1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCCCState.h" 20 #include "PPCISelLowering.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCSubtarget.h" 23 #include "PPCTargetMachine.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include "llvm/Target/TargetMachine.h" 41 42 //===----------------------------------------------------------------------===// 43 // 44 // TBD: 45 // fastLowerArguments: Handle simple cases. 46 // PPCMaterializeGV: Handle TLS. 47 // SelectCall: Handle function pointers. 48 // SelectCall: Handle multi-register return values. 49 // SelectCall: Optimize away nops for local calls. 50 // processCallArgs: Handle bit-converted arguments. 51 // finishCall: Handle multi-register return values. 52 // PPCComputeAddress: Handle parameter references as FrameIndex's. 53 // PPCEmitCmp: Handle immediate as operand 1. 54 // SelectCall: Handle small byval arguments. 55 // SelectIntrinsicCall: Implement. 56 // SelectSelect: Implement. 57 // Consider factoring isTypeLegal into the base class. 58 // Implement switches and jump tables. 59 // 60 //===----------------------------------------------------------------------===// 61 using namespace llvm; 62 63 #define DEBUG_TYPE "ppcfastisel" 64 65 namespace { 66 67 typedef struct Address { 68 enum { 69 RegBase, 70 FrameIndexBase 71 } BaseType; 72 73 union { 74 unsigned Reg; 75 int FI; 76 } Base; 77 78 long Offset; 79 80 // Innocuous defaults for our address. 81 Address() 82 : BaseType(RegBase), Offset(0) { 83 Base.Reg = 0; 84 } 85 } Address; 86 87 class PPCFastISel final : public FastISel { 88 89 const TargetMachine &TM; 90 const PPCSubtarget *PPCSubTarget; 91 PPCFunctionInfo *PPCFuncInfo; 92 const TargetInstrInfo &TII; 93 const TargetLowering &TLI; 94 LLVMContext *Context; 95 96 public: 97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 98 const TargetLibraryInfo *LibInfo) 99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 102 TII(*PPCSubTarget->getInstrInfo()), 103 TLI(*PPCSubTarget->getTargetLowering()), 104 Context(&FuncInfo.Fn->getContext()) {} 105 106 // Backend specific FastISel code. 107 private: 108 bool fastSelectInstruction(const Instruction *I) override; 109 unsigned fastMaterializeConstant(const Constant *C) override; 110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 112 const LoadInst *LI) override; 113 bool fastLowerArguments() override; 114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 uint64_t Imm); 119 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill); 122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill); 126 127 bool fastLowerCall(CallLoweringInfo &CLI) override; 128 129 // Instruction selection routines. 130 private: 131 bool SelectLoad(const Instruction *I); 132 bool SelectStore(const Instruction *I); 133 bool SelectBranch(const Instruction *I); 134 bool SelectIndirectBr(const Instruction *I); 135 bool SelectFPExt(const Instruction *I); 136 bool SelectFPTrunc(const Instruction *I); 137 bool SelectIToFP(const Instruction *I, bool IsSigned); 138 bool SelectFPToI(const Instruction *I, bool IsSigned); 139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 140 bool SelectRet(const Instruction *I); 141 bool SelectTrunc(const Instruction *I); 142 bool SelectIntExt(const Instruction *I); 143 144 // Utility routines. 145 private: 146 bool isTypeLegal(Type *Ty, MVT &VT); 147 bool isLoadTypeLegal(Type *Ty, MVT &VT); 148 bool isValueAvailable(const Value *V) const; 149 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 150 return RC->getID() == PPC::VSFRCRegClassID; 151 } 152 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 153 return RC->getID() == PPC::VSSRCRegClassID; 154 } 155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 156 bool isZExt, unsigned DestReg); 157 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 158 const TargetRegisterClass *RC, bool IsZExt = true, 159 unsigned FP64LoadOpc = PPC::LFD); 160 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 161 bool PPCComputeAddress(const Value *Obj, Address &Addr); 162 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 163 unsigned &IndexReg); 164 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 165 unsigned DestReg, bool IsZExt); 166 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 167 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 168 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 169 bool UseSExt = true); 170 unsigned PPCMaterialize32BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMaterialize64BitInt(int64_t Imm, 173 const TargetRegisterClass *RC); 174 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 175 unsigned SrcReg, bool IsSigned); 176 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 177 178 // Call handling routines. 179 private: 180 bool processCallArgs(SmallVectorImpl<Value*> &Args, 181 SmallVectorImpl<unsigned> &ArgRegs, 182 SmallVectorImpl<MVT> &ArgVTs, 183 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 184 SmallVectorImpl<unsigned> &RegArgs, 185 CallingConv::ID CC, 186 unsigned &NumBytes, 187 bool IsVarArg); 188 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 189 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); 190 191 private: 192 #include "PPCGenFastISel.inc" 193 194 }; 195 196 } // end anonymous namespace 197 198 #include "PPCGenCallingConv.inc" 199 200 // Function whose sole purpose is to kill compiler warnings 201 // stemming from unused functions included from PPCGenCallingConv.inc. 202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 203 if (Flag == 1) 204 return CC_PPC32_SVR4; 205 else if (Flag == 2) 206 return CC_PPC32_SVR4_ByVal; 207 else if (Flag == 3) 208 return CC_PPC32_SVR4_VarArg; 209 else 210 return RetCC_PPC; 211 } 212 213 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 214 switch (Pred) { 215 // These are not representable with any single compare. 216 case CmpInst::FCMP_FALSE: 217 case CmpInst::FCMP_TRUE: 218 // Major concern about the following 6 cases is NaN result. The comparison 219 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 220 // only one of which will be set. The result is generated by fcmpu 221 // instruction. However, bc instruction only inspects one of the first 3 222 // bits, so when un is set, bc instruction may jump to to an undesired 223 // place. 224 // 225 // More specifically, if we expect an unordered comparison and un is set, we 226 // expect to always go to true branch; in such case UEQ, UGT and ULT still 227 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 228 // since they are tested by inspecting !eq, !lt, !gt, respectively. 229 // 230 // Similarly, for ordered comparison, when un is set, we always expect the 231 // result to be false. In such case OGT, OLT and OEQ is good, since they are 232 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 233 // and ONE are tested through !lt, !gt and !eq, and these are true. 234 case CmpInst::FCMP_UEQ: 235 case CmpInst::FCMP_UGT: 236 case CmpInst::FCMP_ULT: 237 case CmpInst::FCMP_OGE: 238 case CmpInst::FCMP_OLE: 239 case CmpInst::FCMP_ONE: 240 default: 241 return Optional<PPC::Predicate>(); 242 243 case CmpInst::FCMP_OEQ: 244 case CmpInst::ICMP_EQ: 245 return PPC::PRED_EQ; 246 247 case CmpInst::FCMP_OGT: 248 case CmpInst::ICMP_UGT: 249 case CmpInst::ICMP_SGT: 250 return PPC::PRED_GT; 251 252 case CmpInst::FCMP_UGE: 253 case CmpInst::ICMP_UGE: 254 case CmpInst::ICMP_SGE: 255 return PPC::PRED_GE; 256 257 case CmpInst::FCMP_OLT: 258 case CmpInst::ICMP_ULT: 259 case CmpInst::ICMP_SLT: 260 return PPC::PRED_LT; 261 262 case CmpInst::FCMP_ULE: 263 case CmpInst::ICMP_ULE: 264 case CmpInst::ICMP_SLE: 265 return PPC::PRED_LE; 266 267 case CmpInst::FCMP_UNE: 268 case CmpInst::ICMP_NE: 269 return PPC::PRED_NE; 270 271 case CmpInst::FCMP_ORD: 272 return PPC::PRED_NU; 273 274 case CmpInst::FCMP_UNO: 275 return PPC::PRED_UN; 276 } 277 } 278 279 // Determine whether the type Ty is simple enough to be handled by 280 // fast-isel, and return its equivalent machine type in VT. 281 // FIXME: Copied directly from ARM -- factor into base class? 282 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 283 EVT Evt = TLI.getValueType(DL, Ty, true); 284 285 // Only handle simple types. 286 if (Evt == MVT::Other || !Evt.isSimple()) return false; 287 VT = Evt.getSimpleVT(); 288 289 // Handle all legal types, i.e. a register that will directly hold this 290 // value. 291 return TLI.isTypeLegal(VT); 292 } 293 294 // Determine whether the type Ty is simple enough to be handled by 295 // fast-isel as a load target, and return its equivalent machine type in VT. 296 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 297 if (isTypeLegal(Ty, VT)) return true; 298 299 // If this is a type than can be sign or zero-extended to a basic operation 300 // go ahead and accept it now. 301 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 302 return true; 303 } 304 305 return false; 306 } 307 308 bool PPCFastISel::isValueAvailable(const Value *V) const { 309 if (!isa<Instruction>(V)) 310 return true; 311 312 const auto *I = cast<Instruction>(V); 313 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 314 } 315 316 // Given a value Obj, create an Address object Addr that represents its 317 // address. Return false if we can't handle it. 318 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 319 const User *U = nullptr; 320 unsigned Opcode = Instruction::UserOp1; 321 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 322 // Don't walk into other basic blocks unless the object is an alloca from 323 // another block, otherwise it may not have a virtual register assigned. 324 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 325 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 326 Opcode = I->getOpcode(); 327 U = I; 328 } 329 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 330 Opcode = C->getOpcode(); 331 U = C; 332 } 333 334 switch (Opcode) { 335 default: 336 break; 337 case Instruction::BitCast: 338 // Look through bitcasts. 339 return PPCComputeAddress(U->getOperand(0), Addr); 340 case Instruction::IntToPtr: 341 // Look past no-op inttoptrs. 342 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 343 TLI.getPointerTy(DL)) 344 return PPCComputeAddress(U->getOperand(0), Addr); 345 break; 346 case Instruction::PtrToInt: 347 // Look past no-op ptrtoints. 348 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 349 return PPCComputeAddress(U->getOperand(0), Addr); 350 break; 351 case Instruction::GetElementPtr: { 352 Address SavedAddr = Addr; 353 long TmpOffset = Addr.Offset; 354 355 // Iterate through the GEP folding the constants into offsets where 356 // we can. 357 gep_type_iterator GTI = gep_type_begin(U); 358 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 359 II != IE; ++II, ++GTI) { 360 const Value *Op = *II; 361 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 362 const StructLayout *SL = DL.getStructLayout(STy); 363 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 364 TmpOffset += SL->getElementOffset(Idx); 365 } else { 366 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 367 for (;;) { 368 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 369 // Constant-offset addressing. 370 TmpOffset += CI->getSExtValue() * S; 371 break; 372 } 373 if (canFoldAddIntoGEP(U, Op)) { 374 // A compatible add with a constant operand. Fold the constant. 375 ConstantInt *CI = 376 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 377 TmpOffset += CI->getSExtValue() * S; 378 // Iterate on the other operand. 379 Op = cast<AddOperator>(Op)->getOperand(0); 380 continue; 381 } 382 // Unsupported 383 goto unsupported_gep; 384 } 385 } 386 } 387 388 // Try to grab the base operand now. 389 Addr.Offset = TmpOffset; 390 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 391 392 // We failed, restore everything and try the other options. 393 Addr = SavedAddr; 394 395 unsupported_gep: 396 break; 397 } 398 case Instruction::Alloca: { 399 const AllocaInst *AI = cast<AllocaInst>(Obj); 400 DenseMap<const AllocaInst*, int>::iterator SI = 401 FuncInfo.StaticAllocaMap.find(AI); 402 if (SI != FuncInfo.StaticAllocaMap.end()) { 403 Addr.BaseType = Address::FrameIndexBase; 404 Addr.Base.FI = SI->second; 405 return true; 406 } 407 break; 408 } 409 } 410 411 // FIXME: References to parameters fall through to the behavior 412 // below. They should be able to reference a frame index since 413 // they are stored to the stack, so we can get "ld rx, offset(r1)" 414 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 415 // just contain the parameter. Try to handle this with a FI. 416 417 // Try to get this in a register if nothing else has worked. 418 if (Addr.Base.Reg == 0) 419 Addr.Base.Reg = getRegForValue(Obj); 420 421 // Prevent assignment of base register to X0, which is inappropriate 422 // for loads and stores alike. 423 if (Addr.Base.Reg != 0) 424 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 425 426 return Addr.Base.Reg != 0; 427 } 428 429 // Fix up some addresses that can't be used directly. For example, if 430 // an offset won't fit in an instruction field, we may need to move it 431 // into an index register. 432 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 433 unsigned &IndexReg) { 434 435 // Check whether the offset fits in the instruction field. 436 if (!isInt<16>(Addr.Offset)) 437 UseOffset = false; 438 439 // If this is a stack pointer and the offset needs to be simplified then 440 // put the alloca address into a register, set the base type back to 441 // register and continue. This should almost never happen. 442 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 443 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 445 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 446 Addr.Base.Reg = ResultReg; 447 Addr.BaseType = Address::RegBase; 448 } 449 450 if (!UseOffset) { 451 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 452 const ConstantInt *Offset = 453 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 454 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 455 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 456 } 457 } 458 459 // Emit a load instruction if possible, returning true if we succeeded, 460 // otherwise false. See commentary below for how the register class of 461 // the load is determined. 462 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 463 const TargetRegisterClass *RC, 464 bool IsZExt, unsigned FP64LoadOpc) { 465 unsigned Opc; 466 bool UseOffset = true; 467 468 // If ResultReg is given, it determines the register class of the load. 469 // Otherwise, RC is the register class to use. If the result of the 470 // load isn't anticipated in this block, both may be zero, in which 471 // case we must make a conservative guess. In particular, don't assign 472 // R0 or X0 to the result register, as the result may be used in a load, 473 // store, add-immediate, or isel that won't permit this. (Though 474 // perhaps the spill and reload of live-exit values would handle this?) 475 const TargetRegisterClass *UseRC = 476 (ResultReg ? MRI.getRegClass(ResultReg) : 477 (RC ? RC : 478 (VT == MVT::f64 ? &PPC::F8RCRegClass : 479 (VT == MVT::f32 ? &PPC::F4RCRegClass : 480 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 481 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 482 483 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 484 485 switch (VT.SimpleTy) { 486 default: // e.g., vector types not handled 487 return false; 488 case MVT::i8: 489 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 490 break; 491 case MVT::i16: 492 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 493 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 494 break; 495 case MVT::i32: 496 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 497 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 498 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 499 UseOffset = false; 500 break; 501 case MVT::i64: 502 Opc = PPC::LD; 503 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 504 "64-bit load with 32-bit target??"); 505 UseOffset = ((Addr.Offset & 3) == 0); 506 break; 507 case MVT::f32: 508 Opc = PPC::LFS; 509 break; 510 case MVT::f64: 511 Opc = FP64LoadOpc; 512 break; 513 } 514 515 // If necessary, materialize the offset into a register and use 516 // the indexed form. Also handle stack pointers with special needs. 517 unsigned IndexReg = 0; 518 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 519 520 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 521 // be used. 522 bool IsVSSRC = isVSSRCRegClass(UseRC); 523 bool IsVSFRC = isVSFRCRegClass(UseRC); 524 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 525 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 526 if ((Is32VSXLoad || Is64VSXLoad) && 527 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 528 (Addr.Offset == 0)) { 529 UseOffset = false; 530 } 531 532 if (ResultReg == 0) 533 ResultReg = createResultReg(UseRC); 534 535 // Note: If we still have a frame index here, we know the offset is 536 // in range, as otherwise PPCSimplifyAddress would have converted it 537 // into a RegBase. 538 if (Addr.BaseType == Address::FrameIndexBase) { 539 // VSX only provides an indexed load. 540 if (Is32VSXLoad || Is64VSXLoad) return false; 541 542 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 543 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 544 Addr.Offset), 545 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 546 MFI.getObjectAlignment(Addr.Base.FI)); 547 548 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 549 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 550 551 // Base reg with offset in range. 552 } else if (UseOffset) { 553 // VSX only provides an indexed load. 554 if (Is32VSXLoad || Is64VSXLoad) return false; 555 556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 557 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 558 559 // Indexed form. 560 } else { 561 // Get the RR opcode corresponding to the RI one. FIXME: It would be 562 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 563 // is hard to get at. 564 switch (Opc) { 565 default: llvm_unreachable("Unexpected opcode!"); 566 case PPC::LBZ: Opc = PPC::LBZX; break; 567 case PPC::LBZ8: Opc = PPC::LBZX8; break; 568 case PPC::LHZ: Opc = PPC::LHZX; break; 569 case PPC::LHZ8: Opc = PPC::LHZX8; break; 570 case PPC::LHA: Opc = PPC::LHAX; break; 571 case PPC::LHA8: Opc = PPC::LHAX8; break; 572 case PPC::LWZ: Opc = PPC::LWZX; break; 573 case PPC::LWZ8: Opc = PPC::LWZX8; break; 574 case PPC::LWA: Opc = PPC::LWAX; break; 575 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 576 case PPC::LD: Opc = PPC::LDX; break; 577 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 578 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 579 } 580 581 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 582 ResultReg); 583 584 // If we have an index register defined we use it in the store inst, 585 // otherwise we use X0 as base as it makes the vector instructions to 586 // use zero in the computation of the effective address regardless the 587 // content of the register. 588 if (IndexReg) 589 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 590 else 591 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 592 } 593 594 return true; 595 } 596 597 // Attempt to fast-select a load instruction. 598 bool PPCFastISel::SelectLoad(const Instruction *I) { 599 // FIXME: No atomic loads are supported. 600 if (cast<LoadInst>(I)->isAtomic()) 601 return false; 602 603 // Verify we have a legal type before going any further. 604 MVT VT; 605 if (!isLoadTypeLegal(I->getType(), VT)) 606 return false; 607 608 // See if we can handle this address. 609 Address Addr; 610 if (!PPCComputeAddress(I->getOperand(0), Addr)) 611 return false; 612 613 // Look at the currently assigned register for this instruction 614 // to determine the required register class. This is necessary 615 // to constrain RA from using R0/X0 when this is not legal. 616 unsigned AssignedReg = FuncInfo.ValueMap[I]; 617 const TargetRegisterClass *RC = 618 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 619 620 unsigned ResultReg = 0; 621 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 622 return false; 623 updateValueMap(I, ResultReg); 624 return true; 625 } 626 627 // Emit a store instruction to store SrcReg at Addr. 628 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 629 assert(SrcReg && "Nothing to store!"); 630 unsigned Opc; 631 bool UseOffset = true; 632 633 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 634 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 635 636 switch (VT.SimpleTy) { 637 default: // e.g., vector types not handled 638 return false; 639 case MVT::i8: 640 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 641 break; 642 case MVT::i16: 643 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 644 break; 645 case MVT::i32: 646 assert(Is32BitInt && "Not GPRC for i32??"); 647 Opc = PPC::STW; 648 break; 649 case MVT::i64: 650 Opc = PPC::STD; 651 UseOffset = ((Addr.Offset & 3) == 0); 652 break; 653 case MVT::f32: 654 Opc = PPC::STFS; 655 break; 656 case MVT::f64: 657 Opc = PPC::STFD; 658 break; 659 } 660 661 // If necessary, materialize the offset into a register and use 662 // the indexed form. Also handle stack pointers with special needs. 663 unsigned IndexReg = 0; 664 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 665 666 // If this is a potential VSX store with an offset of 0, a VSX indexed store 667 // can be used. 668 bool IsVSSRC = isVSSRCRegClass(RC); 669 bool IsVSFRC = isVSFRCRegClass(RC); 670 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 671 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 672 if ((Is32VSXStore || Is64VSXStore) && 673 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 674 (Addr.Offset == 0)) { 675 UseOffset = false; 676 } 677 678 // Note: If we still have a frame index here, we know the offset is 679 // in range, as otherwise PPCSimplifyAddress would have converted it 680 // into a RegBase. 681 if (Addr.BaseType == Address::FrameIndexBase) { 682 // VSX only provides an indexed store. 683 if (Is32VSXStore || Is64VSXStore) return false; 684 685 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 686 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 687 Addr.Offset), 688 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 689 MFI.getObjectAlignment(Addr.Base.FI)); 690 691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 692 .addReg(SrcReg) 693 .addImm(Addr.Offset) 694 .addFrameIndex(Addr.Base.FI) 695 .addMemOperand(MMO); 696 697 // Base reg with offset in range. 698 } else if (UseOffset) { 699 // VSX only provides an indexed store. 700 if (Is32VSXStore || Is64VSXStore) 701 return false; 702 703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 704 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 705 706 // Indexed form. 707 } else { 708 // Get the RR opcode corresponding to the RI one. FIXME: It would be 709 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 710 // is hard to get at. 711 switch (Opc) { 712 default: llvm_unreachable("Unexpected opcode!"); 713 case PPC::STB: Opc = PPC::STBX; break; 714 case PPC::STH : Opc = PPC::STHX; break; 715 case PPC::STW : Opc = PPC::STWX; break; 716 case PPC::STB8: Opc = PPC::STBX8; break; 717 case PPC::STH8: Opc = PPC::STHX8; break; 718 case PPC::STW8: Opc = PPC::STWX8; break; 719 case PPC::STD: Opc = PPC::STDX; break; 720 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 721 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 722 } 723 724 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 725 .addReg(SrcReg); 726 727 // If we have an index register defined we use it in the store inst, 728 // otherwise we use X0 as base as it makes the vector instructions to 729 // use zero in the computation of the effective address regardless the 730 // content of the register. 731 if (IndexReg) 732 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 733 else 734 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 735 } 736 737 return true; 738 } 739 740 // Attempt to fast-select a store instruction. 741 bool PPCFastISel::SelectStore(const Instruction *I) { 742 Value *Op0 = I->getOperand(0); 743 unsigned SrcReg = 0; 744 745 // FIXME: No atomics loads are supported. 746 if (cast<StoreInst>(I)->isAtomic()) 747 return false; 748 749 // Verify we have a legal type before going any further. 750 MVT VT; 751 if (!isLoadTypeLegal(Op0->getType(), VT)) 752 return false; 753 754 // Get the value to be stored into a register. 755 SrcReg = getRegForValue(Op0); 756 if (SrcReg == 0) 757 return false; 758 759 // See if we can handle this address. 760 Address Addr; 761 if (!PPCComputeAddress(I->getOperand(1), Addr)) 762 return false; 763 764 if (!PPCEmitStore(VT, SrcReg, Addr)) 765 return false; 766 767 return true; 768 } 769 770 // Attempt to fast-select a branch instruction. 771 bool PPCFastISel::SelectBranch(const Instruction *I) { 772 const BranchInst *BI = cast<BranchInst>(I); 773 MachineBasicBlock *BrBB = FuncInfo.MBB; 774 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 775 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 776 777 // For now, just try the simplest case where it's fed by a compare. 778 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 779 if (isValueAvailable(CI)) { 780 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 781 if (!OptPPCPred) 782 return false; 783 784 PPC::Predicate PPCPred = OptPPCPred.getValue(); 785 786 // Take advantage of fall-through opportunities. 787 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 788 std::swap(TBB, FBB); 789 PPCPred = PPC::InvertPredicate(PPCPred); 790 } 791 792 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 793 794 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 795 CondReg)) 796 return false; 797 798 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 799 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 800 finishCondBranch(BI->getParent(), TBB, FBB); 801 return true; 802 } 803 } else if (const ConstantInt *CI = 804 dyn_cast<ConstantInt>(BI->getCondition())) { 805 uint64_t Imm = CI->getZExtValue(); 806 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 807 fastEmitBranch(Target, DbgLoc); 808 return true; 809 } 810 811 // FIXME: ARM looks for a case where the block containing the compare 812 // has been split from the block containing the branch. If this happens, 813 // there is a vreg available containing the result of the compare. I'm 814 // not sure we can do much, as we've lost the predicate information with 815 // the compare instruction -- we have a 4-bit CR but don't know which bit 816 // to test here. 817 return false; 818 } 819 820 // Attempt to emit a compare of the two source values. Signed and unsigned 821 // comparisons are supported. Return false if we can't handle it. 822 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 823 bool IsZExt, unsigned DestReg) { 824 Type *Ty = SrcValue1->getType(); 825 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 826 if (!SrcEVT.isSimple()) 827 return false; 828 MVT SrcVT = SrcEVT.getSimpleVT(); 829 830 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 831 return false; 832 833 // See if operand 2 is an immediate encodeable in the compare. 834 // FIXME: Operands are not in canonical order at -O0, so an immediate 835 // operand in position 1 is a lost opportunity for now. We are 836 // similar to ARM in this regard. 837 long Imm = 0; 838 bool UseImm = false; 839 840 // Only 16-bit integer constants can be represented in compares for 841 // PowerPC. Others will be materialized into a register. 842 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 843 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 844 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 845 const APInt &CIVal = ConstInt->getValue(); 846 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 847 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 848 UseImm = true; 849 } 850 } 851 852 unsigned CmpOpc; 853 bool NeedsExt = false; 854 switch (SrcVT.SimpleTy) { 855 default: return false; 856 case MVT::f32: 857 CmpOpc = PPC::FCMPUS; 858 break; 859 case MVT::f64: 860 CmpOpc = PPC::FCMPUD; 861 break; 862 case MVT::i1: 863 case MVT::i8: 864 case MVT::i16: 865 NeedsExt = true; 866 // Intentional fall-through. 867 case MVT::i32: 868 if (!UseImm) 869 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 870 else 871 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 872 break; 873 case MVT::i64: 874 if (!UseImm) 875 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 876 else 877 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 878 break; 879 } 880 881 unsigned SrcReg1 = getRegForValue(SrcValue1); 882 if (SrcReg1 == 0) 883 return false; 884 885 unsigned SrcReg2 = 0; 886 if (!UseImm) { 887 SrcReg2 = getRegForValue(SrcValue2); 888 if (SrcReg2 == 0) 889 return false; 890 } 891 892 if (NeedsExt) { 893 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 894 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 895 return false; 896 SrcReg1 = ExtReg; 897 898 if (!UseImm) { 899 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 900 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 901 return false; 902 SrcReg2 = ExtReg; 903 } 904 } 905 906 if (!UseImm) 907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 908 .addReg(SrcReg1).addReg(SrcReg2); 909 else 910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 911 .addReg(SrcReg1).addImm(Imm); 912 913 return true; 914 } 915 916 // Attempt to fast-select a floating-point extend instruction. 917 bool PPCFastISel::SelectFPExt(const Instruction *I) { 918 Value *Src = I->getOperand(0); 919 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 920 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 921 922 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 923 return false; 924 925 unsigned SrcReg = getRegForValue(Src); 926 if (!SrcReg) 927 return false; 928 929 // No code is generated for a FP extend. 930 updateValueMap(I, SrcReg); 931 return true; 932 } 933 934 // Attempt to fast-select a floating-point truncate instruction. 935 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 936 Value *Src = I->getOperand(0); 937 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 938 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 939 940 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 941 return false; 942 943 unsigned SrcReg = getRegForValue(Src); 944 if (!SrcReg) 945 return false; 946 947 // Round the result to single precision. 948 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 950 .addReg(SrcReg); 951 952 updateValueMap(I, DestReg); 953 return true; 954 } 955 956 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 957 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 958 // those should be used instead of moving via a stack slot when the 959 // subtarget permits. 960 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 961 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 962 // case to 8 bytes which produces tighter code but wastes stack space. 963 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 964 bool IsSigned) { 965 966 // If necessary, extend 32-bit int to 64-bit. 967 if (SrcVT == MVT::i32) { 968 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 969 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 970 return 0; 971 SrcReg = TmpReg; 972 } 973 974 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 975 Address Addr; 976 Addr.BaseType = Address::FrameIndexBase; 977 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 978 979 // Store the value from the GPR. 980 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 981 return 0; 982 983 // Load the integer value into an FPR. The kind of load used depends 984 // on a number of conditions. 985 unsigned LoadOpc = PPC::LFD; 986 987 if (SrcVT == MVT::i32) { 988 if (!IsSigned) { 989 LoadOpc = PPC::LFIWZX; 990 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 991 } else if (PPCSubTarget->hasLFIWAX()) { 992 LoadOpc = PPC::LFIWAX; 993 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 994 } 995 } 996 997 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 998 unsigned ResultReg = 0; 999 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1000 return 0; 1001 1002 return ResultReg; 1003 } 1004 1005 // Attempt to fast-select an integer-to-floating-point conversion. 1006 // FIXME: Once fast-isel has better support for VSX, conversions using 1007 // direct moves should be implemented. 1008 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1009 MVT DstVT; 1010 Type *DstTy = I->getType(); 1011 if (!isTypeLegal(DstTy, DstVT)) 1012 return false; 1013 1014 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1015 return false; 1016 1017 Value *Src = I->getOperand(0); 1018 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1019 if (!SrcEVT.isSimple()) 1020 return false; 1021 1022 MVT SrcVT = SrcEVT.getSimpleVT(); 1023 1024 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1025 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1026 return false; 1027 1028 unsigned SrcReg = getRegForValue(Src); 1029 if (SrcReg == 0) 1030 return false; 1031 1032 // We can only lower an unsigned convert if we have the newer 1033 // floating-point conversion operations. 1034 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1035 return false; 1036 1037 // FIXME: For now we require the newer floating-point conversion operations 1038 // (which are present only on P7 and A2 server models) when converting 1039 // to single-precision float. Otherwise we have to generate a lot of 1040 // fiddly code to avoid double rounding. If necessary, the fiddly code 1041 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1042 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1043 return false; 1044 1045 // Extend the input if necessary. 1046 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1047 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1048 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1049 return false; 1050 SrcVT = MVT::i64; 1051 SrcReg = TmpReg; 1052 } 1053 1054 // Move the integer value to an FPR. 1055 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1056 if (FPReg == 0) 1057 return false; 1058 1059 // Determine the opcode for the conversion. 1060 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1061 unsigned DestReg = createResultReg(RC); 1062 unsigned Opc; 1063 1064 if (DstVT == MVT::f32) 1065 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1066 else 1067 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1068 1069 // Generate the convert. 1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1071 .addReg(FPReg); 1072 1073 updateValueMap(I, DestReg); 1074 return true; 1075 } 1076 1077 // Move the floating-point value in SrcReg into an integer destination 1078 // register, and return the register (or zero if we can't handle it). 1079 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1080 // those should be used instead of moving via a stack slot when the 1081 // subtarget permits. 1082 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1083 unsigned SrcReg, bool IsSigned) { 1084 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1085 // Note that if have STFIWX available, we could use a 4-byte stack 1086 // slot for i32, but this being fast-isel we'll just go with the 1087 // easiest code gen possible. 1088 Address Addr; 1089 Addr.BaseType = Address::FrameIndexBase; 1090 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1091 1092 // Store the value from the FPR. 1093 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1094 return 0; 1095 1096 // Reload it into a GPR. If we want an i32 on big endian, modify the 1097 // address to have a 4-byte offset so we load from the right place. 1098 if (VT == MVT::i32) 1099 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1100 1101 // Look at the currently assigned register for this instruction 1102 // to determine the required register class. 1103 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1104 const TargetRegisterClass *RC = 1105 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1106 1107 unsigned ResultReg = 0; 1108 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1109 return 0; 1110 1111 return ResultReg; 1112 } 1113 1114 // Attempt to fast-select a floating-point-to-integer conversion. 1115 // FIXME: Once fast-isel has better support for VSX, conversions using 1116 // direct moves should be implemented. 1117 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1118 MVT DstVT, SrcVT; 1119 Type *DstTy = I->getType(); 1120 if (!isTypeLegal(DstTy, DstVT)) 1121 return false; 1122 1123 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1124 return false; 1125 1126 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1127 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1128 return false; 1129 1130 Value *Src = I->getOperand(0); 1131 Type *SrcTy = Src->getType(); 1132 if (!isTypeLegal(SrcTy, SrcVT)) 1133 return false; 1134 1135 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1136 return false; 1137 1138 unsigned SrcReg = getRegForValue(Src); 1139 if (SrcReg == 0) 1140 return false; 1141 1142 // Convert f32 to f64 if necessary. This is just a meaningless copy 1143 // to get the register class right. 1144 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1145 if (InRC == &PPC::F4RCRegClass) { 1146 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1148 TII.get(TargetOpcode::COPY), TmpReg) 1149 .addReg(SrcReg); 1150 SrcReg = TmpReg; 1151 } 1152 1153 // Determine the opcode for the conversion, which takes place 1154 // entirely within FPRs. 1155 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1156 unsigned Opc; 1157 1158 if (DstVT == MVT::i32) 1159 if (IsSigned) 1160 Opc = PPC::FCTIWZ; 1161 else 1162 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1163 else 1164 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1165 1166 // Generate the convert. 1167 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1168 .addReg(SrcReg); 1169 1170 // Now move the integer value from a float register to an integer register. 1171 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1172 if (IntReg == 0) 1173 return false; 1174 1175 updateValueMap(I, IntReg); 1176 return true; 1177 } 1178 1179 // Attempt to fast-select a binary integer operation that isn't already 1180 // handled automatically. 1181 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1182 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1183 1184 // We can get here in the case when we have a binary operation on a non-legal 1185 // type and the target independent selector doesn't know how to handle it. 1186 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1187 return false; 1188 1189 // Look at the currently assigned register for this instruction 1190 // to determine the required register class. If there is no register, 1191 // make a conservative choice (don't assign R0). 1192 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1193 const TargetRegisterClass *RC = 1194 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1195 &PPC::GPRC_and_GPRC_NOR0RegClass); 1196 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1197 1198 unsigned Opc; 1199 switch (ISDOpcode) { 1200 default: return false; 1201 case ISD::ADD: 1202 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1203 break; 1204 case ISD::OR: 1205 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1206 break; 1207 case ISD::SUB: 1208 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1209 break; 1210 } 1211 1212 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1213 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1214 if (SrcReg1 == 0) return false; 1215 1216 // Handle case of small immediate operand. 1217 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1218 const APInt &CIVal = ConstInt->getValue(); 1219 int Imm = (int)CIVal.getSExtValue(); 1220 bool UseImm = true; 1221 if (isInt<16>(Imm)) { 1222 switch (Opc) { 1223 default: 1224 llvm_unreachable("Missing case!"); 1225 case PPC::ADD4: 1226 Opc = PPC::ADDI; 1227 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1228 break; 1229 case PPC::ADD8: 1230 Opc = PPC::ADDI8; 1231 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1232 break; 1233 case PPC::OR: 1234 Opc = PPC::ORI; 1235 break; 1236 case PPC::OR8: 1237 Opc = PPC::ORI8; 1238 break; 1239 case PPC::SUBF: 1240 if (Imm == -32768) 1241 UseImm = false; 1242 else { 1243 Opc = PPC::ADDI; 1244 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1245 Imm = -Imm; 1246 } 1247 break; 1248 case PPC::SUBF8: 1249 if (Imm == -32768) 1250 UseImm = false; 1251 else { 1252 Opc = PPC::ADDI8; 1253 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1254 Imm = -Imm; 1255 } 1256 break; 1257 } 1258 1259 if (UseImm) { 1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1261 ResultReg) 1262 .addReg(SrcReg1) 1263 .addImm(Imm); 1264 updateValueMap(I, ResultReg); 1265 return true; 1266 } 1267 } 1268 } 1269 1270 // Reg-reg case. 1271 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1272 if (SrcReg2 == 0) return false; 1273 1274 // Reverse operands for subtract-from. 1275 if (ISDOpcode == ISD::SUB) 1276 std::swap(SrcReg1, SrcReg2); 1277 1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1279 .addReg(SrcReg1).addReg(SrcReg2); 1280 updateValueMap(I, ResultReg); 1281 return true; 1282 } 1283 1284 // Handle arguments to a call that we're attempting to fast-select. 1285 // Return false if the arguments are too complex for us at the moment. 1286 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1287 SmallVectorImpl<unsigned> &ArgRegs, 1288 SmallVectorImpl<MVT> &ArgVTs, 1289 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1290 SmallVectorImpl<unsigned> &RegArgs, 1291 CallingConv::ID CC, 1292 unsigned &NumBytes, 1293 bool IsVarArg) { 1294 SmallVector<CCValAssign, 16> ArgLocs; 1295 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1296 1297 // Reserve space for the linkage area on the stack. 1298 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1299 CCInfo.AllocateStack(LinkageSize, 8); 1300 1301 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1302 1303 // Bail out if we can't handle any of the arguments. 1304 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1305 CCValAssign &VA = ArgLocs[I]; 1306 MVT ArgVT = ArgVTs[VA.getValNo()]; 1307 1308 // Skip vector arguments for now, as well as long double and 1309 // uint128_t, and anything that isn't passed in a register. 1310 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1311 !VA.isRegLoc() || VA.needsCustom()) 1312 return false; 1313 1314 // Skip bit-converted arguments for now. 1315 if (VA.getLocInfo() == CCValAssign::BCvt) 1316 return false; 1317 } 1318 1319 // Get a count of how many bytes are to be pushed onto the stack. 1320 NumBytes = CCInfo.getNextStackOffset(); 1321 1322 // The prolog code of the callee may store up to 8 GPR argument registers to 1323 // the stack, allowing va_start to index over them in memory if its varargs. 1324 // Because we cannot tell if this is needed on the caller side, we have to 1325 // conservatively assume that it is needed. As such, make sure we have at 1326 // least enough stack space for the caller to store the 8 GPRs. 1327 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1328 NumBytes = std::max(NumBytes, LinkageSize + 64); 1329 1330 // Issue CALLSEQ_START. 1331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1332 TII.get(TII.getCallFrameSetupOpcode())) 1333 .addImm(NumBytes); 1334 1335 // Prepare to assign register arguments. Every argument uses up a 1336 // GPR protocol register even if it's passed in a floating-point 1337 // register (unless we're using the fast calling convention). 1338 unsigned NextGPR = PPC::X3; 1339 unsigned NextFPR = PPC::F1; 1340 1341 // Process arguments. 1342 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1343 CCValAssign &VA = ArgLocs[I]; 1344 unsigned Arg = ArgRegs[VA.getValNo()]; 1345 MVT ArgVT = ArgVTs[VA.getValNo()]; 1346 1347 // Handle argument promotion and bitcasts. 1348 switch (VA.getLocInfo()) { 1349 default: 1350 llvm_unreachable("Unknown loc info!"); 1351 case CCValAssign::Full: 1352 break; 1353 case CCValAssign::SExt: { 1354 MVT DestVT = VA.getLocVT(); 1355 const TargetRegisterClass *RC = 1356 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1357 unsigned TmpReg = createResultReg(RC); 1358 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1359 llvm_unreachable("Failed to emit a sext!"); 1360 ArgVT = DestVT; 1361 Arg = TmpReg; 1362 break; 1363 } 1364 case CCValAssign::AExt: 1365 case CCValAssign::ZExt: { 1366 MVT DestVT = VA.getLocVT(); 1367 const TargetRegisterClass *RC = 1368 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1369 unsigned TmpReg = createResultReg(RC); 1370 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1371 llvm_unreachable("Failed to emit a zext!"); 1372 ArgVT = DestVT; 1373 Arg = TmpReg; 1374 break; 1375 } 1376 case CCValAssign::BCvt: { 1377 // FIXME: Not yet handled. 1378 llvm_unreachable("Should have bailed before getting here!"); 1379 break; 1380 } 1381 } 1382 1383 // Copy this argument to the appropriate register. 1384 unsigned ArgReg; 1385 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1386 ArgReg = NextFPR++; 1387 if (CC != CallingConv::Fast) 1388 ++NextGPR; 1389 } else 1390 ArgReg = NextGPR++; 1391 1392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1393 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1394 RegArgs.push_back(ArgReg); 1395 } 1396 1397 return true; 1398 } 1399 1400 // For a call that we've determined we can fast-select, finish the 1401 // call sequence and generate a copy to obtain the return value (if any). 1402 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1403 CallingConv::ID CC = CLI.CallConv; 1404 1405 // Issue CallSEQ_END. 1406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1407 TII.get(TII.getCallFrameDestroyOpcode())) 1408 .addImm(NumBytes).addImm(0); 1409 1410 // Next, generate a copy to obtain the return value. 1411 // FIXME: No multi-register return values yet, though I don't foresee 1412 // any real difficulties there. 1413 if (RetVT != MVT::isVoid) { 1414 SmallVector<CCValAssign, 16> RVLocs; 1415 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1416 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1417 CCValAssign &VA = RVLocs[0]; 1418 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1419 assert(VA.isRegLoc() && "Can only return in registers!"); 1420 1421 MVT DestVT = VA.getValVT(); 1422 MVT CopyVT = DestVT; 1423 1424 // Ints smaller than a register still arrive in a full 64-bit 1425 // register, so make sure we recognize this. 1426 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1427 CopyVT = MVT::i64; 1428 1429 unsigned SourcePhysReg = VA.getLocReg(); 1430 unsigned ResultReg = 0; 1431 1432 if (RetVT == CopyVT) { 1433 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1434 ResultReg = createResultReg(CpyRC); 1435 1436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1437 TII.get(TargetOpcode::COPY), ResultReg) 1438 .addReg(SourcePhysReg); 1439 1440 // If necessary, round the floating result to single precision. 1441 } else if (CopyVT == MVT::f64) { 1442 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1444 ResultReg).addReg(SourcePhysReg); 1445 1446 // If only the low half of a general register is needed, generate 1447 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1448 // used along the fast-isel path (not lowered), and downstream logic 1449 // also doesn't like a direct subreg copy on a physical reg.) 1450 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1451 ResultReg = createResultReg(&PPC::GPRCRegClass); 1452 // Convert physical register from G8RC to GPRC. 1453 SourcePhysReg -= PPC::X0 - PPC::R0; 1454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1455 TII.get(TargetOpcode::COPY), ResultReg) 1456 .addReg(SourcePhysReg); 1457 } 1458 1459 assert(ResultReg && "ResultReg unset!"); 1460 CLI.InRegs.push_back(SourcePhysReg); 1461 CLI.ResultReg = ResultReg; 1462 CLI.NumResultRegs = 1; 1463 } 1464 1465 return true; 1466 } 1467 1468 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1469 CallingConv::ID CC = CLI.CallConv; 1470 bool IsTailCall = CLI.IsTailCall; 1471 bool IsVarArg = CLI.IsVarArg; 1472 const Value *Callee = CLI.Callee; 1473 const MCSymbol *Symbol = CLI.Symbol; 1474 1475 if (!Callee && !Symbol) 1476 return false; 1477 1478 // Allow SelectionDAG isel to handle tail calls. 1479 if (IsTailCall) 1480 return false; 1481 1482 // Let SDISel handle vararg functions. 1483 if (IsVarArg) 1484 return false; 1485 1486 // Handle simple calls for now, with legal return types and 1487 // those that can be extended. 1488 Type *RetTy = CLI.RetTy; 1489 MVT RetVT; 1490 if (RetTy->isVoidTy()) 1491 RetVT = MVT::isVoid; 1492 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1493 RetVT != MVT::i8) 1494 return false; 1495 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1496 // We can't handle boolean returns when CR bits are in use. 1497 return false; 1498 1499 // FIXME: No multi-register return values yet. 1500 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1501 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1502 RetVT != MVT::f64) { 1503 SmallVector<CCValAssign, 16> RVLocs; 1504 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1505 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1506 if (RVLocs.size() > 1) 1507 return false; 1508 } 1509 1510 // Bail early if more than 8 arguments, as we only currently 1511 // handle arguments passed in registers. 1512 unsigned NumArgs = CLI.OutVals.size(); 1513 if (NumArgs > 8) 1514 return false; 1515 1516 // Set up the argument vectors. 1517 SmallVector<Value*, 8> Args; 1518 SmallVector<unsigned, 8> ArgRegs; 1519 SmallVector<MVT, 8> ArgVTs; 1520 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1521 1522 Args.reserve(NumArgs); 1523 ArgRegs.reserve(NumArgs); 1524 ArgVTs.reserve(NumArgs); 1525 ArgFlags.reserve(NumArgs); 1526 1527 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1528 // Only handle easy calls for now. It would be reasonably easy 1529 // to handle <= 8-byte structures passed ByVal in registers, but we 1530 // have to ensure they are right-justified in the register. 1531 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1532 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1533 return false; 1534 1535 Value *ArgValue = CLI.OutVals[i]; 1536 Type *ArgTy = ArgValue->getType(); 1537 MVT ArgVT; 1538 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1539 return false; 1540 1541 if (ArgVT.isVector()) 1542 return false; 1543 1544 unsigned Arg = getRegForValue(ArgValue); 1545 if (Arg == 0) 1546 return false; 1547 1548 Args.push_back(ArgValue); 1549 ArgRegs.push_back(Arg); 1550 ArgVTs.push_back(ArgVT); 1551 ArgFlags.push_back(Flags); 1552 } 1553 1554 // Process the arguments. 1555 SmallVector<unsigned, 8> RegArgs; 1556 unsigned NumBytes; 1557 1558 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1559 RegArgs, CC, NumBytes, IsVarArg)) 1560 return false; 1561 1562 MachineInstrBuilder MIB; 1563 // FIXME: No handling for function pointers yet. This requires 1564 // implementing the function descriptor (OPD) setup. 1565 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1566 if (!GV) { 1567 // patchpoints are a special case; they always dispatch to a pointer value. 1568 // However, we don't actually want to generate the indirect call sequence 1569 // here (that will be generated, as necessary, during asm printing), and 1570 // the call we generate here will be erased by FastISel::selectPatchpoint, 1571 // so don't try very hard... 1572 if (CLI.IsPatchPoint) 1573 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1574 else 1575 return false; 1576 } else { 1577 // Build direct call with NOP for TOC restore. 1578 // FIXME: We can and should optimize away the NOP for local calls. 1579 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1580 TII.get(PPC::BL8_NOP)); 1581 // Add callee. 1582 MIB.addGlobalAddress(GV); 1583 } 1584 1585 // Add implicit physical register uses to the call. 1586 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1587 MIB.addReg(RegArgs[II], RegState::Implicit); 1588 1589 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1590 // into the call. 1591 PPCFuncInfo->setUsesTOCBasePtr(); 1592 MIB.addReg(PPC::X2, RegState::Implicit); 1593 1594 // Add a register mask with the call-preserved registers. Proper 1595 // defs for return values will be added by setPhysRegsDeadExcept(). 1596 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1597 1598 CLI.Call = MIB; 1599 1600 // Finish off the call including any return values. 1601 return finishCall(RetVT, CLI, NumBytes); 1602 } 1603 1604 // Attempt to fast-select a return instruction. 1605 bool PPCFastISel::SelectRet(const Instruction *I) { 1606 1607 if (!FuncInfo.CanLowerReturn) 1608 return false; 1609 1610 if (TLI.supportSplitCSR(FuncInfo.MF)) 1611 return false; 1612 1613 const ReturnInst *Ret = cast<ReturnInst>(I); 1614 const Function &F = *I->getParent()->getParent(); 1615 1616 // Build a list of return value registers. 1617 SmallVector<unsigned, 4> RetRegs; 1618 CallingConv::ID CC = F.getCallingConv(); 1619 1620 if (Ret->getNumOperands() > 0) { 1621 SmallVector<ISD::OutputArg, 4> Outs; 1622 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1623 1624 // Analyze operands of the call, assigning locations to each operand. 1625 SmallVector<CCValAssign, 16> ValLocs; 1626 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1627 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1628 const Value *RV = Ret->getOperand(0); 1629 1630 // FIXME: Only one output register for now. 1631 if (ValLocs.size() > 1) 1632 return false; 1633 1634 // Special case for returning a constant integer of any size - materialize 1635 // the constant as an i64 and copy it to the return register. 1636 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1637 CCValAssign &VA = ValLocs[0]; 1638 1639 unsigned RetReg = VA.getLocReg(); 1640 // We still need to worry about properly extending the sign. For example, 1641 // we could have only a single bit or a constant that needs zero 1642 // extension rather than sign extension. Make sure we pass the return 1643 // value extension property to integer materialization. 1644 unsigned SrcReg = 1645 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1646 1647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1648 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1649 1650 RetRegs.push_back(RetReg); 1651 1652 } else { 1653 unsigned Reg = getRegForValue(RV); 1654 1655 if (Reg == 0) 1656 return false; 1657 1658 // Copy the result values into the output registers. 1659 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1660 1661 CCValAssign &VA = ValLocs[i]; 1662 assert(VA.isRegLoc() && "Can only return in registers!"); 1663 RetRegs.push_back(VA.getLocReg()); 1664 unsigned SrcReg = Reg + VA.getValNo(); 1665 1666 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1667 if (!RVEVT.isSimple()) 1668 return false; 1669 MVT RVVT = RVEVT.getSimpleVT(); 1670 MVT DestVT = VA.getLocVT(); 1671 1672 if (RVVT != DestVT && RVVT != MVT::i8 && 1673 RVVT != MVT::i16 && RVVT != MVT::i32) 1674 return false; 1675 1676 if (RVVT != DestVT) { 1677 switch (VA.getLocInfo()) { 1678 default: 1679 llvm_unreachable("Unknown loc info!"); 1680 case CCValAssign::Full: 1681 llvm_unreachable("Full value assign but types don't match?"); 1682 case CCValAssign::AExt: 1683 case CCValAssign::ZExt: { 1684 const TargetRegisterClass *RC = 1685 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1686 unsigned TmpReg = createResultReg(RC); 1687 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1688 return false; 1689 SrcReg = TmpReg; 1690 break; 1691 } 1692 case CCValAssign::SExt: { 1693 const TargetRegisterClass *RC = 1694 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1695 unsigned TmpReg = createResultReg(RC); 1696 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1697 return false; 1698 SrcReg = TmpReg; 1699 break; 1700 } 1701 } 1702 } 1703 1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1705 TII.get(TargetOpcode::COPY), RetRegs[i]) 1706 .addReg(SrcReg); 1707 } 1708 } 1709 } 1710 1711 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1712 TII.get(PPC::BLR8)); 1713 1714 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1715 MIB.addReg(RetRegs[i], RegState::Implicit); 1716 1717 return true; 1718 } 1719 1720 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1721 // signed and zero extensions are supported. Return false if we 1722 // can't handle it. 1723 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1724 unsigned DestReg, bool IsZExt) { 1725 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1726 return false; 1727 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1728 return false; 1729 1730 // Signed extensions use EXTSB, EXTSH, EXTSW. 1731 if (!IsZExt) { 1732 unsigned Opc; 1733 if (SrcVT == MVT::i8) 1734 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1735 else if (SrcVT == MVT::i16) 1736 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1737 else { 1738 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1739 Opc = PPC::EXTSW_32_64; 1740 } 1741 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1742 .addReg(SrcReg); 1743 1744 // Unsigned 32-bit extensions use RLWINM. 1745 } else if (DestVT == MVT::i32) { 1746 unsigned MB; 1747 if (SrcVT == MVT::i8) 1748 MB = 24; 1749 else { 1750 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1751 MB = 16; 1752 } 1753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1754 DestReg) 1755 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1756 1757 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1758 } else { 1759 unsigned MB; 1760 if (SrcVT == MVT::i8) 1761 MB = 56; 1762 else if (SrcVT == MVT::i16) 1763 MB = 48; 1764 else 1765 MB = 32; 1766 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1767 TII.get(PPC::RLDICL_32_64), DestReg) 1768 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1769 } 1770 1771 return true; 1772 } 1773 1774 // Attempt to fast-select an indirect branch instruction. 1775 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1776 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1777 if (AddrReg == 0) 1778 return false; 1779 1780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1781 .addReg(AddrReg); 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1783 1784 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1785 for (const BasicBlock *SuccBB : IB->successors()) 1786 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1787 1788 return true; 1789 } 1790 1791 // Attempt to fast-select an integer truncate instruction. 1792 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1793 Value *Src = I->getOperand(0); 1794 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1795 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1796 1797 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1798 return false; 1799 1800 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1801 return false; 1802 1803 unsigned SrcReg = getRegForValue(Src); 1804 if (!SrcReg) 1805 return false; 1806 1807 // The only interesting case is when we need to switch register classes. 1808 if (SrcVT == MVT::i64) { 1809 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1811 TII.get(TargetOpcode::COPY), 1812 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1813 SrcReg = ResultReg; 1814 } 1815 1816 updateValueMap(I, SrcReg); 1817 return true; 1818 } 1819 1820 // Attempt to fast-select an integer extend instruction. 1821 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1822 Type *DestTy = I->getType(); 1823 Value *Src = I->getOperand(0); 1824 Type *SrcTy = Src->getType(); 1825 1826 bool IsZExt = isa<ZExtInst>(I); 1827 unsigned SrcReg = getRegForValue(Src); 1828 if (!SrcReg) return false; 1829 1830 EVT SrcEVT, DestEVT; 1831 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1832 DestEVT = TLI.getValueType(DL, DestTy, true); 1833 if (!SrcEVT.isSimple()) 1834 return false; 1835 if (!DestEVT.isSimple()) 1836 return false; 1837 1838 MVT SrcVT = SrcEVT.getSimpleVT(); 1839 MVT DestVT = DestEVT.getSimpleVT(); 1840 1841 // If we know the register class needed for the result of this 1842 // instruction, use it. Otherwise pick the register class of the 1843 // correct size that does not contain X0/R0, since we don't know 1844 // whether downstream uses permit that assignment. 1845 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1846 const TargetRegisterClass *RC = 1847 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1848 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1849 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1850 unsigned ResultReg = createResultReg(RC); 1851 1852 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1853 return false; 1854 1855 updateValueMap(I, ResultReg); 1856 return true; 1857 } 1858 1859 // Attempt to fast-select an instruction that wasn't handled by 1860 // the table-generated machinery. 1861 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1862 1863 switch (I->getOpcode()) { 1864 case Instruction::Load: 1865 return SelectLoad(I); 1866 case Instruction::Store: 1867 return SelectStore(I); 1868 case Instruction::Br: 1869 return SelectBranch(I); 1870 case Instruction::IndirectBr: 1871 return SelectIndirectBr(I); 1872 case Instruction::FPExt: 1873 return SelectFPExt(I); 1874 case Instruction::FPTrunc: 1875 return SelectFPTrunc(I); 1876 case Instruction::SIToFP: 1877 return SelectIToFP(I, /*IsSigned*/ true); 1878 case Instruction::UIToFP: 1879 return SelectIToFP(I, /*IsSigned*/ false); 1880 case Instruction::FPToSI: 1881 return SelectFPToI(I, /*IsSigned*/ true); 1882 case Instruction::FPToUI: 1883 return SelectFPToI(I, /*IsSigned*/ false); 1884 case Instruction::Add: 1885 return SelectBinaryIntOp(I, ISD::ADD); 1886 case Instruction::Or: 1887 return SelectBinaryIntOp(I, ISD::OR); 1888 case Instruction::Sub: 1889 return SelectBinaryIntOp(I, ISD::SUB); 1890 case Instruction::Call: 1891 return selectCall(I); 1892 case Instruction::Ret: 1893 return SelectRet(I); 1894 case Instruction::Trunc: 1895 return SelectTrunc(I); 1896 case Instruction::ZExt: 1897 case Instruction::SExt: 1898 return SelectIntExt(I); 1899 // Here add other flavors of Instruction::XXX that automated 1900 // cases don't catch. For example, switches are terminators 1901 // that aren't yet handled. 1902 default: 1903 break; 1904 } 1905 return false; 1906 } 1907 1908 // Materialize a floating-point constant into a register, and return 1909 // the register number (or zero if we failed to handle it). 1910 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1911 // No plans to handle long double here. 1912 if (VT != MVT::f32 && VT != MVT::f64) 1913 return 0; 1914 1915 // All FP constants are loaded from the constant pool. 1916 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1917 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1918 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1919 const TargetRegisterClass *RC = 1920 (VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass; 1921 unsigned DestReg = createResultReg(RC); 1922 CodeModel::Model CModel = TM.getCodeModel(); 1923 1924 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1925 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1926 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1927 1928 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1929 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1930 1931 PPCFuncInfo->setUsesTOCBasePtr(); 1932 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1933 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1934 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1935 TmpReg) 1936 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1938 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1939 } else { 1940 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1942 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1943 // But for large code model, we must generate a LDtocL followed 1944 // by the LF[SD]. 1945 if (CModel == CodeModel::Large) { 1946 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1948 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1950 .addImm(0) 1951 .addReg(TmpReg2); 1952 } else 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1954 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1955 .addReg(TmpReg) 1956 .addMemOperand(MMO); 1957 } 1958 1959 return DestReg; 1960 } 1961 1962 // Materialize the address of a global value into a register, and return 1963 // the register number (or zero if we failed to handle it). 1964 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1965 assert(VT == MVT::i64 && "Non-address!"); 1966 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1967 unsigned DestReg = createResultReg(RC); 1968 1969 // Global values may be plain old object addresses, TLS object 1970 // addresses, constant pool entries, or jump tables. How we generate 1971 // code for these may depend on small, medium, or large code model. 1972 CodeModel::Model CModel = TM.getCodeModel(); 1973 1974 // FIXME: Jump tables are not yet required because fast-isel doesn't 1975 // handle switches; if that changes, we need them as well. For now, 1976 // what follows assumes everything's a generic (or TLS) global address. 1977 1978 // FIXME: We don't yet handle the complexity of TLS. 1979 if (GV->isThreadLocal()) 1980 return 0; 1981 1982 PPCFuncInfo->setUsesTOCBasePtr(); 1983 // For small code model, generate a simple TOC load. 1984 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1986 DestReg) 1987 .addGlobalAddress(GV) 1988 .addReg(PPC::X2); 1989 else { 1990 // If the address is an externally defined symbol, a symbol with common 1991 // or externally available linkage, a non-local function address, or a 1992 // jump table address (not yet needed), or if we are generating code 1993 // for large code model, we generate: 1994 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1995 // Otherwise we generate: 1996 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1997 // Either way, start with the ADDIStocHA: 1998 unsigned HighPartReg = createResultReg(RC); 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2000 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2001 2002 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 2003 if (GVFlags & PPCII::MO_NLP_FLAG) { 2004 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2005 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2006 } else { 2007 // Otherwise generate the ADDItocL. 2008 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2009 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2010 } 2011 } 2012 2013 return DestReg; 2014 } 2015 2016 // Materialize a 32-bit integer constant into a register, and return 2017 // the register number (or zero if we failed to handle it). 2018 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2019 const TargetRegisterClass *RC) { 2020 unsigned Lo = Imm & 0xFFFF; 2021 unsigned Hi = (Imm >> 16) & 0xFFFF; 2022 2023 unsigned ResultReg = createResultReg(RC); 2024 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2025 2026 if (isInt<16>(Imm)) 2027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2028 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2029 .addImm(Imm); 2030 else if (Lo) { 2031 // Both Lo and Hi have nonzero bits. 2032 unsigned TmpReg = createResultReg(RC); 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2034 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2035 .addImm(Hi); 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2037 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2038 .addReg(TmpReg).addImm(Lo); 2039 } else 2040 // Just Hi bits. 2041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2042 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2043 .addImm(Hi); 2044 2045 return ResultReg; 2046 } 2047 2048 // Materialize a 64-bit integer constant into a register, and return 2049 // the register number (or zero if we failed to handle it). 2050 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2051 const TargetRegisterClass *RC) { 2052 unsigned Remainder = 0; 2053 unsigned Shift = 0; 2054 2055 // If the value doesn't fit in 32 bits, see if we can shift it 2056 // so that it fits in 32 bits. 2057 if (!isInt<32>(Imm)) { 2058 Shift = countTrailingZeros<uint64_t>(Imm); 2059 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2060 2061 if (isInt<32>(ImmSh)) 2062 Imm = ImmSh; 2063 else { 2064 Remainder = Imm; 2065 Shift = 32; 2066 Imm >>= 32; 2067 } 2068 } 2069 2070 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2071 // (if not shifted). 2072 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2073 if (!Shift) 2074 return TmpReg1; 2075 2076 // If upper 32 bits were not zero, we've built them and need to shift 2077 // them into place. 2078 unsigned TmpReg2; 2079 if (Imm) { 2080 TmpReg2 = createResultReg(RC); 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2082 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2083 } else 2084 TmpReg2 = TmpReg1; 2085 2086 unsigned TmpReg3, Hi, Lo; 2087 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2088 TmpReg3 = createResultReg(RC); 2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2090 TmpReg3).addReg(TmpReg2).addImm(Hi); 2091 } else 2092 TmpReg3 = TmpReg2; 2093 2094 if ((Lo = Remainder & 0xFFFF)) { 2095 unsigned ResultReg = createResultReg(RC); 2096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2097 ResultReg).addReg(TmpReg3).addImm(Lo); 2098 return ResultReg; 2099 } 2100 2101 return TmpReg3; 2102 } 2103 2104 // Materialize an integer constant into a register, and return 2105 // the register number (or zero if we failed to handle it). 2106 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2107 bool UseSExt) { 2108 // If we're using CR bit registers for i1 values, handle that as a special 2109 // case first. 2110 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2111 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2113 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2114 return ImmReg; 2115 } 2116 2117 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2118 VT != MVT::i1) 2119 return 0; 2120 2121 const TargetRegisterClass *RC = 2122 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2123 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2124 2125 // If the constant is in range, use a load-immediate. 2126 // Since LI will sign extend the constant we need to make sure that for 2127 // our zeroext constants that the sign extended constant fits into 16-bits - 2128 // a range of 0..0x7fff. 2129 if (isInt<16>(Imm)) { 2130 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2131 unsigned ImmReg = createResultReg(RC); 2132 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2133 .addImm(Imm); 2134 return ImmReg; 2135 } 2136 2137 // Construct the constant piecewise. 2138 if (VT == MVT::i64) 2139 return PPCMaterialize64BitInt(Imm, RC); 2140 else if (VT == MVT::i32) 2141 return PPCMaterialize32BitInt(Imm, RC); 2142 2143 return 0; 2144 } 2145 2146 // Materialize a constant into a register, and return the register 2147 // number (or zero if we failed to handle it). 2148 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2149 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2150 2151 // Only handle simple types. 2152 if (!CEVT.isSimple()) return 0; 2153 MVT VT = CEVT.getSimpleVT(); 2154 2155 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2156 return PPCMaterializeFP(CFP, VT); 2157 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2158 return PPCMaterializeGV(GV, VT); 2159 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2160 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2161 // assumes that constant PHI operands will be zero extended, and failure to 2162 // match that assumption will cause problems if we sign extend here but 2163 // some user of a PHI is in a block for which we fall back to full SDAG 2164 // instruction selection. 2165 return PPCMaterializeInt(CI, VT, false); 2166 2167 return 0; 2168 } 2169 2170 // Materialize the address created by an alloca into a register, and 2171 // return the register number (or zero if we failed to handle it). 2172 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2173 // Don't handle dynamic allocas. 2174 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2175 2176 MVT VT; 2177 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2178 2179 DenseMap<const AllocaInst*, int>::iterator SI = 2180 FuncInfo.StaticAllocaMap.find(AI); 2181 2182 if (SI != FuncInfo.StaticAllocaMap.end()) { 2183 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2185 ResultReg).addFrameIndex(SI->second).addImm(0); 2186 return ResultReg; 2187 } 2188 2189 return 0; 2190 } 2191 2192 // Fold loads into extends when possible. 2193 // FIXME: We can have multiple redundant extend/trunc instructions 2194 // following a load. The folding only picks up one. Extend this 2195 // to check subsequent instructions for the same pattern and remove 2196 // them. Thus ResultReg should be the def reg for the last redundant 2197 // instruction in a chain, and all intervening instructions can be 2198 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2199 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2200 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2201 const LoadInst *LI) { 2202 // Verify we have a legal type before going any further. 2203 MVT VT; 2204 if (!isLoadTypeLegal(LI->getType(), VT)) 2205 return false; 2206 2207 // Combine load followed by zero- or sign-extend. 2208 bool IsZExt = false; 2209 switch(MI->getOpcode()) { 2210 default: 2211 return false; 2212 2213 case PPC::RLDICL: 2214 case PPC::RLDICL_32_64: { 2215 IsZExt = true; 2216 unsigned MB = MI->getOperand(3).getImm(); 2217 if ((VT == MVT::i8 && MB <= 56) || 2218 (VT == MVT::i16 && MB <= 48) || 2219 (VT == MVT::i32 && MB <= 32)) 2220 break; 2221 return false; 2222 } 2223 2224 case PPC::RLWINM: 2225 case PPC::RLWINM8: { 2226 IsZExt = true; 2227 unsigned MB = MI->getOperand(3).getImm(); 2228 if ((VT == MVT::i8 && MB <= 24) || 2229 (VT == MVT::i16 && MB <= 16)) 2230 break; 2231 return false; 2232 } 2233 2234 case PPC::EXTSB: 2235 case PPC::EXTSB8: 2236 case PPC::EXTSB8_32_64: 2237 /* There is no sign-extending load-byte instruction. */ 2238 return false; 2239 2240 case PPC::EXTSH: 2241 case PPC::EXTSH8: 2242 case PPC::EXTSH8_32_64: { 2243 if (VT != MVT::i16 && VT != MVT::i8) 2244 return false; 2245 break; 2246 } 2247 2248 case PPC::EXTSW: 2249 case PPC::EXTSW_32_64: { 2250 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2251 return false; 2252 break; 2253 } 2254 } 2255 2256 // See if we can handle this address. 2257 Address Addr; 2258 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2259 return false; 2260 2261 unsigned ResultReg = MI->getOperand(0).getReg(); 2262 2263 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2264 return false; 2265 2266 MI->eraseFromParent(); 2267 return true; 2268 } 2269 2270 // Attempt to lower call arguments in a faster way than done by 2271 // the selection DAG code. 2272 bool PPCFastISel::fastLowerArguments() { 2273 // Defer to normal argument lowering for now. It's reasonably 2274 // efficient. Consider doing something like ARM to handle the 2275 // case where all args fit in registers, no varargs, no float 2276 // or vector args. 2277 return false; 2278 } 2279 2280 // Handle materializing integer constants into a register. This is not 2281 // automatically generated for PowerPC, so must be explicitly created here. 2282 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2283 2284 if (Opc != ISD::Constant) 2285 return 0; 2286 2287 // If we're using CR bit registers for i1 values, handle that as a special 2288 // case first. 2289 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2290 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2292 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2293 return ImmReg; 2294 } 2295 2296 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2297 VT != MVT::i1) 2298 return 0; 2299 2300 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2301 &PPC::GPRCRegClass); 2302 if (VT == MVT::i64) 2303 return PPCMaterialize64BitInt(Imm, RC); 2304 else 2305 return PPCMaterialize32BitInt(Imm, RC); 2306 } 2307 2308 // Override for ADDI and ADDI8 to set the correct register class 2309 // on RHS operand 0. The automatic infrastructure naively assumes 2310 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2311 // for these cases. At the moment, none of the other automatically 2312 // generated RI instructions require special treatment. However, once 2313 // SelectSelect is implemented, "isel" requires similar handling. 2314 // 2315 // Also be conservative about the output register class. Avoid 2316 // assigning R0 or X0 to the output register for GPRC and G8RC 2317 // register classes, as any such result could be used in ADDI, etc., 2318 // where those regs have another meaning. 2319 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2320 const TargetRegisterClass *RC, 2321 unsigned Op0, bool Op0IsKill, 2322 uint64_t Imm) { 2323 if (MachineInstOpcode == PPC::ADDI) 2324 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2325 else if (MachineInstOpcode == PPC::ADDI8) 2326 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2327 2328 const TargetRegisterClass *UseRC = 2329 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2330 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2331 2332 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2333 Op0, Op0IsKill, Imm); 2334 } 2335 2336 // Override for instructions with one register operand to avoid use of 2337 // R0/X0. The automatic infrastructure isn't aware of the context so 2338 // we must be conservative. 2339 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2340 const TargetRegisterClass* RC, 2341 unsigned Op0, bool Op0IsKill) { 2342 const TargetRegisterClass *UseRC = 2343 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2344 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2345 2346 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2347 } 2348 2349 // Override for instructions with two register operands to avoid use 2350 // of R0/X0. The automatic infrastructure isn't aware of the context 2351 // so we must be conservative. 2352 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2353 const TargetRegisterClass* RC, 2354 unsigned Op0, bool Op0IsKill, 2355 unsigned Op1, bool Op1IsKill) { 2356 const TargetRegisterClass *UseRC = 2357 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2358 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2359 2360 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2361 Op1, Op1IsKill); 2362 } 2363 2364 namespace llvm { 2365 // Create the fast instruction selector for PowerPC64 ELF. 2366 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2367 const TargetLibraryInfo *LibInfo) { 2368 // Only available on 64-bit ELF for now. 2369 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2370 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2371 return new PPCFastISel(FuncInfo, LibInfo); 2372 return nullptr; 2373 } 2374 } 2375