1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCCCState.h"
19 #include "PPCCallingConv.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCSubtarget.h"
23 #include "PPCTargetMachine.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 //===----------------------------------------------------------------------===//
43 //
44 // TBD:
45 //   fastLowerArguments: Handle simple cases.
46 //   PPCMaterializeGV: Handle TLS.
47 //   SelectCall: Handle function pointers.
48 //   SelectCall: Handle multi-register return values.
49 //   SelectCall: Optimize away nops for local calls.
50 //   processCallArgs: Handle bit-converted arguments.
51 //   finishCall: Handle multi-register return values.
52 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
53 //   PPCEmitCmp: Handle immediate as operand 1.
54 //   SelectCall: Handle small byval arguments.
55 //   SelectIntrinsicCall: Implement.
56 //   SelectSelect: Implement.
57 //   Consider factoring isTypeLegal into the base class.
58 //   Implement switches and jump tables.
59 //
60 //===----------------------------------------------------------------------===//
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "ppcfastisel"
64 
65 namespace {
66 
67 typedef struct Address {
68   enum {
69     RegBase,
70     FrameIndexBase
71   } BaseType;
72 
73   union {
74     unsigned Reg;
75     int FI;
76   } Base;
77 
78   long Offset;
79 
80   // Innocuous defaults for our address.
81   Address()
82    : BaseType(RegBase), Offset(0) {
83      Base.Reg = 0;
84    }
85 } Address;
86 
87 class PPCFastISel final : public FastISel {
88 
89   const TargetMachine &TM;
90   const PPCSubtarget *PPCSubTarget;
91   PPCFunctionInfo *PPCFuncInfo;
92   const TargetInstrInfo &TII;
93   const TargetLowering &TLI;
94   LLVMContext *Context;
95 
96   public:
97     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98                          const TargetLibraryInfo *LibInfo)
99         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
102           TII(*PPCSubTarget->getInstrInfo()),
103           TLI(*PPCSubTarget->getTargetLowering()),
104           Context(&FuncInfo.Fn->getContext()) {}
105 
106   // Backend specific FastISel code.
107   private:
108     bool fastSelectInstruction(const Instruction *I) override;
109     unsigned fastMaterializeConstant(const Constant *C) override;
110     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112                              const LoadInst *LI) override;
113     bool fastLowerArguments() override;
114     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116                              const TargetRegisterClass *RC,
117                              unsigned Op0, bool Op0IsKill,
118                              uint64_t Imm);
119     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120                             const TargetRegisterClass *RC,
121                             unsigned Op0, bool Op0IsKill);
122     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123                              const TargetRegisterClass *RC,
124                              unsigned Op0, bool Op0IsKill,
125                              unsigned Op1, bool Op1IsKill);
126 
127     bool fastLowerCall(CallLoweringInfo &CLI) override;
128 
129   // Instruction selection routines.
130   private:
131     bool SelectLoad(const Instruction *I);
132     bool SelectStore(const Instruction *I);
133     bool SelectBranch(const Instruction *I);
134     bool SelectIndirectBr(const Instruction *I);
135     bool SelectFPExt(const Instruction *I);
136     bool SelectFPTrunc(const Instruction *I);
137     bool SelectIToFP(const Instruction *I, bool IsSigned);
138     bool SelectFPToI(const Instruction *I, bool IsSigned);
139     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140     bool SelectRet(const Instruction *I);
141     bool SelectTrunc(const Instruction *I);
142     bool SelectIntExt(const Instruction *I);
143 
144   // Utility routines.
145   private:
146     bool isTypeLegal(Type *Ty, MVT &VT);
147     bool isLoadTypeLegal(Type *Ty, MVT &VT);
148     bool isValueAvailable(const Value *V) const;
149     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
150       return RC->getID() == PPC::VSFRCRegClassID;
151     }
152     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
153       return RC->getID() == PPC::VSSRCRegClassID;
154     }
155     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
156                     bool isZExt, unsigned DestReg);
157     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
158                      const TargetRegisterClass *RC, bool IsZExt = true,
159                      unsigned FP64LoadOpc = PPC::LFD);
160     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
161     bool PPCComputeAddress(const Value *Obj, Address &Addr);
162     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
163                             unsigned &IndexReg);
164     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
165                            unsigned DestReg, bool IsZExt);
166     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
167     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
168     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
169                                bool UseSExt = true);
170     unsigned PPCMaterialize32BitInt(int64_t Imm,
171                                     const TargetRegisterClass *RC);
172     unsigned PPCMaterialize64BitInt(int64_t Imm,
173                                     const TargetRegisterClass *RC);
174     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
175                              unsigned SrcReg, bool IsSigned);
176     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
177 
178   // Call handling routines.
179   private:
180     bool processCallArgs(SmallVectorImpl<Value*> &Args,
181                          SmallVectorImpl<unsigned> &ArgRegs,
182                          SmallVectorImpl<MVT> &ArgVTs,
183                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
184                          SmallVectorImpl<unsigned> &RegArgs,
185                          CallingConv::ID CC,
186                          unsigned &NumBytes,
187                          bool IsVarArg);
188     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
189     LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
190 
191   private:
192   #include "PPCGenFastISel.inc"
193 
194 };
195 
196 } // end anonymous namespace
197 
198 #include "PPCGenCallingConv.inc"
199 
200 // Function whose sole purpose is to kill compiler warnings
201 // stemming from unused functions included from PPCGenCallingConv.inc.
202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
203   if (Flag == 1)
204     return CC_PPC32_SVR4;
205   else if (Flag == 2)
206     return CC_PPC32_SVR4_ByVal;
207   else if (Flag == 3)
208     return CC_PPC32_SVR4_VarArg;
209   else if (Flag == 4)
210     return RetCC_PPC_Cold;
211   else
212     return RetCC_PPC;
213 }
214 
215 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
216   switch (Pred) {
217     // These are not representable with any single compare.
218     case CmpInst::FCMP_FALSE:
219     case CmpInst::FCMP_TRUE:
220     // Major concern about the following 6 cases is NaN result. The comparison
221     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
222     // only one of which will be set. The result is generated by fcmpu
223     // instruction. However, bc instruction only inspects one of the first 3
224     // bits, so when un is set, bc instruction may jump to an undesired
225     // place.
226     //
227     // More specifically, if we expect an unordered comparison and un is set, we
228     // expect to always go to true branch; in such case UEQ, UGT and ULT still
229     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
230     // since they are tested by inspecting !eq, !lt, !gt, respectively.
231     //
232     // Similarly, for ordered comparison, when un is set, we always expect the
233     // result to be false. In such case OGT, OLT and OEQ is good, since they are
234     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
235     // and ONE are tested through !lt, !gt and !eq, and these are true.
236     case CmpInst::FCMP_UEQ:
237     case CmpInst::FCMP_UGT:
238     case CmpInst::FCMP_ULT:
239     case CmpInst::FCMP_OGE:
240     case CmpInst::FCMP_OLE:
241     case CmpInst::FCMP_ONE:
242     default:
243       return Optional<PPC::Predicate>();
244 
245     case CmpInst::FCMP_OEQ:
246     case CmpInst::ICMP_EQ:
247       return PPC::PRED_EQ;
248 
249     case CmpInst::FCMP_OGT:
250     case CmpInst::ICMP_UGT:
251     case CmpInst::ICMP_SGT:
252       return PPC::PRED_GT;
253 
254     case CmpInst::FCMP_UGE:
255     case CmpInst::ICMP_UGE:
256     case CmpInst::ICMP_SGE:
257       return PPC::PRED_GE;
258 
259     case CmpInst::FCMP_OLT:
260     case CmpInst::ICMP_ULT:
261     case CmpInst::ICMP_SLT:
262       return PPC::PRED_LT;
263 
264     case CmpInst::FCMP_ULE:
265     case CmpInst::ICMP_ULE:
266     case CmpInst::ICMP_SLE:
267       return PPC::PRED_LE;
268 
269     case CmpInst::FCMP_UNE:
270     case CmpInst::ICMP_NE:
271       return PPC::PRED_NE;
272 
273     case CmpInst::FCMP_ORD:
274       return PPC::PRED_NU;
275 
276     case CmpInst::FCMP_UNO:
277       return PPC::PRED_UN;
278   }
279 }
280 
281 // Determine whether the type Ty is simple enough to be handled by
282 // fast-isel, and return its equivalent machine type in VT.
283 // FIXME: Copied directly from ARM -- factor into base class?
284 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
285   EVT Evt = TLI.getValueType(DL, Ty, true);
286 
287   // Only handle simple types.
288   if (Evt == MVT::Other || !Evt.isSimple()) return false;
289   VT = Evt.getSimpleVT();
290 
291   // Handle all legal types, i.e. a register that will directly hold this
292   // value.
293   return TLI.isTypeLegal(VT);
294 }
295 
296 // Determine whether the type Ty is simple enough to be handled by
297 // fast-isel as a load target, and return its equivalent machine type in VT.
298 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
299   if (isTypeLegal(Ty, VT)) return true;
300 
301   // If this is a type than can be sign or zero-extended to a basic operation
302   // go ahead and accept it now.
303   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
304     return true;
305   }
306 
307   return false;
308 }
309 
310 bool PPCFastISel::isValueAvailable(const Value *V) const {
311   if (!isa<Instruction>(V))
312     return true;
313 
314   const auto *I = cast<Instruction>(V);
315   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
316 }
317 
318 // Given a value Obj, create an Address object Addr that represents its
319 // address.  Return false if we can't handle it.
320 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
321   const User *U = nullptr;
322   unsigned Opcode = Instruction::UserOp1;
323   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
324     // Don't walk into other basic blocks unless the object is an alloca from
325     // another block, otherwise it may not have a virtual register assigned.
326     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
327         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
328       Opcode = I->getOpcode();
329       U = I;
330     }
331   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
332     Opcode = C->getOpcode();
333     U = C;
334   }
335 
336   switch (Opcode) {
337     default:
338       break;
339     case Instruction::BitCast:
340       // Look through bitcasts.
341       return PPCComputeAddress(U->getOperand(0), Addr);
342     case Instruction::IntToPtr:
343       // Look past no-op inttoptrs.
344       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
345           TLI.getPointerTy(DL))
346         return PPCComputeAddress(U->getOperand(0), Addr);
347       break;
348     case Instruction::PtrToInt:
349       // Look past no-op ptrtoints.
350       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
351         return PPCComputeAddress(U->getOperand(0), Addr);
352       break;
353     case Instruction::GetElementPtr: {
354       Address SavedAddr = Addr;
355       long TmpOffset = Addr.Offset;
356 
357       // Iterate through the GEP folding the constants into offsets where
358       // we can.
359       gep_type_iterator GTI = gep_type_begin(U);
360       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
361            II != IE; ++II, ++GTI) {
362         const Value *Op = *II;
363         if (StructType *STy = GTI.getStructTypeOrNull()) {
364           const StructLayout *SL = DL.getStructLayout(STy);
365           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
366           TmpOffset += SL->getElementOffset(Idx);
367         } else {
368           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
369           for (;;) {
370             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
371               // Constant-offset addressing.
372               TmpOffset += CI->getSExtValue() * S;
373               break;
374             }
375             if (canFoldAddIntoGEP(U, Op)) {
376               // A compatible add with a constant operand. Fold the constant.
377               ConstantInt *CI =
378               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
379               TmpOffset += CI->getSExtValue() * S;
380               // Iterate on the other operand.
381               Op = cast<AddOperator>(Op)->getOperand(0);
382               continue;
383             }
384             // Unsupported
385             goto unsupported_gep;
386           }
387         }
388       }
389 
390       // Try to grab the base operand now.
391       Addr.Offset = TmpOffset;
392       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
393 
394       // We failed, restore everything and try the other options.
395       Addr = SavedAddr;
396 
397       unsupported_gep:
398       break;
399     }
400     case Instruction::Alloca: {
401       const AllocaInst *AI = cast<AllocaInst>(Obj);
402       DenseMap<const AllocaInst*, int>::iterator SI =
403         FuncInfo.StaticAllocaMap.find(AI);
404       if (SI != FuncInfo.StaticAllocaMap.end()) {
405         Addr.BaseType = Address::FrameIndexBase;
406         Addr.Base.FI = SI->second;
407         return true;
408       }
409       break;
410     }
411   }
412 
413   // FIXME: References to parameters fall through to the behavior
414   // below.  They should be able to reference a frame index since
415   // they are stored to the stack, so we can get "ld rx, offset(r1)"
416   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
417   // just contain the parameter.  Try to handle this with a FI.
418 
419   // Try to get this in a register if nothing else has worked.
420   if (Addr.Base.Reg == 0)
421     Addr.Base.Reg = getRegForValue(Obj);
422 
423   // Prevent assignment of base register to X0, which is inappropriate
424   // for loads and stores alike.
425   if (Addr.Base.Reg != 0)
426     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
427 
428   return Addr.Base.Reg != 0;
429 }
430 
431 // Fix up some addresses that can't be used directly.  For example, if
432 // an offset won't fit in an instruction field, we may need to move it
433 // into an index register.
434 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
435                                      unsigned &IndexReg) {
436 
437   // Check whether the offset fits in the instruction field.
438   if (!isInt<16>(Addr.Offset))
439     UseOffset = false;
440 
441   // If this is a stack pointer and the offset needs to be simplified then
442   // put the alloca address into a register, set the base type back to
443   // register and continue. This should almost never happen.
444   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
445     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
447             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
448     Addr.Base.Reg = ResultReg;
449     Addr.BaseType = Address::RegBase;
450   }
451 
452   if (!UseOffset) {
453     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
454     const ConstantInt *Offset =
455       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
456     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
457     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
458   }
459 }
460 
461 // Emit a load instruction if possible, returning true if we succeeded,
462 // otherwise false.  See commentary below for how the register class of
463 // the load is determined.
464 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
465                               const TargetRegisterClass *RC,
466                               bool IsZExt, unsigned FP64LoadOpc) {
467   unsigned Opc;
468   bool UseOffset = true;
469 
470   // If ResultReg is given, it determines the register class of the load.
471   // Otherwise, RC is the register class to use.  If the result of the
472   // load isn't anticipated in this block, both may be zero, in which
473   // case we must make a conservative guess.  In particular, don't assign
474   // R0 or X0 to the result register, as the result may be used in a load,
475   // store, add-immediate, or isel that won't permit this.  (Though
476   // perhaps the spill and reload of live-exit values would handle this?)
477   const TargetRegisterClass *UseRC =
478     (ResultReg ? MRI.getRegClass(ResultReg) :
479      (RC ? RC :
480       (VT == MVT::f64 ? &PPC::F8RCRegClass :
481        (VT == MVT::f32 ? &PPC::F4RCRegClass :
482         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
483          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
484 
485   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
486 
487   switch (VT.SimpleTy) {
488     default: // e.g., vector types not handled
489       return false;
490     case MVT::i8:
491       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
492       break;
493     case MVT::i16:
494       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
495                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
496       break;
497     case MVT::i32:
498       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
499                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
500       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
501         UseOffset = false;
502       break;
503     case MVT::i64:
504       Opc = PPC::LD;
505       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
506              "64-bit load with 32-bit target??");
507       UseOffset = ((Addr.Offset & 3) == 0);
508       break;
509     case MVT::f32:
510       Opc = PPC::LFS;
511       break;
512     case MVT::f64:
513       Opc = FP64LoadOpc;
514       break;
515   }
516 
517   // If necessary, materialize the offset into a register and use
518   // the indexed form.  Also handle stack pointers with special needs.
519   unsigned IndexReg = 0;
520   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
521 
522   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
523   // be used.
524   bool IsVSSRC = isVSSRCRegClass(UseRC);
525   bool IsVSFRC = isVSFRCRegClass(UseRC);
526   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
527   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
528   if ((Is32VSXLoad || Is64VSXLoad) &&
529       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
530       (Addr.Offset == 0)) {
531     UseOffset = false;
532   }
533 
534   if (ResultReg == 0)
535     ResultReg = createResultReg(UseRC);
536 
537   // Note: If we still have a frame index here, we know the offset is
538   // in range, as otherwise PPCSimplifyAddress would have converted it
539   // into a RegBase.
540   if (Addr.BaseType == Address::FrameIndexBase) {
541     // VSX only provides an indexed load.
542     if (Is32VSXLoad || Is64VSXLoad) return false;
543 
544     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
545         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
546                                           Addr.Offset),
547         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
548         MFI.getObjectAlignment(Addr.Base.FI));
549 
550     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
551       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
552 
553   // Base reg with offset in range.
554   } else if (UseOffset) {
555     // VSX only provides an indexed load.
556     if (Is32VSXLoad || Is64VSXLoad) return false;
557 
558     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
559       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
560 
561   // Indexed form.
562   } else {
563     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
564     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
565     // is hard to get at.
566     switch (Opc) {
567       default:        llvm_unreachable("Unexpected opcode!");
568       case PPC::LBZ:    Opc = PPC::LBZX;    break;
569       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
570       case PPC::LHZ:    Opc = PPC::LHZX;    break;
571       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
572       case PPC::LHA:    Opc = PPC::LHAX;    break;
573       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
574       case PPC::LWZ:    Opc = PPC::LWZX;    break;
575       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
576       case PPC::LWA:    Opc = PPC::LWAX;    break;
577       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
578       case PPC::LD:     Opc = PPC::LDX;     break;
579       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
580       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
581     }
582 
583     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
584                        ResultReg);
585 
586     // If we have an index register defined we use it in the store inst,
587     // otherwise we use X0 as base as it makes the vector instructions to
588     // use zero in the computation of the effective address regardless the
589     // content of the register.
590     if (IndexReg)
591       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
592     else
593       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
594   }
595 
596   return true;
597 }
598 
599 // Attempt to fast-select a load instruction.
600 bool PPCFastISel::SelectLoad(const Instruction *I) {
601   // FIXME: No atomic loads are supported.
602   if (cast<LoadInst>(I)->isAtomic())
603     return false;
604 
605   // Verify we have a legal type before going any further.
606   MVT VT;
607   if (!isLoadTypeLegal(I->getType(), VT))
608     return false;
609 
610   // See if we can handle this address.
611   Address Addr;
612   if (!PPCComputeAddress(I->getOperand(0), Addr))
613     return false;
614 
615   // Look at the currently assigned register for this instruction
616   // to determine the required register class.  This is necessary
617   // to constrain RA from using R0/X0 when this is not legal.
618   unsigned AssignedReg = FuncInfo.ValueMap[I];
619   const TargetRegisterClass *RC =
620     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
621 
622   unsigned ResultReg = 0;
623   if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
624     return false;
625   updateValueMap(I, ResultReg);
626   return true;
627 }
628 
629 // Emit a store instruction to store SrcReg at Addr.
630 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
631   assert(SrcReg && "Nothing to store!");
632   unsigned Opc;
633   bool UseOffset = true;
634 
635   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
636   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
637 
638   switch (VT.SimpleTy) {
639     default: // e.g., vector types not handled
640       return false;
641     case MVT::i8:
642       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
643       break;
644     case MVT::i16:
645       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
646       break;
647     case MVT::i32:
648       assert(Is32BitInt && "Not GPRC for i32??");
649       Opc = PPC::STW;
650       break;
651     case MVT::i64:
652       Opc = PPC::STD;
653       UseOffset = ((Addr.Offset & 3) == 0);
654       break;
655     case MVT::f32:
656       Opc = PPC::STFS;
657       break;
658     case MVT::f64:
659       Opc = PPC::STFD;
660       break;
661   }
662 
663   // If necessary, materialize the offset into a register and use
664   // the indexed form.  Also handle stack pointers with special needs.
665   unsigned IndexReg = 0;
666   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
667 
668   // If this is a potential VSX store with an offset of 0, a VSX indexed store
669   // can be used.
670   bool IsVSSRC = isVSSRCRegClass(RC);
671   bool IsVSFRC = isVSFRCRegClass(RC);
672   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
673   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
674   if ((Is32VSXStore || Is64VSXStore) &&
675       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
676       (Addr.Offset == 0)) {
677     UseOffset = false;
678   }
679 
680   // Note: If we still have a frame index here, we know the offset is
681   // in range, as otherwise PPCSimplifyAddress would have converted it
682   // into a RegBase.
683   if (Addr.BaseType == Address::FrameIndexBase) {
684     // VSX only provides an indexed store.
685     if (Is32VSXStore || Is64VSXStore) return false;
686 
687     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
688         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
689                                           Addr.Offset),
690         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
691         MFI.getObjectAlignment(Addr.Base.FI));
692 
693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
694         .addReg(SrcReg)
695         .addImm(Addr.Offset)
696         .addFrameIndex(Addr.Base.FI)
697         .addMemOperand(MMO);
698 
699   // Base reg with offset in range.
700   } else if (UseOffset) {
701     // VSX only provides an indexed store.
702     if (Is32VSXStore || Is64VSXStore)
703       return false;
704 
705     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
706       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
707 
708   // Indexed form.
709   } else {
710     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
711     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
712     // is hard to get at.
713     switch (Opc) {
714       default:        llvm_unreachable("Unexpected opcode!");
715       case PPC::STB:  Opc = PPC::STBX;  break;
716       case PPC::STH : Opc = PPC::STHX;  break;
717       case PPC::STW : Opc = PPC::STWX;  break;
718       case PPC::STB8: Opc = PPC::STBX8; break;
719       case PPC::STH8: Opc = PPC::STHX8; break;
720       case PPC::STW8: Opc = PPC::STWX8; break;
721       case PPC::STD:  Opc = PPC::STDX;  break;
722       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
723       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
724     }
725 
726     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
727         .addReg(SrcReg);
728 
729     // If we have an index register defined we use it in the store inst,
730     // otherwise we use X0 as base as it makes the vector instructions to
731     // use zero in the computation of the effective address regardless the
732     // content of the register.
733     if (IndexReg)
734       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
735     else
736       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
737   }
738 
739   return true;
740 }
741 
742 // Attempt to fast-select a store instruction.
743 bool PPCFastISel::SelectStore(const Instruction *I) {
744   Value *Op0 = I->getOperand(0);
745   unsigned SrcReg = 0;
746 
747   // FIXME: No atomics loads are supported.
748   if (cast<StoreInst>(I)->isAtomic())
749     return false;
750 
751   // Verify we have a legal type before going any further.
752   MVT VT;
753   if (!isLoadTypeLegal(Op0->getType(), VT))
754     return false;
755 
756   // Get the value to be stored into a register.
757   SrcReg = getRegForValue(Op0);
758   if (SrcReg == 0)
759     return false;
760 
761   // See if we can handle this address.
762   Address Addr;
763   if (!PPCComputeAddress(I->getOperand(1), Addr))
764     return false;
765 
766   if (!PPCEmitStore(VT, SrcReg, Addr))
767     return false;
768 
769   return true;
770 }
771 
772 // Attempt to fast-select a branch instruction.
773 bool PPCFastISel::SelectBranch(const Instruction *I) {
774   const BranchInst *BI = cast<BranchInst>(I);
775   MachineBasicBlock *BrBB = FuncInfo.MBB;
776   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
777   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
778 
779   // For now, just try the simplest case where it's fed by a compare.
780   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
781     if (isValueAvailable(CI)) {
782       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
783       if (!OptPPCPred)
784         return false;
785 
786       PPC::Predicate PPCPred = OptPPCPred.getValue();
787 
788       // Take advantage of fall-through opportunities.
789       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
790         std::swap(TBB, FBB);
791         PPCPred = PPC::InvertPredicate(PPCPred);
792       }
793 
794       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
795 
796       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
797                       CondReg))
798         return false;
799 
800       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
801         .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
802       finishCondBranch(BI->getParent(), TBB, FBB);
803       return true;
804     }
805   } else if (const ConstantInt *CI =
806              dyn_cast<ConstantInt>(BI->getCondition())) {
807     uint64_t Imm = CI->getZExtValue();
808     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
809     fastEmitBranch(Target, DbgLoc);
810     return true;
811   }
812 
813   // FIXME: ARM looks for a case where the block containing the compare
814   // has been split from the block containing the branch.  If this happens,
815   // there is a vreg available containing the result of the compare.  I'm
816   // not sure we can do much, as we've lost the predicate information with
817   // the compare instruction -- we have a 4-bit CR but don't know which bit
818   // to test here.
819   return false;
820 }
821 
822 // Attempt to emit a compare of the two source values.  Signed and unsigned
823 // comparisons are supported.  Return false if we can't handle it.
824 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
825                              bool IsZExt, unsigned DestReg) {
826   Type *Ty = SrcValue1->getType();
827   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
828   if (!SrcEVT.isSimple())
829     return false;
830   MVT SrcVT = SrcEVT.getSimpleVT();
831 
832   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
833     return false;
834 
835   // See if operand 2 is an immediate encodeable in the compare.
836   // FIXME: Operands are not in canonical order at -O0, so an immediate
837   // operand in position 1 is a lost opportunity for now.  We are
838   // similar to ARM in this regard.
839   long Imm = 0;
840   bool UseImm = false;
841 
842   // Only 16-bit integer constants can be represented in compares for
843   // PowerPC.  Others will be materialized into a register.
844   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
845     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
846         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
847       const APInt &CIVal = ConstInt->getValue();
848       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
849       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
850         UseImm = true;
851     }
852   }
853 
854   unsigned CmpOpc;
855   bool NeedsExt = false;
856   switch (SrcVT.SimpleTy) {
857     default: return false;
858     case MVT::f32:
859       CmpOpc = PPC::FCMPUS;
860       break;
861     case MVT::f64:
862       CmpOpc = PPC::FCMPUD;
863       break;
864     case MVT::i1:
865     case MVT::i8:
866     case MVT::i16:
867       NeedsExt = true;
868       // Intentional fall-through.
869     case MVT::i32:
870       if (!UseImm)
871         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
872       else
873         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
874       break;
875     case MVT::i64:
876       if (!UseImm)
877         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
878       else
879         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
880       break;
881   }
882 
883   unsigned SrcReg1 = getRegForValue(SrcValue1);
884   if (SrcReg1 == 0)
885     return false;
886 
887   unsigned SrcReg2 = 0;
888   if (!UseImm) {
889     SrcReg2 = getRegForValue(SrcValue2);
890     if (SrcReg2 == 0)
891       return false;
892   }
893 
894   if (NeedsExt) {
895     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
896     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
897       return false;
898     SrcReg1 = ExtReg;
899 
900     if (!UseImm) {
901       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
902       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
903         return false;
904       SrcReg2 = ExtReg;
905     }
906   }
907 
908   if (!UseImm)
909     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
910       .addReg(SrcReg1).addReg(SrcReg2);
911   else
912     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
913       .addReg(SrcReg1).addImm(Imm);
914 
915   return true;
916 }
917 
918 // Attempt to fast-select a floating-point extend instruction.
919 bool PPCFastISel::SelectFPExt(const Instruction *I) {
920   Value *Src  = I->getOperand(0);
921   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
922   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
923 
924   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
925     return false;
926 
927   unsigned SrcReg = getRegForValue(Src);
928   if (!SrcReg)
929     return false;
930 
931   // No code is generated for a FP extend.
932   updateValueMap(I, SrcReg);
933   return true;
934 }
935 
936 // Attempt to fast-select a floating-point truncate instruction.
937 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
938   Value *Src  = I->getOperand(0);
939   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
940   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
941 
942   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
943     return false;
944 
945   unsigned SrcReg = getRegForValue(Src);
946   if (!SrcReg)
947     return false;
948 
949   // Round the result to single precision.
950   unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
951   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
952     .addReg(SrcReg);
953 
954   updateValueMap(I, DestReg);
955   return true;
956 }
957 
958 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
959 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
960 // those should be used instead of moving via a stack slot when the
961 // subtarget permits.
962 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
963 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
964 // case to 8 bytes which produces tighter code but wastes stack space.
965 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
966                                      bool IsSigned) {
967 
968   // If necessary, extend 32-bit int to 64-bit.
969   if (SrcVT == MVT::i32) {
970     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
971     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
972       return 0;
973     SrcReg = TmpReg;
974   }
975 
976   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
977   Address Addr;
978   Addr.BaseType = Address::FrameIndexBase;
979   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
980 
981   // Store the value from the GPR.
982   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
983     return 0;
984 
985   // Load the integer value into an FPR.  The kind of load used depends
986   // on a number of conditions.
987   unsigned LoadOpc = PPC::LFD;
988 
989   if (SrcVT == MVT::i32) {
990     if (!IsSigned) {
991       LoadOpc = PPC::LFIWZX;
992       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
993     } else if (PPCSubTarget->hasLFIWAX()) {
994       LoadOpc = PPC::LFIWAX;
995       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
996     }
997   }
998 
999   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1000   unsigned ResultReg = 0;
1001   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1002     return 0;
1003 
1004   return ResultReg;
1005 }
1006 
1007 // Attempt to fast-select an integer-to-floating-point conversion.
1008 // FIXME: Once fast-isel has better support for VSX, conversions using
1009 //        direct moves should be implemented.
1010 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1011   MVT DstVT;
1012   Type *DstTy = I->getType();
1013   if (!isTypeLegal(DstTy, DstVT))
1014     return false;
1015 
1016   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1017     return false;
1018 
1019   Value *Src = I->getOperand(0);
1020   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1021   if (!SrcEVT.isSimple())
1022     return false;
1023 
1024   MVT SrcVT = SrcEVT.getSimpleVT();
1025 
1026   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1027       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1028     return false;
1029 
1030   unsigned SrcReg = getRegForValue(Src);
1031   if (SrcReg == 0)
1032     return false;
1033 
1034   // We can only lower an unsigned convert if we have the newer
1035   // floating-point conversion operations.
1036   if (!IsSigned && !PPCSubTarget->hasFPCVT())
1037     return false;
1038 
1039   // FIXME: For now we require the newer floating-point conversion operations
1040   // (which are present only on P7 and A2 server models) when converting
1041   // to single-precision float.  Otherwise we have to generate a lot of
1042   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1043   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1044   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1045     return false;
1046 
1047   // Extend the input if necessary.
1048   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1049     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1050     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1051       return false;
1052     SrcVT = MVT::i64;
1053     SrcReg = TmpReg;
1054   }
1055 
1056   // Move the integer value to an FPR.
1057   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1058   if (FPReg == 0)
1059     return false;
1060 
1061   // Determine the opcode for the conversion.
1062   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1063   unsigned DestReg = createResultReg(RC);
1064   unsigned Opc;
1065 
1066   if (DstVT == MVT::f32)
1067     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1068   else
1069     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1070 
1071   // Generate the convert.
1072   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1073     .addReg(FPReg);
1074 
1075   updateValueMap(I, DestReg);
1076   return true;
1077 }
1078 
1079 // Move the floating-point value in SrcReg into an integer destination
1080 // register, and return the register (or zero if we can't handle it).
1081 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1082 // those should be used instead of moving via a stack slot when the
1083 // subtarget permits.
1084 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1085                                       unsigned SrcReg, bool IsSigned) {
1086   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1087   // Note that if have STFIWX available, we could use a 4-byte stack
1088   // slot for i32, but this being fast-isel we'll just go with the
1089   // easiest code gen possible.
1090   Address Addr;
1091   Addr.BaseType = Address::FrameIndexBase;
1092   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1093 
1094   // Store the value from the FPR.
1095   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1096     return 0;
1097 
1098   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1099   // address to have a 4-byte offset so we load from the right place.
1100   if (VT == MVT::i32)
1101     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1102 
1103   // Look at the currently assigned register for this instruction
1104   // to determine the required register class.
1105   unsigned AssignedReg = FuncInfo.ValueMap[I];
1106   const TargetRegisterClass *RC =
1107     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1108 
1109   unsigned ResultReg = 0;
1110   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1111     return 0;
1112 
1113   return ResultReg;
1114 }
1115 
1116 // Attempt to fast-select a floating-point-to-integer conversion.
1117 // FIXME: Once fast-isel has better support for VSX, conversions using
1118 //        direct moves should be implemented.
1119 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1120   MVT DstVT, SrcVT;
1121   Type *DstTy = I->getType();
1122   if (!isTypeLegal(DstTy, DstVT))
1123     return false;
1124 
1125   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1126     return false;
1127 
1128   // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1129   if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1130     return false;
1131 
1132   Value *Src = I->getOperand(0);
1133   Type *SrcTy = Src->getType();
1134   if (!isTypeLegal(SrcTy, SrcVT))
1135     return false;
1136 
1137   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1138     return false;
1139 
1140   unsigned SrcReg = getRegForValue(Src);
1141   if (SrcReg == 0)
1142     return false;
1143 
1144   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1145   // to get the register class right.
1146   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1147   if (InRC == &PPC::F4RCRegClass) {
1148     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1149     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1150             TII.get(TargetOpcode::COPY), TmpReg)
1151       .addReg(SrcReg);
1152     SrcReg = TmpReg;
1153   }
1154 
1155   // Determine the opcode for the conversion, which takes place
1156   // entirely within FPRs.
1157   unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1158   unsigned Opc;
1159 
1160   if (DstVT == MVT::i32)
1161     if (IsSigned)
1162       Opc = PPC::FCTIWZ;
1163     else
1164       Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1165   else
1166     Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1167 
1168   // Generate the convert.
1169   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1170     .addReg(SrcReg);
1171 
1172   // Now move the integer value from a float register to an integer register.
1173   unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1174   if (IntReg == 0)
1175     return false;
1176 
1177   updateValueMap(I, IntReg);
1178   return true;
1179 }
1180 
1181 // Attempt to fast-select a binary integer operation that isn't already
1182 // handled automatically.
1183 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1184   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1185 
1186   // We can get here in the case when we have a binary operation on a non-legal
1187   // type and the target independent selector doesn't know how to handle it.
1188   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1189     return false;
1190 
1191   // Look at the currently assigned register for this instruction
1192   // to determine the required register class.  If there is no register,
1193   // make a conservative choice (don't assign R0).
1194   unsigned AssignedReg = FuncInfo.ValueMap[I];
1195   const TargetRegisterClass *RC =
1196     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1197      &PPC::GPRC_and_GPRC_NOR0RegClass);
1198   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1199 
1200   unsigned Opc;
1201   switch (ISDOpcode) {
1202     default: return false;
1203     case ISD::ADD:
1204       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1205       break;
1206     case ISD::OR:
1207       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1208       break;
1209     case ISD::SUB:
1210       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1211       break;
1212   }
1213 
1214   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1215   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1216   if (SrcReg1 == 0) return false;
1217 
1218   // Handle case of small immediate operand.
1219   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1220     const APInt &CIVal = ConstInt->getValue();
1221     int Imm = (int)CIVal.getSExtValue();
1222     bool UseImm = true;
1223     if (isInt<16>(Imm)) {
1224       switch (Opc) {
1225         default:
1226           llvm_unreachable("Missing case!");
1227         case PPC::ADD4:
1228           Opc = PPC::ADDI;
1229           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1230           break;
1231         case PPC::ADD8:
1232           Opc = PPC::ADDI8;
1233           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1234           break;
1235         case PPC::OR:
1236           Opc = PPC::ORI;
1237           break;
1238         case PPC::OR8:
1239           Opc = PPC::ORI8;
1240           break;
1241         case PPC::SUBF:
1242           if (Imm == -32768)
1243             UseImm = false;
1244           else {
1245             Opc = PPC::ADDI;
1246             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1247             Imm = -Imm;
1248           }
1249           break;
1250         case PPC::SUBF8:
1251           if (Imm == -32768)
1252             UseImm = false;
1253           else {
1254             Opc = PPC::ADDI8;
1255             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1256             Imm = -Imm;
1257           }
1258           break;
1259       }
1260 
1261       if (UseImm) {
1262         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1263                 ResultReg)
1264             .addReg(SrcReg1)
1265             .addImm(Imm);
1266         updateValueMap(I, ResultReg);
1267         return true;
1268       }
1269     }
1270   }
1271 
1272   // Reg-reg case.
1273   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1274   if (SrcReg2 == 0) return false;
1275 
1276   // Reverse operands for subtract-from.
1277   if (ISDOpcode == ISD::SUB)
1278     std::swap(SrcReg1, SrcReg2);
1279 
1280   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1281     .addReg(SrcReg1).addReg(SrcReg2);
1282   updateValueMap(I, ResultReg);
1283   return true;
1284 }
1285 
1286 // Handle arguments to a call that we're attempting to fast-select.
1287 // Return false if the arguments are too complex for us at the moment.
1288 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1289                                   SmallVectorImpl<unsigned> &ArgRegs,
1290                                   SmallVectorImpl<MVT> &ArgVTs,
1291                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1292                                   SmallVectorImpl<unsigned> &RegArgs,
1293                                   CallingConv::ID CC,
1294                                   unsigned &NumBytes,
1295                                   bool IsVarArg) {
1296   SmallVector<CCValAssign, 16> ArgLocs;
1297   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1298 
1299   // Reserve space for the linkage area on the stack.
1300   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1301   CCInfo.AllocateStack(LinkageSize, 8);
1302 
1303   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1304 
1305   // Bail out if we can't handle any of the arguments.
1306   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1307     CCValAssign &VA = ArgLocs[I];
1308     MVT ArgVT = ArgVTs[VA.getValNo()];
1309 
1310     // Skip vector arguments for now, as well as long double and
1311     // uint128_t, and anything that isn't passed in a register.
1312     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1313         !VA.isRegLoc() || VA.needsCustom())
1314       return false;
1315 
1316     // Skip bit-converted arguments for now.
1317     if (VA.getLocInfo() == CCValAssign::BCvt)
1318       return false;
1319   }
1320 
1321   // Get a count of how many bytes are to be pushed onto the stack.
1322   NumBytes = CCInfo.getNextStackOffset();
1323 
1324   // The prolog code of the callee may store up to 8 GPR argument registers to
1325   // the stack, allowing va_start to index over them in memory if its varargs.
1326   // Because we cannot tell if this is needed on the caller side, we have to
1327   // conservatively assume that it is needed.  As such, make sure we have at
1328   // least enough stack space for the caller to store the 8 GPRs.
1329   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1330   NumBytes = std::max(NumBytes, LinkageSize + 64);
1331 
1332   // Issue CALLSEQ_START.
1333   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1334           TII.get(TII.getCallFrameSetupOpcode()))
1335     .addImm(NumBytes).addImm(0);
1336 
1337   // Prepare to assign register arguments.  Every argument uses up a
1338   // GPR protocol register even if it's passed in a floating-point
1339   // register (unless we're using the fast calling convention).
1340   unsigned NextGPR = PPC::X3;
1341   unsigned NextFPR = PPC::F1;
1342 
1343   // Process arguments.
1344   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1345     CCValAssign &VA = ArgLocs[I];
1346     unsigned Arg = ArgRegs[VA.getValNo()];
1347     MVT ArgVT = ArgVTs[VA.getValNo()];
1348 
1349     // Handle argument promotion and bitcasts.
1350     switch (VA.getLocInfo()) {
1351       default:
1352         llvm_unreachable("Unknown loc info!");
1353       case CCValAssign::Full:
1354         break;
1355       case CCValAssign::SExt: {
1356         MVT DestVT = VA.getLocVT();
1357         const TargetRegisterClass *RC =
1358           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1359         unsigned TmpReg = createResultReg(RC);
1360         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1361           llvm_unreachable("Failed to emit a sext!");
1362         ArgVT = DestVT;
1363         Arg = TmpReg;
1364         break;
1365       }
1366       case CCValAssign::AExt:
1367       case CCValAssign::ZExt: {
1368         MVT DestVT = VA.getLocVT();
1369         const TargetRegisterClass *RC =
1370           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1371         unsigned TmpReg = createResultReg(RC);
1372         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1373           llvm_unreachable("Failed to emit a zext!");
1374         ArgVT = DestVT;
1375         Arg = TmpReg;
1376         break;
1377       }
1378       case CCValAssign::BCvt: {
1379         // FIXME: Not yet handled.
1380         llvm_unreachable("Should have bailed before getting here!");
1381         break;
1382       }
1383     }
1384 
1385     // Copy this argument to the appropriate register.
1386     unsigned ArgReg;
1387     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1388       ArgReg = NextFPR++;
1389       if (CC != CallingConv::Fast)
1390         ++NextGPR;
1391     } else
1392       ArgReg = NextGPR++;
1393 
1394     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1395             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1396     RegArgs.push_back(ArgReg);
1397   }
1398 
1399   return true;
1400 }
1401 
1402 // For a call that we've determined we can fast-select, finish the
1403 // call sequence and generate a copy to obtain the return value (if any).
1404 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1405   CallingConv::ID CC = CLI.CallConv;
1406 
1407   // Issue CallSEQ_END.
1408   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1409           TII.get(TII.getCallFrameDestroyOpcode()))
1410     .addImm(NumBytes).addImm(0);
1411 
1412   // Next, generate a copy to obtain the return value.
1413   // FIXME: No multi-register return values yet, though I don't foresee
1414   // any real difficulties there.
1415   if (RetVT != MVT::isVoid) {
1416     SmallVector<CCValAssign, 16> RVLocs;
1417     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1418     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1419     CCValAssign &VA = RVLocs[0];
1420     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1421     assert(VA.isRegLoc() && "Can only return in registers!");
1422 
1423     MVT DestVT = VA.getValVT();
1424     MVT CopyVT = DestVT;
1425 
1426     // Ints smaller than a register still arrive in a full 64-bit
1427     // register, so make sure we recognize this.
1428     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1429       CopyVT = MVT::i64;
1430 
1431     unsigned SourcePhysReg = VA.getLocReg();
1432     unsigned ResultReg = 0;
1433 
1434     if (RetVT == CopyVT) {
1435       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1436       ResultReg = createResultReg(CpyRC);
1437 
1438       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1439               TII.get(TargetOpcode::COPY), ResultReg)
1440         .addReg(SourcePhysReg);
1441 
1442     // If necessary, round the floating result to single precision.
1443     } else if (CopyVT == MVT::f64) {
1444       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1445       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1446               ResultReg).addReg(SourcePhysReg);
1447 
1448     // If only the low half of a general register is needed, generate
1449     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1450     // used along the fast-isel path (not lowered), and downstream logic
1451     // also doesn't like a direct subreg copy on a physical reg.)
1452     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1453       ResultReg = createResultReg(&PPC::GPRCRegClass);
1454       // Convert physical register from G8RC to GPRC.
1455       SourcePhysReg -= PPC::X0 - PPC::R0;
1456       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1457               TII.get(TargetOpcode::COPY), ResultReg)
1458         .addReg(SourcePhysReg);
1459     }
1460 
1461     assert(ResultReg && "ResultReg unset!");
1462     CLI.InRegs.push_back(SourcePhysReg);
1463     CLI.ResultReg = ResultReg;
1464     CLI.NumResultRegs = 1;
1465   }
1466 
1467   return true;
1468 }
1469 
1470 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1471   CallingConv::ID CC  = CLI.CallConv;
1472   bool IsTailCall     = CLI.IsTailCall;
1473   bool IsVarArg       = CLI.IsVarArg;
1474   const Value *Callee = CLI.Callee;
1475   const MCSymbol *Symbol = CLI.Symbol;
1476 
1477   if (!Callee && !Symbol)
1478     return false;
1479 
1480   // Allow SelectionDAG isel to handle tail calls.
1481   if (IsTailCall)
1482     return false;
1483 
1484   // Let SDISel handle vararg functions.
1485   if (IsVarArg)
1486     return false;
1487 
1488   // Handle simple calls for now, with legal return types and
1489   // those that can be extended.
1490   Type *RetTy = CLI.RetTy;
1491   MVT RetVT;
1492   if (RetTy->isVoidTy())
1493     RetVT = MVT::isVoid;
1494   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1495            RetVT != MVT::i8)
1496     return false;
1497   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1498     // We can't handle boolean returns when CR bits are in use.
1499     return false;
1500 
1501   // FIXME: No multi-register return values yet.
1502   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1503       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1504       RetVT != MVT::f64) {
1505     SmallVector<CCValAssign, 16> RVLocs;
1506     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1507     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1508     if (RVLocs.size() > 1)
1509       return false;
1510   }
1511 
1512   // Bail early if more than 8 arguments, as we only currently
1513   // handle arguments passed in registers.
1514   unsigned NumArgs = CLI.OutVals.size();
1515   if (NumArgs > 8)
1516     return false;
1517 
1518   // Set up the argument vectors.
1519   SmallVector<Value*, 8> Args;
1520   SmallVector<unsigned, 8> ArgRegs;
1521   SmallVector<MVT, 8> ArgVTs;
1522   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1523 
1524   Args.reserve(NumArgs);
1525   ArgRegs.reserve(NumArgs);
1526   ArgVTs.reserve(NumArgs);
1527   ArgFlags.reserve(NumArgs);
1528 
1529   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1530     // Only handle easy calls for now.  It would be reasonably easy
1531     // to handle <= 8-byte structures passed ByVal in registers, but we
1532     // have to ensure they are right-justified in the register.
1533     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1534     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1535       return false;
1536 
1537     Value *ArgValue = CLI.OutVals[i];
1538     Type *ArgTy = ArgValue->getType();
1539     MVT ArgVT;
1540     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1541       return false;
1542 
1543     if (ArgVT.isVector())
1544       return false;
1545 
1546     unsigned Arg = getRegForValue(ArgValue);
1547     if (Arg == 0)
1548       return false;
1549 
1550     Args.push_back(ArgValue);
1551     ArgRegs.push_back(Arg);
1552     ArgVTs.push_back(ArgVT);
1553     ArgFlags.push_back(Flags);
1554   }
1555 
1556   // Process the arguments.
1557   SmallVector<unsigned, 8> RegArgs;
1558   unsigned NumBytes;
1559 
1560   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1561                        RegArgs, CC, NumBytes, IsVarArg))
1562     return false;
1563 
1564   MachineInstrBuilder MIB;
1565   // FIXME: No handling for function pointers yet.  This requires
1566   // implementing the function descriptor (OPD) setup.
1567   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1568   if (!GV) {
1569     // patchpoints are a special case; they always dispatch to a pointer value.
1570     // However, we don't actually want to generate the indirect call sequence
1571     // here (that will be generated, as necessary, during asm printing), and
1572     // the call we generate here will be erased by FastISel::selectPatchpoint,
1573     // so don't try very hard...
1574     if (CLI.IsPatchPoint)
1575       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1576     else
1577       return false;
1578   } else {
1579     // Build direct call with NOP for TOC restore.
1580     // FIXME: We can and should optimize away the NOP for local calls.
1581     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1582                   TII.get(PPC::BL8_NOP));
1583     // Add callee.
1584     MIB.addGlobalAddress(GV);
1585   }
1586 
1587   // Add implicit physical register uses to the call.
1588   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1589     MIB.addReg(RegArgs[II], RegState::Implicit);
1590 
1591   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1592   // into the call.
1593   PPCFuncInfo->setUsesTOCBasePtr();
1594   MIB.addReg(PPC::X2, RegState::Implicit);
1595 
1596   // Add a register mask with the call-preserved registers.  Proper
1597   // defs for return values will be added by setPhysRegsDeadExcept().
1598   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1599 
1600   CLI.Call = MIB;
1601 
1602   // Finish off the call including any return values.
1603   return finishCall(RetVT, CLI, NumBytes);
1604 }
1605 
1606 // Attempt to fast-select a return instruction.
1607 bool PPCFastISel::SelectRet(const Instruction *I) {
1608 
1609   if (!FuncInfo.CanLowerReturn)
1610     return false;
1611 
1612   if (TLI.supportSplitCSR(FuncInfo.MF))
1613     return false;
1614 
1615   const ReturnInst *Ret = cast<ReturnInst>(I);
1616   const Function &F = *I->getParent()->getParent();
1617 
1618   // Build a list of return value registers.
1619   SmallVector<unsigned, 4> RetRegs;
1620   CallingConv::ID CC = F.getCallingConv();
1621 
1622   if (Ret->getNumOperands() > 0) {
1623     SmallVector<ISD::OutputArg, 4> Outs;
1624     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1625 
1626     // Analyze operands of the call, assigning locations to each operand.
1627     SmallVector<CCValAssign, 16> ValLocs;
1628     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1629     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1630     const Value *RV = Ret->getOperand(0);
1631 
1632     // FIXME: Only one output register for now.
1633     if (ValLocs.size() > 1)
1634       return false;
1635 
1636     // Special case for returning a constant integer of any size - materialize
1637     // the constant as an i64 and copy it to the return register.
1638     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1639       CCValAssign &VA = ValLocs[0];
1640 
1641       unsigned RetReg = VA.getLocReg();
1642       // We still need to worry about properly extending the sign. For example,
1643       // we could have only a single bit or a constant that needs zero
1644       // extension rather than sign extension. Make sure we pass the return
1645       // value extension property to integer materialization.
1646       unsigned SrcReg =
1647           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1648 
1649       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1650             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1651 
1652       RetRegs.push_back(RetReg);
1653 
1654     } else {
1655       unsigned Reg = getRegForValue(RV);
1656 
1657       if (Reg == 0)
1658         return false;
1659 
1660       // Copy the result values into the output registers.
1661       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1662 
1663         CCValAssign &VA = ValLocs[i];
1664         assert(VA.isRegLoc() && "Can only return in registers!");
1665         RetRegs.push_back(VA.getLocReg());
1666         unsigned SrcReg = Reg + VA.getValNo();
1667 
1668         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1669         if (!RVEVT.isSimple())
1670           return false;
1671         MVT RVVT = RVEVT.getSimpleVT();
1672         MVT DestVT = VA.getLocVT();
1673 
1674         if (RVVT != DestVT && RVVT != MVT::i8 &&
1675             RVVT != MVT::i16 && RVVT != MVT::i32)
1676           return false;
1677 
1678         if (RVVT != DestVT) {
1679           switch (VA.getLocInfo()) {
1680             default:
1681               llvm_unreachable("Unknown loc info!");
1682             case CCValAssign::Full:
1683               llvm_unreachable("Full value assign but types don't match?");
1684             case CCValAssign::AExt:
1685             case CCValAssign::ZExt: {
1686               const TargetRegisterClass *RC =
1687                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1688               unsigned TmpReg = createResultReg(RC);
1689               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1690                 return false;
1691               SrcReg = TmpReg;
1692               break;
1693             }
1694             case CCValAssign::SExt: {
1695               const TargetRegisterClass *RC =
1696                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1697               unsigned TmpReg = createResultReg(RC);
1698               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1699                 return false;
1700               SrcReg = TmpReg;
1701               break;
1702             }
1703           }
1704         }
1705 
1706         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1707                 TII.get(TargetOpcode::COPY), RetRegs[i])
1708           .addReg(SrcReg);
1709       }
1710     }
1711   }
1712 
1713   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1714                                     TII.get(PPC::BLR8));
1715 
1716   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1717     MIB.addReg(RetRegs[i], RegState::Implicit);
1718 
1719   return true;
1720 }
1721 
1722 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1723 // signed and zero extensions are supported.  Return false if we
1724 // can't handle it.
1725 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1726                                 unsigned DestReg, bool IsZExt) {
1727   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1728     return false;
1729   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1730     return false;
1731 
1732   // Signed extensions use EXTSB, EXTSH, EXTSW.
1733   if (!IsZExt) {
1734     unsigned Opc;
1735     if (SrcVT == MVT::i8)
1736       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1737     else if (SrcVT == MVT::i16)
1738       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1739     else {
1740       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1741       Opc = PPC::EXTSW_32_64;
1742     }
1743     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1744       .addReg(SrcReg);
1745 
1746   // Unsigned 32-bit extensions use RLWINM.
1747   } else if (DestVT == MVT::i32) {
1748     unsigned MB;
1749     if (SrcVT == MVT::i8)
1750       MB = 24;
1751     else {
1752       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1753       MB = 16;
1754     }
1755     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1756             DestReg)
1757       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1758 
1759   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1760   } else {
1761     unsigned MB;
1762     if (SrcVT == MVT::i8)
1763       MB = 56;
1764     else if (SrcVT == MVT::i16)
1765       MB = 48;
1766     else
1767       MB = 32;
1768     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1769             TII.get(PPC::RLDICL_32_64), DestReg)
1770       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1771   }
1772 
1773   return true;
1774 }
1775 
1776 // Attempt to fast-select an indirect branch instruction.
1777 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1778   unsigned AddrReg = getRegForValue(I->getOperand(0));
1779   if (AddrReg == 0)
1780     return false;
1781 
1782   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1783     .addReg(AddrReg);
1784   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1785 
1786   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1787   for (const BasicBlock *SuccBB : IB->successors())
1788     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1789 
1790   return true;
1791 }
1792 
1793 // Attempt to fast-select an integer truncate instruction.
1794 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1795   Value *Src  = I->getOperand(0);
1796   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1797   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1798 
1799   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1800     return false;
1801 
1802   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1803     return false;
1804 
1805   unsigned SrcReg = getRegForValue(Src);
1806   if (!SrcReg)
1807     return false;
1808 
1809   // The only interesting case is when we need to switch register classes.
1810   if (SrcVT == MVT::i64) {
1811     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1812     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1813             TII.get(TargetOpcode::COPY),
1814             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1815     SrcReg = ResultReg;
1816   }
1817 
1818   updateValueMap(I, SrcReg);
1819   return true;
1820 }
1821 
1822 // Attempt to fast-select an integer extend instruction.
1823 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1824   Type *DestTy = I->getType();
1825   Value *Src = I->getOperand(0);
1826   Type *SrcTy = Src->getType();
1827 
1828   bool IsZExt = isa<ZExtInst>(I);
1829   unsigned SrcReg = getRegForValue(Src);
1830   if (!SrcReg) return false;
1831 
1832   EVT SrcEVT, DestEVT;
1833   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1834   DestEVT = TLI.getValueType(DL, DestTy, true);
1835   if (!SrcEVT.isSimple())
1836     return false;
1837   if (!DestEVT.isSimple())
1838     return false;
1839 
1840   MVT SrcVT = SrcEVT.getSimpleVT();
1841   MVT DestVT = DestEVT.getSimpleVT();
1842 
1843   // If we know the register class needed for the result of this
1844   // instruction, use it.  Otherwise pick the register class of the
1845   // correct size that does not contain X0/R0, since we don't know
1846   // whether downstream uses permit that assignment.
1847   unsigned AssignedReg = FuncInfo.ValueMap[I];
1848   const TargetRegisterClass *RC =
1849     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1850      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1851       &PPC::GPRC_and_GPRC_NOR0RegClass));
1852   unsigned ResultReg = createResultReg(RC);
1853 
1854   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1855     return false;
1856 
1857   updateValueMap(I, ResultReg);
1858   return true;
1859 }
1860 
1861 // Attempt to fast-select an instruction that wasn't handled by
1862 // the table-generated machinery.
1863 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1864 
1865   switch (I->getOpcode()) {
1866     case Instruction::Load:
1867       return SelectLoad(I);
1868     case Instruction::Store:
1869       return SelectStore(I);
1870     case Instruction::Br:
1871       return SelectBranch(I);
1872     case Instruction::IndirectBr:
1873       return SelectIndirectBr(I);
1874     case Instruction::FPExt:
1875       return SelectFPExt(I);
1876     case Instruction::FPTrunc:
1877       return SelectFPTrunc(I);
1878     case Instruction::SIToFP:
1879       return SelectIToFP(I, /*IsSigned*/ true);
1880     case Instruction::UIToFP:
1881       return SelectIToFP(I, /*IsSigned*/ false);
1882     case Instruction::FPToSI:
1883       return SelectFPToI(I, /*IsSigned*/ true);
1884     case Instruction::FPToUI:
1885       return SelectFPToI(I, /*IsSigned*/ false);
1886     case Instruction::Add:
1887       return SelectBinaryIntOp(I, ISD::ADD);
1888     case Instruction::Or:
1889       return SelectBinaryIntOp(I, ISD::OR);
1890     case Instruction::Sub:
1891       return SelectBinaryIntOp(I, ISD::SUB);
1892     case Instruction::Call:
1893       return selectCall(I);
1894     case Instruction::Ret:
1895       return SelectRet(I);
1896     case Instruction::Trunc:
1897       return SelectTrunc(I);
1898     case Instruction::ZExt:
1899     case Instruction::SExt:
1900       return SelectIntExt(I);
1901     // Here add other flavors of Instruction::XXX that automated
1902     // cases don't catch.  For example, switches are terminators
1903     // that aren't yet handled.
1904     default:
1905       break;
1906   }
1907   return false;
1908 }
1909 
1910 // Materialize a floating-point constant into a register, and return
1911 // the register number (or zero if we failed to handle it).
1912 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1913   // No plans to handle long double here.
1914   if (VT != MVT::f32 && VT != MVT::f64)
1915     return 0;
1916 
1917   // All FP constants are loaded from the constant pool.
1918   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1919   assert(Align > 0 && "Unexpectedly missing alignment information!");
1920   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1921   const TargetRegisterClass *RC =
1922     (VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass;
1923   unsigned DestReg = createResultReg(RC);
1924   CodeModel::Model CModel = TM.getCodeModel();
1925 
1926   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1927       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1928       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1929 
1930   unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1931   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1932 
1933   PPCFuncInfo->setUsesTOCBasePtr();
1934   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1935   if (CModel == CodeModel::Small) {
1936     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1937             TmpReg)
1938       .addConstantPoolIndex(Idx).addReg(PPC::X2);
1939     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1940       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1941   } else {
1942     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1943     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1944             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1945     // But for large code model, we must generate a LDtocL followed
1946     // by the LF[SD].
1947     if (CModel == CodeModel::Large) {
1948       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1949       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1950               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1951       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1952           .addImm(0)
1953           .addReg(TmpReg2);
1954     } else
1955       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1956         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1957         .addReg(TmpReg)
1958         .addMemOperand(MMO);
1959   }
1960 
1961   return DestReg;
1962 }
1963 
1964 // Materialize the address of a global value into a register, and return
1965 // the register number (or zero if we failed to handle it).
1966 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1967   assert(VT == MVT::i64 && "Non-address!");
1968   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1969   unsigned DestReg = createResultReg(RC);
1970 
1971   // Global values may be plain old object addresses, TLS object
1972   // addresses, constant pool entries, or jump tables.  How we generate
1973   // code for these may depend on small, medium, or large code model.
1974   CodeModel::Model CModel = TM.getCodeModel();
1975 
1976   // FIXME: Jump tables are not yet required because fast-isel doesn't
1977   // handle switches; if that changes, we need them as well.  For now,
1978   // what follows assumes everything's a generic (or TLS) global address.
1979 
1980   // FIXME: We don't yet handle the complexity of TLS.
1981   if (GV->isThreadLocal())
1982     return 0;
1983 
1984   PPCFuncInfo->setUsesTOCBasePtr();
1985   // For small code model, generate a simple TOC load.
1986   if (CModel == CodeModel::Small)
1987     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1988             DestReg)
1989         .addGlobalAddress(GV)
1990         .addReg(PPC::X2);
1991   else {
1992     // If the address is an externally defined symbol, a symbol with common
1993     // or externally available linkage, a non-local function address, or a
1994     // jump table address (not yet needed), or if we are generating code
1995     // for large code model, we generate:
1996     //       LDtocL(GV, ADDIStocHA(%x2, GV))
1997     // Otherwise we generate:
1998     //       ADDItocL(ADDIStocHA(%x2, GV), GV)
1999     // Either way, start with the ADDIStocHA:
2000     unsigned HighPartReg = createResultReg(RC);
2001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2002             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2003 
2004     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2005     if (GVFlags & PPCII::MO_NLP_FLAG) {
2006       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2007               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2008     } else {
2009       // Otherwise generate the ADDItocL.
2010       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2011               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2012     }
2013   }
2014 
2015   return DestReg;
2016 }
2017 
2018 // Materialize a 32-bit integer constant into a register, and return
2019 // the register number (or zero if we failed to handle it).
2020 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2021                                              const TargetRegisterClass *RC) {
2022   unsigned Lo = Imm & 0xFFFF;
2023   unsigned Hi = (Imm >> 16) & 0xFFFF;
2024 
2025   unsigned ResultReg = createResultReg(RC);
2026   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2027 
2028   if (isInt<16>(Imm))
2029     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2030             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2031       .addImm(Imm);
2032   else if (Lo) {
2033     // Both Lo and Hi have nonzero bits.
2034     unsigned TmpReg = createResultReg(RC);
2035     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2036             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2037       .addImm(Hi);
2038     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2039             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2040       .addReg(TmpReg).addImm(Lo);
2041   } else
2042     // Just Hi bits.
2043     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2044             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2045         .addImm(Hi);
2046 
2047   return ResultReg;
2048 }
2049 
2050 // Materialize a 64-bit integer constant into a register, and return
2051 // the register number (or zero if we failed to handle it).
2052 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2053                                              const TargetRegisterClass *RC) {
2054   unsigned Remainder = 0;
2055   unsigned Shift = 0;
2056 
2057   // If the value doesn't fit in 32 bits, see if we can shift it
2058   // so that it fits in 32 bits.
2059   if (!isInt<32>(Imm)) {
2060     Shift = countTrailingZeros<uint64_t>(Imm);
2061     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2062 
2063     if (isInt<32>(ImmSh))
2064       Imm = ImmSh;
2065     else {
2066       Remainder = Imm;
2067       Shift = 32;
2068       Imm >>= 32;
2069     }
2070   }
2071 
2072   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2073   // (if not shifted).
2074   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2075   if (!Shift)
2076     return TmpReg1;
2077 
2078   // If upper 32 bits were not zero, we've built them and need to shift
2079   // them into place.
2080   unsigned TmpReg2;
2081   if (Imm) {
2082     TmpReg2 = createResultReg(RC);
2083     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2084             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2085   } else
2086     TmpReg2 = TmpReg1;
2087 
2088   unsigned TmpReg3, Hi, Lo;
2089   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2090     TmpReg3 = createResultReg(RC);
2091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2092             TmpReg3).addReg(TmpReg2).addImm(Hi);
2093   } else
2094     TmpReg3 = TmpReg2;
2095 
2096   if ((Lo = Remainder & 0xFFFF)) {
2097     unsigned ResultReg = createResultReg(RC);
2098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2099             ResultReg).addReg(TmpReg3).addImm(Lo);
2100     return ResultReg;
2101   }
2102 
2103   return TmpReg3;
2104 }
2105 
2106 // Materialize an integer constant into a register, and return
2107 // the register number (or zero if we failed to handle it).
2108 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2109                                         bool UseSExt) {
2110   // If we're using CR bit registers for i1 values, handle that as a special
2111   // case first.
2112   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2113     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2114     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2115             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2116     return ImmReg;
2117   }
2118 
2119   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2120       VT != MVT::i1)
2121     return 0;
2122 
2123   const TargetRegisterClass *RC =
2124       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2125   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2126 
2127   // If the constant is in range, use a load-immediate.
2128   // Since LI will sign extend the constant we need to make sure that for
2129   // our zeroext constants that the sign extended constant fits into 16-bits -
2130   // a range of 0..0x7fff.
2131   if (isInt<16>(Imm)) {
2132     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2133     unsigned ImmReg = createResultReg(RC);
2134     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2135         .addImm(Imm);
2136     return ImmReg;
2137   }
2138 
2139   // Construct the constant piecewise.
2140   if (VT == MVT::i64)
2141     return PPCMaterialize64BitInt(Imm, RC);
2142   else if (VT == MVT::i32)
2143     return PPCMaterialize32BitInt(Imm, RC);
2144 
2145   return 0;
2146 }
2147 
2148 // Materialize a constant into a register, and return the register
2149 // number (or zero if we failed to handle it).
2150 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2151   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2152 
2153   // Only handle simple types.
2154   if (!CEVT.isSimple()) return 0;
2155   MVT VT = CEVT.getSimpleVT();
2156 
2157   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2158     return PPCMaterializeFP(CFP, VT);
2159   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2160     return PPCMaterializeGV(GV, VT);
2161   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2162     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2163     // assumes that constant PHI operands will be zero extended, and failure to
2164     // match that assumption will cause problems if we sign extend here but
2165     // some user of a PHI is in a block for which we fall back to full SDAG
2166     // instruction selection.
2167     return PPCMaterializeInt(CI, VT, false);
2168 
2169   return 0;
2170 }
2171 
2172 // Materialize the address created by an alloca into a register, and
2173 // return the register number (or zero if we failed to handle it).
2174 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2175   // Don't handle dynamic allocas.
2176   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2177 
2178   MVT VT;
2179   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2180 
2181   DenseMap<const AllocaInst*, int>::iterator SI =
2182     FuncInfo.StaticAllocaMap.find(AI);
2183 
2184   if (SI != FuncInfo.StaticAllocaMap.end()) {
2185     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2186     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2187             ResultReg).addFrameIndex(SI->second).addImm(0);
2188     return ResultReg;
2189   }
2190 
2191   return 0;
2192 }
2193 
2194 // Fold loads into extends when possible.
2195 // FIXME: We can have multiple redundant extend/trunc instructions
2196 // following a load.  The folding only picks up one.  Extend this
2197 // to check subsequent instructions for the same pattern and remove
2198 // them.  Thus ResultReg should be the def reg for the last redundant
2199 // instruction in a chain, and all intervening instructions can be
2200 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2201 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2202 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2203                                       const LoadInst *LI) {
2204   // Verify we have a legal type before going any further.
2205   MVT VT;
2206   if (!isLoadTypeLegal(LI->getType(), VT))
2207     return false;
2208 
2209   // Combine load followed by zero- or sign-extend.
2210   bool IsZExt = false;
2211   switch(MI->getOpcode()) {
2212     default:
2213       return false;
2214 
2215     case PPC::RLDICL:
2216     case PPC::RLDICL_32_64: {
2217       IsZExt = true;
2218       unsigned MB = MI->getOperand(3).getImm();
2219       if ((VT == MVT::i8 && MB <= 56) ||
2220           (VT == MVT::i16 && MB <= 48) ||
2221           (VT == MVT::i32 && MB <= 32))
2222         break;
2223       return false;
2224     }
2225 
2226     case PPC::RLWINM:
2227     case PPC::RLWINM8: {
2228       IsZExt = true;
2229       unsigned MB = MI->getOperand(3).getImm();
2230       if ((VT == MVT::i8 && MB <= 24) ||
2231           (VT == MVT::i16 && MB <= 16))
2232         break;
2233       return false;
2234     }
2235 
2236     case PPC::EXTSB:
2237     case PPC::EXTSB8:
2238     case PPC::EXTSB8_32_64:
2239       /* There is no sign-extending load-byte instruction. */
2240       return false;
2241 
2242     case PPC::EXTSH:
2243     case PPC::EXTSH8:
2244     case PPC::EXTSH8_32_64: {
2245       if (VT != MVT::i16 && VT != MVT::i8)
2246         return false;
2247       break;
2248     }
2249 
2250     case PPC::EXTSW:
2251     case PPC::EXTSW_32:
2252     case PPC::EXTSW_32_64: {
2253       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2254         return false;
2255       break;
2256     }
2257   }
2258 
2259   // See if we can handle this address.
2260   Address Addr;
2261   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2262     return false;
2263 
2264   unsigned ResultReg = MI->getOperand(0).getReg();
2265 
2266   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2267     return false;
2268 
2269   MI->eraseFromParent();
2270   return true;
2271 }
2272 
2273 // Attempt to lower call arguments in a faster way than done by
2274 // the selection DAG code.
2275 bool PPCFastISel::fastLowerArguments() {
2276   // Defer to normal argument lowering for now.  It's reasonably
2277   // efficient.  Consider doing something like ARM to handle the
2278   // case where all args fit in registers, no varargs, no float
2279   // or vector args.
2280   return false;
2281 }
2282 
2283 // Handle materializing integer constants into a register.  This is not
2284 // automatically generated for PowerPC, so must be explicitly created here.
2285 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2286 
2287   if (Opc != ISD::Constant)
2288     return 0;
2289 
2290   // If we're using CR bit registers for i1 values, handle that as a special
2291   // case first.
2292   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2293     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2294     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2295             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2296     return ImmReg;
2297   }
2298 
2299   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2300       VT != MVT::i1)
2301     return 0;
2302 
2303   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2304                                    &PPC::GPRCRegClass);
2305   if (VT == MVT::i64)
2306     return PPCMaterialize64BitInt(Imm, RC);
2307   else
2308     return PPCMaterialize32BitInt(Imm, RC);
2309 }
2310 
2311 // Override for ADDI and ADDI8 to set the correct register class
2312 // on RHS operand 0.  The automatic infrastructure naively assumes
2313 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2314 // for these cases.  At the moment, none of the other automatically
2315 // generated RI instructions require special treatment.  However, once
2316 // SelectSelect is implemented, "isel" requires similar handling.
2317 //
2318 // Also be conservative about the output register class.  Avoid
2319 // assigning R0 or X0 to the output register for GPRC and G8RC
2320 // register classes, as any such result could be used in ADDI, etc.,
2321 // where those regs have another meaning.
2322 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2323                                       const TargetRegisterClass *RC,
2324                                       unsigned Op0, bool Op0IsKill,
2325                                       uint64_t Imm) {
2326   if (MachineInstOpcode == PPC::ADDI)
2327     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2328   else if (MachineInstOpcode == PPC::ADDI8)
2329     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2330 
2331   const TargetRegisterClass *UseRC =
2332     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2333      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2334 
2335   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2336                                    Op0, Op0IsKill, Imm);
2337 }
2338 
2339 // Override for instructions with one register operand to avoid use of
2340 // R0/X0.  The automatic infrastructure isn't aware of the context so
2341 // we must be conservative.
2342 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2343                                      const TargetRegisterClass* RC,
2344                                      unsigned Op0, bool Op0IsKill) {
2345   const TargetRegisterClass *UseRC =
2346     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2347      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2348 
2349   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2350 }
2351 
2352 // Override for instructions with two register operands to avoid use
2353 // of R0/X0.  The automatic infrastructure isn't aware of the context
2354 // so we must be conservative.
2355 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2356                                       const TargetRegisterClass* RC,
2357                                       unsigned Op0, bool Op0IsKill,
2358                                       unsigned Op1, bool Op1IsKill) {
2359   const TargetRegisterClass *UseRC =
2360     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2361      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2362 
2363   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2364                                    Op1, Op1IsKill);
2365 }
2366 
2367 namespace llvm {
2368   // Create the fast instruction selector for PowerPC64 ELF.
2369   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2370                                 const TargetLibraryInfo *LibInfo) {
2371     // Only available on 64-bit ELF for now.
2372     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2373     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2374       return new PPCFastISel(FuncInfo, LibInfo);
2375     return nullptr;
2376   }
2377 }
2378