1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "ppcfastisel" 17 #include "PPC.h" 18 #include "PPCISelLowering.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 //===----------------------------------------------------------------------===// 41 // 42 // TBD: 43 // FastLowerArguments: Handle simple cases. 44 // PPCMaterializeGV: Handle TLS. 45 // SelectCall: Handle function pointers. 46 // SelectCall: Handle multi-register return values. 47 // SelectCall: Optimize away nops for local calls. 48 // processCallArgs: Handle bit-converted arguments. 49 // finishCall: Handle multi-register return values. 50 // PPCComputeAddress: Handle parameter references as FrameIndex's. 51 // PPCEmitCmp: Handle immediate as operand 1. 52 // SelectCall: Handle small byval arguments. 53 // SelectIntrinsicCall: Implement. 54 // SelectSelect: Implement. 55 // Consider factoring isTypeLegal into the base class. 56 // Implement switches and jump tables. 57 // 58 //===----------------------------------------------------------------------===// 59 using namespace llvm; 60 61 namespace { 62 63 typedef struct Address { 64 enum { 65 RegBase, 66 FrameIndexBase 67 } BaseType; 68 69 union { 70 unsigned Reg; 71 int FI; 72 } Base; 73 74 long Offset; 75 76 // Innocuous defaults for our address. 77 Address() 78 : BaseType(RegBase), Offset(0) { 79 Base.Reg = 0; 80 } 81 } Address; 82 83 class PPCFastISel : public FastISel { 84 85 const TargetMachine &TM; 86 const TargetInstrInfo &TII; 87 const TargetLowering &TLI; 88 const PPCSubtarget &PPCSubTarget; 89 LLVMContext *Context; 90 91 public: 92 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 93 const TargetLibraryInfo *LibInfo) 94 : FastISel(FuncInfo, LibInfo), 95 TM(FuncInfo.MF->getTarget()), 96 TII(*TM.getInstrInfo()), 97 TLI(*TM.getTargetLowering()), 98 PPCSubTarget( 99 *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl()) 100 ), 101 Context(&FuncInfo.Fn->getContext()) { } 102 103 // Backend specific FastISel code. 104 private: 105 virtual bool TargetSelectInstruction(const Instruction *I); 106 virtual unsigned TargetMaterializeConstant(const Constant *C); 107 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 108 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 109 const LoadInst *LI); 110 virtual bool FastLowerArguments(); 111 virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm); 112 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 uint64_t Imm); 116 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill); 119 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill, 122 unsigned Op1, bool Op1IsKill); 123 124 // Instruction selection routines. 125 private: 126 bool SelectLoad(const Instruction *I); 127 bool SelectStore(const Instruction *I); 128 bool SelectBranch(const Instruction *I); 129 bool SelectIndirectBr(const Instruction *I); 130 bool SelectCmp(const Instruction *I); 131 bool SelectFPExt(const Instruction *I); 132 bool SelectFPTrunc(const Instruction *I); 133 bool SelectIToFP(const Instruction *I, bool IsSigned); 134 bool SelectFPToI(const Instruction *I, bool IsSigned); 135 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 136 bool SelectCall(const Instruction *I); 137 bool SelectRet(const Instruction *I); 138 bool SelectTrunc(const Instruction *I); 139 bool SelectIntExt(const Instruction *I); 140 141 // Utility routines. 142 private: 143 bool isTypeLegal(Type *Ty, MVT &VT); 144 bool isLoadTypeLegal(Type *Ty, MVT &VT); 145 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 146 bool isZExt, unsigned DestReg); 147 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 148 const TargetRegisterClass *RC, bool IsZExt = true, 149 unsigned FP64LoadOpc = PPC::LFD); 150 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 151 bool PPCComputeAddress(const Value *Obj, Address &Addr); 152 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 153 unsigned &IndexReg); 154 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 155 unsigned DestReg, bool IsZExt); 156 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 157 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 158 unsigned PPCMaterializeInt(const Constant *C, MVT VT); 159 unsigned PPCMaterialize32BitInt(int64_t Imm, 160 const TargetRegisterClass *RC); 161 unsigned PPCMaterialize64BitInt(int64_t Imm, 162 const TargetRegisterClass *RC); 163 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 164 unsigned SrcReg, bool IsSigned); 165 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 166 167 // Call handling routines. 168 private: 169 bool processCallArgs(SmallVectorImpl<Value*> &Args, 170 SmallVectorImpl<unsigned> &ArgRegs, 171 SmallVectorImpl<MVT> &ArgVTs, 172 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 173 SmallVectorImpl<unsigned> &RegArgs, 174 CallingConv::ID CC, 175 unsigned &NumBytes, 176 bool IsVarArg); 177 void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 178 const Instruction *I, CallingConv::ID CC, 179 unsigned &NumBytes, bool IsVarArg); 180 CCAssignFn *usePPC32CCs(unsigned Flag); 181 182 private: 183 #include "PPCGenFastISel.inc" 184 185 }; 186 187 } // end anonymous namespace 188 189 #include "PPCGenCallingConv.inc" 190 191 // Function whose sole purpose is to kill compiler warnings 192 // stemming from unused functions included from PPCGenCallingConv.inc. 193 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 194 if (Flag == 1) 195 return CC_PPC32_SVR4; 196 else if (Flag == 2) 197 return CC_PPC32_SVR4_ByVal; 198 else if (Flag == 3) 199 return CC_PPC32_SVR4_VarArg; 200 else 201 return RetCC_PPC; 202 } 203 204 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 205 switch (Pred) { 206 // These are not representable with any single compare. 207 case CmpInst::FCMP_FALSE: 208 case CmpInst::FCMP_UEQ: 209 case CmpInst::FCMP_UGT: 210 case CmpInst::FCMP_UGE: 211 case CmpInst::FCMP_ULT: 212 case CmpInst::FCMP_ULE: 213 case CmpInst::FCMP_UNE: 214 case CmpInst::FCMP_TRUE: 215 default: 216 return Optional<PPC::Predicate>(); 217 218 case CmpInst::FCMP_OEQ: 219 case CmpInst::ICMP_EQ: 220 return PPC::PRED_EQ; 221 222 case CmpInst::FCMP_OGT: 223 case CmpInst::ICMP_UGT: 224 case CmpInst::ICMP_SGT: 225 return PPC::PRED_GT; 226 227 case CmpInst::FCMP_OGE: 228 case CmpInst::ICMP_UGE: 229 case CmpInst::ICMP_SGE: 230 return PPC::PRED_GE; 231 232 case CmpInst::FCMP_OLT: 233 case CmpInst::ICMP_ULT: 234 case CmpInst::ICMP_SLT: 235 return PPC::PRED_LT; 236 237 case CmpInst::FCMP_OLE: 238 case CmpInst::ICMP_ULE: 239 case CmpInst::ICMP_SLE: 240 return PPC::PRED_LE; 241 242 case CmpInst::FCMP_ONE: 243 case CmpInst::ICMP_NE: 244 return PPC::PRED_NE; 245 246 case CmpInst::FCMP_ORD: 247 return PPC::PRED_NU; 248 249 case CmpInst::FCMP_UNO: 250 return PPC::PRED_UN; 251 } 252 } 253 254 // Determine whether the type Ty is simple enough to be handled by 255 // fast-isel, and return its equivalent machine type in VT. 256 // FIXME: Copied directly from ARM -- factor into base class? 257 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 258 EVT Evt = TLI.getValueType(Ty, true); 259 260 // Only handle simple types. 261 if (Evt == MVT::Other || !Evt.isSimple()) return false; 262 VT = Evt.getSimpleVT(); 263 264 // Handle all legal types, i.e. a register that will directly hold this 265 // value. 266 return TLI.isTypeLegal(VT); 267 } 268 269 // Determine whether the type Ty is simple enough to be handled by 270 // fast-isel as a load target, and return its equivalent machine type in VT. 271 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 272 if (isTypeLegal(Ty, VT)) return true; 273 274 // If this is a type than can be sign or zero-extended to a basic operation 275 // go ahead and accept it now. 276 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 277 return true; 278 } 279 280 return false; 281 } 282 283 // Given a value Obj, create an Address object Addr that represents its 284 // address. Return false if we can't handle it. 285 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 286 const User *U = NULL; 287 unsigned Opcode = Instruction::UserOp1; 288 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 289 // Don't walk into other basic blocks unless the object is an alloca from 290 // another block, otherwise it may not have a virtual register assigned. 291 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 292 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 293 Opcode = I->getOpcode(); 294 U = I; 295 } 296 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 297 Opcode = C->getOpcode(); 298 U = C; 299 } 300 301 switch (Opcode) { 302 default: 303 break; 304 case Instruction::BitCast: 305 // Look through bitcasts. 306 return PPCComputeAddress(U->getOperand(0), Addr); 307 case Instruction::IntToPtr: 308 // Look past no-op inttoptrs. 309 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 310 return PPCComputeAddress(U->getOperand(0), Addr); 311 break; 312 case Instruction::PtrToInt: 313 // Look past no-op ptrtoints. 314 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 315 return PPCComputeAddress(U->getOperand(0), Addr); 316 break; 317 case Instruction::GetElementPtr: { 318 Address SavedAddr = Addr; 319 long TmpOffset = Addr.Offset; 320 321 // Iterate through the GEP folding the constants into offsets where 322 // we can. 323 gep_type_iterator GTI = gep_type_begin(U); 324 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 325 II != IE; ++II, ++GTI) { 326 const Value *Op = *II; 327 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 328 const StructLayout *SL = TD.getStructLayout(STy); 329 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 330 TmpOffset += SL->getElementOffset(Idx); 331 } else { 332 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 333 for (;;) { 334 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 335 // Constant-offset addressing. 336 TmpOffset += CI->getSExtValue() * S; 337 break; 338 } 339 if (isa<AddOperator>(Op) && 340 (!isa<Instruction>(Op) || 341 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] 342 == FuncInfo.MBB) && 343 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { 344 // An add (in the same block) with a constant operand. Fold the 345 // constant. 346 ConstantInt *CI = 347 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 348 TmpOffset += CI->getSExtValue() * S; 349 // Iterate on the other operand. 350 Op = cast<AddOperator>(Op)->getOperand(0); 351 continue; 352 } 353 // Unsupported 354 goto unsupported_gep; 355 } 356 } 357 } 358 359 // Try to grab the base operand now. 360 Addr.Offset = TmpOffset; 361 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 362 363 // We failed, restore everything and try the other options. 364 Addr = SavedAddr; 365 366 unsupported_gep: 367 break; 368 } 369 case Instruction::Alloca: { 370 const AllocaInst *AI = cast<AllocaInst>(Obj); 371 DenseMap<const AllocaInst*, int>::iterator SI = 372 FuncInfo.StaticAllocaMap.find(AI); 373 if (SI != FuncInfo.StaticAllocaMap.end()) { 374 Addr.BaseType = Address::FrameIndexBase; 375 Addr.Base.FI = SI->second; 376 return true; 377 } 378 break; 379 } 380 } 381 382 // FIXME: References to parameters fall through to the behavior 383 // below. They should be able to reference a frame index since 384 // they are stored to the stack, so we can get "ld rx, offset(r1)" 385 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 386 // just contain the parameter. Try to handle this with a FI. 387 388 // Try to get this in a register if nothing else has worked. 389 if (Addr.Base.Reg == 0) 390 Addr.Base.Reg = getRegForValue(Obj); 391 392 // Prevent assignment of base register to X0, which is inappropriate 393 // for loads and stores alike. 394 if (Addr.Base.Reg != 0) 395 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 396 397 return Addr.Base.Reg != 0; 398 } 399 400 // Fix up some addresses that can't be used directly. For example, if 401 // an offset won't fit in an instruction field, we may need to move it 402 // into an index register. 403 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 404 unsigned &IndexReg) { 405 406 // Check whether the offset fits in the instruction field. 407 if (!isInt<16>(Addr.Offset)) 408 UseOffset = false; 409 410 // If this is a stack pointer and the offset needs to be simplified then 411 // put the alloca address into a register, set the base type back to 412 // register and continue. This should almost never happen. 413 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 414 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8), 416 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 417 Addr.Base.Reg = ResultReg; 418 Addr.BaseType = Address::RegBase; 419 } 420 421 if (!UseOffset) { 422 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 423 : Type::getInt64Ty(*Context)); 424 const ConstantInt *Offset = 425 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 426 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 427 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 428 } 429 } 430 431 // Emit a load instruction if possible, returning true if we succeeded, 432 // otherwise false. See commentary below for how the register class of 433 // the load is determined. 434 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 435 const TargetRegisterClass *RC, 436 bool IsZExt, unsigned FP64LoadOpc) { 437 unsigned Opc; 438 bool UseOffset = true; 439 440 // If ResultReg is given, it determines the register class of the load. 441 // Otherwise, RC is the register class to use. If the result of the 442 // load isn't anticipated in this block, both may be zero, in which 443 // case we must make a conservative guess. In particular, don't assign 444 // R0 or X0 to the result register, as the result may be used in a load, 445 // store, add-immediate, or isel that won't permit this. (Though 446 // perhaps the spill and reload of live-exit values would handle this?) 447 const TargetRegisterClass *UseRC = 448 (ResultReg ? MRI.getRegClass(ResultReg) : 449 (RC ? RC : 450 (VT == MVT::f64 ? &PPC::F8RCRegClass : 451 (VT == MVT::f32 ? &PPC::F4RCRegClass : 452 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 453 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 454 455 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 456 457 switch (VT.SimpleTy) { 458 default: // e.g., vector types not handled 459 return false; 460 case MVT::i8: 461 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 462 break; 463 case MVT::i16: 464 Opc = (IsZExt ? 465 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 466 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 467 break; 468 case MVT::i32: 469 Opc = (IsZExt ? 470 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 471 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 472 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 473 UseOffset = false; 474 break; 475 case MVT::i64: 476 Opc = PPC::LD; 477 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 478 "64-bit load with 32-bit target??"); 479 UseOffset = ((Addr.Offset & 3) == 0); 480 break; 481 case MVT::f32: 482 Opc = PPC::LFS; 483 break; 484 case MVT::f64: 485 Opc = FP64LoadOpc; 486 break; 487 } 488 489 // If necessary, materialize the offset into a register and use 490 // the indexed form. Also handle stack pointers with special needs. 491 unsigned IndexReg = 0; 492 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 493 if (ResultReg == 0) 494 ResultReg = createResultReg(UseRC); 495 496 // Note: If we still have a frame index here, we know the offset is 497 // in range, as otherwise PPCSimplifyAddress would have converted it 498 // into a RegBase. 499 if (Addr.BaseType == Address::FrameIndexBase) { 500 501 MachineMemOperand *MMO = 502 FuncInfo.MF->getMachineMemOperand( 503 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 504 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 505 MFI.getObjectAlignment(Addr.Base.FI)); 506 507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 508 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 509 510 // Base reg with offset in range. 511 } else if (UseOffset) { 512 513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 514 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 515 516 // Indexed form. 517 } else { 518 // Get the RR opcode corresponding to the RI one. FIXME: It would be 519 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 520 // is hard to get at. 521 switch (Opc) { 522 default: llvm_unreachable("Unexpected opcode!"); 523 case PPC::LBZ: Opc = PPC::LBZX; break; 524 case PPC::LBZ8: Opc = PPC::LBZX8; break; 525 case PPC::LHZ: Opc = PPC::LHZX; break; 526 case PPC::LHZ8: Opc = PPC::LHZX8; break; 527 case PPC::LHA: Opc = PPC::LHAX; break; 528 case PPC::LHA8: Opc = PPC::LHAX8; break; 529 case PPC::LWZ: Opc = PPC::LWZX; break; 530 case PPC::LWZ8: Opc = PPC::LWZX8; break; 531 case PPC::LWA: Opc = PPC::LWAX; break; 532 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 533 case PPC::LD: Opc = PPC::LDX; break; 534 case PPC::LFS: Opc = PPC::LFSX; break; 535 case PPC::LFD: Opc = PPC::LFDX; break; 536 } 537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 538 .addReg(Addr.Base.Reg).addReg(IndexReg); 539 } 540 541 return true; 542 } 543 544 // Attempt to fast-select a load instruction. 545 bool PPCFastISel::SelectLoad(const Instruction *I) { 546 // FIXME: No atomic loads are supported. 547 if (cast<LoadInst>(I)->isAtomic()) 548 return false; 549 550 // Verify we have a legal type before going any further. 551 MVT VT; 552 if (!isLoadTypeLegal(I->getType(), VT)) 553 return false; 554 555 // See if we can handle this address. 556 Address Addr; 557 if (!PPCComputeAddress(I->getOperand(0), Addr)) 558 return false; 559 560 // Look at the currently assigned register for this instruction 561 // to determine the required register class. This is necessary 562 // to constrain RA from using R0/X0 when this is not legal. 563 unsigned AssignedReg = FuncInfo.ValueMap[I]; 564 const TargetRegisterClass *RC = 565 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 566 567 unsigned ResultReg = 0; 568 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 569 return false; 570 UpdateValueMap(I, ResultReg); 571 return true; 572 } 573 574 // Emit a store instruction to store SrcReg at Addr. 575 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 576 assert(SrcReg && "Nothing to store!"); 577 unsigned Opc; 578 bool UseOffset = true; 579 580 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 581 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 582 583 switch (VT.SimpleTy) { 584 default: // e.g., vector types not handled 585 return false; 586 case MVT::i8: 587 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 588 break; 589 case MVT::i16: 590 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 591 break; 592 case MVT::i32: 593 assert(Is32BitInt && "Not GPRC for i32??"); 594 Opc = PPC::STW; 595 break; 596 case MVT::i64: 597 Opc = PPC::STD; 598 UseOffset = ((Addr.Offset & 3) == 0); 599 break; 600 case MVT::f32: 601 Opc = PPC::STFS; 602 break; 603 case MVT::f64: 604 Opc = PPC::STFD; 605 break; 606 } 607 608 // If necessary, materialize the offset into a register and use 609 // the indexed form. Also handle stack pointers with special needs. 610 unsigned IndexReg = 0; 611 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 612 613 // Note: If we still have a frame index here, we know the offset is 614 // in range, as otherwise PPCSimplifyAddress would have converted it 615 // into a RegBase. 616 if (Addr.BaseType == Address::FrameIndexBase) { 617 MachineMemOperand *MMO = 618 FuncInfo.MF->getMachineMemOperand( 619 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 620 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 621 MFI.getObjectAlignment(Addr.Base.FI)); 622 623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg) 624 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 625 626 // Base reg with offset in range. 627 } else if (UseOffset) 628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 629 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 630 631 // Indexed form. 632 else { 633 // Get the RR opcode corresponding to the RI one. FIXME: It would be 634 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 635 // is hard to get at. 636 switch (Opc) { 637 default: llvm_unreachable("Unexpected opcode!"); 638 case PPC::STB: Opc = PPC::STBX; break; 639 case PPC::STH : Opc = PPC::STHX; break; 640 case PPC::STW : Opc = PPC::STWX; break; 641 case PPC::STB8: Opc = PPC::STBX8; break; 642 case PPC::STH8: Opc = PPC::STHX8; break; 643 case PPC::STW8: Opc = PPC::STWX8; break; 644 case PPC::STD: Opc = PPC::STDX; break; 645 case PPC::STFS: Opc = PPC::STFSX; break; 646 case PPC::STFD: Opc = PPC::STFDX; break; 647 } 648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 649 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 650 } 651 652 return true; 653 } 654 655 // Attempt to fast-select a store instruction. 656 bool PPCFastISel::SelectStore(const Instruction *I) { 657 Value *Op0 = I->getOperand(0); 658 unsigned SrcReg = 0; 659 660 // FIXME: No atomics loads are supported. 661 if (cast<StoreInst>(I)->isAtomic()) 662 return false; 663 664 // Verify we have a legal type before going any further. 665 MVT VT; 666 if (!isLoadTypeLegal(Op0->getType(), VT)) 667 return false; 668 669 // Get the value to be stored into a register. 670 SrcReg = getRegForValue(Op0); 671 if (SrcReg == 0) 672 return false; 673 674 // See if we can handle this address. 675 Address Addr; 676 if (!PPCComputeAddress(I->getOperand(1), Addr)) 677 return false; 678 679 if (!PPCEmitStore(VT, SrcReg, Addr)) 680 return false; 681 682 return true; 683 } 684 685 // Attempt to fast-select a branch instruction. 686 bool PPCFastISel::SelectBranch(const Instruction *I) { 687 const BranchInst *BI = cast<BranchInst>(I); 688 MachineBasicBlock *BrBB = FuncInfo.MBB; 689 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 690 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 691 692 // For now, just try the simplest case where it's fed by a compare. 693 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 694 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 695 if (!OptPPCPred) 696 return false; 697 698 PPC::Predicate PPCPred = OptPPCPred.getValue(); 699 700 // Take advantage of fall-through opportunities. 701 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 702 std::swap(TBB, FBB); 703 PPCPred = PPC::InvertPredicate(PPCPred); 704 } 705 706 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 707 708 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 709 CondReg)) 710 return false; 711 712 BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC)) 713 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 714 FastEmitBranch(FBB, DL); 715 FuncInfo.MBB->addSuccessor(TBB); 716 return true; 717 718 } else if (const ConstantInt *CI = 719 dyn_cast<ConstantInt>(BI->getCondition())) { 720 uint64_t Imm = CI->getZExtValue(); 721 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 722 FastEmitBranch(Target, DL); 723 return true; 724 } 725 726 // FIXME: ARM looks for a case where the block containing the compare 727 // has been split from the block containing the branch. If this happens, 728 // there is a vreg available containing the result of the compare. I'm 729 // not sure we can do much, as we've lost the predicate information with 730 // the compare instruction -- we have a 4-bit CR but don't know which bit 731 // to test here. 732 return false; 733 } 734 735 // Attempt to emit a compare of the two source values. Signed and unsigned 736 // comparisons are supported. Return false if we can't handle it. 737 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 738 bool IsZExt, unsigned DestReg) { 739 Type *Ty = SrcValue1->getType(); 740 EVT SrcEVT = TLI.getValueType(Ty, true); 741 if (!SrcEVT.isSimple()) 742 return false; 743 MVT SrcVT = SrcEVT.getSimpleVT(); 744 745 // See if operand 2 is an immediate encodeable in the compare. 746 // FIXME: Operands are not in canonical order at -O0, so an immediate 747 // operand in position 1 is a lost opportunity for now. We are 748 // similar to ARM in this regard. 749 long Imm = 0; 750 bool UseImm = false; 751 752 // Only 16-bit integer constants can be represented in compares for 753 // PowerPC. Others will be materialized into a register. 754 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 755 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 756 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 757 const APInt &CIVal = ConstInt->getValue(); 758 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 759 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 760 UseImm = true; 761 } 762 } 763 764 unsigned CmpOpc; 765 bool NeedsExt = false; 766 switch (SrcVT.SimpleTy) { 767 default: return false; 768 case MVT::f32: 769 CmpOpc = PPC::FCMPUS; 770 break; 771 case MVT::f64: 772 CmpOpc = PPC::FCMPUD; 773 break; 774 case MVT::i1: 775 case MVT::i8: 776 case MVT::i16: 777 NeedsExt = true; 778 // Intentional fall-through. 779 case MVT::i32: 780 if (!UseImm) 781 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 782 else 783 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 784 break; 785 case MVT::i64: 786 if (!UseImm) 787 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 788 else 789 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 790 break; 791 } 792 793 unsigned SrcReg1 = getRegForValue(SrcValue1); 794 if (SrcReg1 == 0) 795 return false; 796 797 unsigned SrcReg2 = 0; 798 if (!UseImm) { 799 SrcReg2 = getRegForValue(SrcValue2); 800 if (SrcReg2 == 0) 801 return false; 802 } 803 804 if (NeedsExt) { 805 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 806 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 807 return false; 808 SrcReg1 = ExtReg; 809 810 if (!UseImm) { 811 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 812 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 813 return false; 814 SrcReg2 = ExtReg; 815 } 816 } 817 818 if (!UseImm) 819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg) 820 .addReg(SrcReg1).addReg(SrcReg2); 821 else 822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg) 823 .addReg(SrcReg1).addImm(Imm); 824 825 return true; 826 } 827 828 // Attempt to fast-select a floating-point extend instruction. 829 bool PPCFastISel::SelectFPExt(const Instruction *I) { 830 Value *Src = I->getOperand(0); 831 EVT SrcVT = TLI.getValueType(Src->getType(), true); 832 EVT DestVT = TLI.getValueType(I->getType(), true); 833 834 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 835 return false; 836 837 unsigned SrcReg = getRegForValue(Src); 838 if (!SrcReg) 839 return false; 840 841 // No code is generated for a FP extend. 842 UpdateValueMap(I, SrcReg); 843 return true; 844 } 845 846 // Attempt to fast-select a floating-point truncate instruction. 847 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 848 Value *Src = I->getOperand(0); 849 EVT SrcVT = TLI.getValueType(Src->getType(), true); 850 EVT DestVT = TLI.getValueType(I->getType(), true); 851 852 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 853 return false; 854 855 unsigned SrcReg = getRegForValue(Src); 856 if (!SrcReg) 857 return false; 858 859 // Round the result to single precision. 860 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 861 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), DestReg) 862 .addReg(SrcReg); 863 864 UpdateValueMap(I, DestReg); 865 return true; 866 } 867 868 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 869 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 870 // those should be used instead of moving via a stack slot when the 871 // subtarget permits. 872 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 873 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 874 // case to 8 bytes which produces tighter code but wastes stack space. 875 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 876 bool IsSigned) { 877 878 // If necessary, extend 32-bit int to 64-bit. 879 if (SrcVT == MVT::i32) { 880 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 881 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 882 return 0; 883 SrcReg = TmpReg; 884 } 885 886 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 887 Address Addr; 888 Addr.BaseType = Address::FrameIndexBase; 889 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 890 891 // Store the value from the GPR. 892 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 893 return 0; 894 895 // Load the integer value into an FPR. The kind of load used depends 896 // on a number of conditions. 897 unsigned LoadOpc = PPC::LFD; 898 899 if (SrcVT == MVT::i32) { 900 Addr.Offset = 4; 901 if (!IsSigned) 902 LoadOpc = PPC::LFIWZX; 903 else if (PPCSubTarget.hasLFIWAX()) 904 LoadOpc = PPC::LFIWAX; 905 } 906 907 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 908 unsigned ResultReg = 0; 909 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 910 return 0; 911 912 return ResultReg; 913 } 914 915 // Attempt to fast-select an integer-to-floating-point conversion. 916 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 917 MVT DstVT; 918 Type *DstTy = I->getType(); 919 if (!isTypeLegal(DstTy, DstVT)) 920 return false; 921 922 if (DstVT != MVT::f32 && DstVT != MVT::f64) 923 return false; 924 925 Value *Src = I->getOperand(0); 926 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 927 if (!SrcEVT.isSimple()) 928 return false; 929 930 MVT SrcVT = SrcEVT.getSimpleVT(); 931 932 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 933 SrcVT != MVT::i32 && SrcVT != MVT::i64) 934 return false; 935 936 unsigned SrcReg = getRegForValue(Src); 937 if (SrcReg == 0) 938 return false; 939 940 // We can only lower an unsigned convert if we have the newer 941 // floating-point conversion operations. 942 if (!IsSigned && !PPCSubTarget.hasFPCVT()) 943 return false; 944 945 // FIXME: For now we require the newer floating-point conversion operations 946 // (which are present only on P7 and A2 server models) when converting 947 // to single-precision float. Otherwise we have to generate a lot of 948 // fiddly code to avoid double rounding. If necessary, the fiddly code 949 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 950 if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT()) 951 return false; 952 953 // Extend the input if necessary. 954 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 955 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 956 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 957 return false; 958 SrcVT = MVT::i64; 959 SrcReg = TmpReg; 960 } 961 962 // Move the integer value to an FPR. 963 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 964 if (FPReg == 0) 965 return false; 966 967 // Determine the opcode for the conversion. 968 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 969 unsigned DestReg = createResultReg(RC); 970 unsigned Opc; 971 972 if (DstVT == MVT::f32) 973 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 974 else 975 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 976 977 // Generate the convert. 978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 979 .addReg(FPReg); 980 981 UpdateValueMap(I, DestReg); 982 return true; 983 } 984 985 // Move the floating-point value in SrcReg into an integer destination 986 // register, and return the register (or zero if we can't handle it). 987 // FIXME: When direct register moves are implemented (see PowerISA 2.08), 988 // those should be used instead of moving via a stack slot when the 989 // subtarget permits. 990 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 991 unsigned SrcReg, bool IsSigned) { 992 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 993 // Note that if have STFIWX available, we could use a 4-byte stack 994 // slot for i32, but this being fast-isel we'll just go with the 995 // easiest code gen possible. 996 Address Addr; 997 Addr.BaseType = Address::FrameIndexBase; 998 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 999 1000 // Store the value from the FPR. 1001 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1002 return 0; 1003 1004 // Reload it into a GPR. If we want an i32, modify the address 1005 // to have a 4-byte offset so we load from the right place. 1006 if (VT == MVT::i32) 1007 Addr.Offset = 4; 1008 1009 // Look at the currently assigned register for this instruction 1010 // to determine the required register class. 1011 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1012 const TargetRegisterClass *RC = 1013 AssignedReg ? MRI.getRegClass(AssignedReg) : 0; 1014 1015 unsigned ResultReg = 0; 1016 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1017 return 0; 1018 1019 return ResultReg; 1020 } 1021 1022 // Attempt to fast-select a floating-point-to-integer conversion. 1023 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1024 MVT DstVT, SrcVT; 1025 Type *DstTy = I->getType(); 1026 if (!isTypeLegal(DstTy, DstVT)) 1027 return false; 1028 1029 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1030 return false; 1031 1032 Value *Src = I->getOperand(0); 1033 Type *SrcTy = Src->getType(); 1034 if (!isTypeLegal(SrcTy, SrcVT)) 1035 return false; 1036 1037 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1038 return false; 1039 1040 unsigned SrcReg = getRegForValue(Src); 1041 if (SrcReg == 0) 1042 return false; 1043 1044 // Convert f32 to f64 if necessary. This is just a meaningless copy 1045 // to get the register class right. COPY_TO_REGCLASS is needed since 1046 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1047 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1048 if (InRC == &PPC::F4RCRegClass) { 1049 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1051 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1052 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1053 SrcReg = TmpReg; 1054 } 1055 1056 // Determine the opcode for the conversion, which takes place 1057 // entirely within FPRs. 1058 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1059 unsigned Opc; 1060 1061 if (DstVT == MVT::i32) 1062 if (IsSigned) 1063 Opc = PPC::FCTIWZ; 1064 else 1065 Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1066 else 1067 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1068 1069 // Generate the convert. 1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 1071 .addReg(SrcReg); 1072 1073 // Now move the integer value from a float register to an integer register. 1074 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1075 if (IntReg == 0) 1076 return false; 1077 1078 UpdateValueMap(I, IntReg); 1079 return true; 1080 } 1081 1082 // Attempt to fast-select a binary integer operation that isn't already 1083 // handled automatically. 1084 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1085 EVT DestVT = TLI.getValueType(I->getType(), true); 1086 1087 // We can get here in the case when we have a binary operation on a non-legal 1088 // type and the target independent selector doesn't know how to handle it. 1089 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1090 return false; 1091 1092 // Look at the currently assigned register for this instruction 1093 // to determine the required register class. If there is no register, 1094 // make a conservative choice (don't assign R0). 1095 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1096 const TargetRegisterClass *RC = 1097 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1098 &PPC::GPRC_and_GPRC_NOR0RegClass); 1099 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1100 1101 unsigned Opc; 1102 switch (ISDOpcode) { 1103 default: return false; 1104 case ISD::ADD: 1105 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1106 break; 1107 case ISD::OR: 1108 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1109 break; 1110 case ISD::SUB: 1111 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1112 break; 1113 } 1114 1115 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1116 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1117 if (SrcReg1 == 0) return false; 1118 1119 // Handle case of small immediate operand. 1120 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1121 const APInt &CIVal = ConstInt->getValue(); 1122 int Imm = (int)CIVal.getSExtValue(); 1123 bool UseImm = true; 1124 if (isInt<16>(Imm)) { 1125 switch (Opc) { 1126 default: 1127 llvm_unreachable("Missing case!"); 1128 case PPC::ADD4: 1129 Opc = PPC::ADDI; 1130 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1131 break; 1132 case PPC::ADD8: 1133 Opc = PPC::ADDI8; 1134 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1135 break; 1136 case PPC::OR: 1137 Opc = PPC::ORI; 1138 break; 1139 case PPC::OR8: 1140 Opc = PPC::ORI8; 1141 break; 1142 case PPC::SUBF: 1143 if (Imm == -32768) 1144 UseImm = false; 1145 else { 1146 Opc = PPC::ADDI; 1147 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1148 Imm = -Imm; 1149 } 1150 break; 1151 case PPC::SUBF8: 1152 if (Imm == -32768) 1153 UseImm = false; 1154 else { 1155 Opc = PPC::ADDI8; 1156 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1157 Imm = -Imm; 1158 } 1159 break; 1160 } 1161 1162 if (UseImm) { 1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 1164 .addReg(SrcReg1).addImm(Imm); 1165 UpdateValueMap(I, ResultReg); 1166 return true; 1167 } 1168 } 1169 } 1170 1171 // Reg-reg case. 1172 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1173 if (SrcReg2 == 0) return false; 1174 1175 // Reverse operands for subtract-from. 1176 if (ISDOpcode == ISD::SUB) 1177 std::swap(SrcReg1, SrcReg2); 1178 1179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 1180 .addReg(SrcReg1).addReg(SrcReg2); 1181 UpdateValueMap(I, ResultReg); 1182 return true; 1183 } 1184 1185 // Handle arguments to a call that we're attempting to fast-select. 1186 // Return false if the arguments are too complex for us at the moment. 1187 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1188 SmallVectorImpl<unsigned> &ArgRegs, 1189 SmallVectorImpl<MVT> &ArgVTs, 1190 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1191 SmallVectorImpl<unsigned> &RegArgs, 1192 CallingConv::ID CC, 1193 unsigned &NumBytes, 1194 bool IsVarArg) { 1195 SmallVector<CCValAssign, 16> ArgLocs; 1196 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1197 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1198 1199 // Bail out if we can't handle any of the arguments. 1200 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1201 CCValAssign &VA = ArgLocs[I]; 1202 MVT ArgVT = ArgVTs[VA.getValNo()]; 1203 1204 // Skip vector arguments for now, as well as long double and 1205 // uint128_t, and anything that isn't passed in a register. 1206 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || 1207 !VA.isRegLoc() || VA.needsCustom()) 1208 return false; 1209 1210 // Skip bit-converted arguments for now. 1211 if (VA.getLocInfo() == CCValAssign::BCvt) 1212 return false; 1213 } 1214 1215 // Get a count of how many bytes are to be pushed onto the stack. 1216 NumBytes = CCInfo.getNextStackOffset(); 1217 1218 // Issue CALLSEQ_START. 1219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1220 TII.get(TII.getCallFrameSetupOpcode())) 1221 .addImm(NumBytes); 1222 1223 // Prepare to assign register arguments. Every argument uses up a 1224 // GPR protocol register even if it's passed in a floating-point 1225 // register. 1226 unsigned NextGPR = PPC::X3; 1227 unsigned NextFPR = PPC::F1; 1228 1229 // Process arguments. 1230 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1231 CCValAssign &VA = ArgLocs[I]; 1232 unsigned Arg = ArgRegs[VA.getValNo()]; 1233 MVT ArgVT = ArgVTs[VA.getValNo()]; 1234 1235 // Handle argument promotion and bitcasts. 1236 switch (VA.getLocInfo()) { 1237 default: 1238 llvm_unreachable("Unknown loc info!"); 1239 case CCValAssign::Full: 1240 break; 1241 case CCValAssign::SExt: { 1242 MVT DestVT = VA.getLocVT(); 1243 const TargetRegisterClass *RC = 1244 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1245 unsigned TmpReg = createResultReg(RC); 1246 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1247 llvm_unreachable("Failed to emit a sext!"); 1248 ArgVT = DestVT; 1249 Arg = TmpReg; 1250 break; 1251 } 1252 case CCValAssign::AExt: 1253 case CCValAssign::ZExt: { 1254 MVT DestVT = VA.getLocVT(); 1255 const TargetRegisterClass *RC = 1256 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1257 unsigned TmpReg = createResultReg(RC); 1258 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1259 llvm_unreachable("Failed to emit a zext!"); 1260 ArgVT = DestVT; 1261 Arg = TmpReg; 1262 break; 1263 } 1264 case CCValAssign::BCvt: { 1265 // FIXME: Not yet handled. 1266 llvm_unreachable("Should have bailed before getting here!"); 1267 break; 1268 } 1269 } 1270 1271 // Copy this argument to the appropriate register. 1272 unsigned ArgReg; 1273 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1274 ArgReg = NextFPR++; 1275 ++NextGPR; 1276 } else 1277 ArgReg = NextGPR++; 1278 1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1280 ArgReg).addReg(Arg); 1281 RegArgs.push_back(ArgReg); 1282 } 1283 1284 return true; 1285 } 1286 1287 // For a call that we've determined we can fast-select, finish the 1288 // call sequence and generate a copy to obtain the return value (if any). 1289 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1290 const Instruction *I, CallingConv::ID CC, 1291 unsigned &NumBytes, bool IsVarArg) { 1292 // Issue CallSEQ_END. 1293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1294 TII.get(TII.getCallFrameDestroyOpcode())) 1295 .addImm(NumBytes).addImm(0); 1296 1297 // Next, generate a copy to obtain the return value. 1298 // FIXME: No multi-register return values yet, though I don't foresee 1299 // any real difficulties there. 1300 if (RetVT != MVT::isVoid) { 1301 SmallVector<CCValAssign, 16> RVLocs; 1302 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1303 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1304 CCValAssign &VA = RVLocs[0]; 1305 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1306 assert(VA.isRegLoc() && "Can only return in registers!"); 1307 1308 MVT DestVT = VA.getValVT(); 1309 MVT CopyVT = DestVT; 1310 1311 // Ints smaller than a register still arrive in a full 64-bit 1312 // register, so make sure we recognize this. 1313 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1314 CopyVT = MVT::i64; 1315 1316 unsigned SourcePhysReg = VA.getLocReg(); 1317 unsigned ResultReg = 0; 1318 1319 if (RetVT == CopyVT) { 1320 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1321 ResultReg = createResultReg(CpyRC); 1322 1323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1324 TII.get(TargetOpcode::COPY), ResultReg) 1325 .addReg(SourcePhysReg); 1326 1327 // If necessary, round the floating result to single precision. 1328 } else if (CopyVT == MVT::f64) { 1329 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1330 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), 1331 ResultReg).addReg(SourcePhysReg); 1332 1333 // If only the low half of a general register is needed, generate 1334 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1335 // used along the fast-isel path (not lowered), and downstream logic 1336 // also doesn't like a direct subreg copy on a physical reg.) 1337 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1338 ResultReg = createResultReg(&PPC::GPRCRegClass); 1339 // Convert physical register from G8RC to GPRC. 1340 SourcePhysReg -= PPC::X0 - PPC::R0; 1341 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1342 TII.get(TargetOpcode::COPY), ResultReg) 1343 .addReg(SourcePhysReg); 1344 } 1345 1346 assert(ResultReg && "ResultReg unset!"); 1347 UsedRegs.push_back(SourcePhysReg); 1348 UpdateValueMap(I, ResultReg); 1349 } 1350 } 1351 1352 // Attempt to fast-select a call instruction. 1353 bool PPCFastISel::SelectCall(const Instruction *I) { 1354 const CallInst *CI = cast<CallInst>(I); 1355 const Value *Callee = CI->getCalledValue(); 1356 1357 // Can't handle inline asm. 1358 if (isa<InlineAsm>(Callee)) 1359 return false; 1360 1361 // Allow SelectionDAG isel to handle tail calls. 1362 if (CI->isTailCall()) 1363 return false; 1364 1365 // Obtain calling convention. 1366 ImmutableCallSite CS(CI); 1367 CallingConv::ID CC = CS.getCallingConv(); 1368 1369 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1370 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 1371 bool IsVarArg = FTy->isVarArg(); 1372 1373 // Not ready for varargs yet. 1374 if (IsVarArg) 1375 return false; 1376 1377 // Handle simple calls for now, with legal return types and 1378 // those that can be extended. 1379 Type *RetTy = I->getType(); 1380 MVT RetVT; 1381 if (RetTy->isVoidTy()) 1382 RetVT = MVT::isVoid; 1383 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1384 RetVT != MVT::i8) 1385 return false; 1386 1387 // FIXME: No multi-register return values yet. 1388 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1389 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1390 RetVT != MVT::f64) { 1391 SmallVector<CCValAssign, 16> RVLocs; 1392 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 1393 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1394 if (RVLocs.size() > 1) 1395 return false; 1396 } 1397 1398 // Bail early if more than 8 arguments, as we only currently 1399 // handle arguments passed in registers. 1400 unsigned NumArgs = CS.arg_size(); 1401 if (NumArgs > 8) 1402 return false; 1403 1404 // Set up the argument vectors. 1405 SmallVector<Value*, 8> Args; 1406 SmallVector<unsigned, 8> ArgRegs; 1407 SmallVector<MVT, 8> ArgVTs; 1408 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1409 1410 Args.reserve(NumArgs); 1411 ArgRegs.reserve(NumArgs); 1412 ArgVTs.reserve(NumArgs); 1413 ArgFlags.reserve(NumArgs); 1414 1415 for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end(); 1416 II != IE; ++II) { 1417 // FIXME: ARM does something for intrinsic calls here, check into that. 1418 1419 unsigned AttrIdx = II - CS.arg_begin() + 1; 1420 1421 // Only handle easy calls for now. It would be reasonably easy 1422 // to handle <= 8-byte structures passed ByVal in registers, but we 1423 // have to ensure they are right-justified in the register. 1424 if (CS.paramHasAttr(AttrIdx, Attribute::InReg) || 1425 CS.paramHasAttr(AttrIdx, Attribute::StructRet) || 1426 CS.paramHasAttr(AttrIdx, Attribute::Nest) || 1427 CS.paramHasAttr(AttrIdx, Attribute::ByVal)) 1428 return false; 1429 1430 ISD::ArgFlagsTy Flags; 1431 if (CS.paramHasAttr(AttrIdx, Attribute::SExt)) 1432 Flags.setSExt(); 1433 if (CS.paramHasAttr(AttrIdx, Attribute::ZExt)) 1434 Flags.setZExt(); 1435 1436 Type *ArgTy = (*II)->getType(); 1437 MVT ArgVT; 1438 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1439 return false; 1440 1441 if (ArgVT.isVector()) 1442 return false; 1443 1444 unsigned Arg = getRegForValue(*II); 1445 if (Arg == 0) 1446 return false; 1447 1448 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 1449 Flags.setOrigAlign(OriginalAlignment); 1450 1451 Args.push_back(*II); 1452 ArgRegs.push_back(Arg); 1453 ArgVTs.push_back(ArgVT); 1454 ArgFlags.push_back(Flags); 1455 } 1456 1457 // Process the arguments. 1458 SmallVector<unsigned, 8> RegArgs; 1459 unsigned NumBytes; 1460 1461 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1462 RegArgs, CC, NumBytes, IsVarArg)) 1463 return false; 1464 1465 // FIXME: No handling for function pointers yet. This requires 1466 // implementing the function descriptor (OPD) setup. 1467 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1468 if (!GV) 1469 return false; 1470 1471 // Build direct call with NOP for TOC restore. 1472 // FIXME: We can and should optimize away the NOP for local calls. 1473 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1474 TII.get(PPC::BL8_NOP)); 1475 // Add callee. 1476 MIB.addGlobalAddress(GV); 1477 1478 // Add implicit physical register uses to the call. 1479 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1480 MIB.addReg(RegArgs[II], RegState::Implicit); 1481 1482 // Add a register mask with the call-preserved registers. Proper 1483 // defs for return values will be added by setPhysRegsDeadExcept(). 1484 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1485 1486 // Finish off the call including any return values. 1487 SmallVector<unsigned, 4> UsedRegs; 1488 finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg); 1489 1490 // Set all unused physregs defs as dead. 1491 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1492 1493 return true; 1494 } 1495 1496 // Attempt to fast-select a return instruction. 1497 bool PPCFastISel::SelectRet(const Instruction *I) { 1498 1499 if (!FuncInfo.CanLowerReturn) 1500 return false; 1501 1502 const ReturnInst *Ret = cast<ReturnInst>(I); 1503 const Function &F = *I->getParent()->getParent(); 1504 1505 // Build a list of return value registers. 1506 SmallVector<unsigned, 4> RetRegs; 1507 CallingConv::ID CC = F.getCallingConv(); 1508 1509 if (Ret->getNumOperands() > 0) { 1510 SmallVector<ISD::OutputArg, 4> Outs; 1511 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1512 1513 // Analyze operands of the call, assigning locations to each operand. 1514 SmallVector<CCValAssign, 16> ValLocs; 1515 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context); 1516 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1517 const Value *RV = Ret->getOperand(0); 1518 1519 // FIXME: Only one output register for now. 1520 if (ValLocs.size() > 1) 1521 return false; 1522 1523 // Special case for returning a constant integer of any size. 1524 // Materialize the constant as an i64 and copy it to the return 1525 // register. This avoids an unnecessary extend or truncate. 1526 if (isa<ConstantInt>(*RV)) { 1527 const Constant *C = cast<Constant>(RV); 1528 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64); 1529 unsigned RetReg = ValLocs[0].getLocReg(); 1530 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1531 RetReg).addReg(SrcReg); 1532 RetRegs.push_back(RetReg); 1533 1534 } else { 1535 unsigned Reg = getRegForValue(RV); 1536 1537 if (Reg == 0) 1538 return false; 1539 1540 // Copy the result values into the output registers. 1541 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1542 1543 CCValAssign &VA = ValLocs[i]; 1544 assert(VA.isRegLoc() && "Can only return in registers!"); 1545 RetRegs.push_back(VA.getLocReg()); 1546 unsigned SrcReg = Reg + VA.getValNo(); 1547 1548 EVT RVEVT = TLI.getValueType(RV->getType()); 1549 if (!RVEVT.isSimple()) 1550 return false; 1551 MVT RVVT = RVEVT.getSimpleVT(); 1552 MVT DestVT = VA.getLocVT(); 1553 1554 if (RVVT != DestVT && RVVT != MVT::i8 && 1555 RVVT != MVT::i16 && RVVT != MVT::i32) 1556 return false; 1557 1558 if (RVVT != DestVT) { 1559 switch (VA.getLocInfo()) { 1560 default: 1561 llvm_unreachable("Unknown loc info!"); 1562 case CCValAssign::Full: 1563 llvm_unreachable("Full value assign but types don't match?"); 1564 case CCValAssign::AExt: 1565 case CCValAssign::ZExt: { 1566 const TargetRegisterClass *RC = 1567 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1568 unsigned TmpReg = createResultReg(RC); 1569 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1570 return false; 1571 SrcReg = TmpReg; 1572 break; 1573 } 1574 case CCValAssign::SExt: { 1575 const TargetRegisterClass *RC = 1576 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1577 unsigned TmpReg = createResultReg(RC); 1578 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1579 return false; 1580 SrcReg = TmpReg; 1581 break; 1582 } 1583 } 1584 } 1585 1586 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1587 TII.get(TargetOpcode::COPY), RetRegs[i]) 1588 .addReg(SrcReg); 1589 } 1590 } 1591 } 1592 1593 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1594 TII.get(PPC::BLR)); 1595 1596 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1597 MIB.addReg(RetRegs[i], RegState::Implicit); 1598 1599 return true; 1600 } 1601 1602 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1603 // signed and zero extensions are supported. Return false if we 1604 // can't handle it. 1605 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1606 unsigned DestReg, bool IsZExt) { 1607 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1608 return false; 1609 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1610 return false; 1611 1612 // Signed extensions use EXTSB, EXTSH, EXTSW. 1613 if (!IsZExt) { 1614 unsigned Opc; 1615 if (SrcVT == MVT::i8) 1616 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1617 else if (SrcVT == MVT::i16) 1618 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1619 else { 1620 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1621 Opc = PPC::EXTSW_32_64; 1622 } 1623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 1624 .addReg(SrcReg); 1625 1626 // Unsigned 32-bit extensions use RLWINM. 1627 } else if (DestVT == MVT::i32) { 1628 unsigned MB; 1629 if (SrcVT == MVT::i8) 1630 MB = 24; 1631 else { 1632 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1633 MB = 16; 1634 } 1635 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM), 1636 DestReg) 1637 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1638 1639 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1640 } else { 1641 unsigned MB; 1642 if (SrcVT == MVT::i8) 1643 MB = 56; 1644 else if (SrcVT == MVT::i16) 1645 MB = 48; 1646 else 1647 MB = 32; 1648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1649 TII.get(PPC::RLDICL_32_64), DestReg) 1650 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1651 } 1652 1653 return true; 1654 } 1655 1656 // Attempt to fast-select an indirect branch instruction. 1657 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1658 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1659 if (AddrReg == 0) 1660 return false; 1661 1662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8)) 1663 .addReg(AddrReg); 1664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8)); 1665 1666 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1667 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1668 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1669 1670 return true; 1671 } 1672 1673 // Attempt to fast-select an integer truncate instruction. 1674 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1675 Value *Src = I->getOperand(0); 1676 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1677 EVT DestVT = TLI.getValueType(I->getType(), true); 1678 1679 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1680 return false; 1681 1682 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1683 return false; 1684 1685 unsigned SrcReg = getRegForValue(Src); 1686 if (!SrcReg) 1687 return false; 1688 1689 // The only interesting case is when we need to switch register classes. 1690 if (SrcVT == MVT::i64) { 1691 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1692 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1693 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1694 SrcReg = ResultReg; 1695 } 1696 1697 UpdateValueMap(I, SrcReg); 1698 return true; 1699 } 1700 1701 // Attempt to fast-select an integer extend instruction. 1702 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1703 Type *DestTy = I->getType(); 1704 Value *Src = I->getOperand(0); 1705 Type *SrcTy = Src->getType(); 1706 1707 bool IsZExt = isa<ZExtInst>(I); 1708 unsigned SrcReg = getRegForValue(Src); 1709 if (!SrcReg) return false; 1710 1711 EVT SrcEVT, DestEVT; 1712 SrcEVT = TLI.getValueType(SrcTy, true); 1713 DestEVT = TLI.getValueType(DestTy, true); 1714 if (!SrcEVT.isSimple()) 1715 return false; 1716 if (!DestEVT.isSimple()) 1717 return false; 1718 1719 MVT SrcVT = SrcEVT.getSimpleVT(); 1720 MVT DestVT = DestEVT.getSimpleVT(); 1721 1722 // If we know the register class needed for the result of this 1723 // instruction, use it. Otherwise pick the register class of the 1724 // correct size that does not contain X0/R0, since we don't know 1725 // whether downstream uses permit that assignment. 1726 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1727 const TargetRegisterClass *RC = 1728 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1729 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1730 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1731 unsigned ResultReg = createResultReg(RC); 1732 1733 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1734 return false; 1735 1736 UpdateValueMap(I, ResultReg); 1737 return true; 1738 } 1739 1740 // Attempt to fast-select an instruction that wasn't handled by 1741 // the table-generated machinery. 1742 bool PPCFastISel::TargetSelectInstruction(const Instruction *I) { 1743 1744 switch (I->getOpcode()) { 1745 case Instruction::Load: 1746 return SelectLoad(I); 1747 case Instruction::Store: 1748 return SelectStore(I); 1749 case Instruction::Br: 1750 return SelectBranch(I); 1751 case Instruction::IndirectBr: 1752 return SelectIndirectBr(I); 1753 case Instruction::FPExt: 1754 return SelectFPExt(I); 1755 case Instruction::FPTrunc: 1756 return SelectFPTrunc(I); 1757 case Instruction::SIToFP: 1758 return SelectIToFP(I, /*IsSigned*/ true); 1759 case Instruction::UIToFP: 1760 return SelectIToFP(I, /*IsSigned*/ false); 1761 case Instruction::FPToSI: 1762 return SelectFPToI(I, /*IsSigned*/ true); 1763 case Instruction::FPToUI: 1764 return SelectFPToI(I, /*IsSigned*/ false); 1765 case Instruction::Add: 1766 return SelectBinaryIntOp(I, ISD::ADD); 1767 case Instruction::Or: 1768 return SelectBinaryIntOp(I, ISD::OR); 1769 case Instruction::Sub: 1770 return SelectBinaryIntOp(I, ISD::SUB); 1771 case Instruction::Call: 1772 if (dyn_cast<IntrinsicInst>(I)) 1773 return false; 1774 return SelectCall(I); 1775 case Instruction::Ret: 1776 return SelectRet(I); 1777 case Instruction::Trunc: 1778 return SelectTrunc(I); 1779 case Instruction::ZExt: 1780 case Instruction::SExt: 1781 return SelectIntExt(I); 1782 // Here add other flavors of Instruction::XXX that automated 1783 // cases don't catch. For example, switches are terminators 1784 // that aren't yet handled. 1785 default: 1786 break; 1787 } 1788 return false; 1789 } 1790 1791 // Materialize a floating-point constant into a register, and return 1792 // the register number (or zero if we failed to handle it). 1793 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1794 // No plans to handle long double here. 1795 if (VT != MVT::f32 && VT != MVT::f64) 1796 return 0; 1797 1798 // All FP constants are loaded from the constant pool. 1799 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 1800 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1801 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1802 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1803 CodeModel::Model CModel = TM.getCodeModel(); 1804 1805 MachineMemOperand *MMO = 1806 FuncInfo.MF->getMachineMemOperand( 1807 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1808 (VT == MVT::f32) ? 4 : 8, Align); 1809 1810 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1811 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1812 1813 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1814 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT), 1816 TmpReg) 1817 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1818 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 1819 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1820 } else { 1821 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA), 1823 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 1825 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1826 .addReg(TmpReg) 1827 .addMemOperand(MMO); 1828 } 1829 1830 return DestReg; 1831 } 1832 1833 // Materialize the address of a global value into a register, and return 1834 // the register number (or zero if we failed to handle it). 1835 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1836 assert(VT == MVT::i64 && "Non-address!"); 1837 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1838 unsigned DestReg = createResultReg(RC); 1839 1840 // Global values may be plain old object addresses, TLS object 1841 // addresses, constant pool entries, or jump tables. How we generate 1842 // code for these may depend on small, medium, or large code model. 1843 CodeModel::Model CModel = TM.getCodeModel(); 1844 1845 // FIXME: Jump tables are not yet required because fast-isel doesn't 1846 // handle switches; if that changes, we need them as well. For now, 1847 // what follows assumes everything's a generic (or TLS) global address. 1848 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1849 if (!GVar) { 1850 // If GV is an alias, use the aliasee for determining thread-locality. 1851 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 1852 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)); 1853 } 1854 1855 // FIXME: We don't yet handle the complexity of TLS. 1856 bool IsTLS = GVar && GVar->isThreadLocal(); 1857 if (IsTLS) 1858 return 0; 1859 1860 // For small code model, generate a simple TOC load. 1861 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1862 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg) 1863 .addGlobalAddress(GV).addReg(PPC::X2); 1864 else { 1865 // If the address is an externally defined symbol, a symbol with 1866 // common or externally available linkage, a function address, or a 1867 // jump table address (not yet needed), or if we are generating code 1868 // for large code model, we generate: 1869 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1870 // Otherwise we generate: 1871 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1872 // Either way, start with the ADDIStocHA: 1873 unsigned HighPartReg = createResultReg(RC); 1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA), 1875 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1876 1877 // !GVar implies a function address. An external variable is one 1878 // without an initializer. 1879 // If/when switches are implemented, jump tables should be handled 1880 // on the "if" path here. 1881 if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() || 1882 GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage()) 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL), 1884 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1885 else 1886 // Otherwise generate the ADDItocL. 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL), 1888 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1889 } 1890 1891 return DestReg; 1892 } 1893 1894 // Materialize a 32-bit integer constant into a register, and return 1895 // the register number (or zero if we failed to handle it). 1896 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1897 const TargetRegisterClass *RC) { 1898 unsigned Lo = Imm & 0xFFFF; 1899 unsigned Hi = (Imm >> 16) & 0xFFFF; 1900 1901 unsigned ResultReg = createResultReg(RC); 1902 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1903 1904 if (isInt<16>(Imm)) 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1906 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1907 .addImm(Imm); 1908 else if (Lo) { 1909 // Both Lo and Hi have nonzero bits. 1910 unsigned TmpReg = createResultReg(RC); 1911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1912 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1913 .addImm(Hi); 1914 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1915 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1916 .addReg(TmpReg).addImm(Lo); 1917 } else 1918 // Just Hi bits. 1919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1920 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1921 .addImm(Hi); 1922 1923 return ResultReg; 1924 } 1925 1926 // Materialize a 64-bit integer constant into a register, and return 1927 // the register number (or zero if we failed to handle it). 1928 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 1929 const TargetRegisterClass *RC) { 1930 unsigned Remainder = 0; 1931 unsigned Shift = 0; 1932 1933 // If the value doesn't fit in 32 bits, see if we can shift it 1934 // so that it fits in 32 bits. 1935 if (!isInt<32>(Imm)) { 1936 Shift = countTrailingZeros<uint64_t>(Imm); 1937 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 1938 1939 if (isInt<32>(ImmSh)) 1940 Imm = ImmSh; 1941 else { 1942 Remainder = Imm; 1943 Shift = 32; 1944 Imm >>= 32; 1945 } 1946 } 1947 1948 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 1949 // (if not shifted). 1950 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 1951 if (!Shift) 1952 return TmpReg1; 1953 1954 // If upper 32 bits were not zero, we've built them and need to shift 1955 // them into place. 1956 unsigned TmpReg2; 1957 if (Imm) { 1958 TmpReg2 = createResultReg(RC); 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR), 1960 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 1961 } else 1962 TmpReg2 = TmpReg1; 1963 1964 unsigned TmpReg3, Hi, Lo; 1965 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 1966 TmpReg3 = createResultReg(RC); 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8), 1968 TmpReg3).addReg(TmpReg2).addImm(Hi); 1969 } else 1970 TmpReg3 = TmpReg2; 1971 1972 if ((Lo = Remainder & 0xFFFF)) { 1973 unsigned ResultReg = createResultReg(RC); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8), 1975 ResultReg).addReg(TmpReg3).addImm(Lo); 1976 return ResultReg; 1977 } 1978 1979 return TmpReg3; 1980 } 1981 1982 1983 // Materialize an integer constant into a register, and return 1984 // the register number (or zero if we failed to handle it). 1985 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) { 1986 1987 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 1988 VT != MVT::i8 && VT != MVT::i1) 1989 return 0; 1990 1991 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 1992 &PPC::GPRCRegClass); 1993 1994 // If the constant is in range, use a load-immediate. 1995 const ConstantInt *CI = cast<ConstantInt>(C); 1996 if (isInt<16>(CI->getSExtValue())) { 1997 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 1998 unsigned ImmReg = createResultReg(RC); 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg) 2000 .addImm(CI->getSExtValue()); 2001 return ImmReg; 2002 } 2003 2004 // Construct the constant piecewise. 2005 int64_t Imm = CI->getZExtValue(); 2006 2007 if (VT == MVT::i64) 2008 return PPCMaterialize64BitInt(Imm, RC); 2009 else if (VT == MVT::i32) 2010 return PPCMaterialize32BitInt(Imm, RC); 2011 2012 return 0; 2013 } 2014 2015 // Materialize a constant into a register, and return the register 2016 // number (or zero if we failed to handle it). 2017 unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) { 2018 EVT CEVT = TLI.getValueType(C->getType(), true); 2019 2020 // Only handle simple types. 2021 if (!CEVT.isSimple()) return 0; 2022 MVT VT = CEVT.getSimpleVT(); 2023 2024 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2025 return PPCMaterializeFP(CFP, VT); 2026 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2027 return PPCMaterializeGV(GV, VT); 2028 else if (isa<ConstantInt>(C)) 2029 return PPCMaterializeInt(C, VT); 2030 2031 return 0; 2032 } 2033 2034 // Materialize the address created by an alloca into a register, and 2035 // return the register number (or zero if we failed to handle it). 2036 unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 2037 // Don't handle dynamic allocas. 2038 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2039 2040 MVT VT; 2041 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2042 2043 DenseMap<const AllocaInst*, int>::iterator SI = 2044 FuncInfo.StaticAllocaMap.find(AI); 2045 2046 if (SI != FuncInfo.StaticAllocaMap.end()) { 2047 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8), 2049 ResultReg).addFrameIndex(SI->second).addImm(0); 2050 return ResultReg; 2051 } 2052 2053 return 0; 2054 } 2055 2056 // Fold loads into extends when possible. 2057 // FIXME: We can have multiple redundant extend/trunc instructions 2058 // following a load. The folding only picks up one. Extend this 2059 // to check subsequent instructions for the same pattern and remove 2060 // them. Thus ResultReg should be the def reg for the last redundant 2061 // instruction in a chain, and all intervening instructions can be 2062 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2063 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2064 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2065 const LoadInst *LI) { 2066 // Verify we have a legal type before going any further. 2067 MVT VT; 2068 if (!isLoadTypeLegal(LI->getType(), VT)) 2069 return false; 2070 2071 // Combine load followed by zero- or sign-extend. 2072 bool IsZExt = false; 2073 switch(MI->getOpcode()) { 2074 default: 2075 return false; 2076 2077 case PPC::RLDICL: 2078 case PPC::RLDICL_32_64: { 2079 IsZExt = true; 2080 unsigned MB = MI->getOperand(3).getImm(); 2081 if ((VT == MVT::i8 && MB <= 56) || 2082 (VT == MVT::i16 && MB <= 48) || 2083 (VT == MVT::i32 && MB <= 32)) 2084 break; 2085 return false; 2086 } 2087 2088 case PPC::RLWINM: 2089 case PPC::RLWINM8: { 2090 IsZExt = true; 2091 unsigned MB = MI->getOperand(3).getImm(); 2092 if ((VT == MVT::i8 && MB <= 24) || 2093 (VT == MVT::i16 && MB <= 16)) 2094 break; 2095 return false; 2096 } 2097 2098 case PPC::EXTSB: 2099 case PPC::EXTSB8: 2100 case PPC::EXTSB8_32_64: 2101 /* There is no sign-extending load-byte instruction. */ 2102 return false; 2103 2104 case PPC::EXTSH: 2105 case PPC::EXTSH8: 2106 case PPC::EXTSH8_32_64: { 2107 if (VT != MVT::i16 && VT != MVT::i8) 2108 return false; 2109 break; 2110 } 2111 2112 case PPC::EXTSW: 2113 case PPC::EXTSW_32_64: { 2114 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2115 return false; 2116 break; 2117 } 2118 } 2119 2120 // See if we can handle this address. 2121 Address Addr; 2122 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2123 return false; 2124 2125 unsigned ResultReg = MI->getOperand(0).getReg(); 2126 2127 if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt)) 2128 return false; 2129 2130 MI->eraseFromParent(); 2131 return true; 2132 } 2133 2134 // Attempt to lower call arguments in a faster way than done by 2135 // the selection DAG code. 2136 bool PPCFastISel::FastLowerArguments() { 2137 // Defer to normal argument lowering for now. It's reasonably 2138 // efficient. Consider doing something like ARM to handle the 2139 // case where all args fit in registers, no varargs, no float 2140 // or vector args. 2141 return false; 2142 } 2143 2144 // Handle materializing integer constants into a register. This is not 2145 // automatically generated for PowerPC, so must be explicitly created here. 2146 unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2147 2148 if (Opc != ISD::Constant) 2149 return 0; 2150 2151 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2152 VT != MVT::i8 && VT != MVT::i1) 2153 return 0; 2154 2155 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2156 &PPC::GPRCRegClass); 2157 if (VT == MVT::i64) 2158 return PPCMaterialize64BitInt(Imm, RC); 2159 else 2160 return PPCMaterialize32BitInt(Imm, RC); 2161 } 2162 2163 // Override for ADDI and ADDI8 to set the correct register class 2164 // on RHS operand 0. The automatic infrastructure naively assumes 2165 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2166 // for these cases. At the moment, none of the other automatically 2167 // generated RI instructions require special treatment. However, once 2168 // SelectSelect is implemented, "isel" requires similar handling. 2169 // 2170 // Also be conservative about the output register class. Avoid 2171 // assigning R0 or X0 to the output register for GPRC and G8RC 2172 // register classes, as any such result could be used in ADDI, etc., 2173 // where those regs have another meaning. 2174 unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 2175 const TargetRegisterClass *RC, 2176 unsigned Op0, bool Op0IsKill, 2177 uint64_t Imm) { 2178 if (MachineInstOpcode == PPC::ADDI) 2179 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2180 else if (MachineInstOpcode == PPC::ADDI8) 2181 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2182 2183 const TargetRegisterClass *UseRC = 2184 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2185 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2186 2187 return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC, 2188 Op0, Op0IsKill, Imm); 2189 } 2190 2191 // Override for instructions with one register operand to avoid use of 2192 // R0/X0. The automatic infrastructure isn't aware of the context so 2193 // we must be conservative. 2194 unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 2195 const TargetRegisterClass* RC, 2196 unsigned Op0, bool Op0IsKill) { 2197 const TargetRegisterClass *UseRC = 2198 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2199 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2200 2201 return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2202 } 2203 2204 // Override for instructions with two register operands to avoid use 2205 // of R0/X0. The automatic infrastructure isn't aware of the context 2206 // so we must be conservative. 2207 unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 2208 const TargetRegisterClass* RC, 2209 unsigned Op0, bool Op0IsKill, 2210 unsigned Op1, bool Op1IsKill) { 2211 const TargetRegisterClass *UseRC = 2212 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2213 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2214 2215 return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2216 Op1, Op1IsKill); 2217 } 2218 2219 namespace llvm { 2220 // Create the fast instruction selector for PowerPC64 ELF. 2221 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2222 const TargetLibraryInfo *LibInfo) { 2223 const TargetMachine &TM = FuncInfo.MF->getTarget(); 2224 2225 // Only available on 64-bit ELF for now. 2226 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 2227 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) 2228 return new PPCFastISel(FuncInfo, LibInfo); 2229 2230 return 0; 2231 } 2232 } 2233