1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "MCTargetDesc/PPCPredicates.h" 17 #include "PPC.h" 18 #include "PPCCCState.h" 19 #include "PPCCallingConv.h" 20 #include "PPCISelLowering.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCSubtarget.h" 23 #include "PPCTargetMachine.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Target/TargetMachine.h" 41 42 //===----------------------------------------------------------------------===// 43 // 44 // TBD: 45 // fastLowerArguments: Handle simple cases. 46 // PPCMaterializeGV: Handle TLS. 47 // SelectCall: Handle function pointers. 48 // SelectCall: Handle multi-register return values. 49 // SelectCall: Optimize away nops for local calls. 50 // processCallArgs: Handle bit-converted arguments. 51 // finishCall: Handle multi-register return values. 52 // PPCComputeAddress: Handle parameter references as FrameIndex's. 53 // PPCEmitCmp: Handle immediate as operand 1. 54 // SelectCall: Handle small byval arguments. 55 // SelectIntrinsicCall: Implement. 56 // SelectSelect: Implement. 57 // Consider factoring isTypeLegal into the base class. 58 // Implement switches and jump tables. 59 // 60 //===----------------------------------------------------------------------===// 61 using namespace llvm; 62 63 #define DEBUG_TYPE "ppcfastisel" 64 65 namespace { 66 67 typedef struct Address { 68 enum { 69 RegBase, 70 FrameIndexBase 71 } BaseType; 72 73 union { 74 unsigned Reg; 75 int FI; 76 } Base; 77 78 long Offset; 79 80 // Innocuous defaults for our address. 81 Address() 82 : BaseType(RegBase), Offset(0) { 83 Base.Reg = 0; 84 } 85 } Address; 86 87 class PPCFastISel final : public FastISel { 88 89 const TargetMachine &TM; 90 const PPCSubtarget *PPCSubTarget; 91 PPCFunctionInfo *PPCFuncInfo; 92 const TargetInstrInfo &TII; 93 const TargetLowering &TLI; 94 LLVMContext *Context; 95 96 public: 97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 98 const TargetLibraryInfo *LibInfo) 99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 102 TII(*PPCSubTarget->getInstrInfo()), 103 TLI(*PPCSubTarget->getTargetLowering()), 104 Context(&FuncInfo.Fn->getContext()) {} 105 106 // Backend specific FastISel code. 107 private: 108 bool fastSelectInstruction(const Instruction *I) override; 109 unsigned fastMaterializeConstant(const Constant *C) override; 110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 112 const LoadInst *LI) override; 113 bool fastLowerArguments() override; 114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 uint64_t Imm); 119 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill); 122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill); 126 127 bool fastLowerCall(CallLoweringInfo &CLI) override; 128 129 // Instruction selection routines. 130 private: 131 bool SelectLoad(const Instruction *I); 132 bool SelectStore(const Instruction *I); 133 bool SelectBranch(const Instruction *I); 134 bool SelectIndirectBr(const Instruction *I); 135 bool SelectFPExt(const Instruction *I); 136 bool SelectFPTrunc(const Instruction *I); 137 bool SelectIToFP(const Instruction *I, bool IsSigned); 138 bool SelectFPToI(const Instruction *I, bool IsSigned); 139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 140 bool SelectRet(const Instruction *I); 141 bool SelectTrunc(const Instruction *I); 142 bool SelectIntExt(const Instruction *I); 143 144 // Utility routines. 145 private: 146 bool isTypeLegal(Type *Ty, MVT &VT); 147 bool isLoadTypeLegal(Type *Ty, MVT &VT); 148 bool isValueAvailable(const Value *V) const; 149 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 150 return RC->getID() == PPC::VSFRCRegClassID; 151 } 152 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 153 return RC->getID() == PPC::VSSRCRegClassID; 154 } 155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 156 bool isZExt, unsigned DestReg); 157 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 158 const TargetRegisterClass *RC, bool IsZExt = true, 159 unsigned FP64LoadOpc = PPC::LFD); 160 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 161 bool PPCComputeAddress(const Value *Obj, Address &Addr); 162 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 163 unsigned &IndexReg); 164 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 165 unsigned DestReg, bool IsZExt); 166 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 167 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 168 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 169 bool UseSExt = true); 170 unsigned PPCMaterialize32BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMaterialize64BitInt(int64_t Imm, 173 const TargetRegisterClass *RC); 174 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 175 unsigned SrcReg, bool IsSigned); 176 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 177 178 // Call handling routines. 179 private: 180 bool processCallArgs(SmallVectorImpl<Value*> &Args, 181 SmallVectorImpl<unsigned> &ArgRegs, 182 SmallVectorImpl<MVT> &ArgVTs, 183 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 184 SmallVectorImpl<unsigned> &RegArgs, 185 CallingConv::ID CC, 186 unsigned &NumBytes, 187 bool IsVarArg); 188 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 189 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); 190 191 private: 192 #include "PPCGenFastISel.inc" 193 194 }; 195 196 } // end anonymous namespace 197 198 #include "PPCGenCallingConv.inc" 199 200 // Function whose sole purpose is to kill compiler warnings 201 // stemming from unused functions included from PPCGenCallingConv.inc. 202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 203 if (Flag == 1) 204 return CC_PPC32_SVR4; 205 else if (Flag == 2) 206 return CC_PPC32_SVR4_ByVal; 207 else if (Flag == 3) 208 return CC_PPC32_SVR4_VarArg; 209 else if (Flag == 4) 210 return RetCC_PPC_Cold; 211 else 212 return RetCC_PPC; 213 } 214 215 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 216 switch (Pred) { 217 // These are not representable with any single compare. 218 case CmpInst::FCMP_FALSE: 219 case CmpInst::FCMP_TRUE: 220 // Major concern about the following 6 cases is NaN result. The comparison 221 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 222 // only one of which will be set. The result is generated by fcmpu 223 // instruction. However, bc instruction only inspects one of the first 3 224 // bits, so when un is set, bc instruction may jump to an undesired 225 // place. 226 // 227 // More specifically, if we expect an unordered comparison and un is set, we 228 // expect to always go to true branch; in such case UEQ, UGT and ULT still 229 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 230 // since they are tested by inspecting !eq, !lt, !gt, respectively. 231 // 232 // Similarly, for ordered comparison, when un is set, we always expect the 233 // result to be false. In such case OGT, OLT and OEQ is good, since they are 234 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 235 // and ONE are tested through !lt, !gt and !eq, and these are true. 236 case CmpInst::FCMP_UEQ: 237 case CmpInst::FCMP_UGT: 238 case CmpInst::FCMP_ULT: 239 case CmpInst::FCMP_OGE: 240 case CmpInst::FCMP_OLE: 241 case CmpInst::FCMP_ONE: 242 default: 243 return Optional<PPC::Predicate>(); 244 245 case CmpInst::FCMP_OEQ: 246 case CmpInst::ICMP_EQ: 247 return PPC::PRED_EQ; 248 249 case CmpInst::FCMP_OGT: 250 case CmpInst::ICMP_UGT: 251 case CmpInst::ICMP_SGT: 252 return PPC::PRED_GT; 253 254 case CmpInst::FCMP_UGE: 255 case CmpInst::ICMP_UGE: 256 case CmpInst::ICMP_SGE: 257 return PPC::PRED_GE; 258 259 case CmpInst::FCMP_OLT: 260 case CmpInst::ICMP_ULT: 261 case CmpInst::ICMP_SLT: 262 return PPC::PRED_LT; 263 264 case CmpInst::FCMP_ULE: 265 case CmpInst::ICMP_ULE: 266 case CmpInst::ICMP_SLE: 267 return PPC::PRED_LE; 268 269 case CmpInst::FCMP_UNE: 270 case CmpInst::ICMP_NE: 271 return PPC::PRED_NE; 272 273 case CmpInst::FCMP_ORD: 274 return PPC::PRED_NU; 275 276 case CmpInst::FCMP_UNO: 277 return PPC::PRED_UN; 278 } 279 } 280 281 // Determine whether the type Ty is simple enough to be handled by 282 // fast-isel, and return its equivalent machine type in VT. 283 // FIXME: Copied directly from ARM -- factor into base class? 284 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 285 EVT Evt = TLI.getValueType(DL, Ty, true); 286 287 // Only handle simple types. 288 if (Evt == MVT::Other || !Evt.isSimple()) return false; 289 VT = Evt.getSimpleVT(); 290 291 // Handle all legal types, i.e. a register that will directly hold this 292 // value. 293 return TLI.isTypeLegal(VT); 294 } 295 296 // Determine whether the type Ty is simple enough to be handled by 297 // fast-isel as a load target, and return its equivalent machine type in VT. 298 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 299 if (isTypeLegal(Ty, VT)) return true; 300 301 // If this is a type than can be sign or zero-extended to a basic operation 302 // go ahead and accept it now. 303 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 304 return true; 305 } 306 307 return false; 308 } 309 310 bool PPCFastISel::isValueAvailable(const Value *V) const { 311 if (!isa<Instruction>(V)) 312 return true; 313 314 const auto *I = cast<Instruction>(V); 315 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 316 } 317 318 // Given a value Obj, create an Address object Addr that represents its 319 // address. Return false if we can't handle it. 320 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 321 const User *U = nullptr; 322 unsigned Opcode = Instruction::UserOp1; 323 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 324 // Don't walk into other basic blocks unless the object is an alloca from 325 // another block, otherwise it may not have a virtual register assigned. 326 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 327 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 328 Opcode = I->getOpcode(); 329 U = I; 330 } 331 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 332 Opcode = C->getOpcode(); 333 U = C; 334 } 335 336 switch (Opcode) { 337 default: 338 break; 339 case Instruction::BitCast: 340 // Look through bitcasts. 341 return PPCComputeAddress(U->getOperand(0), Addr); 342 case Instruction::IntToPtr: 343 // Look past no-op inttoptrs. 344 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 345 TLI.getPointerTy(DL)) 346 return PPCComputeAddress(U->getOperand(0), Addr); 347 break; 348 case Instruction::PtrToInt: 349 // Look past no-op ptrtoints. 350 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 351 return PPCComputeAddress(U->getOperand(0), Addr); 352 break; 353 case Instruction::GetElementPtr: { 354 Address SavedAddr = Addr; 355 long TmpOffset = Addr.Offset; 356 357 // Iterate through the GEP folding the constants into offsets where 358 // we can. 359 gep_type_iterator GTI = gep_type_begin(U); 360 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 361 II != IE; ++II, ++GTI) { 362 const Value *Op = *II; 363 if (StructType *STy = GTI.getStructTypeOrNull()) { 364 const StructLayout *SL = DL.getStructLayout(STy); 365 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 366 TmpOffset += SL->getElementOffset(Idx); 367 } else { 368 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 369 for (;;) { 370 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 371 // Constant-offset addressing. 372 TmpOffset += CI->getSExtValue() * S; 373 break; 374 } 375 if (canFoldAddIntoGEP(U, Op)) { 376 // A compatible add with a constant operand. Fold the constant. 377 ConstantInt *CI = 378 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 379 TmpOffset += CI->getSExtValue() * S; 380 // Iterate on the other operand. 381 Op = cast<AddOperator>(Op)->getOperand(0); 382 continue; 383 } 384 // Unsupported 385 goto unsupported_gep; 386 } 387 } 388 } 389 390 // Try to grab the base operand now. 391 Addr.Offset = TmpOffset; 392 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 393 394 // We failed, restore everything and try the other options. 395 Addr = SavedAddr; 396 397 unsupported_gep: 398 break; 399 } 400 case Instruction::Alloca: { 401 const AllocaInst *AI = cast<AllocaInst>(Obj); 402 DenseMap<const AllocaInst*, int>::iterator SI = 403 FuncInfo.StaticAllocaMap.find(AI); 404 if (SI != FuncInfo.StaticAllocaMap.end()) { 405 Addr.BaseType = Address::FrameIndexBase; 406 Addr.Base.FI = SI->second; 407 return true; 408 } 409 break; 410 } 411 } 412 413 // FIXME: References to parameters fall through to the behavior 414 // below. They should be able to reference a frame index since 415 // they are stored to the stack, so we can get "ld rx, offset(r1)" 416 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 417 // just contain the parameter. Try to handle this with a FI. 418 419 // Try to get this in a register if nothing else has worked. 420 if (Addr.Base.Reg == 0) 421 Addr.Base.Reg = getRegForValue(Obj); 422 423 // Prevent assignment of base register to X0, which is inappropriate 424 // for loads and stores alike. 425 if (Addr.Base.Reg != 0) 426 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 427 428 return Addr.Base.Reg != 0; 429 } 430 431 // Fix up some addresses that can't be used directly. For example, if 432 // an offset won't fit in an instruction field, we may need to move it 433 // into an index register. 434 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 435 unsigned &IndexReg) { 436 437 // Check whether the offset fits in the instruction field. 438 if (!isInt<16>(Addr.Offset)) 439 UseOffset = false; 440 441 // If this is a stack pointer and the offset needs to be simplified then 442 // put the alloca address into a register, set the base type back to 443 // register and continue. This should almost never happen. 444 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 445 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 446 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 447 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 448 Addr.Base.Reg = ResultReg; 449 Addr.BaseType = Address::RegBase; 450 } 451 452 if (!UseOffset) { 453 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 454 const ConstantInt *Offset = 455 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 456 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 457 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 458 } 459 } 460 461 // Emit a load instruction if possible, returning true if we succeeded, 462 // otherwise false. See commentary below for how the register class of 463 // the load is determined. 464 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 465 const TargetRegisterClass *RC, 466 bool IsZExt, unsigned FP64LoadOpc) { 467 unsigned Opc; 468 bool UseOffset = true; 469 470 // If ResultReg is given, it determines the register class of the load. 471 // Otherwise, RC is the register class to use. If the result of the 472 // load isn't anticipated in this block, both may be zero, in which 473 // case we must make a conservative guess. In particular, don't assign 474 // R0 or X0 to the result register, as the result may be used in a load, 475 // store, add-immediate, or isel that won't permit this. (Though 476 // perhaps the spill and reload of live-exit values would handle this?) 477 const TargetRegisterClass *UseRC = 478 (ResultReg ? MRI.getRegClass(ResultReg) : 479 (RC ? RC : 480 (VT == MVT::f64 ? &PPC::F8RCRegClass : 481 (VT == MVT::f32 ? &PPC::F4RCRegClass : 482 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 483 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 484 485 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 486 487 switch (VT.SimpleTy) { 488 default: // e.g., vector types not handled 489 return false; 490 case MVT::i8: 491 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 492 break; 493 case MVT::i16: 494 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 495 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 496 break; 497 case MVT::i32: 498 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 499 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 500 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 501 UseOffset = false; 502 break; 503 case MVT::i64: 504 Opc = PPC::LD; 505 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 506 "64-bit load with 32-bit target??"); 507 UseOffset = ((Addr.Offset & 3) == 0); 508 break; 509 case MVT::f32: 510 Opc = PPC::LFS; 511 break; 512 case MVT::f64: 513 Opc = FP64LoadOpc; 514 break; 515 } 516 517 // If necessary, materialize the offset into a register and use 518 // the indexed form. Also handle stack pointers with special needs. 519 unsigned IndexReg = 0; 520 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 521 522 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 523 // be used. 524 bool IsVSSRC = isVSSRCRegClass(UseRC); 525 bool IsVSFRC = isVSFRCRegClass(UseRC); 526 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 527 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 528 if ((Is32VSXLoad || Is64VSXLoad) && 529 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 530 (Addr.Offset == 0)) { 531 UseOffset = false; 532 } 533 534 if (ResultReg == 0) 535 ResultReg = createResultReg(UseRC); 536 537 // Note: If we still have a frame index here, we know the offset is 538 // in range, as otherwise PPCSimplifyAddress would have converted it 539 // into a RegBase. 540 if (Addr.BaseType == Address::FrameIndexBase) { 541 // VSX only provides an indexed load. 542 if (Is32VSXLoad || Is64VSXLoad) return false; 543 544 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 545 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 546 Addr.Offset), 547 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 548 MFI.getObjectAlignment(Addr.Base.FI)); 549 550 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 551 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 552 553 // Base reg with offset in range. 554 } else if (UseOffset) { 555 // VSX only provides an indexed load. 556 if (Is32VSXLoad || Is64VSXLoad) return false; 557 558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 559 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 560 561 // Indexed form. 562 } else { 563 // Get the RR opcode corresponding to the RI one. FIXME: It would be 564 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 565 // is hard to get at. 566 switch (Opc) { 567 default: llvm_unreachable("Unexpected opcode!"); 568 case PPC::LBZ: Opc = PPC::LBZX; break; 569 case PPC::LBZ8: Opc = PPC::LBZX8; break; 570 case PPC::LHZ: Opc = PPC::LHZX; break; 571 case PPC::LHZ8: Opc = PPC::LHZX8; break; 572 case PPC::LHA: Opc = PPC::LHAX; break; 573 case PPC::LHA8: Opc = PPC::LHAX8; break; 574 case PPC::LWZ: Opc = PPC::LWZX; break; 575 case PPC::LWZ8: Opc = PPC::LWZX8; break; 576 case PPC::LWA: Opc = PPC::LWAX; break; 577 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 578 case PPC::LD: Opc = PPC::LDX; break; 579 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 580 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 581 } 582 583 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 584 ResultReg); 585 586 // If we have an index register defined we use it in the store inst, 587 // otherwise we use X0 as base as it makes the vector instructions to 588 // use zero in the computation of the effective address regardless the 589 // content of the register. 590 if (IndexReg) 591 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 592 else 593 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 594 } 595 596 return true; 597 } 598 599 // Attempt to fast-select a load instruction. 600 bool PPCFastISel::SelectLoad(const Instruction *I) { 601 // FIXME: No atomic loads are supported. 602 if (cast<LoadInst>(I)->isAtomic()) 603 return false; 604 605 // Verify we have a legal type before going any further. 606 MVT VT; 607 if (!isLoadTypeLegal(I->getType(), VT)) 608 return false; 609 610 // See if we can handle this address. 611 Address Addr; 612 if (!PPCComputeAddress(I->getOperand(0), Addr)) 613 return false; 614 615 // Look at the currently assigned register for this instruction 616 // to determine the required register class. This is necessary 617 // to constrain RA from using R0/X0 when this is not legal. 618 unsigned AssignedReg = FuncInfo.ValueMap[I]; 619 const TargetRegisterClass *RC = 620 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 621 622 unsigned ResultReg = 0; 623 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 624 return false; 625 updateValueMap(I, ResultReg); 626 return true; 627 } 628 629 // Emit a store instruction to store SrcReg at Addr. 630 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 631 assert(SrcReg && "Nothing to store!"); 632 unsigned Opc; 633 bool UseOffset = true; 634 635 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 636 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 637 638 switch (VT.SimpleTy) { 639 default: // e.g., vector types not handled 640 return false; 641 case MVT::i8: 642 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 643 break; 644 case MVT::i16: 645 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 646 break; 647 case MVT::i32: 648 assert(Is32BitInt && "Not GPRC for i32??"); 649 Opc = PPC::STW; 650 break; 651 case MVT::i64: 652 Opc = PPC::STD; 653 UseOffset = ((Addr.Offset & 3) == 0); 654 break; 655 case MVT::f32: 656 Opc = PPC::STFS; 657 break; 658 case MVT::f64: 659 Opc = PPC::STFD; 660 break; 661 } 662 663 // If necessary, materialize the offset into a register and use 664 // the indexed form. Also handle stack pointers with special needs. 665 unsigned IndexReg = 0; 666 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 667 668 // If this is a potential VSX store with an offset of 0, a VSX indexed store 669 // can be used. 670 bool IsVSSRC = isVSSRCRegClass(RC); 671 bool IsVSFRC = isVSFRCRegClass(RC); 672 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 673 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 674 if ((Is32VSXStore || Is64VSXStore) && 675 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 676 (Addr.Offset == 0)) { 677 UseOffset = false; 678 } 679 680 // Note: If we still have a frame index here, we know the offset is 681 // in range, as otherwise PPCSimplifyAddress would have converted it 682 // into a RegBase. 683 if (Addr.BaseType == Address::FrameIndexBase) { 684 // VSX only provides an indexed store. 685 if (Is32VSXStore || Is64VSXStore) return false; 686 687 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 688 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 689 Addr.Offset), 690 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 691 MFI.getObjectAlignment(Addr.Base.FI)); 692 693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 694 .addReg(SrcReg) 695 .addImm(Addr.Offset) 696 .addFrameIndex(Addr.Base.FI) 697 .addMemOperand(MMO); 698 699 // Base reg with offset in range. 700 } else if (UseOffset) { 701 // VSX only provides an indexed store. 702 if (Is32VSXStore || Is64VSXStore) 703 return false; 704 705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 706 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 707 708 // Indexed form. 709 } else { 710 // Get the RR opcode corresponding to the RI one. FIXME: It would be 711 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 712 // is hard to get at. 713 switch (Opc) { 714 default: llvm_unreachable("Unexpected opcode!"); 715 case PPC::STB: Opc = PPC::STBX; break; 716 case PPC::STH : Opc = PPC::STHX; break; 717 case PPC::STW : Opc = PPC::STWX; break; 718 case PPC::STB8: Opc = PPC::STBX8; break; 719 case PPC::STH8: Opc = PPC::STHX8; break; 720 case PPC::STW8: Opc = PPC::STWX8; break; 721 case PPC::STD: Opc = PPC::STDX; break; 722 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 723 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 724 } 725 726 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 727 .addReg(SrcReg); 728 729 // If we have an index register defined we use it in the store inst, 730 // otherwise we use X0 as base as it makes the vector instructions to 731 // use zero in the computation of the effective address regardless the 732 // content of the register. 733 if (IndexReg) 734 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 735 else 736 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 737 } 738 739 return true; 740 } 741 742 // Attempt to fast-select a store instruction. 743 bool PPCFastISel::SelectStore(const Instruction *I) { 744 Value *Op0 = I->getOperand(0); 745 unsigned SrcReg = 0; 746 747 // FIXME: No atomics loads are supported. 748 if (cast<StoreInst>(I)->isAtomic()) 749 return false; 750 751 // Verify we have a legal type before going any further. 752 MVT VT; 753 if (!isLoadTypeLegal(Op0->getType(), VT)) 754 return false; 755 756 // Get the value to be stored into a register. 757 SrcReg = getRegForValue(Op0); 758 if (SrcReg == 0) 759 return false; 760 761 // See if we can handle this address. 762 Address Addr; 763 if (!PPCComputeAddress(I->getOperand(1), Addr)) 764 return false; 765 766 if (!PPCEmitStore(VT, SrcReg, Addr)) 767 return false; 768 769 return true; 770 } 771 772 // Attempt to fast-select a branch instruction. 773 bool PPCFastISel::SelectBranch(const Instruction *I) { 774 const BranchInst *BI = cast<BranchInst>(I); 775 MachineBasicBlock *BrBB = FuncInfo.MBB; 776 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 777 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 778 779 // For now, just try the simplest case where it's fed by a compare. 780 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 781 if (isValueAvailable(CI)) { 782 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 783 if (!OptPPCPred) 784 return false; 785 786 PPC::Predicate PPCPred = OptPPCPred.getValue(); 787 788 // Take advantage of fall-through opportunities. 789 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 790 std::swap(TBB, FBB); 791 PPCPred = PPC::InvertPredicate(PPCPred); 792 } 793 794 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 795 796 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 797 CondReg)) 798 return false; 799 800 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 801 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 802 finishCondBranch(BI->getParent(), TBB, FBB); 803 return true; 804 } 805 } else if (const ConstantInt *CI = 806 dyn_cast<ConstantInt>(BI->getCondition())) { 807 uint64_t Imm = CI->getZExtValue(); 808 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 809 fastEmitBranch(Target, DbgLoc); 810 return true; 811 } 812 813 // FIXME: ARM looks for a case where the block containing the compare 814 // has been split from the block containing the branch. If this happens, 815 // there is a vreg available containing the result of the compare. I'm 816 // not sure we can do much, as we've lost the predicate information with 817 // the compare instruction -- we have a 4-bit CR but don't know which bit 818 // to test here. 819 return false; 820 } 821 822 // Attempt to emit a compare of the two source values. Signed and unsigned 823 // comparisons are supported. Return false if we can't handle it. 824 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 825 bool IsZExt, unsigned DestReg) { 826 Type *Ty = SrcValue1->getType(); 827 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 828 if (!SrcEVT.isSimple()) 829 return false; 830 MVT SrcVT = SrcEVT.getSimpleVT(); 831 832 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 833 return false; 834 835 // See if operand 2 is an immediate encodeable in the compare. 836 // FIXME: Operands are not in canonical order at -O0, so an immediate 837 // operand in position 1 is a lost opportunity for now. We are 838 // similar to ARM in this regard. 839 long Imm = 0; 840 bool UseImm = false; 841 842 // Only 16-bit integer constants can be represented in compares for 843 // PowerPC. Others will be materialized into a register. 844 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 845 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 846 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 847 const APInt &CIVal = ConstInt->getValue(); 848 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 849 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 850 UseImm = true; 851 } 852 } 853 854 unsigned CmpOpc; 855 bool NeedsExt = false; 856 switch (SrcVT.SimpleTy) { 857 default: return false; 858 case MVT::f32: 859 CmpOpc = PPC::FCMPUS; 860 break; 861 case MVT::f64: 862 CmpOpc = PPC::FCMPUD; 863 break; 864 case MVT::i1: 865 case MVT::i8: 866 case MVT::i16: 867 NeedsExt = true; 868 // Intentional fall-through. 869 case MVT::i32: 870 if (!UseImm) 871 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 872 else 873 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 874 break; 875 case MVT::i64: 876 if (!UseImm) 877 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 878 else 879 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 880 break; 881 } 882 883 unsigned SrcReg1 = getRegForValue(SrcValue1); 884 if (SrcReg1 == 0) 885 return false; 886 887 unsigned SrcReg2 = 0; 888 if (!UseImm) { 889 SrcReg2 = getRegForValue(SrcValue2); 890 if (SrcReg2 == 0) 891 return false; 892 } 893 894 if (NeedsExt) { 895 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 896 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 897 return false; 898 SrcReg1 = ExtReg; 899 900 if (!UseImm) { 901 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 902 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 903 return false; 904 SrcReg2 = ExtReg; 905 } 906 } 907 908 if (!UseImm) 909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 910 .addReg(SrcReg1).addReg(SrcReg2); 911 else 912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 913 .addReg(SrcReg1).addImm(Imm); 914 915 return true; 916 } 917 918 // Attempt to fast-select a floating-point extend instruction. 919 bool PPCFastISel::SelectFPExt(const Instruction *I) { 920 Value *Src = I->getOperand(0); 921 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 922 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 923 924 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 925 return false; 926 927 unsigned SrcReg = getRegForValue(Src); 928 if (!SrcReg) 929 return false; 930 931 // No code is generated for a FP extend. 932 updateValueMap(I, SrcReg); 933 return true; 934 } 935 936 // Attempt to fast-select a floating-point truncate instruction. 937 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 938 Value *Src = I->getOperand(0); 939 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 940 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 941 942 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 943 return false; 944 945 unsigned SrcReg = getRegForValue(Src); 946 if (!SrcReg) 947 return false; 948 949 // Round the result to single precision. 950 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 952 .addReg(SrcReg); 953 954 updateValueMap(I, DestReg); 955 return true; 956 } 957 958 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 959 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 960 // those should be used instead of moving via a stack slot when the 961 // subtarget permits. 962 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 963 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 964 // case to 8 bytes which produces tighter code but wastes stack space. 965 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 966 bool IsSigned) { 967 968 // If necessary, extend 32-bit int to 64-bit. 969 if (SrcVT == MVT::i32) { 970 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 971 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 972 return 0; 973 SrcReg = TmpReg; 974 } 975 976 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 977 Address Addr; 978 Addr.BaseType = Address::FrameIndexBase; 979 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 980 981 // Store the value from the GPR. 982 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 983 return 0; 984 985 // Load the integer value into an FPR. The kind of load used depends 986 // on a number of conditions. 987 unsigned LoadOpc = PPC::LFD; 988 989 if (SrcVT == MVT::i32) { 990 if (!IsSigned) { 991 LoadOpc = PPC::LFIWZX; 992 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 993 } else if (PPCSubTarget->hasLFIWAX()) { 994 LoadOpc = PPC::LFIWAX; 995 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 996 } 997 } 998 999 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1000 unsigned ResultReg = 0; 1001 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1002 return 0; 1003 1004 return ResultReg; 1005 } 1006 1007 // Attempt to fast-select an integer-to-floating-point conversion. 1008 // FIXME: Once fast-isel has better support for VSX, conversions using 1009 // direct moves should be implemented. 1010 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1011 MVT DstVT; 1012 Type *DstTy = I->getType(); 1013 if (!isTypeLegal(DstTy, DstVT)) 1014 return false; 1015 1016 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1017 return false; 1018 1019 Value *Src = I->getOperand(0); 1020 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1021 if (!SrcEVT.isSimple()) 1022 return false; 1023 1024 MVT SrcVT = SrcEVT.getSimpleVT(); 1025 1026 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1027 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1028 return false; 1029 1030 unsigned SrcReg = getRegForValue(Src); 1031 if (SrcReg == 0) 1032 return false; 1033 1034 // We can only lower an unsigned convert if we have the newer 1035 // floating-point conversion operations. 1036 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1037 return false; 1038 1039 // FIXME: For now we require the newer floating-point conversion operations 1040 // (which are present only on P7 and A2 server models) when converting 1041 // to single-precision float. Otherwise we have to generate a lot of 1042 // fiddly code to avoid double rounding. If necessary, the fiddly code 1043 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1044 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1045 return false; 1046 1047 // Extend the input if necessary. 1048 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1049 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1050 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1051 return false; 1052 SrcVT = MVT::i64; 1053 SrcReg = TmpReg; 1054 } 1055 1056 // Move the integer value to an FPR. 1057 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1058 if (FPReg == 0) 1059 return false; 1060 1061 // Determine the opcode for the conversion. 1062 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1063 unsigned DestReg = createResultReg(RC); 1064 unsigned Opc; 1065 1066 if (DstVT == MVT::f32) 1067 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1068 else 1069 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1070 1071 // Generate the convert. 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1073 .addReg(FPReg); 1074 1075 updateValueMap(I, DestReg); 1076 return true; 1077 } 1078 1079 // Move the floating-point value in SrcReg into an integer destination 1080 // register, and return the register (or zero if we can't handle it). 1081 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1082 // those should be used instead of moving via a stack slot when the 1083 // subtarget permits. 1084 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1085 unsigned SrcReg, bool IsSigned) { 1086 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1087 // Note that if have STFIWX available, we could use a 4-byte stack 1088 // slot for i32, but this being fast-isel we'll just go with the 1089 // easiest code gen possible. 1090 Address Addr; 1091 Addr.BaseType = Address::FrameIndexBase; 1092 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1093 1094 // Store the value from the FPR. 1095 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1096 return 0; 1097 1098 // Reload it into a GPR. If we want an i32 on big endian, modify the 1099 // address to have a 4-byte offset so we load from the right place. 1100 if (VT == MVT::i32) 1101 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1102 1103 // Look at the currently assigned register for this instruction 1104 // to determine the required register class. 1105 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1106 const TargetRegisterClass *RC = 1107 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1108 1109 unsigned ResultReg = 0; 1110 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1111 return 0; 1112 1113 return ResultReg; 1114 } 1115 1116 // Attempt to fast-select a floating-point-to-integer conversion. 1117 // FIXME: Once fast-isel has better support for VSX, conversions using 1118 // direct moves should be implemented. 1119 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1120 MVT DstVT, SrcVT; 1121 Type *DstTy = I->getType(); 1122 if (!isTypeLegal(DstTy, DstVT)) 1123 return false; 1124 1125 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1126 return false; 1127 1128 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1129 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1130 return false; 1131 1132 Value *Src = I->getOperand(0); 1133 Type *SrcTy = Src->getType(); 1134 if (!isTypeLegal(SrcTy, SrcVT)) 1135 return false; 1136 1137 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1138 return false; 1139 1140 unsigned SrcReg = getRegForValue(Src); 1141 if (SrcReg == 0) 1142 return false; 1143 1144 // Convert f32 to f64 if necessary. This is just a meaningless copy 1145 // to get the register class right. 1146 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1147 if (InRC == &PPC::F4RCRegClass) { 1148 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1150 TII.get(TargetOpcode::COPY), TmpReg) 1151 .addReg(SrcReg); 1152 SrcReg = TmpReg; 1153 } 1154 1155 // Determine the opcode for the conversion, which takes place 1156 // entirely within FPRs. 1157 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1158 unsigned Opc; 1159 1160 if (DstVT == MVT::i32) 1161 if (IsSigned) 1162 Opc = PPC::FCTIWZ; 1163 else 1164 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1165 else 1166 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1167 1168 // Generate the convert. 1169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1170 .addReg(SrcReg); 1171 1172 // Now move the integer value from a float register to an integer register. 1173 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1174 if (IntReg == 0) 1175 return false; 1176 1177 updateValueMap(I, IntReg); 1178 return true; 1179 } 1180 1181 // Attempt to fast-select a binary integer operation that isn't already 1182 // handled automatically. 1183 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1184 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1185 1186 // We can get here in the case when we have a binary operation on a non-legal 1187 // type and the target independent selector doesn't know how to handle it. 1188 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1189 return false; 1190 1191 // Look at the currently assigned register for this instruction 1192 // to determine the required register class. If there is no register, 1193 // make a conservative choice (don't assign R0). 1194 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1195 const TargetRegisterClass *RC = 1196 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1197 &PPC::GPRC_and_GPRC_NOR0RegClass); 1198 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1199 1200 unsigned Opc; 1201 switch (ISDOpcode) { 1202 default: return false; 1203 case ISD::ADD: 1204 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1205 break; 1206 case ISD::OR: 1207 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1208 break; 1209 case ISD::SUB: 1210 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1211 break; 1212 } 1213 1214 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1215 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1216 if (SrcReg1 == 0) return false; 1217 1218 // Handle case of small immediate operand. 1219 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1220 const APInt &CIVal = ConstInt->getValue(); 1221 int Imm = (int)CIVal.getSExtValue(); 1222 bool UseImm = true; 1223 if (isInt<16>(Imm)) { 1224 switch (Opc) { 1225 default: 1226 llvm_unreachable("Missing case!"); 1227 case PPC::ADD4: 1228 Opc = PPC::ADDI; 1229 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1230 break; 1231 case PPC::ADD8: 1232 Opc = PPC::ADDI8; 1233 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1234 break; 1235 case PPC::OR: 1236 Opc = PPC::ORI; 1237 break; 1238 case PPC::OR8: 1239 Opc = PPC::ORI8; 1240 break; 1241 case PPC::SUBF: 1242 if (Imm == -32768) 1243 UseImm = false; 1244 else { 1245 Opc = PPC::ADDI; 1246 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1247 Imm = -Imm; 1248 } 1249 break; 1250 case PPC::SUBF8: 1251 if (Imm == -32768) 1252 UseImm = false; 1253 else { 1254 Opc = PPC::ADDI8; 1255 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1256 Imm = -Imm; 1257 } 1258 break; 1259 } 1260 1261 if (UseImm) { 1262 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1263 ResultReg) 1264 .addReg(SrcReg1) 1265 .addImm(Imm); 1266 updateValueMap(I, ResultReg); 1267 return true; 1268 } 1269 } 1270 } 1271 1272 // Reg-reg case. 1273 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1274 if (SrcReg2 == 0) return false; 1275 1276 // Reverse operands for subtract-from. 1277 if (ISDOpcode == ISD::SUB) 1278 std::swap(SrcReg1, SrcReg2); 1279 1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1281 .addReg(SrcReg1).addReg(SrcReg2); 1282 updateValueMap(I, ResultReg); 1283 return true; 1284 } 1285 1286 // Handle arguments to a call that we're attempting to fast-select. 1287 // Return false if the arguments are too complex for us at the moment. 1288 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1289 SmallVectorImpl<unsigned> &ArgRegs, 1290 SmallVectorImpl<MVT> &ArgVTs, 1291 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1292 SmallVectorImpl<unsigned> &RegArgs, 1293 CallingConv::ID CC, 1294 unsigned &NumBytes, 1295 bool IsVarArg) { 1296 SmallVector<CCValAssign, 16> ArgLocs; 1297 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1298 1299 // Reserve space for the linkage area on the stack. 1300 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1301 CCInfo.AllocateStack(LinkageSize, 8); 1302 1303 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1304 1305 // Bail out if we can't handle any of the arguments. 1306 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1307 CCValAssign &VA = ArgLocs[I]; 1308 MVT ArgVT = ArgVTs[VA.getValNo()]; 1309 1310 // Skip vector arguments for now, as well as long double and 1311 // uint128_t, and anything that isn't passed in a register. 1312 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1313 !VA.isRegLoc() || VA.needsCustom()) 1314 return false; 1315 1316 // Skip bit-converted arguments for now. 1317 if (VA.getLocInfo() == CCValAssign::BCvt) 1318 return false; 1319 } 1320 1321 // Get a count of how many bytes are to be pushed onto the stack. 1322 NumBytes = CCInfo.getNextStackOffset(); 1323 1324 // The prolog code of the callee may store up to 8 GPR argument registers to 1325 // the stack, allowing va_start to index over them in memory if its varargs. 1326 // Because we cannot tell if this is needed on the caller side, we have to 1327 // conservatively assume that it is needed. As such, make sure we have at 1328 // least enough stack space for the caller to store the 8 GPRs. 1329 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1330 NumBytes = std::max(NumBytes, LinkageSize + 64); 1331 1332 // Issue CALLSEQ_START. 1333 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1334 TII.get(TII.getCallFrameSetupOpcode())) 1335 .addImm(NumBytes).addImm(0); 1336 1337 // Prepare to assign register arguments. Every argument uses up a 1338 // GPR protocol register even if it's passed in a floating-point 1339 // register (unless we're using the fast calling convention). 1340 unsigned NextGPR = PPC::X3; 1341 unsigned NextFPR = PPC::F1; 1342 1343 // Process arguments. 1344 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1345 CCValAssign &VA = ArgLocs[I]; 1346 unsigned Arg = ArgRegs[VA.getValNo()]; 1347 MVT ArgVT = ArgVTs[VA.getValNo()]; 1348 1349 // Handle argument promotion and bitcasts. 1350 switch (VA.getLocInfo()) { 1351 default: 1352 llvm_unreachable("Unknown loc info!"); 1353 case CCValAssign::Full: 1354 break; 1355 case CCValAssign::SExt: { 1356 MVT DestVT = VA.getLocVT(); 1357 const TargetRegisterClass *RC = 1358 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1359 unsigned TmpReg = createResultReg(RC); 1360 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1361 llvm_unreachable("Failed to emit a sext!"); 1362 ArgVT = DestVT; 1363 Arg = TmpReg; 1364 break; 1365 } 1366 case CCValAssign::AExt: 1367 case CCValAssign::ZExt: { 1368 MVT DestVT = VA.getLocVT(); 1369 const TargetRegisterClass *RC = 1370 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1371 unsigned TmpReg = createResultReg(RC); 1372 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1373 llvm_unreachable("Failed to emit a zext!"); 1374 ArgVT = DestVT; 1375 Arg = TmpReg; 1376 break; 1377 } 1378 case CCValAssign::BCvt: { 1379 // FIXME: Not yet handled. 1380 llvm_unreachable("Should have bailed before getting here!"); 1381 break; 1382 } 1383 } 1384 1385 // Copy this argument to the appropriate register. 1386 unsigned ArgReg; 1387 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1388 ArgReg = NextFPR++; 1389 if (CC != CallingConv::Fast) 1390 ++NextGPR; 1391 } else 1392 ArgReg = NextGPR++; 1393 1394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1395 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1396 RegArgs.push_back(ArgReg); 1397 } 1398 1399 return true; 1400 } 1401 1402 // For a call that we've determined we can fast-select, finish the 1403 // call sequence and generate a copy to obtain the return value (if any). 1404 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1405 CallingConv::ID CC = CLI.CallConv; 1406 1407 // Issue CallSEQ_END. 1408 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1409 TII.get(TII.getCallFrameDestroyOpcode())) 1410 .addImm(NumBytes).addImm(0); 1411 1412 // Next, generate a copy to obtain the return value. 1413 // FIXME: No multi-register return values yet, though I don't foresee 1414 // any real difficulties there. 1415 if (RetVT != MVT::isVoid) { 1416 SmallVector<CCValAssign, 16> RVLocs; 1417 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1418 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1419 CCValAssign &VA = RVLocs[0]; 1420 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1421 assert(VA.isRegLoc() && "Can only return in registers!"); 1422 1423 MVT DestVT = VA.getValVT(); 1424 MVT CopyVT = DestVT; 1425 1426 // Ints smaller than a register still arrive in a full 64-bit 1427 // register, so make sure we recognize this. 1428 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1429 CopyVT = MVT::i64; 1430 1431 unsigned SourcePhysReg = VA.getLocReg(); 1432 unsigned ResultReg = 0; 1433 1434 if (RetVT == CopyVT) { 1435 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1436 ResultReg = createResultReg(CpyRC); 1437 1438 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1439 TII.get(TargetOpcode::COPY), ResultReg) 1440 .addReg(SourcePhysReg); 1441 1442 // If necessary, round the floating result to single precision. 1443 } else if (CopyVT == MVT::f64) { 1444 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1446 ResultReg).addReg(SourcePhysReg); 1447 1448 // If only the low half of a general register is needed, generate 1449 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1450 // used along the fast-isel path (not lowered), and downstream logic 1451 // also doesn't like a direct subreg copy on a physical reg.) 1452 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1453 ResultReg = createResultReg(&PPC::GPRCRegClass); 1454 // Convert physical register from G8RC to GPRC. 1455 SourcePhysReg -= PPC::X0 - PPC::R0; 1456 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1457 TII.get(TargetOpcode::COPY), ResultReg) 1458 .addReg(SourcePhysReg); 1459 } 1460 1461 assert(ResultReg && "ResultReg unset!"); 1462 CLI.InRegs.push_back(SourcePhysReg); 1463 CLI.ResultReg = ResultReg; 1464 CLI.NumResultRegs = 1; 1465 } 1466 1467 return true; 1468 } 1469 1470 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1471 CallingConv::ID CC = CLI.CallConv; 1472 bool IsTailCall = CLI.IsTailCall; 1473 bool IsVarArg = CLI.IsVarArg; 1474 const Value *Callee = CLI.Callee; 1475 const MCSymbol *Symbol = CLI.Symbol; 1476 1477 if (!Callee && !Symbol) 1478 return false; 1479 1480 // Allow SelectionDAG isel to handle tail calls. 1481 if (IsTailCall) 1482 return false; 1483 1484 // Let SDISel handle vararg functions. 1485 if (IsVarArg) 1486 return false; 1487 1488 // Handle simple calls for now, with legal return types and 1489 // those that can be extended. 1490 Type *RetTy = CLI.RetTy; 1491 MVT RetVT; 1492 if (RetTy->isVoidTy()) 1493 RetVT = MVT::isVoid; 1494 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1495 RetVT != MVT::i8) 1496 return false; 1497 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1498 // We can't handle boolean returns when CR bits are in use. 1499 return false; 1500 1501 // FIXME: No multi-register return values yet. 1502 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1503 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1504 RetVT != MVT::f64) { 1505 SmallVector<CCValAssign, 16> RVLocs; 1506 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1507 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1508 if (RVLocs.size() > 1) 1509 return false; 1510 } 1511 1512 // Bail early if more than 8 arguments, as we only currently 1513 // handle arguments passed in registers. 1514 unsigned NumArgs = CLI.OutVals.size(); 1515 if (NumArgs > 8) 1516 return false; 1517 1518 // Set up the argument vectors. 1519 SmallVector<Value*, 8> Args; 1520 SmallVector<unsigned, 8> ArgRegs; 1521 SmallVector<MVT, 8> ArgVTs; 1522 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1523 1524 Args.reserve(NumArgs); 1525 ArgRegs.reserve(NumArgs); 1526 ArgVTs.reserve(NumArgs); 1527 ArgFlags.reserve(NumArgs); 1528 1529 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1530 // Only handle easy calls for now. It would be reasonably easy 1531 // to handle <= 8-byte structures passed ByVal in registers, but we 1532 // have to ensure they are right-justified in the register. 1533 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1534 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1535 return false; 1536 1537 Value *ArgValue = CLI.OutVals[i]; 1538 Type *ArgTy = ArgValue->getType(); 1539 MVT ArgVT; 1540 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1541 return false; 1542 1543 if (ArgVT.isVector()) 1544 return false; 1545 1546 unsigned Arg = getRegForValue(ArgValue); 1547 if (Arg == 0) 1548 return false; 1549 1550 Args.push_back(ArgValue); 1551 ArgRegs.push_back(Arg); 1552 ArgVTs.push_back(ArgVT); 1553 ArgFlags.push_back(Flags); 1554 } 1555 1556 // Process the arguments. 1557 SmallVector<unsigned, 8> RegArgs; 1558 unsigned NumBytes; 1559 1560 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1561 RegArgs, CC, NumBytes, IsVarArg)) 1562 return false; 1563 1564 MachineInstrBuilder MIB; 1565 // FIXME: No handling for function pointers yet. This requires 1566 // implementing the function descriptor (OPD) setup. 1567 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1568 if (!GV) { 1569 // patchpoints are a special case; they always dispatch to a pointer value. 1570 // However, we don't actually want to generate the indirect call sequence 1571 // here (that will be generated, as necessary, during asm printing), and 1572 // the call we generate here will be erased by FastISel::selectPatchpoint, 1573 // so don't try very hard... 1574 if (CLI.IsPatchPoint) 1575 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1576 else 1577 return false; 1578 } else { 1579 // Build direct call with NOP for TOC restore. 1580 // FIXME: We can and should optimize away the NOP for local calls. 1581 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1582 TII.get(PPC::BL8_NOP)); 1583 // Add callee. 1584 MIB.addGlobalAddress(GV); 1585 } 1586 1587 // Add implicit physical register uses to the call. 1588 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1589 MIB.addReg(RegArgs[II], RegState::Implicit); 1590 1591 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1592 // into the call. 1593 PPCFuncInfo->setUsesTOCBasePtr(); 1594 MIB.addReg(PPC::X2, RegState::Implicit); 1595 1596 // Add a register mask with the call-preserved registers. Proper 1597 // defs for return values will be added by setPhysRegsDeadExcept(). 1598 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1599 1600 CLI.Call = MIB; 1601 1602 // Finish off the call including any return values. 1603 return finishCall(RetVT, CLI, NumBytes); 1604 } 1605 1606 // Attempt to fast-select a return instruction. 1607 bool PPCFastISel::SelectRet(const Instruction *I) { 1608 1609 if (!FuncInfo.CanLowerReturn) 1610 return false; 1611 1612 if (TLI.supportSplitCSR(FuncInfo.MF)) 1613 return false; 1614 1615 const ReturnInst *Ret = cast<ReturnInst>(I); 1616 const Function &F = *I->getParent()->getParent(); 1617 1618 // Build a list of return value registers. 1619 SmallVector<unsigned, 4> RetRegs; 1620 CallingConv::ID CC = F.getCallingConv(); 1621 1622 if (Ret->getNumOperands() > 0) { 1623 SmallVector<ISD::OutputArg, 4> Outs; 1624 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1625 1626 // Analyze operands of the call, assigning locations to each operand. 1627 SmallVector<CCValAssign, 16> ValLocs; 1628 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1629 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1630 const Value *RV = Ret->getOperand(0); 1631 1632 // FIXME: Only one output register for now. 1633 if (ValLocs.size() > 1) 1634 return false; 1635 1636 // Special case for returning a constant integer of any size - materialize 1637 // the constant as an i64 and copy it to the return register. 1638 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1639 CCValAssign &VA = ValLocs[0]; 1640 1641 unsigned RetReg = VA.getLocReg(); 1642 // We still need to worry about properly extending the sign. For example, 1643 // we could have only a single bit or a constant that needs zero 1644 // extension rather than sign extension. Make sure we pass the return 1645 // value extension property to integer materialization. 1646 unsigned SrcReg = 1647 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1648 1649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1650 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1651 1652 RetRegs.push_back(RetReg); 1653 1654 } else { 1655 unsigned Reg = getRegForValue(RV); 1656 1657 if (Reg == 0) 1658 return false; 1659 1660 // Copy the result values into the output registers. 1661 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1662 1663 CCValAssign &VA = ValLocs[i]; 1664 assert(VA.isRegLoc() && "Can only return in registers!"); 1665 RetRegs.push_back(VA.getLocReg()); 1666 unsigned SrcReg = Reg + VA.getValNo(); 1667 1668 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1669 if (!RVEVT.isSimple()) 1670 return false; 1671 MVT RVVT = RVEVT.getSimpleVT(); 1672 MVT DestVT = VA.getLocVT(); 1673 1674 if (RVVT != DestVT && RVVT != MVT::i8 && 1675 RVVT != MVT::i16 && RVVT != MVT::i32) 1676 return false; 1677 1678 if (RVVT != DestVT) { 1679 switch (VA.getLocInfo()) { 1680 default: 1681 llvm_unreachable("Unknown loc info!"); 1682 case CCValAssign::Full: 1683 llvm_unreachable("Full value assign but types don't match?"); 1684 case CCValAssign::AExt: 1685 case CCValAssign::ZExt: { 1686 const TargetRegisterClass *RC = 1687 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1688 unsigned TmpReg = createResultReg(RC); 1689 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1690 return false; 1691 SrcReg = TmpReg; 1692 break; 1693 } 1694 case CCValAssign::SExt: { 1695 const TargetRegisterClass *RC = 1696 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1697 unsigned TmpReg = createResultReg(RC); 1698 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1699 return false; 1700 SrcReg = TmpReg; 1701 break; 1702 } 1703 } 1704 } 1705 1706 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1707 TII.get(TargetOpcode::COPY), RetRegs[i]) 1708 .addReg(SrcReg); 1709 } 1710 } 1711 } 1712 1713 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1714 TII.get(PPC::BLR8)); 1715 1716 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1717 MIB.addReg(RetRegs[i], RegState::Implicit); 1718 1719 return true; 1720 } 1721 1722 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1723 // signed and zero extensions are supported. Return false if we 1724 // can't handle it. 1725 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1726 unsigned DestReg, bool IsZExt) { 1727 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1728 return false; 1729 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1730 return false; 1731 1732 // Signed extensions use EXTSB, EXTSH, EXTSW. 1733 if (!IsZExt) { 1734 unsigned Opc; 1735 if (SrcVT == MVT::i8) 1736 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1737 else if (SrcVT == MVT::i16) 1738 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1739 else { 1740 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1741 Opc = PPC::EXTSW_32_64; 1742 } 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1744 .addReg(SrcReg); 1745 1746 // Unsigned 32-bit extensions use RLWINM. 1747 } else if (DestVT == MVT::i32) { 1748 unsigned MB; 1749 if (SrcVT == MVT::i8) 1750 MB = 24; 1751 else { 1752 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1753 MB = 16; 1754 } 1755 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1756 DestReg) 1757 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1758 1759 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1760 } else { 1761 unsigned MB; 1762 if (SrcVT == MVT::i8) 1763 MB = 56; 1764 else if (SrcVT == MVT::i16) 1765 MB = 48; 1766 else 1767 MB = 32; 1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1769 TII.get(PPC::RLDICL_32_64), DestReg) 1770 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1771 } 1772 1773 return true; 1774 } 1775 1776 // Attempt to fast-select an indirect branch instruction. 1777 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1778 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1779 if (AddrReg == 0) 1780 return false; 1781 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1783 .addReg(AddrReg); 1784 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1785 1786 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1787 for (const BasicBlock *SuccBB : IB->successors()) 1788 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1789 1790 return true; 1791 } 1792 1793 // Attempt to fast-select an integer truncate instruction. 1794 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1795 Value *Src = I->getOperand(0); 1796 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1797 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1798 1799 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1800 return false; 1801 1802 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1803 return false; 1804 1805 unsigned SrcReg = getRegForValue(Src); 1806 if (!SrcReg) 1807 return false; 1808 1809 // The only interesting case is when we need to switch register classes. 1810 if (SrcVT == MVT::i64) { 1811 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1812 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1813 TII.get(TargetOpcode::COPY), 1814 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1815 SrcReg = ResultReg; 1816 } 1817 1818 updateValueMap(I, SrcReg); 1819 return true; 1820 } 1821 1822 // Attempt to fast-select an integer extend instruction. 1823 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1824 Type *DestTy = I->getType(); 1825 Value *Src = I->getOperand(0); 1826 Type *SrcTy = Src->getType(); 1827 1828 bool IsZExt = isa<ZExtInst>(I); 1829 unsigned SrcReg = getRegForValue(Src); 1830 if (!SrcReg) return false; 1831 1832 EVT SrcEVT, DestEVT; 1833 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1834 DestEVT = TLI.getValueType(DL, DestTy, true); 1835 if (!SrcEVT.isSimple()) 1836 return false; 1837 if (!DestEVT.isSimple()) 1838 return false; 1839 1840 MVT SrcVT = SrcEVT.getSimpleVT(); 1841 MVT DestVT = DestEVT.getSimpleVT(); 1842 1843 // If we know the register class needed for the result of this 1844 // instruction, use it. Otherwise pick the register class of the 1845 // correct size that does not contain X0/R0, since we don't know 1846 // whether downstream uses permit that assignment. 1847 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1848 const TargetRegisterClass *RC = 1849 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1850 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1851 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1852 unsigned ResultReg = createResultReg(RC); 1853 1854 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1855 return false; 1856 1857 updateValueMap(I, ResultReg); 1858 return true; 1859 } 1860 1861 // Attempt to fast-select an instruction that wasn't handled by 1862 // the table-generated machinery. 1863 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1864 1865 switch (I->getOpcode()) { 1866 case Instruction::Load: 1867 return SelectLoad(I); 1868 case Instruction::Store: 1869 return SelectStore(I); 1870 case Instruction::Br: 1871 return SelectBranch(I); 1872 case Instruction::IndirectBr: 1873 return SelectIndirectBr(I); 1874 case Instruction::FPExt: 1875 return SelectFPExt(I); 1876 case Instruction::FPTrunc: 1877 return SelectFPTrunc(I); 1878 case Instruction::SIToFP: 1879 return SelectIToFP(I, /*IsSigned*/ true); 1880 case Instruction::UIToFP: 1881 return SelectIToFP(I, /*IsSigned*/ false); 1882 case Instruction::FPToSI: 1883 return SelectFPToI(I, /*IsSigned*/ true); 1884 case Instruction::FPToUI: 1885 return SelectFPToI(I, /*IsSigned*/ false); 1886 case Instruction::Add: 1887 return SelectBinaryIntOp(I, ISD::ADD); 1888 case Instruction::Or: 1889 return SelectBinaryIntOp(I, ISD::OR); 1890 case Instruction::Sub: 1891 return SelectBinaryIntOp(I, ISD::SUB); 1892 case Instruction::Call: 1893 return selectCall(I); 1894 case Instruction::Ret: 1895 return SelectRet(I); 1896 case Instruction::Trunc: 1897 return SelectTrunc(I); 1898 case Instruction::ZExt: 1899 case Instruction::SExt: 1900 return SelectIntExt(I); 1901 // Here add other flavors of Instruction::XXX that automated 1902 // cases don't catch. For example, switches are terminators 1903 // that aren't yet handled. 1904 default: 1905 break; 1906 } 1907 return false; 1908 } 1909 1910 // Materialize a floating-point constant into a register, and return 1911 // the register number (or zero if we failed to handle it). 1912 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1913 // No plans to handle long double here. 1914 if (VT != MVT::f32 && VT != MVT::f64) 1915 return 0; 1916 1917 // All FP constants are loaded from the constant pool. 1918 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1919 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1920 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1921 const TargetRegisterClass *RC = 1922 (VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass; 1923 unsigned DestReg = createResultReg(RC); 1924 CodeModel::Model CModel = TM.getCodeModel(); 1925 1926 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1927 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1928 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1929 1930 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1931 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1932 1933 PPCFuncInfo->setUsesTOCBasePtr(); 1934 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1935 if (CModel == CodeModel::Small) { 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1937 TmpReg) 1938 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1940 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1941 } else { 1942 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1944 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1945 // But for large code model, we must generate a LDtocL followed 1946 // by the LF[SD]. 1947 if (CModel == CodeModel::Large) { 1948 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1950 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1952 .addImm(0) 1953 .addReg(TmpReg2); 1954 } else 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1956 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1957 .addReg(TmpReg) 1958 .addMemOperand(MMO); 1959 } 1960 1961 return DestReg; 1962 } 1963 1964 // Materialize the address of a global value into a register, and return 1965 // the register number (or zero if we failed to handle it). 1966 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1967 assert(VT == MVT::i64 && "Non-address!"); 1968 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1969 unsigned DestReg = createResultReg(RC); 1970 1971 // Global values may be plain old object addresses, TLS object 1972 // addresses, constant pool entries, or jump tables. How we generate 1973 // code for these may depend on small, medium, or large code model. 1974 CodeModel::Model CModel = TM.getCodeModel(); 1975 1976 // FIXME: Jump tables are not yet required because fast-isel doesn't 1977 // handle switches; if that changes, we need them as well. For now, 1978 // what follows assumes everything's a generic (or TLS) global address. 1979 1980 // FIXME: We don't yet handle the complexity of TLS. 1981 if (GV->isThreadLocal()) 1982 return 0; 1983 1984 PPCFuncInfo->setUsesTOCBasePtr(); 1985 // For small code model, generate a simple TOC load. 1986 if (CModel == CodeModel::Small) 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1988 DestReg) 1989 .addGlobalAddress(GV) 1990 .addReg(PPC::X2); 1991 else { 1992 // If the address is an externally defined symbol, a symbol with common 1993 // or externally available linkage, a non-local function address, or a 1994 // jump table address (not yet needed), or if we are generating code 1995 // for large code model, we generate: 1996 // LDtocL(GV, ADDIStocHA(%x2, GV)) 1997 // Otherwise we generate: 1998 // ADDItocL(ADDIStocHA(%x2, GV), GV) 1999 // Either way, start with the ADDIStocHA: 2000 unsigned HighPartReg = createResultReg(RC); 2001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2002 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2003 2004 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 2005 if (GVFlags & PPCII::MO_NLP_FLAG) { 2006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2007 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2008 } else { 2009 // Otherwise generate the ADDItocL. 2010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2011 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2012 } 2013 } 2014 2015 return DestReg; 2016 } 2017 2018 // Materialize a 32-bit integer constant into a register, and return 2019 // the register number (or zero if we failed to handle it). 2020 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2021 const TargetRegisterClass *RC) { 2022 unsigned Lo = Imm & 0xFFFF; 2023 unsigned Hi = (Imm >> 16) & 0xFFFF; 2024 2025 unsigned ResultReg = createResultReg(RC); 2026 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2027 2028 if (isInt<16>(Imm)) 2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2030 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2031 .addImm(Imm); 2032 else if (Lo) { 2033 // Both Lo and Hi have nonzero bits. 2034 unsigned TmpReg = createResultReg(RC); 2035 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2036 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2037 .addImm(Hi); 2038 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2039 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2040 .addReg(TmpReg).addImm(Lo); 2041 } else 2042 // Just Hi bits. 2043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2044 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2045 .addImm(Hi); 2046 2047 return ResultReg; 2048 } 2049 2050 // Materialize a 64-bit integer constant into a register, and return 2051 // the register number (or zero if we failed to handle it). 2052 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2053 const TargetRegisterClass *RC) { 2054 unsigned Remainder = 0; 2055 unsigned Shift = 0; 2056 2057 // If the value doesn't fit in 32 bits, see if we can shift it 2058 // so that it fits in 32 bits. 2059 if (!isInt<32>(Imm)) { 2060 Shift = countTrailingZeros<uint64_t>(Imm); 2061 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2062 2063 if (isInt<32>(ImmSh)) 2064 Imm = ImmSh; 2065 else { 2066 Remainder = Imm; 2067 Shift = 32; 2068 Imm >>= 32; 2069 } 2070 } 2071 2072 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2073 // (if not shifted). 2074 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2075 if (!Shift) 2076 return TmpReg1; 2077 2078 // If upper 32 bits were not zero, we've built them and need to shift 2079 // them into place. 2080 unsigned TmpReg2; 2081 if (Imm) { 2082 TmpReg2 = createResultReg(RC); 2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2084 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2085 } else 2086 TmpReg2 = TmpReg1; 2087 2088 unsigned TmpReg3, Hi, Lo; 2089 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2090 TmpReg3 = createResultReg(RC); 2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2092 TmpReg3).addReg(TmpReg2).addImm(Hi); 2093 } else 2094 TmpReg3 = TmpReg2; 2095 2096 if ((Lo = Remainder & 0xFFFF)) { 2097 unsigned ResultReg = createResultReg(RC); 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2099 ResultReg).addReg(TmpReg3).addImm(Lo); 2100 return ResultReg; 2101 } 2102 2103 return TmpReg3; 2104 } 2105 2106 // Materialize an integer constant into a register, and return 2107 // the register number (or zero if we failed to handle it). 2108 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2109 bool UseSExt) { 2110 // If we're using CR bit registers for i1 values, handle that as a special 2111 // case first. 2112 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2113 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2115 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2116 return ImmReg; 2117 } 2118 2119 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2120 VT != MVT::i1) 2121 return 0; 2122 2123 const TargetRegisterClass *RC = 2124 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2125 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2126 2127 // If the constant is in range, use a load-immediate. 2128 // Since LI will sign extend the constant we need to make sure that for 2129 // our zeroext constants that the sign extended constant fits into 16-bits - 2130 // a range of 0..0x7fff. 2131 if (isInt<16>(Imm)) { 2132 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2133 unsigned ImmReg = createResultReg(RC); 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2135 .addImm(Imm); 2136 return ImmReg; 2137 } 2138 2139 // Construct the constant piecewise. 2140 if (VT == MVT::i64) 2141 return PPCMaterialize64BitInt(Imm, RC); 2142 else if (VT == MVT::i32) 2143 return PPCMaterialize32BitInt(Imm, RC); 2144 2145 return 0; 2146 } 2147 2148 // Materialize a constant into a register, and return the register 2149 // number (or zero if we failed to handle it). 2150 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2151 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2152 2153 // Only handle simple types. 2154 if (!CEVT.isSimple()) return 0; 2155 MVT VT = CEVT.getSimpleVT(); 2156 2157 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2158 return PPCMaterializeFP(CFP, VT); 2159 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2160 return PPCMaterializeGV(GV, VT); 2161 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2162 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2163 // assumes that constant PHI operands will be zero extended, and failure to 2164 // match that assumption will cause problems if we sign extend here but 2165 // some user of a PHI is in a block for which we fall back to full SDAG 2166 // instruction selection. 2167 return PPCMaterializeInt(CI, VT, false); 2168 2169 return 0; 2170 } 2171 2172 // Materialize the address created by an alloca into a register, and 2173 // return the register number (or zero if we failed to handle it). 2174 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2175 // Don't handle dynamic allocas. 2176 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2177 2178 MVT VT; 2179 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2180 2181 DenseMap<const AllocaInst*, int>::iterator SI = 2182 FuncInfo.StaticAllocaMap.find(AI); 2183 2184 if (SI != FuncInfo.StaticAllocaMap.end()) { 2185 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2186 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2187 ResultReg).addFrameIndex(SI->second).addImm(0); 2188 return ResultReg; 2189 } 2190 2191 return 0; 2192 } 2193 2194 // Fold loads into extends when possible. 2195 // FIXME: We can have multiple redundant extend/trunc instructions 2196 // following a load. The folding only picks up one. Extend this 2197 // to check subsequent instructions for the same pattern and remove 2198 // them. Thus ResultReg should be the def reg for the last redundant 2199 // instruction in a chain, and all intervening instructions can be 2200 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2201 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2202 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2203 const LoadInst *LI) { 2204 // Verify we have a legal type before going any further. 2205 MVT VT; 2206 if (!isLoadTypeLegal(LI->getType(), VT)) 2207 return false; 2208 2209 // Combine load followed by zero- or sign-extend. 2210 bool IsZExt = false; 2211 switch(MI->getOpcode()) { 2212 default: 2213 return false; 2214 2215 case PPC::RLDICL: 2216 case PPC::RLDICL_32_64: { 2217 IsZExt = true; 2218 unsigned MB = MI->getOperand(3).getImm(); 2219 if ((VT == MVT::i8 && MB <= 56) || 2220 (VT == MVT::i16 && MB <= 48) || 2221 (VT == MVT::i32 && MB <= 32)) 2222 break; 2223 return false; 2224 } 2225 2226 case PPC::RLWINM: 2227 case PPC::RLWINM8: { 2228 IsZExt = true; 2229 unsigned MB = MI->getOperand(3).getImm(); 2230 if ((VT == MVT::i8 && MB <= 24) || 2231 (VT == MVT::i16 && MB <= 16)) 2232 break; 2233 return false; 2234 } 2235 2236 case PPC::EXTSB: 2237 case PPC::EXTSB8: 2238 case PPC::EXTSB8_32_64: 2239 /* There is no sign-extending load-byte instruction. */ 2240 return false; 2241 2242 case PPC::EXTSH: 2243 case PPC::EXTSH8: 2244 case PPC::EXTSH8_32_64: { 2245 if (VT != MVT::i16 && VT != MVT::i8) 2246 return false; 2247 break; 2248 } 2249 2250 case PPC::EXTSW: 2251 case PPC::EXTSW_32: 2252 case PPC::EXTSW_32_64: { 2253 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2254 return false; 2255 break; 2256 } 2257 } 2258 2259 // See if we can handle this address. 2260 Address Addr; 2261 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2262 return false; 2263 2264 unsigned ResultReg = MI->getOperand(0).getReg(); 2265 2266 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2267 return false; 2268 2269 MI->eraseFromParent(); 2270 return true; 2271 } 2272 2273 // Attempt to lower call arguments in a faster way than done by 2274 // the selection DAG code. 2275 bool PPCFastISel::fastLowerArguments() { 2276 // Defer to normal argument lowering for now. It's reasonably 2277 // efficient. Consider doing something like ARM to handle the 2278 // case where all args fit in registers, no varargs, no float 2279 // or vector args. 2280 return false; 2281 } 2282 2283 // Handle materializing integer constants into a register. This is not 2284 // automatically generated for PowerPC, so must be explicitly created here. 2285 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2286 2287 if (Opc != ISD::Constant) 2288 return 0; 2289 2290 // If we're using CR bit registers for i1 values, handle that as a special 2291 // case first. 2292 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2293 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2295 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2296 return ImmReg; 2297 } 2298 2299 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2300 VT != MVT::i1) 2301 return 0; 2302 2303 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2304 &PPC::GPRCRegClass); 2305 if (VT == MVT::i64) 2306 return PPCMaterialize64BitInt(Imm, RC); 2307 else 2308 return PPCMaterialize32BitInt(Imm, RC); 2309 } 2310 2311 // Override for ADDI and ADDI8 to set the correct register class 2312 // on RHS operand 0. The automatic infrastructure naively assumes 2313 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2314 // for these cases. At the moment, none of the other automatically 2315 // generated RI instructions require special treatment. However, once 2316 // SelectSelect is implemented, "isel" requires similar handling. 2317 // 2318 // Also be conservative about the output register class. Avoid 2319 // assigning R0 or X0 to the output register for GPRC and G8RC 2320 // register classes, as any such result could be used in ADDI, etc., 2321 // where those regs have another meaning. 2322 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2323 const TargetRegisterClass *RC, 2324 unsigned Op0, bool Op0IsKill, 2325 uint64_t Imm) { 2326 if (MachineInstOpcode == PPC::ADDI) 2327 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2328 else if (MachineInstOpcode == PPC::ADDI8) 2329 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2330 2331 const TargetRegisterClass *UseRC = 2332 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2333 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2334 2335 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2336 Op0, Op0IsKill, Imm); 2337 } 2338 2339 // Override for instructions with one register operand to avoid use of 2340 // R0/X0. The automatic infrastructure isn't aware of the context so 2341 // we must be conservative. 2342 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2343 const TargetRegisterClass* RC, 2344 unsigned Op0, bool Op0IsKill) { 2345 const TargetRegisterClass *UseRC = 2346 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2347 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2348 2349 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2350 } 2351 2352 // Override for instructions with two register operands to avoid use 2353 // of R0/X0. The automatic infrastructure isn't aware of the context 2354 // so we must be conservative. 2355 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2356 const TargetRegisterClass* RC, 2357 unsigned Op0, bool Op0IsKill, 2358 unsigned Op1, bool Op1IsKill) { 2359 const TargetRegisterClass *UseRC = 2360 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2361 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2362 2363 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2364 Op1, Op1IsKill); 2365 } 2366 2367 namespace llvm { 2368 // Create the fast instruction selector for PowerPC64 ELF. 2369 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2370 const TargetLibraryInfo *LibInfo) { 2371 // Only available on 64-bit ELF for now. 2372 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2373 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2374 return new PPCFastISel(FuncInfo, LibInfo); 2375 return nullptr; 2376 } 2377 } 2378