1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 168 unsigned PPCMaterialize32BitInt(int64_t Imm, 169 const TargetRegisterClass *RC); 170 unsigned PPCMaterialize64BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 173 unsigned SrcReg, bool IsSigned); 174 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 175 176 // Call handling routines. 177 private: 178 bool processCallArgs(SmallVectorImpl<Value*> &Args, 179 SmallVectorImpl<unsigned> &ArgRegs, 180 SmallVectorImpl<MVT> &ArgVTs, 181 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 182 SmallVectorImpl<unsigned> &RegArgs, 183 CallingConv::ID CC, 184 unsigned &NumBytes, 185 bool IsVarArg); 186 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 187 CCAssignFn *usePPC32CCs(unsigned Flag); 188 189 private: 190 #include "PPCGenFastISel.inc" 191 192 }; 193 194 } // end anonymous namespace 195 196 #include "PPCGenCallingConv.inc" 197 198 // Function whose sole purpose is to kill compiler warnings 199 // stemming from unused functions included from PPCGenCallingConv.inc. 200 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 201 if (Flag == 1) 202 return CC_PPC32_SVR4; 203 else if (Flag == 2) 204 return CC_PPC32_SVR4_ByVal; 205 else if (Flag == 3) 206 return CC_PPC32_SVR4_VarArg; 207 else 208 return RetCC_PPC; 209 } 210 211 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 212 switch (Pred) { 213 // These are not representable with any single compare. 214 case CmpInst::FCMP_FALSE: 215 case CmpInst::FCMP_UEQ: 216 case CmpInst::FCMP_UGT: 217 case CmpInst::FCMP_UGE: 218 case CmpInst::FCMP_ULT: 219 case CmpInst::FCMP_ULE: 220 case CmpInst::FCMP_UNE: 221 case CmpInst::FCMP_TRUE: 222 default: 223 return Optional<PPC::Predicate>(); 224 225 case CmpInst::FCMP_OEQ: 226 case CmpInst::ICMP_EQ: 227 return PPC::PRED_EQ; 228 229 case CmpInst::FCMP_OGT: 230 case CmpInst::ICMP_UGT: 231 case CmpInst::ICMP_SGT: 232 return PPC::PRED_GT; 233 234 case CmpInst::FCMP_OGE: 235 case CmpInst::ICMP_UGE: 236 case CmpInst::ICMP_SGE: 237 return PPC::PRED_GE; 238 239 case CmpInst::FCMP_OLT: 240 case CmpInst::ICMP_ULT: 241 case CmpInst::ICMP_SLT: 242 return PPC::PRED_LT; 243 244 case CmpInst::FCMP_OLE: 245 case CmpInst::ICMP_ULE: 246 case CmpInst::ICMP_SLE: 247 return PPC::PRED_LE; 248 249 case CmpInst::FCMP_ONE: 250 case CmpInst::ICMP_NE: 251 return PPC::PRED_NE; 252 253 case CmpInst::FCMP_ORD: 254 return PPC::PRED_NU; 255 256 case CmpInst::FCMP_UNO: 257 return PPC::PRED_UN; 258 } 259 } 260 261 // Determine whether the type Ty is simple enough to be handled by 262 // fast-isel, and return its equivalent machine type in VT. 263 // FIXME: Copied directly from ARM -- factor into base class? 264 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 265 EVT Evt = TLI.getValueType(DL, Ty, true); 266 267 // Only handle simple types. 268 if (Evt == MVT::Other || !Evt.isSimple()) return false; 269 VT = Evt.getSimpleVT(); 270 271 // Handle all legal types, i.e. a register that will directly hold this 272 // value. 273 return TLI.isTypeLegal(VT); 274 } 275 276 // Determine whether the type Ty is simple enough to be handled by 277 // fast-isel as a load target, and return its equivalent machine type in VT. 278 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 279 if (isTypeLegal(Ty, VT)) return true; 280 281 // If this is a type than can be sign or zero-extended to a basic operation 282 // go ahead and accept it now. 283 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 284 return true; 285 } 286 287 return false; 288 } 289 290 bool PPCFastISel::isValueAvailable(const Value *V) const { 291 if (!isa<Instruction>(V)) 292 return true; 293 294 const auto *I = cast<Instruction>(V); 295 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) 296 return true; 297 298 return false; 299 } 300 301 // Given a value Obj, create an Address object Addr that represents its 302 // address. Return false if we can't handle it. 303 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 304 const User *U = nullptr; 305 unsigned Opcode = Instruction::UserOp1; 306 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 307 // Don't walk into other basic blocks unless the object is an alloca from 308 // another block, otherwise it may not have a virtual register assigned. 309 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 310 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 311 Opcode = I->getOpcode(); 312 U = I; 313 } 314 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 315 Opcode = C->getOpcode(); 316 U = C; 317 } 318 319 switch (Opcode) { 320 default: 321 break; 322 case Instruction::BitCast: 323 // Look through bitcasts. 324 return PPCComputeAddress(U->getOperand(0), Addr); 325 case Instruction::IntToPtr: 326 // Look past no-op inttoptrs. 327 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 328 TLI.getPointerTy(DL)) 329 return PPCComputeAddress(U->getOperand(0), Addr); 330 break; 331 case Instruction::PtrToInt: 332 // Look past no-op ptrtoints. 333 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 334 return PPCComputeAddress(U->getOperand(0), Addr); 335 break; 336 case Instruction::GetElementPtr: { 337 Address SavedAddr = Addr; 338 long TmpOffset = Addr.Offset; 339 340 // Iterate through the GEP folding the constants into offsets where 341 // we can. 342 gep_type_iterator GTI = gep_type_begin(U); 343 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 344 II != IE; ++II, ++GTI) { 345 const Value *Op = *II; 346 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 347 const StructLayout *SL = DL.getStructLayout(STy); 348 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 349 TmpOffset += SL->getElementOffset(Idx); 350 } else { 351 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 352 for (;;) { 353 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 354 // Constant-offset addressing. 355 TmpOffset += CI->getSExtValue() * S; 356 break; 357 } 358 if (canFoldAddIntoGEP(U, Op)) { 359 // A compatible add with a constant operand. Fold the constant. 360 ConstantInt *CI = 361 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 362 TmpOffset += CI->getSExtValue() * S; 363 // Iterate on the other operand. 364 Op = cast<AddOperator>(Op)->getOperand(0); 365 continue; 366 } 367 // Unsupported 368 goto unsupported_gep; 369 } 370 } 371 } 372 373 // Try to grab the base operand now. 374 Addr.Offset = TmpOffset; 375 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 376 377 // We failed, restore everything and try the other options. 378 Addr = SavedAddr; 379 380 unsupported_gep: 381 break; 382 } 383 case Instruction::Alloca: { 384 const AllocaInst *AI = cast<AllocaInst>(Obj); 385 DenseMap<const AllocaInst*, int>::iterator SI = 386 FuncInfo.StaticAllocaMap.find(AI); 387 if (SI != FuncInfo.StaticAllocaMap.end()) { 388 Addr.BaseType = Address::FrameIndexBase; 389 Addr.Base.FI = SI->second; 390 return true; 391 } 392 break; 393 } 394 } 395 396 // FIXME: References to parameters fall through to the behavior 397 // below. They should be able to reference a frame index since 398 // they are stored to the stack, so we can get "ld rx, offset(r1)" 399 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 400 // just contain the parameter. Try to handle this with a FI. 401 402 // Try to get this in a register if nothing else has worked. 403 if (Addr.Base.Reg == 0) 404 Addr.Base.Reg = getRegForValue(Obj); 405 406 // Prevent assignment of base register to X0, which is inappropriate 407 // for loads and stores alike. 408 if (Addr.Base.Reg != 0) 409 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 410 411 return Addr.Base.Reg != 0; 412 } 413 414 // Fix up some addresses that can't be used directly. For example, if 415 // an offset won't fit in an instruction field, we may need to move it 416 // into an index register. 417 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 418 unsigned &IndexReg) { 419 420 // Check whether the offset fits in the instruction field. 421 if (!isInt<16>(Addr.Offset)) 422 UseOffset = false; 423 424 // If this is a stack pointer and the offset needs to be simplified then 425 // put the alloca address into a register, set the base type back to 426 // register and continue. This should almost never happen. 427 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 428 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 430 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 431 Addr.Base.Reg = ResultReg; 432 Addr.BaseType = Address::RegBase; 433 } 434 435 if (!UseOffset) { 436 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 437 : Type::getInt64Ty(*Context)); 438 const ConstantInt *Offset = 439 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 440 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 441 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 442 } 443 } 444 445 // Emit a load instruction if possible, returning true if we succeeded, 446 // otherwise false. See commentary below for how the register class of 447 // the load is determined. 448 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 449 const TargetRegisterClass *RC, 450 bool IsZExt, unsigned FP64LoadOpc) { 451 unsigned Opc; 452 bool UseOffset = true; 453 454 // If ResultReg is given, it determines the register class of the load. 455 // Otherwise, RC is the register class to use. If the result of the 456 // load isn't anticipated in this block, both may be zero, in which 457 // case we must make a conservative guess. In particular, don't assign 458 // R0 or X0 to the result register, as the result may be used in a load, 459 // store, add-immediate, or isel that won't permit this. (Though 460 // perhaps the spill and reload of live-exit values would handle this?) 461 const TargetRegisterClass *UseRC = 462 (ResultReg ? MRI.getRegClass(ResultReg) : 463 (RC ? RC : 464 (VT == MVT::f64 ? &PPC::F8RCRegClass : 465 (VT == MVT::f32 ? &PPC::F4RCRegClass : 466 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 467 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 468 469 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 470 471 switch (VT.SimpleTy) { 472 default: // e.g., vector types not handled 473 return false; 474 case MVT::i8: 475 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 476 break; 477 case MVT::i16: 478 Opc = (IsZExt ? 479 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 480 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 481 break; 482 case MVT::i32: 483 Opc = (IsZExt ? 484 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 485 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 486 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 487 UseOffset = false; 488 break; 489 case MVT::i64: 490 Opc = PPC::LD; 491 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 492 "64-bit load with 32-bit target??"); 493 UseOffset = ((Addr.Offset & 3) == 0); 494 break; 495 case MVT::f32: 496 Opc = PPC::LFS; 497 break; 498 case MVT::f64: 499 Opc = FP64LoadOpc; 500 break; 501 } 502 503 // If necessary, materialize the offset into a register and use 504 // the indexed form. Also handle stack pointers with special needs. 505 unsigned IndexReg = 0; 506 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 507 508 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 509 // be used. 510 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 511 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 512 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 513 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 514 if ((Is32VSXLoad || Is64VSXLoad) && 515 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 516 (Addr.Offset == 0)) { 517 UseOffset = false; 518 } 519 520 if (ResultReg == 0) 521 ResultReg = createResultReg(UseRC); 522 523 // Note: If we still have a frame index here, we know the offset is 524 // in range, as otherwise PPCSimplifyAddress would have converted it 525 // into a RegBase. 526 if (Addr.BaseType == Address::FrameIndexBase) { 527 // VSX only provides an indexed load. 528 if (Is32VSXLoad || Is64VSXLoad) return false; 529 530 MachineMemOperand *MMO = 531 FuncInfo.MF->getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 533 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 534 MFI.getObjectAlignment(Addr.Base.FI)); 535 536 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 537 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 538 539 // Base reg with offset in range. 540 } else if (UseOffset) { 541 // VSX only provides an indexed load. 542 if (Is32VSXLoad || Is64VSXLoad) return false; 543 544 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 545 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 546 547 // Indexed form. 548 } else { 549 // Get the RR opcode corresponding to the RI one. FIXME: It would be 550 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 551 // is hard to get at. 552 switch (Opc) { 553 default: llvm_unreachable("Unexpected opcode!"); 554 case PPC::LBZ: Opc = PPC::LBZX; break; 555 case PPC::LBZ8: Opc = PPC::LBZX8; break; 556 case PPC::LHZ: Opc = PPC::LHZX; break; 557 case PPC::LHZ8: Opc = PPC::LHZX8; break; 558 case PPC::LHA: Opc = PPC::LHAX; break; 559 case PPC::LHA8: Opc = PPC::LHAX8; break; 560 case PPC::LWZ: Opc = PPC::LWZX; break; 561 case PPC::LWZ8: Opc = PPC::LWZX8; break; 562 case PPC::LWA: Opc = PPC::LWAX; break; 563 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 564 case PPC::LD: Opc = PPC::LDX; break; 565 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 566 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 567 } 568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 569 .addReg(Addr.Base.Reg).addReg(IndexReg); 570 } 571 572 return true; 573 } 574 575 // Attempt to fast-select a load instruction. 576 bool PPCFastISel::SelectLoad(const Instruction *I) { 577 // FIXME: No atomic loads are supported. 578 if (cast<LoadInst>(I)->isAtomic()) 579 return false; 580 581 // Verify we have a legal type before going any further. 582 MVT VT; 583 if (!isLoadTypeLegal(I->getType(), VT)) 584 return false; 585 586 // See if we can handle this address. 587 Address Addr; 588 if (!PPCComputeAddress(I->getOperand(0), Addr)) 589 return false; 590 591 // Look at the currently assigned register for this instruction 592 // to determine the required register class. This is necessary 593 // to constrain RA from using R0/X0 when this is not legal. 594 unsigned AssignedReg = FuncInfo.ValueMap[I]; 595 const TargetRegisterClass *RC = 596 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 597 598 unsigned ResultReg = 0; 599 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 600 return false; 601 updateValueMap(I, ResultReg); 602 return true; 603 } 604 605 // Emit a store instruction to store SrcReg at Addr. 606 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 607 assert(SrcReg && "Nothing to store!"); 608 unsigned Opc; 609 bool UseOffset = true; 610 611 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 612 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 613 614 switch (VT.SimpleTy) { 615 default: // e.g., vector types not handled 616 return false; 617 case MVT::i8: 618 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 619 break; 620 case MVT::i16: 621 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 622 break; 623 case MVT::i32: 624 assert(Is32BitInt && "Not GPRC for i32??"); 625 Opc = PPC::STW; 626 break; 627 case MVT::i64: 628 Opc = PPC::STD; 629 UseOffset = ((Addr.Offset & 3) == 0); 630 break; 631 case MVT::f32: 632 Opc = PPC::STFS; 633 break; 634 case MVT::f64: 635 Opc = PPC::STFD; 636 break; 637 } 638 639 // If necessary, materialize the offset into a register and use 640 // the indexed form. Also handle stack pointers with special needs. 641 unsigned IndexReg = 0; 642 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 643 644 // If this is a potential VSX store with an offset of 0, a VSX indexed store 645 // can be used. 646 bool IsVSSRC = isVSSRCRegister(SrcReg); 647 bool IsVSFRC = isVSFRCRegister(SrcReg); 648 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 649 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 650 if ((Is32VSXStore || Is64VSXStore) && 651 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 652 (Addr.Offset == 0)) { 653 UseOffset = false; 654 } 655 656 // Note: If we still have a frame index here, we know the offset is 657 // in range, as otherwise PPCSimplifyAddress would have converted it 658 // into a RegBase. 659 if (Addr.BaseType == Address::FrameIndexBase) { 660 // VSX only provides an indexed store. 661 if (Is32VSXStore || Is64VSXStore) return false; 662 663 MachineMemOperand *MMO = 664 FuncInfo.MF->getMachineMemOperand( 665 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 666 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 667 MFI.getObjectAlignment(Addr.Base.FI)); 668 669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 670 .addReg(SrcReg) 671 .addImm(Addr.Offset) 672 .addFrameIndex(Addr.Base.FI) 673 .addMemOperand(MMO); 674 675 // Base reg with offset in range. 676 } else if (UseOffset) { 677 // VSX only provides an indexed store. 678 if (Is32VSXStore || Is64VSXStore) return false; 679 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 681 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 682 683 // Indexed form. 684 } else { 685 // Get the RR opcode corresponding to the RI one. FIXME: It would be 686 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 687 // is hard to get at. 688 switch (Opc) { 689 default: llvm_unreachable("Unexpected opcode!"); 690 case PPC::STB: Opc = PPC::STBX; break; 691 case PPC::STH : Opc = PPC::STHX; break; 692 case PPC::STW : Opc = PPC::STWX; break; 693 case PPC::STB8: Opc = PPC::STBX8; break; 694 case PPC::STH8: Opc = PPC::STHX8; break; 695 case PPC::STW8: Opc = PPC::STWX8; break; 696 case PPC::STD: Opc = PPC::STDX; break; 697 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 698 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 699 } 700 701 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 702 .addReg(SrcReg); 703 704 // If we have an index register defined we use it in the store inst, 705 // otherwise we use X0 as base as it makes the vector instructions to 706 // use zero in the computation of the effective address regardless the 707 // content of the register. 708 if (IndexReg) 709 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 710 else 711 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 712 } 713 714 return true; 715 } 716 717 // Attempt to fast-select a store instruction. 718 bool PPCFastISel::SelectStore(const Instruction *I) { 719 Value *Op0 = I->getOperand(0); 720 unsigned SrcReg = 0; 721 722 // FIXME: No atomics loads are supported. 723 if (cast<StoreInst>(I)->isAtomic()) 724 return false; 725 726 // Verify we have a legal type before going any further. 727 MVT VT; 728 if (!isLoadTypeLegal(Op0->getType(), VT)) 729 return false; 730 731 // Get the value to be stored into a register. 732 SrcReg = getRegForValue(Op0); 733 if (SrcReg == 0) 734 return false; 735 736 // See if we can handle this address. 737 Address Addr; 738 if (!PPCComputeAddress(I->getOperand(1), Addr)) 739 return false; 740 741 if (!PPCEmitStore(VT, SrcReg, Addr)) 742 return false; 743 744 return true; 745 } 746 747 // Attempt to fast-select a branch instruction. 748 bool PPCFastISel::SelectBranch(const Instruction *I) { 749 const BranchInst *BI = cast<BranchInst>(I); 750 MachineBasicBlock *BrBB = FuncInfo.MBB; 751 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 752 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 753 754 // For now, just try the simplest case where it's fed by a compare. 755 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 756 if (isValueAvailable(CI)) { 757 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 758 if (!OptPPCPred) 759 return false; 760 761 PPC::Predicate PPCPred = OptPPCPred.getValue(); 762 763 // Take advantage of fall-through opportunities. 764 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 765 std::swap(TBB, FBB); 766 PPCPred = PPC::InvertPredicate(PPCPred); 767 } 768 769 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 770 771 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 772 CondReg)) 773 return false; 774 775 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 776 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 777 fastEmitBranch(FBB, DbgLoc); 778 FuncInfo.MBB->addSuccessor(TBB); 779 return true; 780 } 781 } else if (const ConstantInt *CI = 782 dyn_cast<ConstantInt>(BI->getCondition())) { 783 uint64_t Imm = CI->getZExtValue(); 784 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 785 fastEmitBranch(Target, DbgLoc); 786 return true; 787 } 788 789 // FIXME: ARM looks for a case where the block containing the compare 790 // has been split from the block containing the branch. If this happens, 791 // there is a vreg available containing the result of the compare. I'm 792 // not sure we can do much, as we've lost the predicate information with 793 // the compare instruction -- we have a 4-bit CR but don't know which bit 794 // to test here. 795 return false; 796 } 797 798 // Attempt to emit a compare of the two source values. Signed and unsigned 799 // comparisons are supported. Return false if we can't handle it. 800 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 801 bool IsZExt, unsigned DestReg) { 802 Type *Ty = SrcValue1->getType(); 803 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 804 if (!SrcEVT.isSimple()) 805 return false; 806 MVT SrcVT = SrcEVT.getSimpleVT(); 807 808 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 809 return false; 810 811 // See if operand 2 is an immediate encodeable in the compare. 812 // FIXME: Operands are not in canonical order at -O0, so an immediate 813 // operand in position 1 is a lost opportunity for now. We are 814 // similar to ARM in this regard. 815 long Imm = 0; 816 bool UseImm = false; 817 818 // Only 16-bit integer constants can be represented in compares for 819 // PowerPC. Others will be materialized into a register. 820 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 821 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 822 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 823 const APInt &CIVal = ConstInt->getValue(); 824 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 825 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 826 UseImm = true; 827 } 828 } 829 830 unsigned CmpOpc; 831 bool NeedsExt = false; 832 switch (SrcVT.SimpleTy) { 833 default: return false; 834 case MVT::f32: 835 CmpOpc = PPC::FCMPUS; 836 break; 837 case MVT::f64: 838 CmpOpc = PPC::FCMPUD; 839 break; 840 case MVT::i1: 841 case MVT::i8: 842 case MVT::i16: 843 NeedsExt = true; 844 // Intentional fall-through. 845 case MVT::i32: 846 if (!UseImm) 847 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 848 else 849 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 850 break; 851 case MVT::i64: 852 if (!UseImm) 853 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 854 else 855 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 856 break; 857 } 858 859 unsigned SrcReg1 = getRegForValue(SrcValue1); 860 if (SrcReg1 == 0) 861 return false; 862 863 unsigned SrcReg2 = 0; 864 if (!UseImm) { 865 SrcReg2 = getRegForValue(SrcValue2); 866 if (SrcReg2 == 0) 867 return false; 868 } 869 870 if (NeedsExt) { 871 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 872 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 873 return false; 874 SrcReg1 = ExtReg; 875 876 if (!UseImm) { 877 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 878 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 879 return false; 880 SrcReg2 = ExtReg; 881 } 882 } 883 884 if (!UseImm) 885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 886 .addReg(SrcReg1).addReg(SrcReg2); 887 else 888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 889 .addReg(SrcReg1).addImm(Imm); 890 891 return true; 892 } 893 894 // Attempt to fast-select a floating-point extend instruction. 895 bool PPCFastISel::SelectFPExt(const Instruction *I) { 896 Value *Src = I->getOperand(0); 897 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 898 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 899 900 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 901 return false; 902 903 unsigned SrcReg = getRegForValue(Src); 904 if (!SrcReg) 905 return false; 906 907 // No code is generated for a FP extend. 908 updateValueMap(I, SrcReg); 909 return true; 910 } 911 912 // Attempt to fast-select a floating-point truncate instruction. 913 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 914 Value *Src = I->getOperand(0); 915 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 916 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 917 918 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 919 return false; 920 921 unsigned SrcReg = getRegForValue(Src); 922 if (!SrcReg) 923 return false; 924 925 // Round the result to single precision. 926 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 928 .addReg(SrcReg); 929 930 updateValueMap(I, DestReg); 931 return true; 932 } 933 934 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 935 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 936 // those should be used instead of moving via a stack slot when the 937 // subtarget permits. 938 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 939 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 940 // case to 8 bytes which produces tighter code but wastes stack space. 941 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 942 bool IsSigned) { 943 944 // If necessary, extend 32-bit int to 64-bit. 945 if (SrcVT == MVT::i32) { 946 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 947 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 948 return 0; 949 SrcReg = TmpReg; 950 } 951 952 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 953 Address Addr; 954 Addr.BaseType = Address::FrameIndexBase; 955 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 956 957 // Store the value from the GPR. 958 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 959 return 0; 960 961 // Load the integer value into an FPR. The kind of load used depends 962 // on a number of conditions. 963 unsigned LoadOpc = PPC::LFD; 964 965 if (SrcVT == MVT::i32) { 966 if (!IsSigned) { 967 LoadOpc = PPC::LFIWZX; 968 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 969 } else if (PPCSubTarget->hasLFIWAX()) { 970 LoadOpc = PPC::LFIWAX; 971 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 972 } 973 } 974 975 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 976 unsigned ResultReg = 0; 977 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 978 return 0; 979 980 return ResultReg; 981 } 982 983 // Attempt to fast-select an integer-to-floating-point conversion. 984 // FIXME: Once fast-isel has better support for VSX, conversions using 985 // direct moves should be implemented. 986 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 987 MVT DstVT; 988 Type *DstTy = I->getType(); 989 if (!isTypeLegal(DstTy, DstVT)) 990 return false; 991 992 if (DstVT != MVT::f32 && DstVT != MVT::f64) 993 return false; 994 995 Value *Src = I->getOperand(0); 996 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 997 if (!SrcEVT.isSimple()) 998 return false; 999 1000 MVT SrcVT = SrcEVT.getSimpleVT(); 1001 1002 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1003 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1004 return false; 1005 1006 unsigned SrcReg = getRegForValue(Src); 1007 if (SrcReg == 0) 1008 return false; 1009 1010 // We can only lower an unsigned convert if we have the newer 1011 // floating-point conversion operations. 1012 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1013 return false; 1014 1015 // FIXME: For now we require the newer floating-point conversion operations 1016 // (which are present only on P7 and A2 server models) when converting 1017 // to single-precision float. Otherwise we have to generate a lot of 1018 // fiddly code to avoid double rounding. If necessary, the fiddly code 1019 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1020 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1021 return false; 1022 1023 // Extend the input if necessary. 1024 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1025 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1026 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1027 return false; 1028 SrcVT = MVT::i64; 1029 SrcReg = TmpReg; 1030 } 1031 1032 // Move the integer value to an FPR. 1033 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1034 if (FPReg == 0) 1035 return false; 1036 1037 // Determine the opcode for the conversion. 1038 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1039 unsigned DestReg = createResultReg(RC); 1040 unsigned Opc; 1041 1042 if (DstVT == MVT::f32) 1043 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1044 else 1045 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1046 1047 // Generate the convert. 1048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1049 .addReg(FPReg); 1050 1051 updateValueMap(I, DestReg); 1052 return true; 1053 } 1054 1055 // Move the floating-point value in SrcReg into an integer destination 1056 // register, and return the register (or zero if we can't handle it). 1057 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1058 // those should be used instead of moving via a stack slot when the 1059 // subtarget permits. 1060 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1061 unsigned SrcReg, bool IsSigned) { 1062 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1063 // Note that if have STFIWX available, we could use a 4-byte stack 1064 // slot for i32, but this being fast-isel we'll just go with the 1065 // easiest code gen possible. 1066 Address Addr; 1067 Addr.BaseType = Address::FrameIndexBase; 1068 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1069 1070 // Store the value from the FPR. 1071 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1072 return 0; 1073 1074 // Reload it into a GPR. If we want an i32, modify the address 1075 // to have a 4-byte offset so we load from the right place. 1076 if (VT == MVT::i32) 1077 Addr.Offset = 4; 1078 1079 // Look at the currently assigned register for this instruction 1080 // to determine the required register class. 1081 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1082 const TargetRegisterClass *RC = 1083 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1084 1085 unsigned ResultReg = 0; 1086 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1087 return 0; 1088 1089 return ResultReg; 1090 } 1091 1092 // Attempt to fast-select a floating-point-to-integer conversion. 1093 // FIXME: Once fast-isel has better support for VSX, conversions using 1094 // direct moves should be implemented. 1095 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1096 MVT DstVT, SrcVT; 1097 Type *DstTy = I->getType(); 1098 if (!isTypeLegal(DstTy, DstVT)) 1099 return false; 1100 1101 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1102 return false; 1103 1104 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1105 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1106 return false; 1107 1108 Value *Src = I->getOperand(0); 1109 Type *SrcTy = Src->getType(); 1110 if (!isTypeLegal(SrcTy, SrcVT)) 1111 return false; 1112 1113 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1114 return false; 1115 1116 unsigned SrcReg = getRegForValue(Src); 1117 if (SrcReg == 0) 1118 return false; 1119 1120 // Convert f32 to f64 if necessary. This is just a meaningless copy 1121 // to get the register class right. COPY_TO_REGCLASS is needed since 1122 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1123 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1124 if (InRC == &PPC::F4RCRegClass) { 1125 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1127 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1128 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1129 SrcReg = TmpReg; 1130 } 1131 1132 // Determine the opcode for the conversion, which takes place 1133 // entirely within FPRs. 1134 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1135 unsigned Opc; 1136 1137 if (DstVT == MVT::i32) 1138 if (IsSigned) 1139 Opc = PPC::FCTIWZ; 1140 else 1141 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1142 else 1143 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1144 1145 // Generate the convert. 1146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1147 .addReg(SrcReg); 1148 1149 // Now move the integer value from a float register to an integer register. 1150 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1151 if (IntReg == 0) 1152 return false; 1153 1154 updateValueMap(I, IntReg); 1155 return true; 1156 } 1157 1158 // Attempt to fast-select a binary integer operation that isn't already 1159 // handled automatically. 1160 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1161 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1162 1163 // We can get here in the case when we have a binary operation on a non-legal 1164 // type and the target independent selector doesn't know how to handle it. 1165 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1166 return false; 1167 1168 // Look at the currently assigned register for this instruction 1169 // to determine the required register class. If there is no register, 1170 // make a conservative choice (don't assign R0). 1171 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1172 const TargetRegisterClass *RC = 1173 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1174 &PPC::GPRC_and_GPRC_NOR0RegClass); 1175 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1176 1177 unsigned Opc; 1178 switch (ISDOpcode) { 1179 default: return false; 1180 case ISD::ADD: 1181 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1182 break; 1183 case ISD::OR: 1184 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1185 break; 1186 case ISD::SUB: 1187 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1188 break; 1189 } 1190 1191 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1192 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1193 if (SrcReg1 == 0) return false; 1194 1195 // Handle case of small immediate operand. 1196 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1197 const APInt &CIVal = ConstInt->getValue(); 1198 int Imm = (int)CIVal.getSExtValue(); 1199 bool UseImm = true; 1200 if (isInt<16>(Imm)) { 1201 switch (Opc) { 1202 default: 1203 llvm_unreachable("Missing case!"); 1204 case PPC::ADD4: 1205 Opc = PPC::ADDI; 1206 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1207 break; 1208 case PPC::ADD8: 1209 Opc = PPC::ADDI8; 1210 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1211 break; 1212 case PPC::OR: 1213 Opc = PPC::ORI; 1214 break; 1215 case PPC::OR8: 1216 Opc = PPC::ORI8; 1217 break; 1218 case PPC::SUBF: 1219 if (Imm == -32768) 1220 UseImm = false; 1221 else { 1222 Opc = PPC::ADDI; 1223 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1224 Imm = -Imm; 1225 } 1226 break; 1227 case PPC::SUBF8: 1228 if (Imm == -32768) 1229 UseImm = false; 1230 else { 1231 Opc = PPC::ADDI8; 1232 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1233 Imm = -Imm; 1234 } 1235 break; 1236 } 1237 1238 if (UseImm) { 1239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1240 ResultReg) 1241 .addReg(SrcReg1) 1242 .addImm(Imm); 1243 updateValueMap(I, ResultReg); 1244 return true; 1245 } 1246 } 1247 } 1248 1249 // Reg-reg case. 1250 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1251 if (SrcReg2 == 0) return false; 1252 1253 // Reverse operands for subtract-from. 1254 if (ISDOpcode == ISD::SUB) 1255 std::swap(SrcReg1, SrcReg2); 1256 1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1258 .addReg(SrcReg1).addReg(SrcReg2); 1259 updateValueMap(I, ResultReg); 1260 return true; 1261 } 1262 1263 // Handle arguments to a call that we're attempting to fast-select. 1264 // Return false if the arguments are too complex for us at the moment. 1265 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1266 SmallVectorImpl<unsigned> &ArgRegs, 1267 SmallVectorImpl<MVT> &ArgVTs, 1268 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1269 SmallVectorImpl<unsigned> &RegArgs, 1270 CallingConv::ID CC, 1271 unsigned &NumBytes, 1272 bool IsVarArg) { 1273 SmallVector<CCValAssign, 16> ArgLocs; 1274 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1275 1276 // Reserve space for the linkage area on the stack. 1277 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1278 CCInfo.AllocateStack(LinkageSize, 8); 1279 1280 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1281 1282 // Bail out if we can't handle any of the arguments. 1283 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1284 CCValAssign &VA = ArgLocs[I]; 1285 MVT ArgVT = ArgVTs[VA.getValNo()]; 1286 1287 // Skip vector arguments for now, as well as long double and 1288 // uint128_t, and anything that isn't passed in a register. 1289 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1290 !VA.isRegLoc() || VA.needsCustom()) 1291 return false; 1292 1293 // Skip bit-converted arguments for now. 1294 if (VA.getLocInfo() == CCValAssign::BCvt) 1295 return false; 1296 } 1297 1298 // Get a count of how many bytes are to be pushed onto the stack. 1299 NumBytes = CCInfo.getNextStackOffset(); 1300 1301 // The prolog code of the callee may store up to 8 GPR argument registers to 1302 // the stack, allowing va_start to index over them in memory if its varargs. 1303 // Because we cannot tell if this is needed on the caller side, we have to 1304 // conservatively assume that it is needed. As such, make sure we have at 1305 // least enough stack space for the caller to store the 8 GPRs. 1306 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1307 NumBytes = std::max(NumBytes, LinkageSize + 64); 1308 1309 // Issue CALLSEQ_START. 1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1311 TII.get(TII.getCallFrameSetupOpcode())) 1312 .addImm(NumBytes); 1313 1314 // Prepare to assign register arguments. Every argument uses up a 1315 // GPR protocol register even if it's passed in a floating-point 1316 // register (unless we're using the fast calling convention). 1317 unsigned NextGPR = PPC::X3; 1318 unsigned NextFPR = PPC::F1; 1319 1320 // Process arguments. 1321 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1322 CCValAssign &VA = ArgLocs[I]; 1323 unsigned Arg = ArgRegs[VA.getValNo()]; 1324 MVT ArgVT = ArgVTs[VA.getValNo()]; 1325 1326 // Handle argument promotion and bitcasts. 1327 switch (VA.getLocInfo()) { 1328 default: 1329 llvm_unreachable("Unknown loc info!"); 1330 case CCValAssign::Full: 1331 break; 1332 case CCValAssign::SExt: { 1333 MVT DestVT = VA.getLocVT(); 1334 const TargetRegisterClass *RC = 1335 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1336 unsigned TmpReg = createResultReg(RC); 1337 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1338 llvm_unreachable("Failed to emit a sext!"); 1339 ArgVT = DestVT; 1340 Arg = TmpReg; 1341 break; 1342 } 1343 case CCValAssign::AExt: 1344 case CCValAssign::ZExt: { 1345 MVT DestVT = VA.getLocVT(); 1346 const TargetRegisterClass *RC = 1347 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1348 unsigned TmpReg = createResultReg(RC); 1349 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1350 llvm_unreachable("Failed to emit a zext!"); 1351 ArgVT = DestVT; 1352 Arg = TmpReg; 1353 break; 1354 } 1355 case CCValAssign::BCvt: { 1356 // FIXME: Not yet handled. 1357 llvm_unreachable("Should have bailed before getting here!"); 1358 break; 1359 } 1360 } 1361 1362 // Copy this argument to the appropriate register. 1363 unsigned ArgReg; 1364 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1365 ArgReg = NextFPR++; 1366 if (CC != CallingConv::Fast) 1367 ++NextGPR; 1368 } else 1369 ArgReg = NextGPR++; 1370 1371 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1372 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1373 RegArgs.push_back(ArgReg); 1374 } 1375 1376 return true; 1377 } 1378 1379 // For a call that we've determined we can fast-select, finish the 1380 // call sequence and generate a copy to obtain the return value (if any). 1381 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1382 CallingConv::ID CC = CLI.CallConv; 1383 1384 // Issue CallSEQ_END. 1385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1386 TII.get(TII.getCallFrameDestroyOpcode())) 1387 .addImm(NumBytes).addImm(0); 1388 1389 // Next, generate a copy to obtain the return value. 1390 // FIXME: No multi-register return values yet, though I don't foresee 1391 // any real difficulties there. 1392 if (RetVT != MVT::isVoid) { 1393 SmallVector<CCValAssign, 16> RVLocs; 1394 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1395 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1396 CCValAssign &VA = RVLocs[0]; 1397 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1398 assert(VA.isRegLoc() && "Can only return in registers!"); 1399 1400 MVT DestVT = VA.getValVT(); 1401 MVT CopyVT = DestVT; 1402 1403 // Ints smaller than a register still arrive in a full 64-bit 1404 // register, so make sure we recognize this. 1405 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1406 CopyVT = MVT::i64; 1407 1408 unsigned SourcePhysReg = VA.getLocReg(); 1409 unsigned ResultReg = 0; 1410 1411 if (RetVT == CopyVT) { 1412 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1413 ResultReg = createResultReg(CpyRC); 1414 1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1416 TII.get(TargetOpcode::COPY), ResultReg) 1417 .addReg(SourcePhysReg); 1418 1419 // If necessary, round the floating result to single precision. 1420 } else if (CopyVT == MVT::f64) { 1421 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1423 ResultReg).addReg(SourcePhysReg); 1424 1425 // If only the low half of a general register is needed, generate 1426 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1427 // used along the fast-isel path (not lowered), and downstream logic 1428 // also doesn't like a direct subreg copy on a physical reg.) 1429 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1430 ResultReg = createResultReg(&PPC::GPRCRegClass); 1431 // Convert physical register from G8RC to GPRC. 1432 SourcePhysReg -= PPC::X0 - PPC::R0; 1433 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1434 TII.get(TargetOpcode::COPY), ResultReg) 1435 .addReg(SourcePhysReg); 1436 } 1437 1438 assert(ResultReg && "ResultReg unset!"); 1439 CLI.InRegs.push_back(SourcePhysReg); 1440 CLI.ResultReg = ResultReg; 1441 CLI.NumResultRegs = 1; 1442 } 1443 1444 return true; 1445 } 1446 1447 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1448 CallingConv::ID CC = CLI.CallConv; 1449 bool IsTailCall = CLI.IsTailCall; 1450 bool IsVarArg = CLI.IsVarArg; 1451 const Value *Callee = CLI.Callee; 1452 const MCSymbol *Symbol = CLI.Symbol; 1453 1454 if (!Callee && !Symbol) 1455 return false; 1456 1457 // Allow SelectionDAG isel to handle tail calls. 1458 if (IsTailCall) 1459 return false; 1460 1461 // Let SDISel handle vararg functions. 1462 if (IsVarArg) 1463 return false; 1464 1465 // Handle simple calls for now, with legal return types and 1466 // those that can be extended. 1467 Type *RetTy = CLI.RetTy; 1468 MVT RetVT; 1469 if (RetTy->isVoidTy()) 1470 RetVT = MVT::isVoid; 1471 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1472 RetVT != MVT::i8) 1473 return false; 1474 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1475 // We can't handle boolean returns when CR bits are in use. 1476 return false; 1477 1478 // FIXME: No multi-register return values yet. 1479 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1480 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1481 RetVT != MVT::f64) { 1482 SmallVector<CCValAssign, 16> RVLocs; 1483 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1484 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1485 if (RVLocs.size() > 1) 1486 return false; 1487 } 1488 1489 // Bail early if more than 8 arguments, as we only currently 1490 // handle arguments passed in registers. 1491 unsigned NumArgs = CLI.OutVals.size(); 1492 if (NumArgs > 8) 1493 return false; 1494 1495 // Set up the argument vectors. 1496 SmallVector<Value*, 8> Args; 1497 SmallVector<unsigned, 8> ArgRegs; 1498 SmallVector<MVT, 8> ArgVTs; 1499 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1500 1501 Args.reserve(NumArgs); 1502 ArgRegs.reserve(NumArgs); 1503 ArgVTs.reserve(NumArgs); 1504 ArgFlags.reserve(NumArgs); 1505 1506 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1507 // Only handle easy calls for now. It would be reasonably easy 1508 // to handle <= 8-byte structures passed ByVal in registers, but we 1509 // have to ensure they are right-justified in the register. 1510 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1511 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1512 return false; 1513 1514 Value *ArgValue = CLI.OutVals[i]; 1515 Type *ArgTy = ArgValue->getType(); 1516 MVT ArgVT; 1517 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1518 return false; 1519 1520 if (ArgVT.isVector()) 1521 return false; 1522 1523 unsigned Arg = getRegForValue(ArgValue); 1524 if (Arg == 0) 1525 return false; 1526 1527 Args.push_back(ArgValue); 1528 ArgRegs.push_back(Arg); 1529 ArgVTs.push_back(ArgVT); 1530 ArgFlags.push_back(Flags); 1531 } 1532 1533 // Process the arguments. 1534 SmallVector<unsigned, 8> RegArgs; 1535 unsigned NumBytes; 1536 1537 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1538 RegArgs, CC, NumBytes, IsVarArg)) 1539 return false; 1540 1541 MachineInstrBuilder MIB; 1542 // FIXME: No handling for function pointers yet. This requires 1543 // implementing the function descriptor (OPD) setup. 1544 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1545 if (!GV) { 1546 // patchpoints are a special case; they always dispatch to a pointer value. 1547 // However, we don't actually want to generate the indirect call sequence 1548 // here (that will be generated, as necessary, during asm printing), and 1549 // the call we generate here will be erased by FastISel::selectPatchpoint, 1550 // so don't try very hard... 1551 if (CLI.IsPatchPoint) 1552 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1553 else 1554 return false; 1555 } else { 1556 // Build direct call with NOP for TOC restore. 1557 // FIXME: We can and should optimize away the NOP for local calls. 1558 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1559 TII.get(PPC::BL8_NOP)); 1560 // Add callee. 1561 MIB.addGlobalAddress(GV); 1562 } 1563 1564 // Add implicit physical register uses to the call. 1565 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1566 MIB.addReg(RegArgs[II], RegState::Implicit); 1567 1568 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1569 // into the call. 1570 PPCFuncInfo->setUsesTOCBasePtr(); 1571 MIB.addReg(PPC::X2, RegState::Implicit); 1572 1573 // Add a register mask with the call-preserved registers. Proper 1574 // defs for return values will be added by setPhysRegsDeadExcept(). 1575 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1576 1577 CLI.Call = MIB; 1578 1579 // Finish off the call including any return values. 1580 return finishCall(RetVT, CLI, NumBytes); 1581 } 1582 1583 // Attempt to fast-select a return instruction. 1584 bool PPCFastISel::SelectRet(const Instruction *I) { 1585 1586 if (!FuncInfo.CanLowerReturn) 1587 return false; 1588 1589 const ReturnInst *Ret = cast<ReturnInst>(I); 1590 const Function &F = *I->getParent()->getParent(); 1591 1592 // Build a list of return value registers. 1593 SmallVector<unsigned, 4> RetRegs; 1594 CallingConv::ID CC = F.getCallingConv(); 1595 1596 if (Ret->getNumOperands() > 0) { 1597 SmallVector<ISD::OutputArg, 4> Outs; 1598 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1599 1600 // Analyze operands of the call, assigning locations to each operand. 1601 SmallVector<CCValAssign, 16> ValLocs; 1602 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1603 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1604 const Value *RV = Ret->getOperand(0); 1605 1606 // FIXME: Only one output register for now. 1607 if (ValLocs.size() > 1) 1608 return false; 1609 1610 // Special case for returning a constant integer of any size. 1611 // Materialize the constant as an i64 and copy it to the return 1612 // register. We still need to worry about properly extending the sign. E.g: 1613 // If the constant has only one bit, it means it is a boolean. Therefore 1614 // we can't use PPCMaterializeInt because it extends the sign which will 1615 // cause negations of the returned value to be incorrect as they are 1616 // implemented as the flip of the least significant bit. 1617 if (isa<ConstantInt>(*RV)) { 1618 const Constant *C = cast<Constant>(RV); 1619 1620 CCValAssign &VA = ValLocs[0]; 1621 1622 unsigned RetReg = VA.getLocReg(); 1623 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1624 VA.getLocInfo() == CCValAssign::SExt); 1625 1626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1627 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1628 1629 RetRegs.push_back(RetReg); 1630 1631 } else { 1632 unsigned Reg = getRegForValue(RV); 1633 1634 if (Reg == 0) 1635 return false; 1636 1637 // Copy the result values into the output registers. 1638 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1639 1640 CCValAssign &VA = ValLocs[i]; 1641 assert(VA.isRegLoc() && "Can only return in registers!"); 1642 RetRegs.push_back(VA.getLocReg()); 1643 unsigned SrcReg = Reg + VA.getValNo(); 1644 1645 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1646 if (!RVEVT.isSimple()) 1647 return false; 1648 MVT RVVT = RVEVT.getSimpleVT(); 1649 MVT DestVT = VA.getLocVT(); 1650 1651 if (RVVT != DestVT && RVVT != MVT::i8 && 1652 RVVT != MVT::i16 && RVVT != MVT::i32) 1653 return false; 1654 1655 if (RVVT != DestVT) { 1656 switch (VA.getLocInfo()) { 1657 default: 1658 llvm_unreachable("Unknown loc info!"); 1659 case CCValAssign::Full: 1660 llvm_unreachable("Full value assign but types don't match?"); 1661 case CCValAssign::AExt: 1662 case CCValAssign::ZExt: { 1663 const TargetRegisterClass *RC = 1664 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1665 unsigned TmpReg = createResultReg(RC); 1666 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1667 return false; 1668 SrcReg = TmpReg; 1669 break; 1670 } 1671 case CCValAssign::SExt: { 1672 const TargetRegisterClass *RC = 1673 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1674 unsigned TmpReg = createResultReg(RC); 1675 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1676 return false; 1677 SrcReg = TmpReg; 1678 break; 1679 } 1680 } 1681 } 1682 1683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1684 TII.get(TargetOpcode::COPY), RetRegs[i]) 1685 .addReg(SrcReg); 1686 } 1687 } 1688 } 1689 1690 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1691 TII.get(PPC::BLR8)); 1692 1693 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1694 MIB.addReg(RetRegs[i], RegState::Implicit); 1695 1696 return true; 1697 } 1698 1699 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1700 // signed and zero extensions are supported. Return false if we 1701 // can't handle it. 1702 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1703 unsigned DestReg, bool IsZExt) { 1704 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1705 return false; 1706 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1707 return false; 1708 1709 // Signed extensions use EXTSB, EXTSH, EXTSW. 1710 if (!IsZExt) { 1711 unsigned Opc; 1712 if (SrcVT == MVT::i8) 1713 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1714 else if (SrcVT == MVT::i16) 1715 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1716 else { 1717 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1718 Opc = PPC::EXTSW_32_64; 1719 } 1720 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1721 .addReg(SrcReg); 1722 1723 // Unsigned 32-bit extensions use RLWINM. 1724 } else if (DestVT == MVT::i32) { 1725 unsigned MB; 1726 if (SrcVT == MVT::i8) 1727 MB = 24; 1728 else { 1729 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1730 MB = 16; 1731 } 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1733 DestReg) 1734 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1735 1736 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1737 } else { 1738 unsigned MB; 1739 if (SrcVT == MVT::i8) 1740 MB = 56; 1741 else if (SrcVT == MVT::i16) 1742 MB = 48; 1743 else 1744 MB = 32; 1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1746 TII.get(PPC::RLDICL_32_64), DestReg) 1747 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1748 } 1749 1750 return true; 1751 } 1752 1753 // Attempt to fast-select an indirect branch instruction. 1754 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1755 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1756 if (AddrReg == 0) 1757 return false; 1758 1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1760 .addReg(AddrReg); 1761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1762 1763 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1764 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1765 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1766 1767 return true; 1768 } 1769 1770 // Attempt to fast-select an integer truncate instruction. 1771 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1772 Value *Src = I->getOperand(0); 1773 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1774 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1775 1776 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1777 return false; 1778 1779 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1780 return false; 1781 1782 unsigned SrcReg = getRegForValue(Src); 1783 if (!SrcReg) 1784 return false; 1785 1786 // The only interesting case is when we need to switch register classes. 1787 if (SrcVT == MVT::i64) { 1788 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1790 TII.get(TargetOpcode::COPY), 1791 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1792 SrcReg = ResultReg; 1793 } 1794 1795 updateValueMap(I, SrcReg); 1796 return true; 1797 } 1798 1799 // Attempt to fast-select an integer extend instruction. 1800 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1801 Type *DestTy = I->getType(); 1802 Value *Src = I->getOperand(0); 1803 Type *SrcTy = Src->getType(); 1804 1805 bool IsZExt = isa<ZExtInst>(I); 1806 unsigned SrcReg = getRegForValue(Src); 1807 if (!SrcReg) return false; 1808 1809 EVT SrcEVT, DestEVT; 1810 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1811 DestEVT = TLI.getValueType(DL, DestTy, true); 1812 if (!SrcEVT.isSimple()) 1813 return false; 1814 if (!DestEVT.isSimple()) 1815 return false; 1816 1817 MVT SrcVT = SrcEVT.getSimpleVT(); 1818 MVT DestVT = DestEVT.getSimpleVT(); 1819 1820 // If we know the register class needed for the result of this 1821 // instruction, use it. Otherwise pick the register class of the 1822 // correct size that does not contain X0/R0, since we don't know 1823 // whether downstream uses permit that assignment. 1824 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1825 const TargetRegisterClass *RC = 1826 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1827 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1828 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1829 unsigned ResultReg = createResultReg(RC); 1830 1831 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1832 return false; 1833 1834 updateValueMap(I, ResultReg); 1835 return true; 1836 } 1837 1838 // Attempt to fast-select an instruction that wasn't handled by 1839 // the table-generated machinery. 1840 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1841 1842 switch (I->getOpcode()) { 1843 case Instruction::Load: 1844 return SelectLoad(I); 1845 case Instruction::Store: 1846 return SelectStore(I); 1847 case Instruction::Br: 1848 return SelectBranch(I); 1849 case Instruction::IndirectBr: 1850 return SelectIndirectBr(I); 1851 case Instruction::FPExt: 1852 return SelectFPExt(I); 1853 case Instruction::FPTrunc: 1854 return SelectFPTrunc(I); 1855 case Instruction::SIToFP: 1856 return SelectIToFP(I, /*IsSigned*/ true); 1857 case Instruction::UIToFP: 1858 return SelectIToFP(I, /*IsSigned*/ false); 1859 case Instruction::FPToSI: 1860 return SelectFPToI(I, /*IsSigned*/ true); 1861 case Instruction::FPToUI: 1862 return SelectFPToI(I, /*IsSigned*/ false); 1863 case Instruction::Add: 1864 return SelectBinaryIntOp(I, ISD::ADD); 1865 case Instruction::Or: 1866 return SelectBinaryIntOp(I, ISD::OR); 1867 case Instruction::Sub: 1868 return SelectBinaryIntOp(I, ISD::SUB); 1869 case Instruction::Call: 1870 return selectCall(I); 1871 case Instruction::Ret: 1872 return SelectRet(I); 1873 case Instruction::Trunc: 1874 return SelectTrunc(I); 1875 case Instruction::ZExt: 1876 case Instruction::SExt: 1877 return SelectIntExt(I); 1878 // Here add other flavors of Instruction::XXX that automated 1879 // cases don't catch. For example, switches are terminators 1880 // that aren't yet handled. 1881 default: 1882 break; 1883 } 1884 return false; 1885 } 1886 1887 // Materialize a floating-point constant into a register, and return 1888 // the register number (or zero if we failed to handle it). 1889 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1890 // No plans to handle long double here. 1891 if (VT != MVT::f32 && VT != MVT::f64) 1892 return 0; 1893 1894 // All FP constants are loaded from the constant pool. 1895 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1896 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1897 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1898 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1899 CodeModel::Model CModel = TM.getCodeModel(); 1900 1901 MachineMemOperand *MMO = 1902 FuncInfo.MF->getMachineMemOperand( 1903 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1904 (VT == MVT::f32) ? 4 : 8, Align); 1905 1906 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1907 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1908 1909 PPCFuncInfo->setUsesTOCBasePtr(); 1910 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1911 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1913 TmpReg) 1914 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1916 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1917 } else { 1918 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1920 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1921 // But for large code model, we must generate a LDtocL followed 1922 // by the LF[SD]. 1923 if (CModel == CodeModel::Large) { 1924 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1926 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1928 .addImm(0).addReg(TmpReg2); 1929 } else 1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1931 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1932 .addReg(TmpReg) 1933 .addMemOperand(MMO); 1934 } 1935 1936 return DestReg; 1937 } 1938 1939 // Materialize the address of a global value into a register, and return 1940 // the register number (or zero if we failed to handle it). 1941 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1942 assert(VT == MVT::i64 && "Non-address!"); 1943 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1944 unsigned DestReg = createResultReg(RC); 1945 1946 // Global values may be plain old object addresses, TLS object 1947 // addresses, constant pool entries, or jump tables. How we generate 1948 // code for these may depend on small, medium, or large code model. 1949 CodeModel::Model CModel = TM.getCodeModel(); 1950 1951 // FIXME: Jump tables are not yet required because fast-isel doesn't 1952 // handle switches; if that changes, we need them as well. For now, 1953 // what follows assumes everything's a generic (or TLS) global address. 1954 1955 // FIXME: We don't yet handle the complexity of TLS. 1956 if (GV->isThreadLocal()) 1957 return 0; 1958 1959 PPCFuncInfo->setUsesTOCBasePtr(); 1960 // For small code model, generate a simple TOC load. 1961 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1963 DestReg) 1964 .addGlobalAddress(GV) 1965 .addReg(PPC::X2); 1966 else { 1967 // If the address is an externally defined symbol, a symbol with common 1968 // or externally available linkage, a non-local function address, or a 1969 // jump table address (not yet needed), or if we are generating code 1970 // for large code model, we generate: 1971 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1972 // Otherwise we generate: 1973 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1974 // Either way, start with the ADDIStocHA: 1975 unsigned HighPartReg = createResultReg(RC); 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1977 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1978 1979 // If/when switches are implemented, jump tables should be handled 1980 // on the "if" path here. 1981 if (CModel == CodeModel::Large || 1982 (GV->getType()->getElementType()->isFunctionTy() && 1983 !GV->isStrongDefinitionForLinker()) || 1984 GV->isDeclaration() || GV->hasCommonLinkage() || 1985 GV->hasAvailableExternallyLinkage()) 1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1987 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1988 else 1989 // Otherwise generate the ADDItocL. 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1991 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1992 } 1993 1994 return DestReg; 1995 } 1996 1997 // Materialize a 32-bit integer constant into a register, and return 1998 // the register number (or zero if we failed to handle it). 1999 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2000 const TargetRegisterClass *RC) { 2001 unsigned Lo = Imm & 0xFFFF; 2002 unsigned Hi = (Imm >> 16) & 0xFFFF; 2003 2004 unsigned ResultReg = createResultReg(RC); 2005 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2006 2007 if (isInt<16>(Imm)) 2008 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2009 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2010 .addImm(Imm); 2011 else if (Lo) { 2012 // Both Lo and Hi have nonzero bits. 2013 unsigned TmpReg = createResultReg(RC); 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2015 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2016 .addImm(Hi); 2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2018 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2019 .addReg(TmpReg).addImm(Lo); 2020 } else 2021 // Just Hi bits. 2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2023 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2024 .addImm(Hi); 2025 2026 return ResultReg; 2027 } 2028 2029 // Materialize a 64-bit integer constant into a register, and return 2030 // the register number (or zero if we failed to handle it). 2031 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2032 const TargetRegisterClass *RC) { 2033 unsigned Remainder = 0; 2034 unsigned Shift = 0; 2035 2036 // If the value doesn't fit in 32 bits, see if we can shift it 2037 // so that it fits in 32 bits. 2038 if (!isInt<32>(Imm)) { 2039 Shift = countTrailingZeros<uint64_t>(Imm); 2040 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2041 2042 if (isInt<32>(ImmSh)) 2043 Imm = ImmSh; 2044 else { 2045 Remainder = Imm; 2046 Shift = 32; 2047 Imm >>= 32; 2048 } 2049 } 2050 2051 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2052 // (if not shifted). 2053 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2054 if (!Shift) 2055 return TmpReg1; 2056 2057 // If upper 32 bits were not zero, we've built them and need to shift 2058 // them into place. 2059 unsigned TmpReg2; 2060 if (Imm) { 2061 TmpReg2 = createResultReg(RC); 2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2063 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2064 } else 2065 TmpReg2 = TmpReg1; 2066 2067 unsigned TmpReg3, Hi, Lo; 2068 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2069 TmpReg3 = createResultReg(RC); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2071 TmpReg3).addReg(TmpReg2).addImm(Hi); 2072 } else 2073 TmpReg3 = TmpReg2; 2074 2075 if ((Lo = Remainder & 0xFFFF)) { 2076 unsigned ResultReg = createResultReg(RC); 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2078 ResultReg).addReg(TmpReg3).addImm(Lo); 2079 return ResultReg; 2080 } 2081 2082 return TmpReg3; 2083 } 2084 2085 2086 // Materialize an integer constant into a register, and return 2087 // the register number (or zero if we failed to handle it). 2088 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2089 bool UseSExt) { 2090 // If we're using CR bit registers for i1 values, handle that as a special 2091 // case first. 2092 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2093 const ConstantInt *CI = cast<ConstantInt>(C); 2094 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2096 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2097 return ImmReg; 2098 } 2099 2100 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2101 VT != MVT::i8 && VT != MVT::i1) 2102 return 0; 2103 2104 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2105 &PPC::GPRCRegClass); 2106 2107 // If the constant is in range, use a load-immediate. 2108 const ConstantInt *CI = cast<ConstantInt>(C); 2109 if (isInt<16>(CI->getSExtValue())) { 2110 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2111 unsigned ImmReg = createResultReg(RC); 2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2113 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2114 return ImmReg; 2115 } 2116 2117 // Construct the constant piecewise. 2118 int64_t Imm = CI->getZExtValue(); 2119 2120 if (VT == MVT::i64) 2121 return PPCMaterialize64BitInt(Imm, RC); 2122 else if (VT == MVT::i32) 2123 return PPCMaterialize32BitInt(Imm, RC); 2124 2125 return 0; 2126 } 2127 2128 // Materialize a constant into a register, and return the register 2129 // number (or zero if we failed to handle it). 2130 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2131 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2132 2133 // Only handle simple types. 2134 if (!CEVT.isSimple()) return 0; 2135 MVT VT = CEVT.getSimpleVT(); 2136 2137 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2138 return PPCMaterializeFP(CFP, VT); 2139 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2140 return PPCMaterializeGV(GV, VT); 2141 else if (isa<ConstantInt>(C)) 2142 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2143 2144 return 0; 2145 } 2146 2147 // Materialize the address created by an alloca into a register, and 2148 // return the register number (or zero if we failed to handle it). 2149 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2150 // Don't handle dynamic allocas. 2151 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2152 2153 MVT VT; 2154 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2155 2156 DenseMap<const AllocaInst*, int>::iterator SI = 2157 FuncInfo.StaticAllocaMap.find(AI); 2158 2159 if (SI != FuncInfo.StaticAllocaMap.end()) { 2160 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2162 ResultReg).addFrameIndex(SI->second).addImm(0); 2163 return ResultReg; 2164 } 2165 2166 return 0; 2167 } 2168 2169 // Fold loads into extends when possible. 2170 // FIXME: We can have multiple redundant extend/trunc instructions 2171 // following a load. The folding only picks up one. Extend this 2172 // to check subsequent instructions for the same pattern and remove 2173 // them. Thus ResultReg should be the def reg for the last redundant 2174 // instruction in a chain, and all intervening instructions can be 2175 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2176 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2177 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2178 const LoadInst *LI) { 2179 // Verify we have a legal type before going any further. 2180 MVT VT; 2181 if (!isLoadTypeLegal(LI->getType(), VT)) 2182 return false; 2183 2184 // Combine load followed by zero- or sign-extend. 2185 bool IsZExt = false; 2186 switch(MI->getOpcode()) { 2187 default: 2188 return false; 2189 2190 case PPC::RLDICL: 2191 case PPC::RLDICL_32_64: { 2192 IsZExt = true; 2193 unsigned MB = MI->getOperand(3).getImm(); 2194 if ((VT == MVT::i8 && MB <= 56) || 2195 (VT == MVT::i16 && MB <= 48) || 2196 (VT == MVT::i32 && MB <= 32)) 2197 break; 2198 return false; 2199 } 2200 2201 case PPC::RLWINM: 2202 case PPC::RLWINM8: { 2203 IsZExt = true; 2204 unsigned MB = MI->getOperand(3).getImm(); 2205 if ((VT == MVT::i8 && MB <= 24) || 2206 (VT == MVT::i16 && MB <= 16)) 2207 break; 2208 return false; 2209 } 2210 2211 case PPC::EXTSB: 2212 case PPC::EXTSB8: 2213 case PPC::EXTSB8_32_64: 2214 /* There is no sign-extending load-byte instruction. */ 2215 return false; 2216 2217 case PPC::EXTSH: 2218 case PPC::EXTSH8: 2219 case PPC::EXTSH8_32_64: { 2220 if (VT != MVT::i16 && VT != MVT::i8) 2221 return false; 2222 break; 2223 } 2224 2225 case PPC::EXTSW: 2226 case PPC::EXTSW_32_64: { 2227 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2228 return false; 2229 break; 2230 } 2231 } 2232 2233 // See if we can handle this address. 2234 Address Addr; 2235 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2236 return false; 2237 2238 unsigned ResultReg = MI->getOperand(0).getReg(); 2239 2240 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2241 return false; 2242 2243 MI->eraseFromParent(); 2244 return true; 2245 } 2246 2247 // Attempt to lower call arguments in a faster way than done by 2248 // the selection DAG code. 2249 bool PPCFastISel::fastLowerArguments() { 2250 // Defer to normal argument lowering for now. It's reasonably 2251 // efficient. Consider doing something like ARM to handle the 2252 // case where all args fit in registers, no varargs, no float 2253 // or vector args. 2254 return false; 2255 } 2256 2257 // Handle materializing integer constants into a register. This is not 2258 // automatically generated for PowerPC, so must be explicitly created here. 2259 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2260 2261 if (Opc != ISD::Constant) 2262 return 0; 2263 2264 // If we're using CR bit registers for i1 values, handle that as a special 2265 // case first. 2266 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2267 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2269 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2270 return ImmReg; 2271 } 2272 2273 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2274 VT != MVT::i8 && VT != MVT::i1) 2275 return 0; 2276 2277 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2278 &PPC::GPRCRegClass); 2279 if (VT == MVT::i64) 2280 return PPCMaterialize64BitInt(Imm, RC); 2281 else 2282 return PPCMaterialize32BitInt(Imm, RC); 2283 } 2284 2285 // Override for ADDI and ADDI8 to set the correct register class 2286 // on RHS operand 0. The automatic infrastructure naively assumes 2287 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2288 // for these cases. At the moment, none of the other automatically 2289 // generated RI instructions require special treatment. However, once 2290 // SelectSelect is implemented, "isel" requires similar handling. 2291 // 2292 // Also be conservative about the output register class. Avoid 2293 // assigning R0 or X0 to the output register for GPRC and G8RC 2294 // register classes, as any such result could be used in ADDI, etc., 2295 // where those regs have another meaning. 2296 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2297 const TargetRegisterClass *RC, 2298 unsigned Op0, bool Op0IsKill, 2299 uint64_t Imm) { 2300 if (MachineInstOpcode == PPC::ADDI) 2301 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2302 else if (MachineInstOpcode == PPC::ADDI8) 2303 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2304 2305 const TargetRegisterClass *UseRC = 2306 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2307 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2308 2309 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2310 Op0, Op0IsKill, Imm); 2311 } 2312 2313 // Override for instructions with one register operand to avoid use of 2314 // R0/X0. The automatic infrastructure isn't aware of the context so 2315 // we must be conservative. 2316 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2317 const TargetRegisterClass* RC, 2318 unsigned Op0, bool Op0IsKill) { 2319 const TargetRegisterClass *UseRC = 2320 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2321 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2322 2323 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2324 } 2325 2326 // Override for instructions with two register operands to avoid use 2327 // of R0/X0. The automatic infrastructure isn't aware of the context 2328 // so we must be conservative. 2329 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2330 const TargetRegisterClass* RC, 2331 unsigned Op0, bool Op0IsKill, 2332 unsigned Op1, bool Op1IsKill) { 2333 const TargetRegisterClass *UseRC = 2334 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2335 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2336 2337 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2338 Op1, Op1IsKill); 2339 } 2340 2341 namespace llvm { 2342 // Create the fast instruction selector for PowerPC64 ELF. 2343 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2344 const TargetLibraryInfo *LibInfo) { 2345 // Only available on 64-bit ELF for now. 2346 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2347 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2348 return new PPCFastISel(FuncInfo, LibInfo); 2349 return nullptr; 2350 } 2351 } 2352