1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40 
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ppcfastisel"
63 
64 namespace {
65 
66 typedef struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71 
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76 
77   long Offset;
78 
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 } Address;
85 
86 class PPCFastISel final : public FastISel {
87 
88   const TargetMachine &TM;
89   const PPCSubtarget *PPCSubTarget;
90   PPCFunctionInfo *PPCFuncInfo;
91   const TargetInstrInfo &TII;
92   const TargetLowering &TLI;
93   LLVMContext *Context;
94 
95   public:
96     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97                          const TargetLibraryInfo *LibInfo)
98         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101           TII(*PPCSubTarget->getInstrInfo()),
102           TLI(*PPCSubTarget->getTargetLowering()),
103           Context(&FuncInfo.Fn->getContext()) {}
104 
105   // Backend specific FastISel code.
106   private:
107     bool fastSelectInstruction(const Instruction *I) override;
108     unsigned fastMaterializeConstant(const Constant *C) override;
109     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111                              const LoadInst *LI) override;
112     bool fastLowerArguments() override;
113     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115                              const TargetRegisterClass *RC,
116                              unsigned Op0, bool Op0IsKill,
117                              uint64_t Imm);
118     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill);
121     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122                              const TargetRegisterClass *RC,
123                              unsigned Op0, bool Op0IsKill,
124                              unsigned Op1, bool Op1IsKill);
125 
126     bool fastLowerCall(CallLoweringInfo &CLI) override;
127 
128   // Instruction selection routines.
129   private:
130     bool SelectLoad(const Instruction *I);
131     bool SelectStore(const Instruction *I);
132     bool SelectBranch(const Instruction *I);
133     bool SelectIndirectBr(const Instruction *I);
134     bool SelectFPExt(const Instruction *I);
135     bool SelectFPTrunc(const Instruction *I);
136     bool SelectIToFP(const Instruction *I, bool IsSigned);
137     bool SelectFPToI(const Instruction *I, bool IsSigned);
138     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139     bool SelectRet(const Instruction *I);
140     bool SelectTrunc(const Instruction *I);
141     bool SelectIntExt(const Instruction *I);
142 
143   // Utility routines.
144   private:
145     bool isTypeLegal(Type *Ty, MVT &VT);
146     bool isLoadTypeLegal(Type *Ty, MVT &VT);
147     bool isValueAvailable(const Value *V) const;
148     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
149       return RC->getID() == PPC::VSFRCRegClassID;
150     }
151     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
152       return RC->getID() == PPC::VSSRCRegClassID;
153     }
154     unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
155                                unsigned SrcReg, unsigned Flag = 0,
156                                unsigned SubReg = 0) {
157       unsigned TmpReg = createResultReg(ToRC);
158       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
159               TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
160       return TmpReg;
161     }
162     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
163                     bool isZExt, unsigned DestReg,
164                     const PPC::Predicate Pred);
165     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
166                      const TargetRegisterClass *RC, bool IsZExt = true,
167                      unsigned FP64LoadOpc = PPC::LFD);
168     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
169     bool PPCComputeAddress(const Value *Obj, Address &Addr);
170     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
171                             unsigned &IndexReg);
172     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
173                            unsigned DestReg, bool IsZExt);
174     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
175     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
176     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
177                                bool UseSExt = true);
178     unsigned PPCMaterialize32BitInt(int64_t Imm,
179                                     const TargetRegisterClass *RC);
180     unsigned PPCMaterialize64BitInt(int64_t Imm,
181                                     const TargetRegisterClass *RC);
182     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
183                              unsigned SrcReg, bool IsSigned);
184     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
185 
186   // Call handling routines.
187   private:
188     bool processCallArgs(SmallVectorImpl<Value*> &Args,
189                          SmallVectorImpl<unsigned> &ArgRegs,
190                          SmallVectorImpl<MVT> &ArgVTs,
191                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
192                          SmallVectorImpl<unsigned> &RegArgs,
193                          CallingConv::ID CC,
194                          unsigned &NumBytes,
195                          bool IsVarArg);
196     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
197 
198   private:
199   #include "PPCGenFastISel.inc"
200 
201 };
202 
203 } // end anonymous namespace
204 
205 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
206   switch (Pred) {
207     // These are not representable with any single compare.
208     case CmpInst::FCMP_FALSE:
209     case CmpInst::FCMP_TRUE:
210     // Major concern about the following 6 cases is NaN result. The comparison
211     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
212     // only one of which will be set. The result is generated by fcmpu
213     // instruction. However, bc instruction only inspects one of the first 3
214     // bits, so when un is set, bc instruction may jump to an undesired
215     // place.
216     //
217     // More specifically, if we expect an unordered comparison and un is set, we
218     // expect to always go to true branch; in such case UEQ, UGT and ULT still
219     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
220     // since they are tested by inspecting !eq, !lt, !gt, respectively.
221     //
222     // Similarly, for ordered comparison, when un is set, we always expect the
223     // result to be false. In such case OGT, OLT and OEQ is good, since they are
224     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
225     // and ONE are tested through !lt, !gt and !eq, and these are true.
226     case CmpInst::FCMP_UEQ:
227     case CmpInst::FCMP_UGT:
228     case CmpInst::FCMP_ULT:
229     case CmpInst::FCMP_OGE:
230     case CmpInst::FCMP_OLE:
231     case CmpInst::FCMP_ONE:
232     default:
233       return Optional<PPC::Predicate>();
234 
235     case CmpInst::FCMP_OEQ:
236     case CmpInst::ICMP_EQ:
237       return PPC::PRED_EQ;
238 
239     case CmpInst::FCMP_OGT:
240     case CmpInst::ICMP_UGT:
241     case CmpInst::ICMP_SGT:
242       return PPC::PRED_GT;
243 
244     case CmpInst::FCMP_UGE:
245     case CmpInst::ICMP_UGE:
246     case CmpInst::ICMP_SGE:
247       return PPC::PRED_GE;
248 
249     case CmpInst::FCMP_OLT:
250     case CmpInst::ICMP_ULT:
251     case CmpInst::ICMP_SLT:
252       return PPC::PRED_LT;
253 
254     case CmpInst::FCMP_ULE:
255     case CmpInst::ICMP_ULE:
256     case CmpInst::ICMP_SLE:
257       return PPC::PRED_LE;
258 
259     case CmpInst::FCMP_UNE:
260     case CmpInst::ICMP_NE:
261       return PPC::PRED_NE;
262 
263     case CmpInst::FCMP_ORD:
264       return PPC::PRED_NU;
265 
266     case CmpInst::FCMP_UNO:
267       return PPC::PRED_UN;
268   }
269 }
270 
271 // Determine whether the type Ty is simple enough to be handled by
272 // fast-isel, and return its equivalent machine type in VT.
273 // FIXME: Copied directly from ARM -- factor into base class?
274 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
275   EVT Evt = TLI.getValueType(DL, Ty, true);
276 
277   // Only handle simple types.
278   if (Evt == MVT::Other || !Evt.isSimple()) return false;
279   VT = Evt.getSimpleVT();
280 
281   // Handle all legal types, i.e. a register that will directly hold this
282   // value.
283   return TLI.isTypeLegal(VT);
284 }
285 
286 // Determine whether the type Ty is simple enough to be handled by
287 // fast-isel as a load target, and return its equivalent machine type in VT.
288 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
289   if (isTypeLegal(Ty, VT)) return true;
290 
291   // If this is a type than can be sign or zero-extended to a basic operation
292   // go ahead and accept it now.
293   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
294     return true;
295   }
296 
297   return false;
298 }
299 
300 bool PPCFastISel::isValueAvailable(const Value *V) const {
301   if (!isa<Instruction>(V))
302     return true;
303 
304   const auto *I = cast<Instruction>(V);
305   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
306 }
307 
308 // Given a value Obj, create an Address object Addr that represents its
309 // address.  Return false if we can't handle it.
310 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
311   const User *U = nullptr;
312   unsigned Opcode = Instruction::UserOp1;
313   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
314     // Don't walk into other basic blocks unless the object is an alloca from
315     // another block, otherwise it may not have a virtual register assigned.
316     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
317         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
318       Opcode = I->getOpcode();
319       U = I;
320     }
321   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
322     Opcode = C->getOpcode();
323     U = C;
324   }
325 
326   switch (Opcode) {
327     default:
328       break;
329     case Instruction::BitCast:
330       // Look through bitcasts.
331       return PPCComputeAddress(U->getOperand(0), Addr);
332     case Instruction::IntToPtr:
333       // Look past no-op inttoptrs.
334       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
335           TLI.getPointerTy(DL))
336         return PPCComputeAddress(U->getOperand(0), Addr);
337       break;
338     case Instruction::PtrToInt:
339       // Look past no-op ptrtoints.
340       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
341         return PPCComputeAddress(U->getOperand(0), Addr);
342       break;
343     case Instruction::GetElementPtr: {
344       Address SavedAddr = Addr;
345       long TmpOffset = Addr.Offset;
346 
347       // Iterate through the GEP folding the constants into offsets where
348       // we can.
349       gep_type_iterator GTI = gep_type_begin(U);
350       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
351            II != IE; ++II, ++GTI) {
352         const Value *Op = *II;
353         if (StructType *STy = GTI.getStructTypeOrNull()) {
354           const StructLayout *SL = DL.getStructLayout(STy);
355           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
356           TmpOffset += SL->getElementOffset(Idx);
357         } else {
358           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
359           for (;;) {
360             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
361               // Constant-offset addressing.
362               TmpOffset += CI->getSExtValue() * S;
363               break;
364             }
365             if (canFoldAddIntoGEP(U, Op)) {
366               // A compatible add with a constant operand. Fold the constant.
367               ConstantInt *CI =
368               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
369               TmpOffset += CI->getSExtValue() * S;
370               // Iterate on the other operand.
371               Op = cast<AddOperator>(Op)->getOperand(0);
372               continue;
373             }
374             // Unsupported
375             goto unsupported_gep;
376           }
377         }
378       }
379 
380       // Try to grab the base operand now.
381       Addr.Offset = TmpOffset;
382       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
383 
384       // We failed, restore everything and try the other options.
385       Addr = SavedAddr;
386 
387       unsupported_gep:
388       break;
389     }
390     case Instruction::Alloca: {
391       const AllocaInst *AI = cast<AllocaInst>(Obj);
392       DenseMap<const AllocaInst*, int>::iterator SI =
393         FuncInfo.StaticAllocaMap.find(AI);
394       if (SI != FuncInfo.StaticAllocaMap.end()) {
395         Addr.BaseType = Address::FrameIndexBase;
396         Addr.Base.FI = SI->second;
397         return true;
398       }
399       break;
400     }
401   }
402 
403   // FIXME: References to parameters fall through to the behavior
404   // below.  They should be able to reference a frame index since
405   // they are stored to the stack, so we can get "ld rx, offset(r1)"
406   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
407   // just contain the parameter.  Try to handle this with a FI.
408 
409   // Try to get this in a register if nothing else has worked.
410   if (Addr.Base.Reg == 0)
411     Addr.Base.Reg = getRegForValue(Obj);
412 
413   // Prevent assignment of base register to X0, which is inappropriate
414   // for loads and stores alike.
415   if (Addr.Base.Reg != 0)
416     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
417 
418   return Addr.Base.Reg != 0;
419 }
420 
421 // Fix up some addresses that can't be used directly.  For example, if
422 // an offset won't fit in an instruction field, we may need to move it
423 // into an index register.
424 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
425                                      unsigned &IndexReg) {
426 
427   // Check whether the offset fits in the instruction field.
428   if (!isInt<16>(Addr.Offset))
429     UseOffset = false;
430 
431   // If this is a stack pointer and the offset needs to be simplified then
432   // put the alloca address into a register, set the base type back to
433   // register and continue. This should almost never happen.
434   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
435     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
436     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
437             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
438     Addr.Base.Reg = ResultReg;
439     Addr.BaseType = Address::RegBase;
440   }
441 
442   if (!UseOffset) {
443     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
444     const ConstantInt *Offset =
445       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
446     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
447     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
448   }
449 }
450 
451 // Emit a load instruction if possible, returning true if we succeeded,
452 // otherwise false.  See commentary below for how the register class of
453 // the load is determined.
454 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
455                               const TargetRegisterClass *RC,
456                               bool IsZExt, unsigned FP64LoadOpc) {
457   unsigned Opc;
458   bool UseOffset = true;
459   bool HasSPE = PPCSubTarget->hasSPE();
460 
461   // If ResultReg is given, it determines the register class of the load.
462   // Otherwise, RC is the register class to use.  If the result of the
463   // load isn't anticipated in this block, both may be zero, in which
464   // case we must make a conservative guess.  In particular, don't assign
465   // R0 or X0 to the result register, as the result may be used in a load,
466   // store, add-immediate, or isel that won't permit this.  (Though
467   // perhaps the spill and reload of live-exit values would handle this?)
468   const TargetRegisterClass *UseRC =
469     (ResultReg ? MRI.getRegClass(ResultReg) :
470      (RC ? RC :
471       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
472        (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
473         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
474          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
475 
476   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
477 
478   switch (VT.SimpleTy) {
479     default: // e.g., vector types not handled
480       return false;
481     case MVT::i8:
482       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
483       break;
484     case MVT::i16:
485       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
486                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
487       break;
488     case MVT::i32:
489       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
490                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
491       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
492         UseOffset = false;
493       break;
494     case MVT::i64:
495       Opc = PPC::LD;
496       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
497              "64-bit load with 32-bit target??");
498       UseOffset = ((Addr.Offset & 3) == 0);
499       break;
500     case MVT::f32:
501       Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
502       break;
503     case MVT::f64:
504       Opc = FP64LoadOpc;
505       break;
506   }
507 
508   // If necessary, materialize the offset into a register and use
509   // the indexed form.  Also handle stack pointers with special needs.
510   unsigned IndexReg = 0;
511   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
512 
513   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
514   // be used.
515   bool IsVSSRC = isVSSRCRegClass(UseRC);
516   bool IsVSFRC = isVSFRCRegClass(UseRC);
517   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
518   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
519   if ((Is32VSXLoad || Is64VSXLoad) &&
520       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
521       (Addr.Offset == 0)) {
522     UseOffset = false;
523   }
524 
525   if (ResultReg == 0)
526     ResultReg = createResultReg(UseRC);
527 
528   // Note: If we still have a frame index here, we know the offset is
529   // in range, as otherwise PPCSimplifyAddress would have converted it
530   // into a RegBase.
531   if (Addr.BaseType == Address::FrameIndexBase) {
532     // VSX only provides an indexed load.
533     if (Is32VSXLoad || Is64VSXLoad) return false;
534 
535     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
536         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
537                                           Addr.Offset),
538         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
539         MFI.getObjectAlignment(Addr.Base.FI));
540 
541     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
542       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
543 
544   // Base reg with offset in range.
545   } else if (UseOffset) {
546     // VSX only provides an indexed load.
547     if (Is32VSXLoad || Is64VSXLoad) return false;
548 
549     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
550       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
551 
552   // Indexed form.
553   } else {
554     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
555     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
556     // is hard to get at.
557     switch (Opc) {
558       default:        llvm_unreachable("Unexpected opcode!");
559       case PPC::LBZ:    Opc = PPC::LBZX;    break;
560       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
561       case PPC::LHZ:    Opc = PPC::LHZX;    break;
562       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
563       case PPC::LHA:    Opc = PPC::LHAX;    break;
564       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
565       case PPC::LWZ:    Opc = PPC::LWZX;    break;
566       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
567       case PPC::LWA:    Opc = PPC::LWAX;    break;
568       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
569       case PPC::LD:     Opc = PPC::LDX;     break;
570       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
571       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
572       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
573       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
574     }
575 
576     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
577                        ResultReg);
578 
579     // If we have an index register defined we use it in the store inst,
580     // otherwise we use X0 as base as it makes the vector instructions to
581     // use zero in the computation of the effective address regardless the
582     // content of the register.
583     if (IndexReg)
584       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
585     else
586       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
587   }
588 
589   return true;
590 }
591 
592 // Attempt to fast-select a load instruction.
593 bool PPCFastISel::SelectLoad(const Instruction *I) {
594   // FIXME: No atomic loads are supported.
595   if (cast<LoadInst>(I)->isAtomic())
596     return false;
597 
598   // Verify we have a legal type before going any further.
599   MVT VT;
600   if (!isLoadTypeLegal(I->getType(), VT))
601     return false;
602 
603   // See if we can handle this address.
604   Address Addr;
605   if (!PPCComputeAddress(I->getOperand(0), Addr))
606     return false;
607 
608   // Look at the currently assigned register for this instruction
609   // to determine the required register class.  This is necessary
610   // to constrain RA from using R0/X0 when this is not legal.
611   unsigned AssignedReg = FuncInfo.ValueMap[I];
612   const TargetRegisterClass *RC =
613     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
614 
615   unsigned ResultReg = 0;
616   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
617       PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
618     return false;
619   updateValueMap(I, ResultReg);
620   return true;
621 }
622 
623 // Emit a store instruction to store SrcReg at Addr.
624 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
625   assert(SrcReg && "Nothing to store!");
626   unsigned Opc;
627   bool UseOffset = true;
628 
629   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
630   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
631 
632   switch (VT.SimpleTy) {
633     default: // e.g., vector types not handled
634       return false;
635     case MVT::i8:
636       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
637       break;
638     case MVT::i16:
639       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
640       break;
641     case MVT::i32:
642       assert(Is32BitInt && "Not GPRC for i32??");
643       Opc = PPC::STW;
644       break;
645     case MVT::i64:
646       Opc = PPC::STD;
647       UseOffset = ((Addr.Offset & 3) == 0);
648       break;
649     case MVT::f32:
650       Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
651       break;
652     case MVT::f64:
653       Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
654       break;
655   }
656 
657   // If necessary, materialize the offset into a register and use
658   // the indexed form.  Also handle stack pointers with special needs.
659   unsigned IndexReg = 0;
660   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
661 
662   // If this is a potential VSX store with an offset of 0, a VSX indexed store
663   // can be used.
664   bool IsVSSRC = isVSSRCRegClass(RC);
665   bool IsVSFRC = isVSFRCRegClass(RC);
666   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
667   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
668   if ((Is32VSXStore || Is64VSXStore) &&
669       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
670       (Addr.Offset == 0)) {
671     UseOffset = false;
672   }
673 
674   // Note: If we still have a frame index here, we know the offset is
675   // in range, as otherwise PPCSimplifyAddress would have converted it
676   // into a RegBase.
677   if (Addr.BaseType == Address::FrameIndexBase) {
678     // VSX only provides an indexed store.
679     if (Is32VSXStore || Is64VSXStore) return false;
680 
681     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
682         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
683                                           Addr.Offset),
684         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
685         MFI.getObjectAlignment(Addr.Base.FI));
686 
687     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
688         .addReg(SrcReg)
689         .addImm(Addr.Offset)
690         .addFrameIndex(Addr.Base.FI)
691         .addMemOperand(MMO);
692 
693   // Base reg with offset in range.
694   } else if (UseOffset) {
695     // VSX only provides an indexed store.
696     if (Is32VSXStore || Is64VSXStore)
697       return false;
698 
699     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
700       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
701 
702   // Indexed form.
703   } else {
704     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
705     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
706     // is hard to get at.
707     switch (Opc) {
708       default:        llvm_unreachable("Unexpected opcode!");
709       case PPC::STB:  Opc = PPC::STBX;  break;
710       case PPC::STH : Opc = PPC::STHX;  break;
711       case PPC::STW : Opc = PPC::STWX;  break;
712       case PPC::STB8: Opc = PPC::STBX8; break;
713       case PPC::STH8: Opc = PPC::STHX8; break;
714       case PPC::STW8: Opc = PPC::STWX8; break;
715       case PPC::STD:  Opc = PPC::STDX;  break;
716       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
717       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
718       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
719       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
720     }
721 
722     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
723         .addReg(SrcReg);
724 
725     // If we have an index register defined we use it in the store inst,
726     // otherwise we use X0 as base as it makes the vector instructions to
727     // use zero in the computation of the effective address regardless the
728     // content of the register.
729     if (IndexReg)
730       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
731     else
732       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
733   }
734 
735   return true;
736 }
737 
738 // Attempt to fast-select a store instruction.
739 bool PPCFastISel::SelectStore(const Instruction *I) {
740   Value *Op0 = I->getOperand(0);
741   unsigned SrcReg = 0;
742 
743   // FIXME: No atomics loads are supported.
744   if (cast<StoreInst>(I)->isAtomic())
745     return false;
746 
747   // Verify we have a legal type before going any further.
748   MVT VT;
749   if (!isLoadTypeLegal(Op0->getType(), VT))
750     return false;
751 
752   // Get the value to be stored into a register.
753   SrcReg = getRegForValue(Op0);
754   if (SrcReg == 0)
755     return false;
756 
757   // See if we can handle this address.
758   Address Addr;
759   if (!PPCComputeAddress(I->getOperand(1), Addr))
760     return false;
761 
762   if (!PPCEmitStore(VT, SrcReg, Addr))
763     return false;
764 
765   return true;
766 }
767 
768 // Attempt to fast-select a branch instruction.
769 bool PPCFastISel::SelectBranch(const Instruction *I) {
770   const BranchInst *BI = cast<BranchInst>(I);
771   MachineBasicBlock *BrBB = FuncInfo.MBB;
772   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
773   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
774 
775   // For now, just try the simplest case where it's fed by a compare.
776   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
777     if (isValueAvailable(CI)) {
778       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
779       if (!OptPPCPred)
780         return false;
781 
782       PPC::Predicate PPCPred = OptPPCPred.getValue();
783 
784       // Take advantage of fall-through opportunities.
785       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
786         std::swap(TBB, FBB);
787         PPCPred = PPC::InvertPredicate(PPCPred);
788       }
789 
790       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
791 
792       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
793                       CondReg, PPCPred))
794         return false;
795 
796       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
797         .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
798         .addReg(CondReg).addMBB(TBB);
799       finishCondBranch(BI->getParent(), TBB, FBB);
800       return true;
801     }
802   } else if (const ConstantInt *CI =
803              dyn_cast<ConstantInt>(BI->getCondition())) {
804     uint64_t Imm = CI->getZExtValue();
805     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
806     fastEmitBranch(Target, DbgLoc);
807     return true;
808   }
809 
810   // FIXME: ARM looks for a case where the block containing the compare
811   // has been split from the block containing the branch.  If this happens,
812   // there is a vreg available containing the result of the compare.  I'm
813   // not sure we can do much, as we've lost the predicate information with
814   // the compare instruction -- we have a 4-bit CR but don't know which bit
815   // to test here.
816   return false;
817 }
818 
819 // Attempt to emit a compare of the two source values.  Signed and unsigned
820 // comparisons are supported.  Return false if we can't handle it.
821 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
822                              bool IsZExt, unsigned DestReg,
823                              const PPC::Predicate Pred) {
824   Type *Ty = SrcValue1->getType();
825   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
826   if (!SrcEVT.isSimple())
827     return false;
828   MVT SrcVT = SrcEVT.getSimpleVT();
829 
830   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
831     return false;
832 
833   // See if operand 2 is an immediate encodeable in the compare.
834   // FIXME: Operands are not in canonical order at -O0, so an immediate
835   // operand in position 1 is a lost opportunity for now.  We are
836   // similar to ARM in this regard.
837   long Imm = 0;
838   bool UseImm = false;
839   const bool HasSPE = PPCSubTarget->hasSPE();
840 
841   // Only 16-bit integer constants can be represented in compares for
842   // PowerPC.  Others will be materialized into a register.
843   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
844     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
845         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
846       const APInt &CIVal = ConstInt->getValue();
847       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
848       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
849         UseImm = true;
850     }
851   }
852 
853   unsigned SrcReg1 = getRegForValue(SrcValue1);
854   if (SrcReg1 == 0)
855     return false;
856 
857   unsigned SrcReg2 = 0;
858   if (!UseImm) {
859     SrcReg2 = getRegForValue(SrcValue2);
860     if (SrcReg2 == 0)
861       return false;
862   }
863 
864   unsigned CmpOpc;
865   bool NeedsExt = false;
866 
867   auto RC1 = MRI.getRegClass(SrcReg1);
868   auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
869 
870   switch (SrcVT.SimpleTy) {
871     default: return false;
872     case MVT::f32:
873       if (HasSPE) {
874         switch (Pred) {
875           default: return false;
876           case PPC::PRED_EQ:
877             CmpOpc = PPC::EFSCMPEQ;
878             break;
879           case PPC::PRED_LT:
880             CmpOpc = PPC::EFSCMPLT;
881             break;
882           case PPC::PRED_GT:
883             CmpOpc = PPC::EFSCMPGT;
884             break;
885         }
886       } else {
887         CmpOpc = PPC::FCMPUS;
888         if (isVSSRCRegClass(RC1))
889           SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
890         if (RC2 && isVSSRCRegClass(RC2))
891           SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
892       }
893       break;
894     case MVT::f64:
895       if (HasSPE) {
896         switch (Pred) {
897           default: return false;
898           case PPC::PRED_EQ:
899             CmpOpc = PPC::EFDCMPEQ;
900             break;
901           case PPC::PRED_LT:
902             CmpOpc = PPC::EFDCMPLT;
903             break;
904           case PPC::PRED_GT:
905             CmpOpc = PPC::EFDCMPGT;
906             break;
907         }
908       } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
909         CmpOpc = PPC::XSCMPUDP;
910       } else {
911         CmpOpc = PPC::FCMPUD;
912       }
913       break;
914     case MVT::i1:
915     case MVT::i8:
916     case MVT::i16:
917       NeedsExt = true;
918       LLVM_FALLTHROUGH;
919     case MVT::i32:
920       if (!UseImm)
921         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
922       else
923         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
924       break;
925     case MVT::i64:
926       if (!UseImm)
927         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
928       else
929         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
930       break;
931   }
932 
933   if (NeedsExt) {
934     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
935     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
936       return false;
937     SrcReg1 = ExtReg;
938 
939     if (!UseImm) {
940       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
941       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
942         return false;
943       SrcReg2 = ExtReg;
944     }
945   }
946 
947   if (!UseImm)
948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
949       .addReg(SrcReg1).addReg(SrcReg2);
950   else
951     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
952       .addReg(SrcReg1).addImm(Imm);
953 
954   return true;
955 }
956 
957 // Attempt to fast-select a floating-point extend instruction.
958 bool PPCFastISel::SelectFPExt(const Instruction *I) {
959   Value *Src  = I->getOperand(0);
960   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
961   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
962 
963   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
964     return false;
965 
966   unsigned SrcReg = getRegForValue(Src);
967   if (!SrcReg)
968     return false;
969 
970   // No code is generated for a FP extend.
971   updateValueMap(I, SrcReg);
972   return true;
973 }
974 
975 // Attempt to fast-select a floating-point truncate instruction.
976 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
977   Value *Src  = I->getOperand(0);
978   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
979   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
980 
981   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
982     return false;
983 
984   unsigned SrcReg = getRegForValue(Src);
985   if (!SrcReg)
986     return false;
987 
988   // Round the result to single precision.
989   unsigned DestReg;
990 
991   if (PPCSubTarget->hasSPE()) {
992     DestReg = createResultReg(&PPC::SPE4RCRegClass);
993     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
994       TII.get(PPC::EFSCFD), DestReg)
995       .addReg(SrcReg);
996   } else {
997     DestReg = createResultReg(&PPC::F4RCRegClass);
998     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
999       TII.get(PPC::FRSP), DestReg)
1000       .addReg(SrcReg);
1001   }
1002 
1003   updateValueMap(I, DestReg);
1004   return true;
1005 }
1006 
1007 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1008 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1009 // those should be used instead of moving via a stack slot when the
1010 // subtarget permits.
1011 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1012 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1013 // case to 8 bytes which produces tighter code but wastes stack space.
1014 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1015                                      bool IsSigned) {
1016 
1017   // If necessary, extend 32-bit int to 64-bit.
1018   if (SrcVT == MVT::i32) {
1019     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1020     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1021       return 0;
1022     SrcReg = TmpReg;
1023   }
1024 
1025   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1026   Address Addr;
1027   Addr.BaseType = Address::FrameIndexBase;
1028   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1029 
1030   // Store the value from the GPR.
1031   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1032     return 0;
1033 
1034   // Load the integer value into an FPR.  The kind of load used depends
1035   // on a number of conditions.
1036   unsigned LoadOpc = PPC::LFD;
1037 
1038   if (SrcVT == MVT::i32) {
1039     if (!IsSigned) {
1040       LoadOpc = PPC::LFIWZX;
1041       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1042     } else if (PPCSubTarget->hasLFIWAX()) {
1043       LoadOpc = PPC::LFIWAX;
1044       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1045     }
1046   }
1047 
1048   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1049   unsigned ResultReg = 0;
1050   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1051     return 0;
1052 
1053   return ResultReg;
1054 }
1055 
1056 // Attempt to fast-select an integer-to-floating-point conversion.
1057 // FIXME: Once fast-isel has better support for VSX, conversions using
1058 //        direct moves should be implemented.
1059 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1060   MVT DstVT;
1061   Type *DstTy = I->getType();
1062   if (!isTypeLegal(DstTy, DstVT))
1063     return false;
1064 
1065   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1066     return false;
1067 
1068   Value *Src = I->getOperand(0);
1069   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1070   if (!SrcEVT.isSimple())
1071     return false;
1072 
1073   MVT SrcVT = SrcEVT.getSimpleVT();
1074 
1075   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1076       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1077     return false;
1078 
1079   unsigned SrcReg = getRegForValue(Src);
1080   if (SrcReg == 0)
1081     return false;
1082 
1083   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1084   if (PPCSubTarget->hasSPE()) {
1085     unsigned Opc;
1086     if (DstVT == MVT::f32)
1087       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1088     else
1089       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1090 
1091     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1092     // Generate the convert.
1093     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1094       .addReg(SrcReg);
1095     updateValueMap(I, DestReg);
1096     return true;
1097   }
1098 
1099   // We can only lower an unsigned convert if we have the newer
1100   // floating-point conversion operations.
1101   if (!IsSigned && !PPCSubTarget->hasFPCVT())
1102     return false;
1103 
1104   // FIXME: For now we require the newer floating-point conversion operations
1105   // (which are present only on P7 and A2 server models) when converting
1106   // to single-precision float.  Otherwise we have to generate a lot of
1107   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1108   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1109   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1110     return false;
1111 
1112   // Extend the input if necessary.
1113   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1114     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1115     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1116       return false;
1117     SrcVT = MVT::i64;
1118     SrcReg = TmpReg;
1119   }
1120 
1121   // Move the integer value to an FPR.
1122   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1123   if (FPReg == 0)
1124     return false;
1125 
1126   // Determine the opcode for the conversion.
1127   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1128   unsigned DestReg = createResultReg(RC);
1129   unsigned Opc;
1130 
1131   if (DstVT == MVT::f32)
1132     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1133   else
1134     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1135 
1136   // Generate the convert.
1137   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1138     .addReg(FPReg);
1139 
1140   updateValueMap(I, DestReg);
1141   return true;
1142 }
1143 
1144 // Move the floating-point value in SrcReg into an integer destination
1145 // register, and return the register (or zero if we can't handle it).
1146 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1147 // those should be used instead of moving via a stack slot when the
1148 // subtarget permits.
1149 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1150                                       unsigned SrcReg, bool IsSigned) {
1151   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1152   // Note that if have STFIWX available, we could use a 4-byte stack
1153   // slot for i32, but this being fast-isel we'll just go with the
1154   // easiest code gen possible.
1155   Address Addr;
1156   Addr.BaseType = Address::FrameIndexBase;
1157   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1158 
1159   // Store the value from the FPR.
1160   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1161     return 0;
1162 
1163   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1164   // address to have a 4-byte offset so we load from the right place.
1165   if (VT == MVT::i32)
1166     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1167 
1168   // Look at the currently assigned register for this instruction
1169   // to determine the required register class.
1170   unsigned AssignedReg = FuncInfo.ValueMap[I];
1171   const TargetRegisterClass *RC =
1172     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1173 
1174   unsigned ResultReg = 0;
1175   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1176     return 0;
1177 
1178   return ResultReg;
1179 }
1180 
1181 // Attempt to fast-select a floating-point-to-integer conversion.
1182 // FIXME: Once fast-isel has better support for VSX, conversions using
1183 //        direct moves should be implemented.
1184 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1185   MVT DstVT, SrcVT;
1186   Type *DstTy = I->getType();
1187   if (!isTypeLegal(DstTy, DstVT))
1188     return false;
1189 
1190   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1191     return false;
1192 
1193   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1194   if (DstVT == MVT::i64 && !IsSigned &&
1195       !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
1196     return false;
1197 
1198   Value *Src = I->getOperand(0);
1199   Type *SrcTy = Src->getType();
1200   if (!isTypeLegal(SrcTy, SrcVT))
1201     return false;
1202 
1203   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1204     return false;
1205 
1206   unsigned SrcReg = getRegForValue(Src);
1207   if (SrcReg == 0)
1208     return false;
1209 
1210   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1211   // to get the register class right.
1212   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1213   if (InRC == &PPC::F4RCRegClass)
1214     SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1215 
1216   // Determine the opcode for the conversion, which takes place
1217   // entirely within FPRs.
1218   unsigned DestReg;
1219   unsigned Opc;
1220 
1221   if (PPCSubTarget->hasSPE()) {
1222     DestReg = createResultReg(&PPC::GPRCRegClass);
1223     if (IsSigned)
1224       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1225     else
1226       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1227   } else {
1228     DestReg = createResultReg(&PPC::F8RCRegClass);
1229     if (DstVT == MVT::i32)
1230       if (IsSigned)
1231         Opc = PPC::FCTIWZ;
1232       else
1233         Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1234     else
1235       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1236   }
1237 
1238   // Generate the convert.
1239   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1240     .addReg(SrcReg);
1241 
1242   // Now move the integer value from a float register to an integer register.
1243   unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
1244     PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1245 
1246   if (IntReg == 0)
1247     return false;
1248 
1249   updateValueMap(I, IntReg);
1250   return true;
1251 }
1252 
1253 // Attempt to fast-select a binary integer operation that isn't already
1254 // handled automatically.
1255 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1256   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1257 
1258   // We can get here in the case when we have a binary operation on a non-legal
1259   // type and the target independent selector doesn't know how to handle it.
1260   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1261     return false;
1262 
1263   // Look at the currently assigned register for this instruction
1264   // to determine the required register class.  If there is no register,
1265   // make a conservative choice (don't assign R0).
1266   unsigned AssignedReg = FuncInfo.ValueMap[I];
1267   const TargetRegisterClass *RC =
1268     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1269      &PPC::GPRC_and_GPRC_NOR0RegClass);
1270   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1271 
1272   unsigned Opc;
1273   switch (ISDOpcode) {
1274     default: return false;
1275     case ISD::ADD:
1276       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1277       break;
1278     case ISD::OR:
1279       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1280       break;
1281     case ISD::SUB:
1282       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1283       break;
1284   }
1285 
1286   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1287   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1288   if (SrcReg1 == 0) return false;
1289 
1290   // Handle case of small immediate operand.
1291   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1292     const APInt &CIVal = ConstInt->getValue();
1293     int Imm = (int)CIVal.getSExtValue();
1294     bool UseImm = true;
1295     if (isInt<16>(Imm)) {
1296       switch (Opc) {
1297         default:
1298           llvm_unreachable("Missing case!");
1299         case PPC::ADD4:
1300           Opc = PPC::ADDI;
1301           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1302           break;
1303         case PPC::ADD8:
1304           Opc = PPC::ADDI8;
1305           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1306           break;
1307         case PPC::OR:
1308           Opc = PPC::ORI;
1309           break;
1310         case PPC::OR8:
1311           Opc = PPC::ORI8;
1312           break;
1313         case PPC::SUBF:
1314           if (Imm == -32768)
1315             UseImm = false;
1316           else {
1317             Opc = PPC::ADDI;
1318             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1319             Imm = -Imm;
1320           }
1321           break;
1322         case PPC::SUBF8:
1323           if (Imm == -32768)
1324             UseImm = false;
1325           else {
1326             Opc = PPC::ADDI8;
1327             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1328             Imm = -Imm;
1329           }
1330           break;
1331       }
1332 
1333       if (UseImm) {
1334         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1335                 ResultReg)
1336             .addReg(SrcReg1)
1337             .addImm(Imm);
1338         updateValueMap(I, ResultReg);
1339         return true;
1340       }
1341     }
1342   }
1343 
1344   // Reg-reg case.
1345   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1346   if (SrcReg2 == 0) return false;
1347 
1348   // Reverse operands for subtract-from.
1349   if (ISDOpcode == ISD::SUB)
1350     std::swap(SrcReg1, SrcReg2);
1351 
1352   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1353     .addReg(SrcReg1).addReg(SrcReg2);
1354   updateValueMap(I, ResultReg);
1355   return true;
1356 }
1357 
1358 // Handle arguments to a call that we're attempting to fast-select.
1359 // Return false if the arguments are too complex for us at the moment.
1360 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1361                                   SmallVectorImpl<unsigned> &ArgRegs,
1362                                   SmallVectorImpl<MVT> &ArgVTs,
1363                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1364                                   SmallVectorImpl<unsigned> &RegArgs,
1365                                   CallingConv::ID CC,
1366                                   unsigned &NumBytes,
1367                                   bool IsVarArg) {
1368   SmallVector<CCValAssign, 16> ArgLocs;
1369   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1370 
1371   // Reserve space for the linkage area on the stack.
1372   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1373   CCInfo.AllocateStack(LinkageSize, 8);
1374 
1375   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1376 
1377   // Bail out if we can't handle any of the arguments.
1378   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1379     CCValAssign &VA = ArgLocs[I];
1380     MVT ArgVT = ArgVTs[VA.getValNo()];
1381 
1382     // Skip vector arguments for now, as well as long double and
1383     // uint128_t, and anything that isn't passed in a register.
1384     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1385         !VA.isRegLoc() || VA.needsCustom())
1386       return false;
1387 
1388     // Skip bit-converted arguments for now.
1389     if (VA.getLocInfo() == CCValAssign::BCvt)
1390       return false;
1391   }
1392 
1393   // Get a count of how many bytes are to be pushed onto the stack.
1394   NumBytes = CCInfo.getNextStackOffset();
1395 
1396   // The prolog code of the callee may store up to 8 GPR argument registers to
1397   // the stack, allowing va_start to index over them in memory if its varargs.
1398   // Because we cannot tell if this is needed on the caller side, we have to
1399   // conservatively assume that it is needed.  As such, make sure we have at
1400   // least enough stack space for the caller to store the 8 GPRs.
1401   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1402   NumBytes = std::max(NumBytes, LinkageSize + 64);
1403 
1404   // Issue CALLSEQ_START.
1405   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1406           TII.get(TII.getCallFrameSetupOpcode()))
1407     .addImm(NumBytes).addImm(0);
1408 
1409   // Prepare to assign register arguments.  Every argument uses up a
1410   // GPR protocol register even if it's passed in a floating-point
1411   // register (unless we're using the fast calling convention).
1412   unsigned NextGPR = PPC::X3;
1413   unsigned NextFPR = PPC::F1;
1414 
1415   // Process arguments.
1416   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1417     CCValAssign &VA = ArgLocs[I];
1418     unsigned Arg = ArgRegs[VA.getValNo()];
1419     MVT ArgVT = ArgVTs[VA.getValNo()];
1420 
1421     // Handle argument promotion and bitcasts.
1422     switch (VA.getLocInfo()) {
1423       default:
1424         llvm_unreachable("Unknown loc info!");
1425       case CCValAssign::Full:
1426         break;
1427       case CCValAssign::SExt: {
1428         MVT DestVT = VA.getLocVT();
1429         const TargetRegisterClass *RC =
1430           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1431         unsigned TmpReg = createResultReg(RC);
1432         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1433           llvm_unreachable("Failed to emit a sext!");
1434         ArgVT = DestVT;
1435         Arg = TmpReg;
1436         break;
1437       }
1438       case CCValAssign::AExt:
1439       case CCValAssign::ZExt: {
1440         MVT DestVT = VA.getLocVT();
1441         const TargetRegisterClass *RC =
1442           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1443         unsigned TmpReg = createResultReg(RC);
1444         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1445           llvm_unreachable("Failed to emit a zext!");
1446         ArgVT = DestVT;
1447         Arg = TmpReg;
1448         break;
1449       }
1450       case CCValAssign::BCvt: {
1451         // FIXME: Not yet handled.
1452         llvm_unreachable("Should have bailed before getting here!");
1453         break;
1454       }
1455     }
1456 
1457     // Copy this argument to the appropriate register.
1458     unsigned ArgReg;
1459     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1460       ArgReg = NextFPR++;
1461       if (CC != CallingConv::Fast)
1462         ++NextGPR;
1463     } else
1464       ArgReg = NextGPR++;
1465 
1466     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1467             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1468     RegArgs.push_back(ArgReg);
1469   }
1470 
1471   return true;
1472 }
1473 
1474 // For a call that we've determined we can fast-select, finish the
1475 // call sequence and generate a copy to obtain the return value (if any).
1476 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1477   CallingConv::ID CC = CLI.CallConv;
1478 
1479   // Issue CallSEQ_END.
1480   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1481           TII.get(TII.getCallFrameDestroyOpcode()))
1482     .addImm(NumBytes).addImm(0);
1483 
1484   // Next, generate a copy to obtain the return value.
1485   // FIXME: No multi-register return values yet, though I don't foresee
1486   // any real difficulties there.
1487   if (RetVT != MVT::isVoid) {
1488     SmallVector<CCValAssign, 16> RVLocs;
1489     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1490     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1491     CCValAssign &VA = RVLocs[0];
1492     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1493     assert(VA.isRegLoc() && "Can only return in registers!");
1494 
1495     MVT DestVT = VA.getValVT();
1496     MVT CopyVT = DestVT;
1497 
1498     // Ints smaller than a register still arrive in a full 64-bit
1499     // register, so make sure we recognize this.
1500     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1501       CopyVT = MVT::i64;
1502 
1503     unsigned SourcePhysReg = VA.getLocReg();
1504     unsigned ResultReg = 0;
1505 
1506     if (RetVT == CopyVT) {
1507       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1508       ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1509 
1510     // If necessary, round the floating result to single precision.
1511     } else if (CopyVT == MVT::f64) {
1512       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1513       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1514               ResultReg).addReg(SourcePhysReg);
1515 
1516     // If only the low half of a general register is needed, generate
1517     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1518     // used along the fast-isel path (not lowered), and downstream logic
1519     // also doesn't like a direct subreg copy on a physical reg.)
1520     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1521       // Convert physical register from G8RC to GPRC.
1522       SourcePhysReg -= PPC::X0 - PPC::R0;
1523       ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1524     }
1525 
1526     assert(ResultReg && "ResultReg unset!");
1527     CLI.InRegs.push_back(SourcePhysReg);
1528     CLI.ResultReg = ResultReg;
1529     CLI.NumResultRegs = 1;
1530   }
1531 
1532   return true;
1533 }
1534 
1535 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1536   CallingConv::ID CC  = CLI.CallConv;
1537   bool IsTailCall     = CLI.IsTailCall;
1538   bool IsVarArg       = CLI.IsVarArg;
1539   const Value *Callee = CLI.Callee;
1540   const MCSymbol *Symbol = CLI.Symbol;
1541 
1542   if (!Callee && !Symbol)
1543     return false;
1544 
1545   // Allow SelectionDAG isel to handle tail calls.
1546   if (IsTailCall)
1547     return false;
1548 
1549   // Let SDISel handle vararg functions.
1550   if (IsVarArg)
1551     return false;
1552 
1553   // Handle simple calls for now, with legal return types and
1554   // those that can be extended.
1555   Type *RetTy = CLI.RetTy;
1556   MVT RetVT;
1557   if (RetTy->isVoidTy())
1558     RetVT = MVT::isVoid;
1559   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1560            RetVT != MVT::i8)
1561     return false;
1562   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1563     // We can't handle boolean returns when CR bits are in use.
1564     return false;
1565 
1566   // FIXME: No multi-register return values yet.
1567   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1568       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1569       RetVT != MVT::f64) {
1570     SmallVector<CCValAssign, 16> RVLocs;
1571     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1572     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1573     if (RVLocs.size() > 1)
1574       return false;
1575   }
1576 
1577   // Bail early if more than 8 arguments, as we only currently
1578   // handle arguments passed in registers.
1579   unsigned NumArgs = CLI.OutVals.size();
1580   if (NumArgs > 8)
1581     return false;
1582 
1583   // Set up the argument vectors.
1584   SmallVector<Value*, 8> Args;
1585   SmallVector<unsigned, 8> ArgRegs;
1586   SmallVector<MVT, 8> ArgVTs;
1587   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1588 
1589   Args.reserve(NumArgs);
1590   ArgRegs.reserve(NumArgs);
1591   ArgVTs.reserve(NumArgs);
1592   ArgFlags.reserve(NumArgs);
1593 
1594   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1595     // Only handle easy calls for now.  It would be reasonably easy
1596     // to handle <= 8-byte structures passed ByVal in registers, but we
1597     // have to ensure they are right-justified in the register.
1598     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1599     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1600       return false;
1601 
1602     Value *ArgValue = CLI.OutVals[i];
1603     Type *ArgTy = ArgValue->getType();
1604     MVT ArgVT;
1605     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1606       return false;
1607 
1608     if (ArgVT.isVector())
1609       return false;
1610 
1611     unsigned Arg = getRegForValue(ArgValue);
1612     if (Arg == 0)
1613       return false;
1614 
1615     Args.push_back(ArgValue);
1616     ArgRegs.push_back(Arg);
1617     ArgVTs.push_back(ArgVT);
1618     ArgFlags.push_back(Flags);
1619   }
1620 
1621   // Process the arguments.
1622   SmallVector<unsigned, 8> RegArgs;
1623   unsigned NumBytes;
1624 
1625   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1626                        RegArgs, CC, NumBytes, IsVarArg))
1627     return false;
1628 
1629   MachineInstrBuilder MIB;
1630   // FIXME: No handling for function pointers yet.  This requires
1631   // implementing the function descriptor (OPD) setup.
1632   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1633   if (!GV) {
1634     // patchpoints are a special case; they always dispatch to a pointer value.
1635     // However, we don't actually want to generate the indirect call sequence
1636     // here (that will be generated, as necessary, during asm printing), and
1637     // the call we generate here will be erased by FastISel::selectPatchpoint,
1638     // so don't try very hard...
1639     if (CLI.IsPatchPoint)
1640       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1641     else
1642       return false;
1643   } else {
1644     // Build direct call with NOP for TOC restore.
1645     // FIXME: We can and should optimize away the NOP for local calls.
1646     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1647                   TII.get(PPC::BL8_NOP));
1648     // Add callee.
1649     MIB.addGlobalAddress(GV);
1650   }
1651 
1652   // Add implicit physical register uses to the call.
1653   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1654     MIB.addReg(RegArgs[II], RegState::Implicit);
1655 
1656   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1657   // into the call.
1658   PPCFuncInfo->setUsesTOCBasePtr();
1659   MIB.addReg(PPC::X2, RegState::Implicit);
1660 
1661   // Add a register mask with the call-preserved registers.  Proper
1662   // defs for return values will be added by setPhysRegsDeadExcept().
1663   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1664 
1665   CLI.Call = MIB;
1666 
1667   // Finish off the call including any return values.
1668   return finishCall(RetVT, CLI, NumBytes);
1669 }
1670 
1671 // Attempt to fast-select a return instruction.
1672 bool PPCFastISel::SelectRet(const Instruction *I) {
1673 
1674   if (!FuncInfo.CanLowerReturn)
1675     return false;
1676 
1677   if (TLI.supportSplitCSR(FuncInfo.MF))
1678     return false;
1679 
1680   const ReturnInst *Ret = cast<ReturnInst>(I);
1681   const Function &F = *I->getParent()->getParent();
1682 
1683   // Build a list of return value registers.
1684   SmallVector<unsigned, 4> RetRegs;
1685   CallingConv::ID CC = F.getCallingConv();
1686 
1687   if (Ret->getNumOperands() > 0) {
1688     SmallVector<ISD::OutputArg, 4> Outs;
1689     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1690 
1691     // Analyze operands of the call, assigning locations to each operand.
1692     SmallVector<CCValAssign, 16> ValLocs;
1693     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1694     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1695     const Value *RV = Ret->getOperand(0);
1696 
1697     // FIXME: Only one output register for now.
1698     if (ValLocs.size() > 1)
1699       return false;
1700 
1701     // Special case for returning a constant integer of any size - materialize
1702     // the constant as an i64 and copy it to the return register.
1703     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1704       CCValAssign &VA = ValLocs[0];
1705 
1706       unsigned RetReg = VA.getLocReg();
1707       // We still need to worry about properly extending the sign. For example,
1708       // we could have only a single bit or a constant that needs zero
1709       // extension rather than sign extension. Make sure we pass the return
1710       // value extension property to integer materialization.
1711       unsigned SrcReg =
1712           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1713 
1714       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1715             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1716 
1717       RetRegs.push_back(RetReg);
1718 
1719     } else {
1720       unsigned Reg = getRegForValue(RV);
1721 
1722       if (Reg == 0)
1723         return false;
1724 
1725       // Copy the result values into the output registers.
1726       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1727 
1728         CCValAssign &VA = ValLocs[i];
1729         assert(VA.isRegLoc() && "Can only return in registers!");
1730         RetRegs.push_back(VA.getLocReg());
1731         unsigned SrcReg = Reg + VA.getValNo();
1732 
1733         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1734         if (!RVEVT.isSimple())
1735           return false;
1736         MVT RVVT = RVEVT.getSimpleVT();
1737         MVT DestVT = VA.getLocVT();
1738 
1739         if (RVVT != DestVT && RVVT != MVT::i8 &&
1740             RVVT != MVT::i16 && RVVT != MVT::i32)
1741           return false;
1742 
1743         if (RVVT != DestVT) {
1744           switch (VA.getLocInfo()) {
1745             default:
1746               llvm_unreachable("Unknown loc info!");
1747             case CCValAssign::Full:
1748               llvm_unreachable("Full value assign but types don't match?");
1749             case CCValAssign::AExt:
1750             case CCValAssign::ZExt: {
1751               const TargetRegisterClass *RC =
1752                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1753               unsigned TmpReg = createResultReg(RC);
1754               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1755                 return false;
1756               SrcReg = TmpReg;
1757               break;
1758             }
1759             case CCValAssign::SExt: {
1760               const TargetRegisterClass *RC =
1761                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1762               unsigned TmpReg = createResultReg(RC);
1763               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1764                 return false;
1765               SrcReg = TmpReg;
1766               break;
1767             }
1768           }
1769         }
1770 
1771         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1772                 TII.get(TargetOpcode::COPY), RetRegs[i])
1773           .addReg(SrcReg);
1774       }
1775     }
1776   }
1777 
1778   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1779                                     TII.get(PPC::BLR8));
1780 
1781   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1782     MIB.addReg(RetRegs[i], RegState::Implicit);
1783 
1784   return true;
1785 }
1786 
1787 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1788 // signed and zero extensions are supported.  Return false if we
1789 // can't handle it.
1790 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1791                                 unsigned DestReg, bool IsZExt) {
1792   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1793     return false;
1794   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1795     return false;
1796 
1797   // Signed extensions use EXTSB, EXTSH, EXTSW.
1798   if (!IsZExt) {
1799     unsigned Opc;
1800     if (SrcVT == MVT::i8)
1801       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1802     else if (SrcVT == MVT::i16)
1803       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1804     else {
1805       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1806       Opc = PPC::EXTSW_32_64;
1807     }
1808     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1809       .addReg(SrcReg);
1810 
1811   // Unsigned 32-bit extensions use RLWINM.
1812   } else if (DestVT == MVT::i32) {
1813     unsigned MB;
1814     if (SrcVT == MVT::i8)
1815       MB = 24;
1816     else {
1817       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1818       MB = 16;
1819     }
1820     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1821             DestReg)
1822       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1823 
1824   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1825   } else {
1826     unsigned MB;
1827     if (SrcVT == MVT::i8)
1828       MB = 56;
1829     else if (SrcVT == MVT::i16)
1830       MB = 48;
1831     else
1832       MB = 32;
1833     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1834             TII.get(PPC::RLDICL_32_64), DestReg)
1835       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1836   }
1837 
1838   return true;
1839 }
1840 
1841 // Attempt to fast-select an indirect branch instruction.
1842 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1843   unsigned AddrReg = getRegForValue(I->getOperand(0));
1844   if (AddrReg == 0)
1845     return false;
1846 
1847   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1848     .addReg(AddrReg);
1849   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1850 
1851   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1852   for (const BasicBlock *SuccBB : IB->successors())
1853     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1854 
1855   return true;
1856 }
1857 
1858 // Attempt to fast-select an integer truncate instruction.
1859 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1860   Value *Src  = I->getOperand(0);
1861   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1862   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1863 
1864   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1865     return false;
1866 
1867   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1868     return false;
1869 
1870   unsigned SrcReg = getRegForValue(Src);
1871   if (!SrcReg)
1872     return false;
1873 
1874   // The only interesting case is when we need to switch register classes.
1875   if (SrcVT == MVT::i64)
1876     SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1877 
1878   updateValueMap(I, SrcReg);
1879   return true;
1880 }
1881 
1882 // Attempt to fast-select an integer extend instruction.
1883 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1884   Type *DestTy = I->getType();
1885   Value *Src = I->getOperand(0);
1886   Type *SrcTy = Src->getType();
1887 
1888   bool IsZExt = isa<ZExtInst>(I);
1889   unsigned SrcReg = getRegForValue(Src);
1890   if (!SrcReg) return false;
1891 
1892   EVT SrcEVT, DestEVT;
1893   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1894   DestEVT = TLI.getValueType(DL, DestTy, true);
1895   if (!SrcEVT.isSimple())
1896     return false;
1897   if (!DestEVT.isSimple())
1898     return false;
1899 
1900   MVT SrcVT = SrcEVT.getSimpleVT();
1901   MVT DestVT = DestEVT.getSimpleVT();
1902 
1903   // If we know the register class needed for the result of this
1904   // instruction, use it.  Otherwise pick the register class of the
1905   // correct size that does not contain X0/R0, since we don't know
1906   // whether downstream uses permit that assignment.
1907   unsigned AssignedReg = FuncInfo.ValueMap[I];
1908   const TargetRegisterClass *RC =
1909     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1910      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1911       &PPC::GPRC_and_GPRC_NOR0RegClass));
1912   unsigned ResultReg = createResultReg(RC);
1913 
1914   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1915     return false;
1916 
1917   updateValueMap(I, ResultReg);
1918   return true;
1919 }
1920 
1921 // Attempt to fast-select an instruction that wasn't handled by
1922 // the table-generated machinery.
1923 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1924 
1925   switch (I->getOpcode()) {
1926     case Instruction::Load:
1927       return SelectLoad(I);
1928     case Instruction::Store:
1929       return SelectStore(I);
1930     case Instruction::Br:
1931       return SelectBranch(I);
1932     case Instruction::IndirectBr:
1933       return SelectIndirectBr(I);
1934     case Instruction::FPExt:
1935       return SelectFPExt(I);
1936     case Instruction::FPTrunc:
1937       return SelectFPTrunc(I);
1938     case Instruction::SIToFP:
1939       return SelectIToFP(I, /*IsSigned*/ true);
1940     case Instruction::UIToFP:
1941       return SelectIToFP(I, /*IsSigned*/ false);
1942     case Instruction::FPToSI:
1943       return SelectFPToI(I, /*IsSigned*/ true);
1944     case Instruction::FPToUI:
1945       return SelectFPToI(I, /*IsSigned*/ false);
1946     case Instruction::Add:
1947       return SelectBinaryIntOp(I, ISD::ADD);
1948     case Instruction::Or:
1949       return SelectBinaryIntOp(I, ISD::OR);
1950     case Instruction::Sub:
1951       return SelectBinaryIntOp(I, ISD::SUB);
1952     case Instruction::Call:
1953       return selectCall(I);
1954     case Instruction::Ret:
1955       return SelectRet(I);
1956     case Instruction::Trunc:
1957       return SelectTrunc(I);
1958     case Instruction::ZExt:
1959     case Instruction::SExt:
1960       return SelectIntExt(I);
1961     // Here add other flavors of Instruction::XXX that automated
1962     // cases don't catch.  For example, switches are terminators
1963     // that aren't yet handled.
1964     default:
1965       break;
1966   }
1967   return false;
1968 }
1969 
1970 // Materialize a floating-point constant into a register, and return
1971 // the register number (or zero if we failed to handle it).
1972 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1973   // No plans to handle long double here.
1974   if (VT != MVT::f32 && VT != MVT::f64)
1975     return 0;
1976 
1977   // All FP constants are loaded from the constant pool.
1978   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1979   assert(Align > 0 && "Unexpectedly missing alignment information!");
1980   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1981   const bool HasSPE = PPCSubTarget->hasSPE();
1982   const TargetRegisterClass *RC;
1983   if (HasSPE)
1984     RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
1985   else
1986     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
1987 
1988   unsigned DestReg = createResultReg(RC);
1989   CodeModel::Model CModel = TM.getCodeModel();
1990 
1991   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1992       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1993       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1994 
1995   unsigned Opc;
1996 
1997   if (HasSPE)
1998     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
1999   else
2000     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2001 
2002   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2003 
2004   PPCFuncInfo->setUsesTOCBasePtr();
2005   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2006   if (CModel == CodeModel::Small) {
2007     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2008             TmpReg)
2009       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2010     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2011       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2012   } else {
2013     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2014     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2015             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2016     // But for large code model, we must generate a LDtocL followed
2017     // by the LF[SD].
2018     if (CModel == CodeModel::Large) {
2019       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2020       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2021               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2022       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2023           .addImm(0)
2024           .addReg(TmpReg2);
2025     } else
2026       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2027         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2028         .addReg(TmpReg)
2029         .addMemOperand(MMO);
2030   }
2031 
2032   return DestReg;
2033 }
2034 
2035 // Materialize the address of a global value into a register, and return
2036 // the register number (or zero if we failed to handle it).
2037 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2038   assert(VT == MVT::i64 && "Non-address!");
2039   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2040   unsigned DestReg = createResultReg(RC);
2041 
2042   // Global values may be plain old object addresses, TLS object
2043   // addresses, constant pool entries, or jump tables.  How we generate
2044   // code for these may depend on small, medium, or large code model.
2045   CodeModel::Model CModel = TM.getCodeModel();
2046 
2047   // FIXME: Jump tables are not yet required because fast-isel doesn't
2048   // handle switches; if that changes, we need them as well.  For now,
2049   // what follows assumes everything's a generic (or TLS) global address.
2050 
2051   // FIXME: We don't yet handle the complexity of TLS.
2052   if (GV->isThreadLocal())
2053     return 0;
2054 
2055   PPCFuncInfo->setUsesTOCBasePtr();
2056   // For small code model, generate a simple TOC load.
2057   if (CModel == CodeModel::Small)
2058     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2059             DestReg)
2060         .addGlobalAddress(GV)
2061         .addReg(PPC::X2);
2062   else {
2063     // If the address is an externally defined symbol, a symbol with common
2064     // or externally available linkage, a non-local function address, or a
2065     // jump table address (not yet needed), or if we are generating code
2066     // for large code model, we generate:
2067     //       LDtocL(GV, ADDIStocHA(%x2, GV))
2068     // Otherwise we generate:
2069     //       ADDItocL(ADDIStocHA(%x2, GV), GV)
2070     // Either way, start with the ADDIStocHA:
2071     unsigned HighPartReg = createResultReg(RC);
2072     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2073             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2074 
2075     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2076     if (GVFlags & PPCII::MO_NLP_FLAG) {
2077       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2078               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2079     } else {
2080       // Otherwise generate the ADDItocL.
2081       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2082               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2083     }
2084   }
2085 
2086   return DestReg;
2087 }
2088 
2089 // Materialize a 32-bit integer constant into a register, and return
2090 // the register number (or zero if we failed to handle it).
2091 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2092                                              const TargetRegisterClass *RC) {
2093   unsigned Lo = Imm & 0xFFFF;
2094   unsigned Hi = (Imm >> 16) & 0xFFFF;
2095 
2096   unsigned ResultReg = createResultReg(RC);
2097   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2098 
2099   if (isInt<16>(Imm))
2100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2101             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2102       .addImm(Imm);
2103   else if (Lo) {
2104     // Both Lo and Hi have nonzero bits.
2105     unsigned TmpReg = createResultReg(RC);
2106     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2107             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2108       .addImm(Hi);
2109     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2110             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2111       .addReg(TmpReg).addImm(Lo);
2112   } else
2113     // Just Hi bits.
2114     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2115             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2116         .addImm(Hi);
2117 
2118   return ResultReg;
2119 }
2120 
2121 // Materialize a 64-bit integer constant into a register, and return
2122 // the register number (or zero if we failed to handle it).
2123 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2124                                              const TargetRegisterClass *RC) {
2125   unsigned Remainder = 0;
2126   unsigned Shift = 0;
2127 
2128   // If the value doesn't fit in 32 bits, see if we can shift it
2129   // so that it fits in 32 bits.
2130   if (!isInt<32>(Imm)) {
2131     Shift = countTrailingZeros<uint64_t>(Imm);
2132     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2133 
2134     if (isInt<32>(ImmSh))
2135       Imm = ImmSh;
2136     else {
2137       Remainder = Imm;
2138       Shift = 32;
2139       Imm >>= 32;
2140     }
2141   }
2142 
2143   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2144   // (if not shifted).
2145   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2146   if (!Shift)
2147     return TmpReg1;
2148 
2149   // If upper 32 bits were not zero, we've built them and need to shift
2150   // them into place.
2151   unsigned TmpReg2;
2152   if (Imm) {
2153     TmpReg2 = createResultReg(RC);
2154     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2155             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2156   } else
2157     TmpReg2 = TmpReg1;
2158 
2159   unsigned TmpReg3, Hi, Lo;
2160   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2161     TmpReg3 = createResultReg(RC);
2162     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2163             TmpReg3).addReg(TmpReg2).addImm(Hi);
2164   } else
2165     TmpReg3 = TmpReg2;
2166 
2167   if ((Lo = Remainder & 0xFFFF)) {
2168     unsigned ResultReg = createResultReg(RC);
2169     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2170             ResultReg).addReg(TmpReg3).addImm(Lo);
2171     return ResultReg;
2172   }
2173 
2174   return TmpReg3;
2175 }
2176 
2177 // Materialize an integer constant into a register, and return
2178 // the register number (or zero if we failed to handle it).
2179 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2180                                         bool UseSExt) {
2181   // If we're using CR bit registers for i1 values, handle that as a special
2182   // case first.
2183   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2184     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2185     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2186             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2187     return ImmReg;
2188   }
2189 
2190   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2191       VT != MVT::i1)
2192     return 0;
2193 
2194   const TargetRegisterClass *RC =
2195       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2196   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2197 
2198   // If the constant is in range, use a load-immediate.
2199   // Since LI will sign extend the constant we need to make sure that for
2200   // our zeroext constants that the sign extended constant fits into 16-bits -
2201   // a range of 0..0x7fff.
2202   if (isInt<16>(Imm)) {
2203     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2204     unsigned ImmReg = createResultReg(RC);
2205     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2206         .addImm(Imm);
2207     return ImmReg;
2208   }
2209 
2210   // Construct the constant piecewise.
2211   if (VT == MVT::i64)
2212     return PPCMaterialize64BitInt(Imm, RC);
2213   else if (VT == MVT::i32)
2214     return PPCMaterialize32BitInt(Imm, RC);
2215 
2216   return 0;
2217 }
2218 
2219 // Materialize a constant into a register, and return the register
2220 // number (or zero if we failed to handle it).
2221 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2222   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2223 
2224   // Only handle simple types.
2225   if (!CEVT.isSimple()) return 0;
2226   MVT VT = CEVT.getSimpleVT();
2227 
2228   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2229     return PPCMaterializeFP(CFP, VT);
2230   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2231     return PPCMaterializeGV(GV, VT);
2232   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2233     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2234     // assumes that constant PHI operands will be zero extended, and failure to
2235     // match that assumption will cause problems if we sign extend here but
2236     // some user of a PHI is in a block for which we fall back to full SDAG
2237     // instruction selection.
2238     return PPCMaterializeInt(CI, VT, false);
2239 
2240   return 0;
2241 }
2242 
2243 // Materialize the address created by an alloca into a register, and
2244 // return the register number (or zero if we failed to handle it).
2245 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2246   // Don't handle dynamic allocas.
2247   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2248 
2249   MVT VT;
2250   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2251 
2252   DenseMap<const AllocaInst*, int>::iterator SI =
2253     FuncInfo.StaticAllocaMap.find(AI);
2254 
2255   if (SI != FuncInfo.StaticAllocaMap.end()) {
2256     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2257     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2258             ResultReg).addFrameIndex(SI->second).addImm(0);
2259     return ResultReg;
2260   }
2261 
2262   return 0;
2263 }
2264 
2265 // Fold loads into extends when possible.
2266 // FIXME: We can have multiple redundant extend/trunc instructions
2267 // following a load.  The folding only picks up one.  Extend this
2268 // to check subsequent instructions for the same pattern and remove
2269 // them.  Thus ResultReg should be the def reg for the last redundant
2270 // instruction in a chain, and all intervening instructions can be
2271 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2272 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2273 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2274                                       const LoadInst *LI) {
2275   // Verify we have a legal type before going any further.
2276   MVT VT;
2277   if (!isLoadTypeLegal(LI->getType(), VT))
2278     return false;
2279 
2280   // Combine load followed by zero- or sign-extend.
2281   bool IsZExt = false;
2282   switch(MI->getOpcode()) {
2283     default:
2284       return false;
2285 
2286     case PPC::RLDICL:
2287     case PPC::RLDICL_32_64: {
2288       IsZExt = true;
2289       unsigned MB = MI->getOperand(3).getImm();
2290       if ((VT == MVT::i8 && MB <= 56) ||
2291           (VT == MVT::i16 && MB <= 48) ||
2292           (VT == MVT::i32 && MB <= 32))
2293         break;
2294       return false;
2295     }
2296 
2297     case PPC::RLWINM:
2298     case PPC::RLWINM8: {
2299       IsZExt = true;
2300       unsigned MB = MI->getOperand(3).getImm();
2301       if ((VT == MVT::i8 && MB <= 24) ||
2302           (VT == MVT::i16 && MB <= 16))
2303         break;
2304       return false;
2305     }
2306 
2307     case PPC::EXTSB:
2308     case PPC::EXTSB8:
2309     case PPC::EXTSB8_32_64:
2310       /* There is no sign-extending load-byte instruction. */
2311       return false;
2312 
2313     case PPC::EXTSH:
2314     case PPC::EXTSH8:
2315     case PPC::EXTSH8_32_64: {
2316       if (VT != MVT::i16 && VT != MVT::i8)
2317         return false;
2318       break;
2319     }
2320 
2321     case PPC::EXTSW:
2322     case PPC::EXTSW_32:
2323     case PPC::EXTSW_32_64: {
2324       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2325         return false;
2326       break;
2327     }
2328   }
2329 
2330   // See if we can handle this address.
2331   Address Addr;
2332   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2333     return false;
2334 
2335   unsigned ResultReg = MI->getOperand(0).getReg();
2336 
2337   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2338         PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2339     return false;
2340 
2341   MachineBasicBlock::iterator I(MI);
2342   removeDeadCode(I, std::next(I));
2343   return true;
2344 }
2345 
2346 // Attempt to lower call arguments in a faster way than done by
2347 // the selection DAG code.
2348 bool PPCFastISel::fastLowerArguments() {
2349   // Defer to normal argument lowering for now.  It's reasonably
2350   // efficient.  Consider doing something like ARM to handle the
2351   // case where all args fit in registers, no varargs, no float
2352   // or vector args.
2353   return false;
2354 }
2355 
2356 // Handle materializing integer constants into a register.  This is not
2357 // automatically generated for PowerPC, so must be explicitly created here.
2358 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2359 
2360   if (Opc != ISD::Constant)
2361     return 0;
2362 
2363   // If we're using CR bit registers for i1 values, handle that as a special
2364   // case first.
2365   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2366     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2367     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2368             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2369     return ImmReg;
2370   }
2371 
2372   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2373       VT != MVT::i1)
2374     return 0;
2375 
2376   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2377                                    &PPC::GPRCRegClass);
2378   if (VT == MVT::i64)
2379     return PPCMaterialize64BitInt(Imm, RC);
2380   else
2381     return PPCMaterialize32BitInt(Imm, RC);
2382 }
2383 
2384 // Override for ADDI and ADDI8 to set the correct register class
2385 // on RHS operand 0.  The automatic infrastructure naively assumes
2386 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2387 // for these cases.  At the moment, none of the other automatically
2388 // generated RI instructions require special treatment.  However, once
2389 // SelectSelect is implemented, "isel" requires similar handling.
2390 //
2391 // Also be conservative about the output register class.  Avoid
2392 // assigning R0 or X0 to the output register for GPRC and G8RC
2393 // register classes, as any such result could be used in ADDI, etc.,
2394 // where those regs have another meaning.
2395 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2396                                       const TargetRegisterClass *RC,
2397                                       unsigned Op0, bool Op0IsKill,
2398                                       uint64_t Imm) {
2399   if (MachineInstOpcode == PPC::ADDI)
2400     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2401   else if (MachineInstOpcode == PPC::ADDI8)
2402     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2403 
2404   const TargetRegisterClass *UseRC =
2405     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2406      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2407 
2408   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2409                                    Op0, Op0IsKill, Imm);
2410 }
2411 
2412 // Override for instructions with one register operand to avoid use of
2413 // R0/X0.  The automatic infrastructure isn't aware of the context so
2414 // we must be conservative.
2415 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2416                                      const TargetRegisterClass* RC,
2417                                      unsigned Op0, bool Op0IsKill) {
2418   const TargetRegisterClass *UseRC =
2419     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2420      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2421 
2422   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2423 }
2424 
2425 // Override for instructions with two register operands to avoid use
2426 // of R0/X0.  The automatic infrastructure isn't aware of the context
2427 // so we must be conservative.
2428 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2429                                       const TargetRegisterClass* RC,
2430                                       unsigned Op0, bool Op0IsKill,
2431                                       unsigned Op1, bool Op1IsKill) {
2432   const TargetRegisterClass *UseRC =
2433     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2434      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2435 
2436   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2437                                    Op1, Op1IsKill);
2438 }
2439 
2440 namespace llvm {
2441   // Create the fast instruction selector for PowerPC64 ELF.
2442   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2443                                 const TargetLibraryInfo *LibInfo) {
2444     // Only available on 64-bit ELF for now.
2445     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2446     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2447       return new PPCFastISel(FuncInfo, LibInfo);
2448     return nullptr;
2449   }
2450 }
2451