thread-locality. 1866 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 1867 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)); 1868 } 1869 1870 // FIXME: We don't yet handle the complexity of TLS. 1871 bool IsTLS = GVar && GVar->isThreadLocal(); 1872 if (IsTLS) 1873 return 0; 1874 1875 // For small code model, generate a simple TOC load. 1876 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1877 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1878 DestReg) 1879 .addGlobalAddress(GV) 1880 .addReg(PPC::X2); 1881 else { 1882 // If the address is an externally defined symbol, a symbol with 1883 // common or externally available linkage, a function address, or a 1884 // jump table address (not yet needed), or if we are generating code 1885 // for large code model, we generate: 1886 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1887 // Otherwise we generate: 1888 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1889 // Either way, start with the ADDIStocHA: 1890 unsigned HighPartReg = createResultReg(RC); 1891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1892 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1893 1894 // !GVar implies a function address. An external variable is one 1895 // without an initializer. 1896 // If/when switches are implemented, jump tables should be handled 1897 // on the "if" path here. 1898 if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() || 1899 GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage()) 1900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1901 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1902 else 1903 // Otherwise generate the ADDItocL. 1904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1905 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1906 } 1907 1908 return DestReg; 1909 } 1910 1911 // Materialize a 32-bit integer constant into a register, and return 1912 // the register number (or zero if we failed to handle it). 1913 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1914 const TargetRegisterClass *RC) { 1915 unsigned Lo = Imm & 0xFFFF; 1916 unsigned Hi = (Imm >> 16) & 0xFFFF; 1917 1918 unsigned ResultReg = createResultReg(RC); 1919 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1920 1921 if (isInt<16>(Imm)) 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1923 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1924 .addImm(Imm); 1925 else if (Lo) { 1926 // Both Lo and Hi have nonzero bits. 1927 unsigned TmpReg = createResultReg(RC); 1928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1929 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1930 .addImm(Hi); 1931 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1932 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1933 .addReg(TmpReg).addImm(Lo); 1934 } else 1935 // Just Hi bits. 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1937 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1938 .addImm(Hi); 1939 1940 return ResultReg; 1941 } 1942 1943 // Materialize a 64-bit integer constant into a register, and return 1944 // the register number (or zero if we failed to handle it). 1945 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 1946 const TargetRegisterClass *RC) { 1947 unsigned Remainder = 0; 1948 unsigned Shift = 0; 1949 1950 // If the value doesn't fit in 32 bits, see if we can shift it 1951 // so that it fits in 32 bits. 1952 if (!isInt<32>(Imm)) { 1953 Shift = countTrailingZeros<uint64_t>(Imm); 1954 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 1955 1956 if (isInt<32>(ImmSh)) 1957 Imm = ImmSh; 1958 else { 1959 Remainder = Imm; 1960 Shift = 32; 1961 Imm >>= 32; 1962 } 1963 } 1964 1965 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 1966 // (if not shifted). 1967 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 1968 if (!Shift) 1969 return TmpReg1; 1970 1971 // If upper 32 bits were not zero, we've built them and need to shift 1972 // them into place. 1973 unsigned TmpReg2; 1974 if (Imm) { 1975 TmpReg2 = createResultReg(RC); 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 1977 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 1978 } else 1979 TmpReg2 = TmpReg1; 1980 1981 unsigned TmpReg3, Hi, Lo; 1982 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 1983 TmpReg3 = createResultReg(RC); 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 1985 TmpReg3).addReg(TmpReg2).addImm(Hi); 1986 } else 1987 TmpReg3 = TmpReg2; 1988 1989 if ((Lo = Remainder & 0xFFFF)) { 1990 unsigned ResultReg = createResultReg(RC); 1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 1992 ResultReg).addReg(TmpReg3).addImm(Lo); 1993 return ResultReg; 1994 } 1995 1996 return TmpReg3; 1997 } 1998 1999 2000 // Materialize an integer constant into a register, and return 2001 // the register number (or zero if we failed to handle it). 2002 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) { 2003 // If we're using CR bit registers for i1 values, handle that as a special 2004 // case first. 2005 if (VT == MVT::i1 && PPCSubTarget.useCRBits()) { 2006 const ConstantInt *CI = cast<ConstantInt>(C); 2007 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2008 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2009 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2010 return ImmReg; 2011 } 2012 2013 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2014 VT != MVT::i8 && VT != MVT::i1) 2015 return 0; 2016 2017 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2018 &PPC::GPRCRegClass); 2019 2020 // If the constant is in range, use a load-immediate. 2021 const ConstantInt *CI = cast<ConstantInt>(C); 2022 if (isInt<16>(CI->getSExtValue())) { 2023 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2024 unsigned ImmReg = createResultReg(RC); 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2026 .addImm(CI->getSExtValue()); 2027 return ImmReg; 2028 } 2029 2030 // Construct the constant piecewise. 2031 int64_t Imm = CI->getZExtValue(); 2032 2033 if (VT == MVT::i64) 2034 return PPCMaterialize64BitInt(Imm, RC); 2035 else if (VT == MVT::i32) 2036 return PPCMaterialize32BitInt(Imm, RC); 2037 2038 return 0; 2039 } 2040 2041 // Materialize a constant into a register, and return the register 2042 // number (or zero if we failed to handle it). 2043 unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) { 2044 EVT CEVT = TLI.getValueType(C->getType(), true); 2045 2046 // Only handle simple types. 2047 if (!CEVT.isSimple()) return 0; 2048 MVT VT = CEVT.getSimpleVT(); 2049 2050 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2051 return PPCMaterializeFP(CFP, VT); 2052 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2053 return PPCMaterializeGV(GV, VT); 2054 else if (isa<ConstantInt>(C)) 2055 return PPCMaterializeInt(C, VT); 2056 2057 return 0; 2058 } 2059 2060 // Materialize the address created by an alloca into a register, and 2061 // return the register number (or zero if we failed to handle it). 2062 unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 2063 // Don't handle dynamic allocas. 2064 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2065 2066 MVT VT; 2067 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2068 2069 DenseMap<const AllocaInst*, int>::iterator SI = 2070 FuncInfo.StaticAllocaMap.find(AI); 2071 2072 if (SI != FuncInfo.StaticAllocaMap.end()) { 2073 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2075 ResultReg).addFrameIndex(SI->second).addImm(0); 2076 return ResultReg; 2077 } 2078 2079 return 0; 2080 } 2081 2082 // Fold loads into extends when possible. 2083 // FIXME: We can have multiple redundant extend/trunc instructions 2084 // following a load. The folding only picks up one. Extend this 2085 // to check subsequent instructions for the same pattern and remove 2086 // them. Thus ResultReg should be the def reg for the last redundant 2087 // instruction in a chain, and all intervening instructions can be 2088 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2089 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2090 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2091 const LoadInst *LI) { 2092 // Verify we have a legal type before going any further. 2093 MVT VT; 2094 if (!isLoadTypeLegal(LI->getType(), VT)) 2095 return false; 2096 2097 // Combine load followed by zero- or sign-extend. 2098 bool IsZExt = false; 2099 switch(MI->getOpcode()) { 2100 default: 2101 return false; 2102 2103 case PPC::RLDICL: 2104 case PPC::RLDICL_32_64: { 2105 IsZExt = true; 2106 unsigned MB = MI->getOperand(3).getImm(); 2107 if ((VT == MVT::i8 && MB <= 56) || 2108 (VT == MVT::i16 && MB <= 48) || 2109 (VT == MVT::i32 && MB <= 32)) 2110 break; 2111 return false; 2112 } 2113 2114 case PPC::RLWINM: 2115 case PPC::RLWINM8: { 2116 IsZExt = true; 2117 unsigned MB = MI->getOperand(3).getImm(); 2118 if ((VT == MVT::i8 && MB <= 24) || 2119 (VT == MVT::i16 && MB <= 16)) 2120 break; 2121 return false; 2122 } 2123 2124 case PPC::EXTSB: 2125 case PPC::EXTSB8: 2126 case PPC::EXTSB8_32_64: 2127 /* There is no sign-extending load-byte instruction. */ 2128 return false; 2129 2130 case PPC::EXTSH: 2131 case PPC::EXTSH8: 2132 case PPC::EXTSH8_32_64: { 2133 if (VT != MVT::i16 && VT != MVT::i8) 2134 return false; 2135 break; 2136 } 2137 2138 case PPC::EXTSW: 2139 case PPC::EXTSW_32_64: { 2140 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2141 return false; 2142 break; 2143 } 2144 } 2145 2146 // See if we can handle this address. 2147 Address Addr; 2148 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2149 return false; 2150 2151 unsigned ResultReg = MI->getOperand(0).getReg(); 2152 2153 if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt)) 2154 return false; 2155 2156 MI->eraseFromParent(); 2157 return true; 2158 } 2159 2160 // Attempt to lower call arguments in a faster way than done by 2161 // the selection DAG code. 2162 bool PPCFastISel::FastLowerArguments() { 2163 // Defer to normal argument lowering for now. It's reasonably 2164 // efficient. Consider doing something like ARM to handle the 2165 // case where all args fit in registers, no varargs, no float 2166 // or vector args. 2167 return false; 2168 } 2169 2170 // Handle materializing integer constants into a register. This is not 2171 // automatically generated for PowerPC, so must be explicitly created here. 2172 unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2173 2174 if (Opc != ISD::Constant) 2175 return 0; 2176 2177 // If we're using CR bit registers for i1 values, handle that as a special 2178 // case first. 2179 if (VT == MVT::i1 && PPCSubTarget.useCRBits()) { 2180 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2182 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2183 return ImmReg; 2184 } 2185 2186 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2187 VT != MVT::i8 && VT != MVT::i1) 2188 return 0; 2189 2190 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2191 &PPC::GPRCRegClass); 2192 if (VT == MVT::i64) 2193 return PPCMaterialize64BitInt(Imm, RC); 2194 else 2195 return PPCMaterialize32BitInt(Imm, RC); 2196 } 2197 2198 // Override for ADDI and ADDI8 to set the correct register class 2199 // on RHS operand 0. The automatic infrastructure naively assumes 2200 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2201 // for these cases. At the moment, none of the other automatically 2202 // generated RI instructions require special treatment. However, once 2203 // SelectSelect is implemented, "isel" requires similar handling. 2204 // 2205 // Also be conservative about the output register class. Avoid 2206 // assigning R0 or X0 to the output register for GPRC and G8RC 2207 // register classes, as any such result could be used in ADDI, etc., 2208 // where those regs have another meaning. 2209 unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 2210 const TargetRegisterClass *RC, 2211 unsigned Op0, bool Op0IsKill, 2212 uint64_t Imm) { 2213 if (MachineInstOpcode == PPC::ADDI) 2214 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2215 else if (MachineInstOpcode == PPC::ADDI8) 2216 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2217 2218 const TargetRegisterClass *UseRC = 2219 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2220 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2221 2222 return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC, 2223 Op0, Op0IsKill, Imm); 2224 } 2225 2226 // Override for instructions with one register operand to avoid use of 2227 // R0/X0. The automatic infrastructure isn't aware of the context so 2228 // we must be conservative. 2229 unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 2230 const TargetRegisterClass* RC, 2231 unsigned Op0, bool Op0IsKill) { 2232 const TargetRegisterClass *UseRC = 2233 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2234 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2235 2236 return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2237 } 2238 2239 // Override for instructions with two register operands to avoid use 2240 // of R0/X0. The automatic infrastructure isn't aware of the context 2241 // so we must be conservative. 2242 unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 2243 const TargetRegisterClass* RC, 2244 unsigned Op0, bool Op0IsKill, 2245 unsigned Op1, bool Op1IsKill) { 2246 const TargetRegisterClass *UseRC = 2247 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2248 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2249 2250 return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2251 Op1, Op1IsKill); 2252 } 2253 2254 namespace llvm { 2255 // Create the fast instruction selector for PowerPC64 ELF. 2256 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2257 const TargetLibraryInfo *LibInfo) { 2258 const TargetMachine &TM = FuncInfo.MF->getTarget(); 2259 2260 // Only available on 64-bit ELF for now. 2261 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 2262 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) 2263 return new PPCFastISel(FuncInfo, LibInfo); 2264 2265 return 0; 2266 } 2267 } 2268