1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40 
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ppcfastisel"
63 
64 namespace {
65 
66 typedef struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71 
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76 
77   long Offset;
78 
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 } Address;
85 
86 class PPCFastISel final : public FastISel {
87 
88   const TargetMachine &TM;
89   const PPCSubtarget *PPCSubTarget;
90   PPCFunctionInfo *PPCFuncInfo;
91   const TargetInstrInfo &TII;
92   const TargetLowering &TLI;
93   LLVMContext *Context;
94 
95   public:
96     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97                          const TargetLibraryInfo *LibInfo)
98         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101           TII(*PPCSubTarget->getInstrInfo()),
102           TLI(*PPCSubTarget->getTargetLowering()),
103           Context(&FuncInfo.Fn->getContext()) {}
104 
105   // Backend specific FastISel code.
106   private:
107     bool fastSelectInstruction(const Instruction *I) override;
108     unsigned fastMaterializeConstant(const Constant *C) override;
109     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111                              const LoadInst *LI) override;
112     bool fastLowerArguments() override;
113     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115                              const TargetRegisterClass *RC,
116                              unsigned Op0, bool Op0IsKill,
117                              uint64_t Imm);
118     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill);
121     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122                              const TargetRegisterClass *RC,
123                              unsigned Op0, bool Op0IsKill,
124                              unsigned Op1, bool Op1IsKill);
125 
126     bool fastLowerCall(CallLoweringInfo &CLI) override;
127 
128   // Instruction selection routines.
129   private:
130     bool SelectLoad(const Instruction *I);
131     bool SelectStore(const Instruction *I);
132     bool SelectBranch(const Instruction *I);
133     bool SelectIndirectBr(const Instruction *I);
134     bool SelectFPExt(const Instruction *I);
135     bool SelectFPTrunc(const Instruction *I);
136     bool SelectIToFP(const Instruction *I, bool IsSigned);
137     bool SelectFPToI(const Instruction *I, bool IsSigned);
138     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139     bool SelectRet(const Instruction *I);
140     bool SelectTrunc(const Instruction *I);
141     bool SelectIntExt(const Instruction *I);
142 
143   // Utility routines.
144   private:
145     bool isTypeLegal(Type *Ty, MVT &VT);
146     bool isLoadTypeLegal(Type *Ty, MVT &VT);
147     bool isValueAvailable(const Value *V) const;
148     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
149       return RC->getID() == PPC::VSFRCRegClassID;
150     }
151     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
152       return RC->getID() == PPC::VSSRCRegClassID;
153     }
154     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
155                     bool isZExt, unsigned DestReg,
156                     const PPC::Predicate Pred);
157     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
158                      const TargetRegisterClass *RC, bool IsZExt = true,
159                      unsigned FP64LoadOpc = PPC::LFD);
160     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
161     bool PPCComputeAddress(const Value *Obj, Address &Addr);
162     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
163                             unsigned &IndexReg);
164     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
165                            unsigned DestReg, bool IsZExt);
166     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
167     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
168     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
169                                bool UseSExt = true);
170     unsigned PPCMaterialize32BitInt(int64_t Imm,
171                                     const TargetRegisterClass *RC);
172     unsigned PPCMaterialize64BitInt(int64_t Imm,
173                                     const TargetRegisterClass *RC);
174     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
175                              unsigned SrcReg, bool IsSigned);
176     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
177 
178   // Call handling routines.
179   private:
180     bool processCallArgs(SmallVectorImpl<Value*> &Args,
181                          SmallVectorImpl<unsigned> &ArgRegs,
182                          SmallVectorImpl<MVT> &ArgVTs,
183                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
184                          SmallVectorImpl<unsigned> &RegArgs,
185                          CallingConv::ID CC,
186                          unsigned &NumBytes,
187                          bool IsVarArg);
188     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
189     LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
190 
191   private:
192   #include "PPCGenFastISel.inc"
193 
194 };
195 
196 } // end anonymous namespace
197 
198 #include "PPCGenCallingConv.inc"
199 
200 // Function whose sole purpose is to kill compiler warnings
201 // stemming from unused functions included from PPCGenCallingConv.inc.
202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
203   if (Flag == 1)
204     return CC_PPC32_SVR4;
205   else if (Flag == 2)
206     return CC_PPC32_SVR4_ByVal;
207   else if (Flag == 3)
208     return CC_PPC32_SVR4_VarArg;
209   else if (Flag == 4)
210     return RetCC_PPC_Cold;
211   else
212     return RetCC_PPC;
213 }
214 
215 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
216   switch (Pred) {
217     // These are not representable with any single compare.
218     case CmpInst::FCMP_FALSE:
219     case CmpInst::FCMP_TRUE:
220     // Major concern about the following 6 cases is NaN result. The comparison
221     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
222     // only one of which will be set. The result is generated by fcmpu
223     // instruction. However, bc instruction only inspects one of the first 3
224     // bits, so when un is set, bc instruction may jump to an undesired
225     // place.
226     //
227     // More specifically, if we expect an unordered comparison and un is set, we
228     // expect to always go to true branch; in such case UEQ, UGT and ULT still
229     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
230     // since they are tested by inspecting !eq, !lt, !gt, respectively.
231     //
232     // Similarly, for ordered comparison, when un is set, we always expect the
233     // result to be false. In such case OGT, OLT and OEQ is good, since they are
234     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
235     // and ONE are tested through !lt, !gt and !eq, and these are true.
236     case CmpInst::FCMP_UEQ:
237     case CmpInst::FCMP_UGT:
238     case CmpInst::FCMP_ULT:
239     case CmpInst::FCMP_OGE:
240     case CmpInst::FCMP_OLE:
241     case CmpInst::FCMP_ONE:
242     default:
243       return Optional<PPC::Predicate>();
244 
245     case CmpInst::FCMP_OEQ:
246     case CmpInst::ICMP_EQ:
247       return PPC::PRED_EQ;
248 
249     case CmpInst::FCMP_OGT:
250     case CmpInst::ICMP_UGT:
251     case CmpInst::ICMP_SGT:
252       return PPC::PRED_GT;
253 
254     case CmpInst::FCMP_UGE:
255     case CmpInst::ICMP_UGE:
256     case CmpInst::ICMP_SGE:
257       return PPC::PRED_GE;
258 
259     case CmpInst::FCMP_OLT:
260     case CmpInst::ICMP_ULT:
261     case CmpInst::ICMP_SLT:
262       return PPC::PRED_LT;
263 
264     case CmpInst::FCMP_ULE:
265     case CmpInst::ICMP_ULE:
266     case CmpInst::ICMP_SLE:
267       return PPC::PRED_LE;
268 
269     case CmpInst::FCMP_UNE:
270     case CmpInst::ICMP_NE:
271       return PPC::PRED_NE;
272 
273     case CmpInst::FCMP_ORD:
274       return PPC::PRED_NU;
275 
276     case CmpInst::FCMP_UNO:
277       return PPC::PRED_UN;
278   }
279 }
280 
281 // Determine whether the type Ty is simple enough to be handled by
282 // fast-isel, and return its equivalent machine type in VT.
283 // FIXME: Copied directly from ARM -- factor into base class?
284 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
285   EVT Evt = TLI.getValueType(DL, Ty, true);
286 
287   // Only handle simple types.
288   if (Evt == MVT::Other || !Evt.isSimple()) return false;
289   VT = Evt.getSimpleVT();
290 
291   // Handle all legal types, i.e. a register that will directly hold this
292   // value.
293   return TLI.isTypeLegal(VT);
294 }
295 
296 // Determine whether the type Ty is simple enough to be handled by
297 // fast-isel as a load target, and return its equivalent machine type in VT.
298 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
299   if (isTypeLegal(Ty, VT)) return true;
300 
301   // If this is a type than can be sign or zero-extended to a basic operation
302   // go ahead and accept it now.
303   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
304     return true;
305   }
306 
307   return false;
308 }
309 
310 bool PPCFastISel::isValueAvailable(const Value *V) const {
311   if (!isa<Instruction>(V))
312     return true;
313 
314   const auto *I = cast<Instruction>(V);
315   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
316 }
317 
318 // Given a value Obj, create an Address object Addr that represents its
319 // address.  Return false if we can't handle it.
320 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
321   const User *U = nullptr;
322   unsigned Opcode = Instruction::UserOp1;
323   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
324     // Don't walk into other basic blocks unless the object is an alloca from
325     // another block, otherwise it may not have a virtual register assigned.
326     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
327         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
328       Opcode = I->getOpcode();
329       U = I;
330     }
331   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
332     Opcode = C->getOpcode();
333     U = C;
334   }
335 
336   switch (Opcode) {
337     default:
338       break;
339     case Instruction::BitCast:
340       // Look through bitcasts.
341       return PPCComputeAddress(U->getOperand(0), Addr);
342     case Instruction::IntToPtr:
343       // Look past no-op inttoptrs.
344       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
345           TLI.getPointerTy(DL))
346         return PPCComputeAddress(U->getOperand(0), Addr);
347       break;
348     case Instruction::PtrToInt:
349       // Look past no-op ptrtoints.
350       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
351         return PPCComputeAddress(U->getOperand(0), Addr);
352       break;
353     case Instruction::GetElementPtr: {
354       Address SavedAddr = Addr;
355       long TmpOffset = Addr.Offset;
356 
357       // Iterate through the GEP folding the constants into offsets where
358       // we can.
359       gep_type_iterator GTI = gep_type_begin(U);
360       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
361            II != IE; ++II, ++GTI) {
362         const Value *Op = *II;
363         if (StructType *STy = GTI.getStructTypeOrNull()) {
364           const StructLayout *SL = DL.getStructLayout(STy);
365           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
366           TmpOffset += SL->getElementOffset(Idx);
367         } else {
368           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
369           for (;;) {
370             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
371               // Constant-offset addressing.
372               TmpOffset += CI->getSExtValue() * S;
373               break;
374             }
375             if (canFoldAddIntoGEP(U, Op)) {
376               // A compatible add with a constant operand. Fold the constant.
377               ConstantInt *CI =
378               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
379               TmpOffset += CI->getSExtValue() * S;
380               // Iterate on the other operand.
381               Op = cast<AddOperator>(Op)->getOperand(0);
382               continue;
383             }
384             // Unsupported
385             goto unsupported_gep;
386           }
387         }
388       }
389 
390       // Try to grab the base operand now.
391       Addr.Offset = TmpOffset;
392       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
393 
394       // We failed, restore everything and try the other options.
395       Addr = SavedAddr;
396 
397       unsupported_gep:
398       break;
399     }
400     case Instruction::Alloca: {
401       const AllocaInst *AI = cast<AllocaInst>(Obj);
402       DenseMap<const AllocaInst*, int>::iterator SI =
403         FuncInfo.StaticAllocaMap.find(AI);
404       if (SI != FuncInfo.StaticAllocaMap.end()) {
405         Addr.BaseType = Address::FrameIndexBase;
406         Addr.Base.FI = SI->second;
407         return true;
408       }
409       break;
410     }
411   }
412 
413   // FIXME: References to parameters fall through to the behavior
414   // below.  They should be able to reference a frame index since
415   // they are stored to the stack, so we can get "ld rx, offset(r1)"
416   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
417   // just contain the parameter.  Try to handle this with a FI.
418 
419   // Try to get this in a register if nothing else has worked.
420   if (Addr.Base.Reg == 0)
421     Addr.Base.Reg = getRegForValue(Obj);
422 
423   // Prevent assignment of base register to X0, which is inappropriate
424   // for loads and stores alike.
425   if (Addr.Base.Reg != 0)
426     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
427 
428   return Addr.Base.Reg != 0;
429 }
430 
431 // Fix up some addresses that can't be used directly.  For example, if
432 // an offset won't fit in an instruction field, we may need to move it
433 // into an index register.
434 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
435                                      unsigned &IndexReg) {
436 
437   // Check whether the offset fits in the instruction field.
438   if (!isInt<16>(Addr.Offset))
439     UseOffset = false;
440 
441   // If this is a stack pointer and the offset needs to be simplified then
442   // put the alloca address into a register, set the base type back to
443   // register and continue. This should almost never happen.
444   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
445     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
447             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
448     Addr.Base.Reg = ResultReg;
449     Addr.BaseType = Address::RegBase;
450   }
451 
452   if (!UseOffset) {
453     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
454     const ConstantInt *Offset =
455       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
456     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
457     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
458   }
459 }
460 
461 // Emit a load instruction if possible, returning true if we succeeded,
462 // otherwise false.  See commentary below for how the register class of
463 // the load is determined.
464 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
465                               const TargetRegisterClass *RC,
466                               bool IsZExt, unsigned FP64LoadOpc) {
467   unsigned Opc;
468   bool UseOffset = true;
469   bool HasSPE = PPCSubTarget->hasSPE();
470 
471   // If ResultReg is given, it determines the register class of the load.
472   // Otherwise, RC is the register class to use.  If the result of the
473   // load isn't anticipated in this block, both may be zero, in which
474   // case we must make a conservative guess.  In particular, don't assign
475   // R0 or X0 to the result register, as the result may be used in a load,
476   // store, add-immediate, or isel that won't permit this.  (Though
477   // perhaps the spill and reload of live-exit values would handle this?)
478   const TargetRegisterClass *UseRC =
479     (ResultReg ? MRI.getRegClass(ResultReg) :
480      (RC ? RC :
481       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
482        (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
483         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
484          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
485 
486   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
487 
488   switch (VT.SimpleTy) {
489     default: // e.g., vector types not handled
490       return false;
491     case MVT::i8:
492       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
493       break;
494     case MVT::i16:
495       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
496                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
497       break;
498     case MVT::i32:
499       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
500                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
501       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
502         UseOffset = false;
503       break;
504     case MVT::i64:
505       Opc = PPC::LD;
506       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
507              "64-bit load with 32-bit target??");
508       UseOffset = ((Addr.Offset & 3) == 0);
509       break;
510     case MVT::f32:
511       Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
512       break;
513     case MVT::f64:
514       Opc = FP64LoadOpc;
515       break;
516   }
517 
518   // If necessary, materialize the offset into a register and use
519   // the indexed form.  Also handle stack pointers with special needs.
520   unsigned IndexReg = 0;
521   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
522 
523   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
524   // be used.
525   bool IsVSSRC = isVSSRCRegClass(UseRC);
526   bool IsVSFRC = isVSFRCRegClass(UseRC);
527   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
528   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
529   if ((Is32VSXLoad || Is64VSXLoad) &&
530       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
531       (Addr.Offset == 0)) {
532     UseOffset = false;
533   }
534 
535   if (ResultReg == 0)
536     ResultReg = createResultReg(UseRC);
537 
538   // Note: If we still have a frame index here, we know the offset is
539   // in range, as otherwise PPCSimplifyAddress would have converted it
540   // into a RegBase.
541   if (Addr.BaseType == Address::FrameIndexBase) {
542     // VSX only provides an indexed load.
543     if (Is32VSXLoad || Is64VSXLoad) return false;
544 
545     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
546         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
547                                           Addr.Offset),
548         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
549         MFI.getObjectAlignment(Addr.Base.FI));
550 
551     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
552       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
553 
554   // Base reg with offset in range.
555   } else if (UseOffset) {
556     // VSX only provides an indexed load.
557     if (Is32VSXLoad || Is64VSXLoad) return false;
558 
559     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
560       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
561 
562   // Indexed form.
563   } else {
564     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
565     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
566     // is hard to get at.
567     switch (Opc) {
568       default:        llvm_unreachable("Unexpected opcode!");
569       case PPC::LBZ:    Opc = PPC::LBZX;    break;
570       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
571       case PPC::LHZ:    Opc = PPC::LHZX;    break;
572       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
573       case PPC::LHA:    Opc = PPC::LHAX;    break;
574       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
575       case PPC::LWZ:    Opc = PPC::LWZX;    break;
576       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
577       case PPC::LWA:    Opc = PPC::LWAX;    break;
578       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
579       case PPC::LD:     Opc = PPC::LDX;     break;
580       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
581       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
582       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
583       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
584     }
585 
586     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
587                        ResultReg);
588 
589     // If we have an index register defined we use it in the store inst,
590     // otherwise we use X0 as base as it makes the vector instructions to
591     // use zero in the computation of the effective address regardless the
592     // content of the register.
593     if (IndexReg)
594       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
595     else
596       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
597   }
598 
599   return true;
600 }
601 
602 // Attempt to fast-select a load instruction.
603 bool PPCFastISel::SelectLoad(const Instruction *I) {
604   // FIXME: No atomic loads are supported.
605   if (cast<LoadInst>(I)->isAtomic())
606     return false;
607 
608   // Verify we have a legal type before going any further.
609   MVT VT;
610   if (!isLoadTypeLegal(I->getType(), VT))
611     return false;
612 
613   // See if we can handle this address.
614   Address Addr;
615   if (!PPCComputeAddress(I->getOperand(0), Addr))
616     return false;
617 
618   // Look at the currently assigned register for this instruction
619   // to determine the required register class.  This is necessary
620   // to constrain RA from using R0/X0 when this is not legal.
621   unsigned AssignedReg = FuncInfo.ValueMap[I];
622   const TargetRegisterClass *RC =
623     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
624 
625   unsigned ResultReg = 0;
626   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
627       PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
628     return false;
629   updateValueMap(I, ResultReg);
630   return true;
631 }
632 
633 // Emit a store instruction to store SrcReg at Addr.
634 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
635   assert(SrcReg && "Nothing to store!");
636   unsigned Opc;
637   bool UseOffset = true;
638 
639   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
640   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
641 
642   switch (VT.SimpleTy) {
643     default: // e.g., vector types not handled
644       return false;
645     case MVT::i8:
646       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
647       break;
648     case MVT::i16:
649       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
650       break;
651     case MVT::i32:
652       assert(Is32BitInt && "Not GPRC for i32??");
653       Opc = PPC::STW;
654       break;
655     case MVT::i64:
656       Opc = PPC::STD;
657       UseOffset = ((Addr.Offset & 3) == 0);
658       break;
659     case MVT::f32:
660       Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
661       break;
662     case MVT::f64:
663       Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
664       break;
665   }
666 
667   // If necessary, materialize the offset into a register and use
668   // the indexed form.  Also handle stack pointers with special needs.
669   unsigned IndexReg = 0;
670   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
671 
672   // If this is a potential VSX store with an offset of 0, a VSX indexed store
673   // can be used.
674   bool IsVSSRC = isVSSRCRegClass(RC);
675   bool IsVSFRC = isVSFRCRegClass(RC);
676   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
677   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
678   if ((Is32VSXStore || Is64VSXStore) &&
679       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
680       (Addr.Offset == 0)) {
681     UseOffset = false;
682   }
683 
684   // Note: If we still have a frame index here, we know the offset is
685   // in range, as otherwise PPCSimplifyAddress would have converted it
686   // into a RegBase.
687   if (Addr.BaseType == Address::FrameIndexBase) {
688     // VSX only provides an indexed store.
689     if (Is32VSXStore || Is64VSXStore) return false;
690 
691     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
692         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
693                                           Addr.Offset),
694         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
695         MFI.getObjectAlignment(Addr.Base.FI));
696 
697     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
698         .addReg(SrcReg)
699         .addImm(Addr.Offset)
700         .addFrameIndex(Addr.Base.FI)
701         .addMemOperand(MMO);
702 
703   // Base reg with offset in range.
704   } else if (UseOffset) {
705     // VSX only provides an indexed store.
706     if (Is32VSXStore || Is64VSXStore)
707       return false;
708 
709     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
710       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
711 
712   // Indexed form.
713   } else {
714     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
715     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
716     // is hard to get at.
717     switch (Opc) {
718       default:        llvm_unreachable("Unexpected opcode!");
719       case PPC::STB:  Opc = PPC::STBX;  break;
720       case PPC::STH : Opc = PPC::STHX;  break;
721       case PPC::STW : Opc = PPC::STWX;  break;
722       case PPC::STB8: Opc = PPC::STBX8; break;
723       case PPC::STH8: Opc = PPC::STHX8; break;
724       case PPC::STW8: Opc = PPC::STWX8; break;
725       case PPC::STD:  Opc = PPC::STDX;  break;
726       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
727       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
728       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
729       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
730     }
731 
732     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
733         .addReg(SrcReg);
734 
735     // If we have an index register defined we use it in the store inst,
736     // otherwise we use X0 as base as it makes the vector instructions to
737     // use zero in the computation of the effective address regardless the
738     // content of the register.
739     if (IndexReg)
740       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
741     else
742       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
743   }
744 
745   return true;
746 }
747 
748 // Attempt to fast-select a store instruction.
749 bool PPCFastISel::SelectStore(const Instruction *I) {
750   Value *Op0 = I->getOperand(0);
751   unsigned SrcReg = 0;
752 
753   // FIXME: No atomics loads are supported.
754   if (cast<StoreInst>(I)->isAtomic())
755     return false;
756 
757   // Verify we have a legal type before going any further.
758   MVT VT;
759   if (!isLoadTypeLegal(Op0->getType(), VT))
760     return false;
761 
762   // Get the value to be stored into a register.
763   SrcReg = getRegForValue(Op0);
764   if (SrcReg == 0)
765     return false;
766 
767   // See if we can handle this address.
768   Address Addr;
769   if (!PPCComputeAddress(I->getOperand(1), Addr))
770     return false;
771 
772   if (!PPCEmitStore(VT, SrcReg, Addr))
773     return false;
774 
775   return true;
776 }
777 
778 // Attempt to fast-select a branch instruction.
779 bool PPCFastISel::SelectBranch(const Instruction *I) {
780   const BranchInst *BI = cast<BranchInst>(I);
781   MachineBasicBlock *BrBB = FuncInfo.MBB;
782   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
783   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
784 
785   // For now, just try the simplest case where it's fed by a compare.
786   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
787     if (isValueAvailable(CI)) {
788       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
789       if (!OptPPCPred)
790         return false;
791 
792       PPC::Predicate PPCPred = OptPPCPred.getValue();
793 
794       // Take advantage of fall-through opportunities.
795       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
796         std::swap(TBB, FBB);
797         PPCPred = PPC::InvertPredicate(PPCPred);
798       }
799 
800       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
801 
802       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
803                       CondReg, PPCPred))
804         return false;
805 
806       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
807         .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
808         .addReg(CondReg).addMBB(TBB);
809       finishCondBranch(BI->getParent(), TBB, FBB);
810       return true;
811     }
812   } else if (const ConstantInt *CI =
813              dyn_cast<ConstantInt>(BI->getCondition())) {
814     uint64_t Imm = CI->getZExtValue();
815     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
816     fastEmitBranch(Target, DbgLoc);
817     return true;
818   }
819 
820   // FIXME: ARM looks for a case where the block containing the compare
821   // has been split from the block containing the branch.  If this happens,
822   // there is a vreg available containing the result of the compare.  I'm
823   // not sure we can do much, as we've lost the predicate information with
824   // the compare instruction -- we have a 4-bit CR but don't know which bit
825   // to test here.
826   return false;
827 }
828 
829 // Attempt to emit a compare of the two source values.  Signed and unsigned
830 // comparisons are supported.  Return false if we can't handle it.
831 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
832                              bool IsZExt, unsigned DestReg,
833                              const PPC::Predicate Pred) {
834   Type *Ty = SrcValue1->getType();
835   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
836   if (!SrcEVT.isSimple())
837     return false;
838   MVT SrcVT = SrcEVT.getSimpleVT();
839 
840   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
841     return false;
842 
843   // See if operand 2 is an immediate encodeable in the compare.
844   // FIXME: Operands are not in canonical order at -O0, so an immediate
845   // operand in position 1 is a lost opportunity for now.  We are
846   // similar to ARM in this regard.
847   long Imm = 0;
848   bool UseImm = false;
849   const bool HasSPE = PPCSubTarget->hasSPE();
850 
851   // Only 16-bit integer constants can be represented in compares for
852   // PowerPC.  Others will be materialized into a register.
853   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
854     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
855         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
856       const APInt &CIVal = ConstInt->getValue();
857       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
858       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
859         UseImm = true;
860     }
861   }
862 
863   unsigned SrcReg1 = getRegForValue(SrcValue1);
864   if (SrcReg1 == 0)
865     return false;
866 
867   unsigned SrcReg2 = 0;
868   if (!UseImm) {
869     SrcReg2 = getRegForValue(SrcValue2);
870     if (SrcReg2 == 0)
871       return false;
872   }
873 
874   unsigned CmpOpc;
875   bool NeedsExt = false;
876   auto RC = MRI.getRegClass(SrcReg1);
877   switch (SrcVT.SimpleTy) {
878     default: return false;
879     case MVT::f32:
880       if (HasSPE) {
881         switch (Pred) {
882           default: return false;
883           case PPC::PRED_EQ:
884             CmpOpc = PPC::EFSCMPEQ;
885             break;
886           case PPC::PRED_LT:
887             CmpOpc = PPC::EFSCMPLT;
888             break;
889           case PPC::PRED_GT:
890             CmpOpc = PPC::EFSCMPGT;
891             break;
892         }
893       } else {
894         CmpOpc = PPC::FCMPUS;
895         if (isVSSRCRegClass(RC)) {
896           unsigned TmpReg = createResultReg(&PPC::F4RCRegClass);
897           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
898                   TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg1);
899           SrcReg1 = TmpReg;
900         }
901       }
902       break;
903     case MVT::f64:
904       if (HasSPE) {
905         switch (Pred) {
906           default: return false;
907           case PPC::PRED_EQ:
908             CmpOpc = PPC::EFDCMPEQ;
909             break;
910           case PPC::PRED_LT:
911             CmpOpc = PPC::EFDCMPLT;
912             break;
913           case PPC::PRED_GT:
914             CmpOpc = PPC::EFDCMPGT;
915             break;
916         }
917       } else if (isVSFRCRegClass(RC)) {
918         CmpOpc = PPC::XSCMPUDP;
919       } else {
920         CmpOpc = PPC::FCMPUD;
921       }
922       break;
923     case MVT::i1:
924     case MVT::i8:
925     case MVT::i16:
926       NeedsExt = true;
927       LLVM_FALLTHROUGH;
928     case MVT::i32:
929       if (!UseImm)
930         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
931       else
932         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
933       break;
934     case MVT::i64:
935       if (!UseImm)
936         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
937       else
938         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
939       break;
940   }
941 
942   if (NeedsExt) {
943     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
944     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
945       return false;
946     SrcReg1 = ExtReg;
947 
948     if (!UseImm) {
949       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
950       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
951         return false;
952       SrcReg2 = ExtReg;
953     }
954   }
955 
956   if (!UseImm)
957     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
958       .addReg(SrcReg1).addReg(SrcReg2);
959   else
960     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
961       .addReg(SrcReg1).addImm(Imm);
962 
963   return true;
964 }
965 
966 // Attempt to fast-select a floating-point extend instruction.
967 bool PPCFastISel::SelectFPExt(const Instruction *I) {
968   Value *Src  = I->getOperand(0);
969   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
970   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
971 
972   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
973     return false;
974 
975   unsigned SrcReg = getRegForValue(Src);
976   if (!SrcReg)
977     return false;
978 
979   // No code is generated for a FP extend.
980   updateValueMap(I, SrcReg);
981   return true;
982 }
983 
984 // Attempt to fast-select a floating-point truncate instruction.
985 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
986   Value *Src  = I->getOperand(0);
987   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
988   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
989 
990   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
991     return false;
992 
993   unsigned SrcReg = getRegForValue(Src);
994   if (!SrcReg)
995     return false;
996 
997   // Round the result to single precision.
998   unsigned DestReg;
999 
1000   if (PPCSubTarget->hasSPE()) {
1001     DestReg = createResultReg(&PPC::SPE4RCRegClass);
1002     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1003       TII.get(PPC::EFSCFD), DestReg)
1004       .addReg(SrcReg);
1005   } else {
1006     DestReg = createResultReg(&PPC::F4RCRegClass);
1007     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1008       TII.get(PPC::FRSP), DestReg)
1009       .addReg(SrcReg);
1010   }
1011 
1012   updateValueMap(I, DestReg);
1013   return true;
1014 }
1015 
1016 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1017 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1018 // those should be used instead of moving via a stack slot when the
1019 // subtarget permits.
1020 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1021 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1022 // case to 8 bytes which produces tighter code but wastes stack space.
1023 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1024                                      bool IsSigned) {
1025 
1026   // If necessary, extend 32-bit int to 64-bit.
1027   if (SrcVT == MVT::i32) {
1028     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1029     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1030       return 0;
1031     SrcReg = TmpReg;
1032   }
1033 
1034   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1035   Address Addr;
1036   Addr.BaseType = Address::FrameIndexBase;
1037   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1038 
1039   // Store the value from the GPR.
1040   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1041     return 0;
1042 
1043   // Load the integer value into an FPR.  The kind of load used depends
1044   // on a number of conditions.
1045   unsigned LoadOpc = PPC::LFD;
1046 
1047   if (SrcVT == MVT::i32) {
1048     if (!IsSigned) {
1049       LoadOpc = PPC::LFIWZX;
1050       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1051     } else if (PPCSubTarget->hasLFIWAX()) {
1052       LoadOpc = PPC::LFIWAX;
1053       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1054     }
1055   }
1056 
1057   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1058   unsigned ResultReg = 0;
1059   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1060     return 0;
1061 
1062   return ResultReg;
1063 }
1064 
1065 // Attempt to fast-select an integer-to-floating-point conversion.
1066 // FIXME: Once fast-isel has better support for VSX, conversions using
1067 //        direct moves should be implemented.
1068 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1069   MVT DstVT;
1070   Type *DstTy = I->getType();
1071   if (!isTypeLegal(DstTy, DstVT))
1072     return false;
1073 
1074   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1075     return false;
1076 
1077   Value *Src = I->getOperand(0);
1078   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1079   if (!SrcEVT.isSimple())
1080     return false;
1081 
1082   MVT SrcVT = SrcEVT.getSimpleVT();
1083 
1084   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1085       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1086     return false;
1087 
1088   unsigned SrcReg = getRegForValue(Src);
1089   if (SrcReg == 0)
1090     return false;
1091 
1092   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1093   if (PPCSubTarget->hasSPE()) {
1094     unsigned Opc;
1095     if (DstVT == MVT::f32)
1096       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1097     else
1098       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1099 
1100     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1101     // Generate the convert.
1102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1103       .addReg(SrcReg);
1104     updateValueMap(I, DestReg);
1105     return true;
1106   }
1107 
1108   // We can only lower an unsigned convert if we have the newer
1109   // floating-point conversion operations.
1110   if (!IsSigned && !PPCSubTarget->hasFPCVT())
1111     return false;
1112 
1113   // FIXME: For now we require the newer floating-point conversion operations
1114   // (which are present only on P7 and A2 server models) when converting
1115   // to single-precision float.  Otherwise we have to generate a lot of
1116   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1117   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1118   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1119     return false;
1120 
1121   // Extend the input if necessary.
1122   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1123     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1124     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1125       return false;
1126     SrcVT = MVT::i64;
1127     SrcReg = TmpReg;
1128   }
1129 
1130   // Move the integer value to an FPR.
1131   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1132   if (FPReg == 0)
1133     return false;
1134 
1135   // Determine the opcode for the conversion.
1136   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1137   unsigned DestReg = createResultReg(RC);
1138   unsigned Opc;
1139 
1140   if (DstVT == MVT::f32)
1141     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1142   else
1143     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1144 
1145   // Generate the convert.
1146   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1147     .addReg(FPReg);
1148 
1149   updateValueMap(I, DestReg);
1150   return true;
1151 }
1152 
1153 // Move the floating-point value in SrcReg into an integer destination
1154 // register, and return the register (or zero if we can't handle it).
1155 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1156 // those should be used instead of moving via a stack slot when the
1157 // subtarget permits.
1158 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1159                                       unsigned SrcReg, bool IsSigned) {
1160   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1161   // Note that if have STFIWX available, we could use a 4-byte stack
1162   // slot for i32, but this being fast-isel we'll just go with the
1163   // easiest code gen possible.
1164   Address Addr;
1165   Addr.BaseType = Address::FrameIndexBase;
1166   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1167 
1168   // Store the value from the FPR.
1169   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1170     return 0;
1171 
1172   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1173   // address to have a 4-byte offset so we load from the right place.
1174   if (VT == MVT::i32)
1175     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1176 
1177   // Look at the currently assigned register for this instruction
1178   // to determine the required register class.
1179   unsigned AssignedReg = FuncInfo.ValueMap[I];
1180   const TargetRegisterClass *RC =
1181     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1182 
1183   unsigned ResultReg = 0;
1184   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1185     return 0;
1186 
1187   return ResultReg;
1188 }
1189 
1190 // Attempt to fast-select a floating-point-to-integer conversion.
1191 // FIXME: Once fast-isel has better support for VSX, conversions using
1192 //        direct moves should be implemented.
1193 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1194   MVT DstVT, SrcVT;
1195   Type *DstTy = I->getType();
1196   if (!isTypeLegal(DstTy, DstVT))
1197     return false;
1198 
1199   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1200     return false;
1201 
1202   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1203   if (DstVT == MVT::i64 && !IsSigned &&
1204       !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
1205     return false;
1206 
1207   Value *Src = I->getOperand(0);
1208   Type *SrcTy = Src->getType();
1209   if (!isTypeLegal(SrcTy, SrcVT))
1210     return false;
1211 
1212   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1213     return false;
1214 
1215   unsigned SrcReg = getRegForValue(Src);
1216   if (SrcReg == 0)
1217     return false;
1218 
1219   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1220   // to get the register class right.
1221   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1222   if (InRC == &PPC::F4RCRegClass) {
1223     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1224     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1225             TII.get(TargetOpcode::COPY), TmpReg)
1226       .addReg(SrcReg);
1227     SrcReg = TmpReg;
1228   }
1229 
1230   // Determine the opcode for the conversion, which takes place
1231   // entirely within FPRs.
1232   unsigned DestReg;
1233   unsigned Opc;
1234 
1235   if (PPCSubTarget->hasSPE()) {
1236     DestReg = createResultReg(&PPC::GPRCRegClass);
1237     if (IsSigned)
1238       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1239     else
1240       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1241   } else {
1242     DestReg = createResultReg(&PPC::F8RCRegClass);
1243     if (DstVT == MVT::i32)
1244       if (IsSigned)
1245         Opc = PPC::FCTIWZ;
1246       else
1247         Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1248     else
1249       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1250   }
1251 
1252   // Generate the convert.
1253   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1254     .addReg(SrcReg);
1255 
1256   // Now move the integer value from a float register to an integer register.
1257   unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
1258     PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1259 
1260   if (IntReg == 0)
1261     return false;
1262 
1263   updateValueMap(I, IntReg);
1264   return true;
1265 }
1266 
1267 // Attempt to fast-select a binary integer operation that isn't already
1268 // handled automatically.
1269 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1270   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1271 
1272   // We can get here in the case when we have a binary operation on a non-legal
1273   // type and the target independent selector doesn't know how to handle it.
1274   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1275     return false;
1276 
1277   // Look at the currently assigned register for this instruction
1278   // to determine the required register class.  If there is no register,
1279   // make a conservative choice (don't assign R0).
1280   unsigned AssignedReg = FuncInfo.ValueMap[I];
1281   const TargetRegisterClass *RC =
1282     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1283      &PPC::GPRC_and_GPRC_NOR0RegClass);
1284   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1285 
1286   unsigned Opc;
1287   switch (ISDOpcode) {
1288     default: return false;
1289     case ISD::ADD:
1290       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1291       break;
1292     case ISD::OR:
1293       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1294       break;
1295     case ISD::SUB:
1296       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1297       break;
1298   }
1299 
1300   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1301   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1302   if (SrcReg1 == 0) return false;
1303 
1304   // Handle case of small immediate operand.
1305   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1306     const APInt &CIVal = ConstInt->getValue();
1307     int Imm = (int)CIVal.getSExtValue();
1308     bool UseImm = true;
1309     if (isInt<16>(Imm)) {
1310       switch (Opc) {
1311         default:
1312           llvm_unreachable("Missing case!");
1313         case PPC::ADD4:
1314           Opc = PPC::ADDI;
1315           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1316           break;
1317         case PPC::ADD8:
1318           Opc = PPC::ADDI8;
1319           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1320           break;
1321         case PPC::OR:
1322           Opc = PPC::ORI;
1323           break;
1324         case PPC::OR8:
1325           Opc = PPC::ORI8;
1326           break;
1327         case PPC::SUBF:
1328           if (Imm == -32768)
1329             UseImm = false;
1330           else {
1331             Opc = PPC::ADDI;
1332             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1333             Imm = -Imm;
1334           }
1335           break;
1336         case PPC::SUBF8:
1337           if (Imm == -32768)
1338             UseImm = false;
1339           else {
1340             Opc = PPC::ADDI8;
1341             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1342             Imm = -Imm;
1343           }
1344           break;
1345       }
1346 
1347       if (UseImm) {
1348         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1349                 ResultReg)
1350             .addReg(SrcReg1)
1351             .addImm(Imm);
1352         updateValueMap(I, ResultReg);
1353         return true;
1354       }
1355     }
1356   }
1357 
1358   // Reg-reg case.
1359   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1360   if (SrcReg2 == 0) return false;
1361 
1362   // Reverse operands for subtract-from.
1363   if (ISDOpcode == ISD::SUB)
1364     std::swap(SrcReg1, SrcReg2);
1365 
1366   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1367     .addReg(SrcReg1).addReg(SrcReg2);
1368   updateValueMap(I, ResultReg);
1369   return true;
1370 }
1371 
1372 // Handle arguments to a call that we're attempting to fast-select.
1373 // Return false if the arguments are too complex for us at the moment.
1374 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1375                                   SmallVectorImpl<unsigned> &ArgRegs,
1376                                   SmallVectorImpl<MVT> &ArgVTs,
1377                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1378                                   SmallVectorImpl<unsigned> &RegArgs,
1379                                   CallingConv::ID CC,
1380                                   unsigned &NumBytes,
1381                                   bool IsVarArg) {
1382   SmallVector<CCValAssign, 16> ArgLocs;
1383   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1384 
1385   // Reserve space for the linkage area on the stack.
1386   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1387   CCInfo.AllocateStack(LinkageSize, 8);
1388 
1389   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1390 
1391   // Bail out if we can't handle any of the arguments.
1392   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1393     CCValAssign &VA = ArgLocs[I];
1394     MVT ArgVT = ArgVTs[VA.getValNo()];
1395 
1396     // Skip vector arguments for now, as well as long double and
1397     // uint128_t, and anything that isn't passed in a register.
1398     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1399         !VA.isRegLoc() || VA.needsCustom())
1400       return false;
1401 
1402     // Skip bit-converted arguments for now.
1403     if (VA.getLocInfo() == CCValAssign::BCvt)
1404       return false;
1405   }
1406 
1407   // Get a count of how many bytes are to be pushed onto the stack.
1408   NumBytes = CCInfo.getNextStackOffset();
1409 
1410   // The prolog code of the callee may store up to 8 GPR argument registers to
1411   // the stack, allowing va_start to index over them in memory if its varargs.
1412   // Because we cannot tell if this is needed on the caller side, we have to
1413   // conservatively assume that it is needed.  As such, make sure we have at
1414   // least enough stack space for the caller to store the 8 GPRs.
1415   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1416   NumBytes = std::max(NumBytes, LinkageSize + 64);
1417 
1418   // Issue CALLSEQ_START.
1419   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1420           TII.get(TII.getCallFrameSetupOpcode()))
1421     .addImm(NumBytes).addImm(0);
1422 
1423   // Prepare to assign register arguments.  Every argument uses up a
1424   // GPR protocol register even if it's passed in a floating-point
1425   // register (unless we're using the fast calling convention).
1426   unsigned NextGPR = PPC::X3;
1427   unsigned NextFPR = PPC::F1;
1428 
1429   // Process arguments.
1430   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1431     CCValAssign &VA = ArgLocs[I];
1432     unsigned Arg = ArgRegs[VA.getValNo()];
1433     MVT ArgVT = ArgVTs[VA.getValNo()];
1434 
1435     // Handle argument promotion and bitcasts.
1436     switch (VA.getLocInfo()) {
1437       default:
1438         llvm_unreachable("Unknown loc info!");
1439       case CCValAssign::Full:
1440         break;
1441       case CCValAssign::SExt: {
1442         MVT DestVT = VA.getLocVT();
1443         const TargetRegisterClass *RC =
1444           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1445         unsigned TmpReg = createResultReg(RC);
1446         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1447           llvm_unreachable("Failed to emit a sext!");
1448         ArgVT = DestVT;
1449         Arg = TmpReg;
1450         break;
1451       }
1452       case CCValAssign::AExt:
1453       case CCValAssign::ZExt: {
1454         MVT DestVT = VA.getLocVT();
1455         const TargetRegisterClass *RC =
1456           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1457         unsigned TmpReg = createResultReg(RC);
1458         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1459           llvm_unreachable("Failed to emit a zext!");
1460         ArgVT = DestVT;
1461         Arg = TmpReg;
1462         break;
1463       }
1464       case CCValAssign::BCvt: {
1465         // FIXME: Not yet handled.
1466         llvm_unreachable("Should have bailed before getting here!");
1467         break;
1468       }
1469     }
1470 
1471     // Copy this argument to the appropriate register.
1472     unsigned ArgReg;
1473     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1474       ArgReg = NextFPR++;
1475       if (CC != CallingConv::Fast)
1476         ++NextGPR;
1477     } else
1478       ArgReg = NextGPR++;
1479 
1480     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1481             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1482     RegArgs.push_back(ArgReg);
1483   }
1484 
1485   return true;
1486 }
1487 
1488 // For a call that we've determined we can fast-select, finish the
1489 // call sequence and generate a copy to obtain the return value (if any).
1490 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1491   CallingConv::ID CC = CLI.CallConv;
1492 
1493   // Issue CallSEQ_END.
1494   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1495           TII.get(TII.getCallFrameDestroyOpcode()))
1496     .addImm(NumBytes).addImm(0);
1497 
1498   // Next, generate a copy to obtain the return value.
1499   // FIXME: No multi-register return values yet, though I don't foresee
1500   // any real difficulties there.
1501   if (RetVT != MVT::isVoid) {
1502     SmallVector<CCValAssign, 16> RVLocs;
1503     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1504     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1505     CCValAssign &VA = RVLocs[0];
1506     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1507     assert(VA.isRegLoc() && "Can only return in registers!");
1508 
1509     MVT DestVT = VA.getValVT();
1510     MVT CopyVT = DestVT;
1511 
1512     // Ints smaller than a register still arrive in a full 64-bit
1513     // register, so make sure we recognize this.
1514     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1515       CopyVT = MVT::i64;
1516 
1517     unsigned SourcePhysReg = VA.getLocReg();
1518     unsigned ResultReg = 0;
1519 
1520     if (RetVT == CopyVT) {
1521       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1522       ResultReg = createResultReg(CpyRC);
1523 
1524       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1525               TII.get(TargetOpcode::COPY), ResultReg)
1526         .addReg(SourcePhysReg);
1527 
1528     // If necessary, round the floating result to single precision.
1529     } else if (CopyVT == MVT::f64) {
1530       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1531       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1532               ResultReg).addReg(SourcePhysReg);
1533 
1534     // If only the low half of a general register is needed, generate
1535     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1536     // used along the fast-isel path (not lowered), and downstream logic
1537     // also doesn't like a direct subreg copy on a physical reg.)
1538     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1539       ResultReg = createResultReg(&PPC::GPRCRegClass);
1540       // Convert physical register from G8RC to GPRC.
1541       SourcePhysReg -= PPC::X0 - PPC::R0;
1542       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1543               TII.get(TargetOpcode::COPY), ResultReg)
1544         .addReg(SourcePhysReg);
1545     }
1546 
1547     assert(ResultReg && "ResultReg unset!");
1548     CLI.InRegs.push_back(SourcePhysReg);
1549     CLI.ResultReg = ResultReg;
1550     CLI.NumResultRegs = 1;
1551   }
1552 
1553   return true;
1554 }
1555 
1556 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1557   CallingConv::ID CC  = CLI.CallConv;
1558   bool IsTailCall     = CLI.IsTailCall;
1559   bool IsVarArg       = CLI.IsVarArg;
1560   const Value *Callee = CLI.Callee;
1561   const MCSymbol *Symbol = CLI.Symbol;
1562 
1563   if (!Callee && !Symbol)
1564     return false;
1565 
1566   // Allow SelectionDAG isel to handle tail calls.
1567   if (IsTailCall)
1568     return false;
1569 
1570   // Let SDISel handle vararg functions.
1571   if (IsVarArg)
1572     return false;
1573 
1574   // Handle simple calls for now, with legal return types and
1575   // those that can be extended.
1576   Type *RetTy = CLI.RetTy;
1577   MVT RetVT;
1578   if (RetTy->isVoidTy())
1579     RetVT = MVT::isVoid;
1580   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1581            RetVT != MVT::i8)
1582     return false;
1583   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1584     // We can't handle boolean returns when CR bits are in use.
1585     return false;
1586 
1587   // FIXME: No multi-register return values yet.
1588   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1589       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1590       RetVT != MVT::f64) {
1591     SmallVector<CCValAssign, 16> RVLocs;
1592     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1593     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1594     if (RVLocs.size() > 1)
1595       return false;
1596   }
1597 
1598   // Bail early if more than 8 arguments, as we only currently
1599   // handle arguments passed in registers.
1600   unsigned NumArgs = CLI.OutVals.size();
1601   if (NumArgs > 8)
1602     return false;
1603 
1604   // Set up the argument vectors.
1605   SmallVector<Value*, 8> Args;
1606   SmallVector<unsigned, 8> ArgRegs;
1607   SmallVector<MVT, 8> ArgVTs;
1608   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1609 
1610   Args.reserve(NumArgs);
1611   ArgRegs.reserve(NumArgs);
1612   ArgVTs.reserve(NumArgs);
1613   ArgFlags.reserve(NumArgs);
1614 
1615   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1616     // Only handle easy calls for now.  It would be reasonably easy
1617     // to handle <= 8-byte structures passed ByVal in registers, but we
1618     // have to ensure they are right-justified in the register.
1619     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1620     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1621       return false;
1622 
1623     Value *ArgValue = CLI.OutVals[i];
1624     Type *ArgTy = ArgValue->getType();
1625     MVT ArgVT;
1626     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1627       return false;
1628 
1629     if (ArgVT.isVector())
1630       return false;
1631 
1632     unsigned Arg = getRegForValue(ArgValue);
1633     if (Arg == 0)
1634       return false;
1635 
1636     Args.push_back(ArgValue);
1637     ArgRegs.push_back(Arg);
1638     ArgVTs.push_back(ArgVT);
1639     ArgFlags.push_back(Flags);
1640   }
1641 
1642   // Process the arguments.
1643   SmallVector<unsigned, 8> RegArgs;
1644   unsigned NumBytes;
1645 
1646   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1647                        RegArgs, CC, NumBytes, IsVarArg))
1648     return false;
1649 
1650   MachineInstrBuilder MIB;
1651   // FIXME: No handling for function pointers yet.  This requires
1652   // implementing the function descriptor (OPD) setup.
1653   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1654   if (!GV) {
1655     // patchpoints are a special case; they always dispatch to a pointer value.
1656     // However, we don't actually want to generate the indirect call sequence
1657     // here (that will be generated, as necessary, during asm printing), and
1658     // the call we generate here will be erased by FastISel::selectPatchpoint,
1659     // so don't try very hard...
1660     if (CLI.IsPatchPoint)
1661       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1662     else
1663       return false;
1664   } else {
1665     // Build direct call with NOP for TOC restore.
1666     // FIXME: We can and should optimize away the NOP for local calls.
1667     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1668                   TII.get(PPC::BL8_NOP));
1669     // Add callee.
1670     MIB.addGlobalAddress(GV);
1671   }
1672 
1673   // Add implicit physical register uses to the call.
1674   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1675     MIB.addReg(RegArgs[II], RegState::Implicit);
1676 
1677   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1678   // into the call.
1679   PPCFuncInfo->setUsesTOCBasePtr();
1680   MIB.addReg(PPC::X2, RegState::Implicit);
1681 
1682   // Add a register mask with the call-preserved registers.  Proper
1683   // defs for return values will be added by setPhysRegsDeadExcept().
1684   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1685 
1686   CLI.Call = MIB;
1687 
1688   // Finish off the call including any return values.
1689   return finishCall(RetVT, CLI, NumBytes);
1690 }
1691 
1692 // Attempt to fast-select a return instruction.
1693 bool PPCFastISel::SelectRet(const Instruction *I) {
1694 
1695   if (!FuncInfo.CanLowerReturn)
1696     return false;
1697 
1698   if (TLI.supportSplitCSR(FuncInfo.MF))
1699     return false;
1700 
1701   const ReturnInst *Ret = cast<ReturnInst>(I);
1702   const Function &F = *I->getParent()->getParent();
1703 
1704   // Build a list of return value registers.
1705   SmallVector<unsigned, 4> RetRegs;
1706   CallingConv::ID CC = F.getCallingConv();
1707 
1708   if (Ret->getNumOperands() > 0) {
1709     SmallVector<ISD::OutputArg, 4> Outs;
1710     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1711 
1712     // Analyze operands of the call, assigning locations to each operand.
1713     SmallVector<CCValAssign, 16> ValLocs;
1714     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1715     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1716     const Value *RV = Ret->getOperand(0);
1717 
1718     // FIXME: Only one output register for now.
1719     if (ValLocs.size() > 1)
1720       return false;
1721 
1722     // Special case for returning a constant integer of any size - materialize
1723     // the constant as an i64 and copy it to the return register.
1724     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1725       CCValAssign &VA = ValLocs[0];
1726 
1727       unsigned RetReg = VA.getLocReg();
1728       // We still need to worry about properly extending the sign. For example,
1729       // we could have only a single bit or a constant that needs zero
1730       // extension rather than sign extension. Make sure we pass the return
1731       // value extension property to integer materialization.
1732       unsigned SrcReg =
1733           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1734 
1735       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1736             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1737 
1738       RetRegs.push_back(RetReg);
1739 
1740     } else {
1741       unsigned Reg = getRegForValue(RV);
1742 
1743       if (Reg == 0)
1744         return false;
1745 
1746       // Copy the result values into the output registers.
1747       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1748 
1749         CCValAssign &VA = ValLocs[i];
1750         assert(VA.isRegLoc() && "Can only return in registers!");
1751         RetRegs.push_back(VA.getLocReg());
1752         unsigned SrcReg = Reg + VA.getValNo();
1753 
1754         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1755         if (!RVEVT.isSimple())
1756           return false;
1757         MVT RVVT = RVEVT.getSimpleVT();
1758         MVT DestVT = VA.getLocVT();
1759 
1760         if (RVVT != DestVT && RVVT != MVT::i8 &&
1761             RVVT != MVT::i16 && RVVT != MVT::i32)
1762           return false;
1763 
1764         if (RVVT != DestVT) {
1765           switch (VA.getLocInfo()) {
1766             default:
1767               llvm_unreachable("Unknown loc info!");
1768             case CCValAssign::Full:
1769               llvm_unreachable("Full value assign but types don't match?");
1770             case CCValAssign::AExt:
1771             case CCValAssign::ZExt: {
1772               const TargetRegisterClass *RC =
1773                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1774               unsigned TmpReg = createResultReg(RC);
1775               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1776                 return false;
1777               SrcReg = TmpReg;
1778               break;
1779             }
1780             case CCValAssign::SExt: {
1781               const TargetRegisterClass *RC =
1782                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1783               unsigned TmpReg = createResultReg(RC);
1784               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1785                 return false;
1786               SrcReg = TmpReg;
1787               break;
1788             }
1789           }
1790         }
1791 
1792         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1793                 TII.get(TargetOpcode::COPY), RetRegs[i])
1794           .addReg(SrcReg);
1795       }
1796     }
1797   }
1798 
1799   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1800                                     TII.get(PPC::BLR8));
1801 
1802   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1803     MIB.addReg(RetRegs[i], RegState::Implicit);
1804 
1805   return true;
1806 }
1807 
1808 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1809 // signed and zero extensions are supported.  Return false if we
1810 // can't handle it.
1811 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1812                                 unsigned DestReg, bool IsZExt) {
1813   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1814     return false;
1815   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1816     return false;
1817 
1818   // Signed extensions use EXTSB, EXTSH, EXTSW.
1819   if (!IsZExt) {
1820     unsigned Opc;
1821     if (SrcVT == MVT::i8)
1822       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1823     else if (SrcVT == MVT::i16)
1824       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1825     else {
1826       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1827       Opc = PPC::EXTSW_32_64;
1828     }
1829     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1830       .addReg(SrcReg);
1831 
1832   // Unsigned 32-bit extensions use RLWINM.
1833   } else if (DestVT == MVT::i32) {
1834     unsigned MB;
1835     if (SrcVT == MVT::i8)
1836       MB = 24;
1837     else {
1838       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1839       MB = 16;
1840     }
1841     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1842             DestReg)
1843       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1844 
1845   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1846   } else {
1847     unsigned MB;
1848     if (SrcVT == MVT::i8)
1849       MB = 56;
1850     else if (SrcVT == MVT::i16)
1851       MB = 48;
1852     else
1853       MB = 32;
1854     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1855             TII.get(PPC::RLDICL_32_64), DestReg)
1856       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1857   }
1858 
1859   return true;
1860 }
1861 
1862 // Attempt to fast-select an indirect branch instruction.
1863 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1864   unsigned AddrReg = getRegForValue(I->getOperand(0));
1865   if (AddrReg == 0)
1866     return false;
1867 
1868   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1869     .addReg(AddrReg);
1870   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1871 
1872   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1873   for (const BasicBlock *SuccBB : IB->successors())
1874     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1875 
1876   return true;
1877 }
1878 
1879 // Attempt to fast-select an integer truncate instruction.
1880 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1881   Value *Src  = I->getOperand(0);
1882   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1883   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1884 
1885   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1886     return false;
1887 
1888   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1889     return false;
1890 
1891   unsigned SrcReg = getRegForValue(Src);
1892   if (!SrcReg)
1893     return false;
1894 
1895   // The only interesting case is when we need to switch register classes.
1896   if (SrcVT == MVT::i64) {
1897     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1898     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1899             TII.get(TargetOpcode::COPY),
1900             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1901     SrcReg = ResultReg;
1902   }
1903 
1904   updateValueMap(I, SrcReg);
1905   return true;
1906 }
1907 
1908 // Attempt to fast-select an integer extend instruction.
1909 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1910   Type *DestTy = I->getType();
1911   Value *Src = I->getOperand(0);
1912   Type *SrcTy = Src->getType();
1913 
1914   bool IsZExt = isa<ZExtInst>(I);
1915   unsigned SrcReg = getRegForValue(Src);
1916   if (!SrcReg) return false;
1917 
1918   EVT SrcEVT, DestEVT;
1919   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1920   DestEVT = TLI.getValueType(DL, DestTy, true);
1921   if (!SrcEVT.isSimple())
1922     return false;
1923   if (!DestEVT.isSimple())
1924     return false;
1925 
1926   MVT SrcVT = SrcEVT.getSimpleVT();
1927   MVT DestVT = DestEVT.getSimpleVT();
1928 
1929   // If we know the register class needed for the result of this
1930   // instruction, use it.  Otherwise pick the register class of the
1931   // correct size that does not contain X0/R0, since we don't know
1932   // whether downstream uses permit that assignment.
1933   unsigned AssignedReg = FuncInfo.ValueMap[I];
1934   const TargetRegisterClass *RC =
1935     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1936      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1937       &PPC::GPRC_and_GPRC_NOR0RegClass));
1938   unsigned ResultReg = createResultReg(RC);
1939 
1940   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1941     return false;
1942 
1943   updateValueMap(I, ResultReg);
1944   return true;
1945 }
1946 
1947 // Attempt to fast-select an instruction that wasn't handled by
1948 // the table-generated machinery.
1949 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1950 
1951   switch (I->getOpcode()) {
1952     case Instruction::Load:
1953       return SelectLoad(I);
1954     case Instruction::Store:
1955       return SelectStore(I);
1956     case Instruction::Br:
1957       return SelectBranch(I);
1958     case Instruction::IndirectBr:
1959       return SelectIndirectBr(I);
1960     case Instruction::FPExt:
1961       return SelectFPExt(I);
1962     case Instruction::FPTrunc:
1963       return SelectFPTrunc(I);
1964     case Instruction::SIToFP:
1965       return SelectIToFP(I, /*IsSigned*/ true);
1966     case Instruction::UIToFP:
1967       return SelectIToFP(I, /*IsSigned*/ false);
1968     case Instruction::FPToSI:
1969       return SelectFPToI(I, /*IsSigned*/ true);
1970     case Instruction::FPToUI:
1971       return SelectFPToI(I, /*IsSigned*/ false);
1972     case Instruction::Add:
1973       return SelectBinaryIntOp(I, ISD::ADD);
1974     case Instruction::Or:
1975       return SelectBinaryIntOp(I, ISD::OR);
1976     case Instruction::Sub:
1977       return SelectBinaryIntOp(I, ISD::SUB);
1978     case Instruction::Call:
1979       return selectCall(I);
1980     case Instruction::Ret:
1981       return SelectRet(I);
1982     case Instruction::Trunc:
1983       return SelectTrunc(I);
1984     case Instruction::ZExt:
1985     case Instruction::SExt:
1986       return SelectIntExt(I);
1987     // Here add other flavors of Instruction::XXX that automated
1988     // cases don't catch.  For example, switches are terminators
1989     // that aren't yet handled.
1990     default:
1991       break;
1992   }
1993   return false;
1994 }
1995 
1996 // Materialize a floating-point constant into a register, and return
1997 // the register number (or zero if we failed to handle it).
1998 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1999   // No plans to handle long double here.
2000   if (VT != MVT::f32 && VT != MVT::f64)
2001     return 0;
2002 
2003   // All FP constants are loaded from the constant pool.
2004   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
2005   assert(Align > 0 && "Unexpectedly missing alignment information!");
2006   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
2007   const bool HasSPE = PPCSubTarget->hasSPE();
2008   const TargetRegisterClass *RC;
2009   if (HasSPE)
2010     RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
2011   else
2012     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2013 
2014   unsigned DestReg = createResultReg(RC);
2015   CodeModel::Model CModel = TM.getCodeModel();
2016 
2017   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2018       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2019       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
2020 
2021   unsigned Opc;
2022 
2023   if (HasSPE)
2024     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2025   else
2026     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2027 
2028   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2029 
2030   PPCFuncInfo->setUsesTOCBasePtr();
2031   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2032   if (CModel == CodeModel::Small) {
2033     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2034             TmpReg)
2035       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2036     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2037       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2038   } else {
2039     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2040     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2041             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2042     // But for large code model, we must generate a LDtocL followed
2043     // by the LF[SD].
2044     if (CModel == CodeModel::Large) {
2045       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2046       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2047               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2048       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2049           .addImm(0)
2050           .addReg(TmpReg2);
2051     } else
2052       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2053         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2054         .addReg(TmpReg)
2055         .addMemOperand(MMO);
2056   }
2057 
2058   return DestReg;
2059 }
2060 
2061 // Materialize the address of a global value into a register, and return
2062 // the register number (or zero if we failed to handle it).
2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2064   assert(VT == MVT::i64 && "Non-address!");
2065   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2066   unsigned DestReg = createResultReg(RC);
2067 
2068   // Global values may be plain old object addresses, TLS object
2069   // addresses, constant pool entries, or jump tables.  How we generate
2070   // code for these may depend on small, medium, or large code model.
2071   CodeModel::Model CModel = TM.getCodeModel();
2072 
2073   // FIXME: Jump tables are not yet required because fast-isel doesn't
2074   // handle switches; if that changes, we need them as well.  For now,
2075   // what follows assumes everything's a generic (or TLS) global address.
2076 
2077   // FIXME: We don't yet handle the complexity of TLS.
2078   if (GV->isThreadLocal())
2079     return 0;
2080 
2081   PPCFuncInfo->setUsesTOCBasePtr();
2082   // For small code model, generate a simple TOC load.
2083   if (CModel == CodeModel::Small)
2084     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2085             DestReg)
2086         .addGlobalAddress(GV)
2087         .addReg(PPC::X2);
2088   else {
2089     // If the address is an externally defined symbol, a symbol with common
2090     // or externally available linkage, a non-local function address, or a
2091     // jump table address (not yet needed), or if we are generating code
2092     // for large code model, we generate:
2093     //       LDtocL(GV, ADDIStocHA(%x2, GV))
2094     // Otherwise we generate:
2095     //       ADDItocL(ADDIStocHA(%x2, GV), GV)
2096     // Either way, start with the ADDIStocHA:
2097     unsigned HighPartReg = createResultReg(RC);
2098     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2099             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2100 
2101     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2102     if (GVFlags & PPCII::MO_NLP_FLAG) {
2103       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2104               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2105     } else {
2106       // Otherwise generate the ADDItocL.
2107       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2108               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2109     }
2110   }
2111 
2112   return DestReg;
2113 }
2114 
2115 // Materialize a 32-bit integer constant into a register, and return
2116 // the register number (or zero if we failed to handle it).
2117 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2118                                              const TargetRegisterClass *RC) {
2119   unsigned Lo = Imm & 0xFFFF;
2120   unsigned Hi = (Imm >> 16) & 0xFFFF;
2121 
2122   unsigned ResultReg = createResultReg(RC);
2123   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2124 
2125   if (isInt<16>(Imm))
2126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2127             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2128       .addImm(Imm);
2129   else if (Lo) {
2130     // Both Lo and Hi have nonzero bits.
2131     unsigned TmpReg = createResultReg(RC);
2132     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2133             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2134       .addImm(Hi);
2135     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2136             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2137       .addReg(TmpReg).addImm(Lo);
2138   } else
2139     // Just Hi bits.
2140     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2141             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2142         .addImm(Hi);
2143 
2144   return ResultReg;
2145 }
2146 
2147 // Materialize a 64-bit integer constant into a register, and return
2148 // the register number (or zero if we failed to handle it).
2149 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2150                                              const TargetRegisterClass *RC) {
2151   unsigned Remainder = 0;
2152   unsigned Shift = 0;
2153 
2154   // If the value doesn't fit in 32 bits, see if we can shift it
2155   // so that it fits in 32 bits.
2156   if (!isInt<32>(Imm)) {
2157     Shift = countTrailingZeros<uint64_t>(Imm);
2158     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2159 
2160     if (isInt<32>(ImmSh))
2161       Imm = ImmSh;
2162     else {
2163       Remainder = Imm;
2164       Shift = 32;
2165       Imm >>= 32;
2166     }
2167   }
2168 
2169   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2170   // (if not shifted).
2171   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2172   if (!Shift)
2173     return TmpReg1;
2174 
2175   // If upper 32 bits were not zero, we've built them and need to shift
2176   // them into place.
2177   unsigned TmpReg2;
2178   if (Imm) {
2179     TmpReg2 = createResultReg(RC);
2180     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2181             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2182   } else
2183     TmpReg2 = TmpReg1;
2184 
2185   unsigned TmpReg3, Hi, Lo;
2186   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2187     TmpReg3 = createResultReg(RC);
2188     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2189             TmpReg3).addReg(TmpReg2).addImm(Hi);
2190   } else
2191     TmpReg3 = TmpReg2;
2192 
2193   if ((Lo = Remainder & 0xFFFF)) {
2194     unsigned ResultReg = createResultReg(RC);
2195     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2196             ResultReg).addReg(TmpReg3).addImm(Lo);
2197     return ResultReg;
2198   }
2199 
2200   return TmpReg3;
2201 }
2202 
2203 // Materialize an integer constant into a register, and return
2204 // the register number (or zero if we failed to handle it).
2205 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2206                                         bool UseSExt) {
2207   // If we're using CR bit registers for i1 values, handle that as a special
2208   // case first.
2209   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2210     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2211     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2212             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2213     return ImmReg;
2214   }
2215 
2216   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2217       VT != MVT::i1)
2218     return 0;
2219 
2220   const TargetRegisterClass *RC =
2221       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2222   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2223 
2224   // If the constant is in range, use a load-immediate.
2225   // Since LI will sign extend the constant we need to make sure that for
2226   // our zeroext constants that the sign extended constant fits into 16-bits -
2227   // a range of 0..0x7fff.
2228   if (isInt<16>(Imm)) {
2229     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2230     unsigned ImmReg = createResultReg(RC);
2231     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2232         .addImm(Imm);
2233     return ImmReg;
2234   }
2235 
2236   // Construct the constant piecewise.
2237   if (VT == MVT::i64)
2238     return PPCMaterialize64BitInt(Imm, RC);
2239   else if (VT == MVT::i32)
2240     return PPCMaterialize32BitInt(Imm, RC);
2241 
2242   return 0;
2243 }
2244 
2245 // Materialize a constant into a register, and return the register
2246 // number (or zero if we failed to handle it).
2247 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2248   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2249 
2250   // Only handle simple types.
2251   if (!CEVT.isSimple()) return 0;
2252   MVT VT = CEVT.getSimpleVT();
2253 
2254   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2255     return PPCMaterializeFP(CFP, VT);
2256   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2257     return PPCMaterializeGV(GV, VT);
2258   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2259     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2260     // assumes that constant PHI operands will be zero extended, and failure to
2261     // match that assumption will cause problems if we sign extend here but
2262     // some user of a PHI is in a block for which we fall back to full SDAG
2263     // instruction selection.
2264     return PPCMaterializeInt(CI, VT, false);
2265 
2266   return 0;
2267 }
2268 
2269 // Materialize the address created by an alloca into a register, and
2270 // return the register number (or zero if we failed to handle it).
2271 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2272   // Don't handle dynamic allocas.
2273   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2274 
2275   MVT VT;
2276   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2277 
2278   DenseMap<const AllocaInst*, int>::iterator SI =
2279     FuncInfo.StaticAllocaMap.find(AI);
2280 
2281   if (SI != FuncInfo.StaticAllocaMap.end()) {
2282     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2283     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2284             ResultReg).addFrameIndex(SI->second).addImm(0);
2285     return ResultReg;
2286   }
2287 
2288   return 0;
2289 }
2290 
2291 // Fold loads into extends when possible.
2292 // FIXME: We can have multiple redundant extend/trunc instructions
2293 // following a load.  The folding only picks up one.  Extend this
2294 // to check subsequent instructions for the same pattern and remove
2295 // them.  Thus ResultReg should be the def reg for the last redundant
2296 // instruction in a chain, and all intervening instructions can be
2297 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2298 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2299 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2300                                       const LoadInst *LI) {
2301   // Verify we have a legal type before going any further.
2302   MVT VT;
2303   if (!isLoadTypeLegal(LI->getType(), VT))
2304     return false;
2305 
2306   // Combine load followed by zero- or sign-extend.
2307   bool IsZExt = false;
2308   switch(MI->getOpcode()) {
2309     default:
2310       return false;
2311 
2312     case PPC::RLDICL:
2313     case PPC::RLDICL_32_64: {
2314       IsZExt = true;
2315       unsigned MB = MI->getOperand(3).getImm();
2316       if ((VT == MVT::i8 && MB <= 56) ||
2317           (VT == MVT::i16 && MB <= 48) ||
2318           (VT == MVT::i32 && MB <= 32))
2319         break;
2320       return false;
2321     }
2322 
2323     case PPC::RLWINM:
2324     case PPC::RLWINM8: {
2325       IsZExt = true;
2326       unsigned MB = MI->getOperand(3).getImm();
2327       if ((VT == MVT::i8 && MB <= 24) ||
2328           (VT == MVT::i16 && MB <= 16))
2329         break;
2330       return false;
2331     }
2332 
2333     case PPC::EXTSB:
2334     case PPC::EXTSB8:
2335     case PPC::EXTSB8_32_64:
2336       /* There is no sign-extending load-byte instruction. */
2337       return false;
2338 
2339     case PPC::EXTSH:
2340     case PPC::EXTSH8:
2341     case PPC::EXTSH8_32_64: {
2342       if (VT != MVT::i16 && VT != MVT::i8)
2343         return false;
2344       break;
2345     }
2346 
2347     case PPC::EXTSW:
2348     case PPC::EXTSW_32:
2349     case PPC::EXTSW_32_64: {
2350       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2351         return false;
2352       break;
2353     }
2354   }
2355 
2356   // See if we can handle this address.
2357   Address Addr;
2358   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2359     return false;
2360 
2361   unsigned ResultReg = MI->getOperand(0).getReg();
2362 
2363   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2364         PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2365     return false;
2366 
2367   MachineBasicBlock::iterator I(MI);
2368   removeDeadCode(I, std::next(I));
2369   return true;
2370 }
2371 
2372 // Attempt to lower call arguments in a faster way than done by
2373 // the selection DAG code.
2374 bool PPCFastISel::fastLowerArguments() {
2375   // Defer to normal argument lowering for now.  It's reasonably
2376   // efficient.  Consider doing something like ARM to handle the
2377   // case where all args fit in registers, no varargs, no float
2378   // or vector args.
2379   return false;
2380 }
2381 
2382 // Handle materializing integer constants into a register.  This is not
2383 // automatically generated for PowerPC, so must be explicitly created here.
2384 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2385 
2386   if (Opc != ISD::Constant)
2387     return 0;
2388 
2389   // If we're using CR bit registers for i1 values, handle that as a special
2390   // case first.
2391   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2392     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2393     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2394             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2395     return ImmReg;
2396   }
2397 
2398   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2399       VT != MVT::i1)
2400     return 0;
2401 
2402   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2403                                    &PPC::GPRCRegClass);
2404   if (VT == MVT::i64)
2405     return PPCMaterialize64BitInt(Imm, RC);
2406   else
2407     return PPCMaterialize32BitInt(Imm, RC);
2408 }
2409 
2410 // Override for ADDI and ADDI8 to set the correct register class
2411 // on RHS operand 0.  The automatic infrastructure naively assumes
2412 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2413 // for these cases.  At the moment, none of the other automatically
2414 // generated RI instructions require special treatment.  However, once
2415 // SelectSelect is implemented, "isel" requires similar handling.
2416 //
2417 // Also be conservative about the output register class.  Avoid
2418 // assigning R0 or X0 to the output register for GPRC and G8RC
2419 // register classes, as any such result could be used in ADDI, etc.,
2420 // where those regs have another meaning.
2421 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2422                                       const TargetRegisterClass *RC,
2423                                       unsigned Op0, bool Op0IsKill,
2424                                       uint64_t Imm) {
2425   if (MachineInstOpcode == PPC::ADDI)
2426     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2427   else if (MachineInstOpcode == PPC::ADDI8)
2428     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2429 
2430   const TargetRegisterClass *UseRC =
2431     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2432      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2433 
2434   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2435                                    Op0, Op0IsKill, Imm);
2436 }
2437 
2438 // Override for instructions with one register operand to avoid use of
2439 // R0/X0.  The automatic infrastructure isn't aware of the context so
2440 // we must be conservative.
2441 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2442                                      const TargetRegisterClass* RC,
2443                                      unsigned Op0, bool Op0IsKill) {
2444   const TargetRegisterClass *UseRC =
2445     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2446      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2447 
2448   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2449 }
2450 
2451 // Override for instructions with two register operands to avoid use
2452 // of R0/X0.  The automatic infrastructure isn't aware of the context
2453 // so we must be conservative.
2454 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2455                                       const TargetRegisterClass* RC,
2456                                       unsigned Op0, bool Op0IsKill,
2457                                       unsigned Op1, bool Op1IsKill) {
2458   const TargetRegisterClass *UseRC =
2459     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2460      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2461 
2462   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2463                                    Op1, Op1IsKill);
2464 }
2465 
2466 namespace llvm {
2467   // Create the fast instruction selector for PowerPC64 ELF.
2468   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2469                                 const TargetLibraryInfo *LibInfo) {
2470     // Only available on 64-bit ELF for now.
2471     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2472     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2473       return new PPCFastISel(FuncInfo, LibInfo);
2474     return nullptr;
2475   }
2476 }
2477