1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PowerPC-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // PPCGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 149 return RC->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 152 return RC->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg, 156 const PPC::Predicate Pred); 157 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 158 const TargetRegisterClass *RC, bool IsZExt = true, 159 unsigned FP64LoadOpc = PPC::LFD); 160 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 161 bool PPCComputeAddress(const Value *Obj, Address &Addr); 162 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 163 unsigned &IndexReg); 164 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 165 unsigned DestReg, bool IsZExt); 166 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 167 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 168 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 169 bool UseSExt = true); 170 unsigned PPCMaterialize32BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMaterialize64BitInt(int64_t Imm, 173 const TargetRegisterClass *RC); 174 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 175 unsigned SrcReg, bool IsSigned); 176 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 177 178 // Call handling routines. 179 private: 180 bool processCallArgs(SmallVectorImpl<Value*> &Args, 181 SmallVectorImpl<unsigned> &ArgRegs, 182 SmallVectorImpl<MVT> &ArgVTs, 183 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 184 SmallVectorImpl<unsigned> &RegArgs, 185 CallingConv::ID CC, 186 unsigned &NumBytes, 187 bool IsVarArg); 188 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 189 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); 190 191 private: 192 #include "PPCGenFastISel.inc" 193 194 }; 195 196 } // end anonymous namespace 197 198 #include "PPCGenCallingConv.inc" 199 200 // Function whose sole purpose is to kill compiler warnings 201 // stemming from unused functions included from PPCGenCallingConv.inc. 202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 203 if (Flag == 1) 204 return CC_PPC32_SVR4; 205 else if (Flag == 2) 206 return CC_PPC32_SVR4_ByVal; 207 else if (Flag == 3) 208 return CC_PPC32_SVR4_VarArg; 209 else if (Flag == 4) 210 return RetCC_PPC_Cold; 211 else 212 return RetCC_PPC; 213 } 214 215 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 216 switch (Pred) { 217 // These are not representable with any single compare. 218 case CmpInst::FCMP_FALSE: 219 case CmpInst::FCMP_TRUE: 220 // Major concern about the following 6 cases is NaN result. The comparison 221 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 222 // only one of which will be set. The result is generated by fcmpu 223 // instruction. However, bc instruction only inspects one of the first 3 224 // bits, so when un is set, bc instruction may jump to an undesired 225 // place. 226 // 227 // More specifically, if we expect an unordered comparison and un is set, we 228 // expect to always go to true branch; in such case UEQ, UGT and ULT still 229 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 230 // since they are tested by inspecting !eq, !lt, !gt, respectively. 231 // 232 // Similarly, for ordered comparison, when un is set, we always expect the 233 // result to be false. In such case OGT, OLT and OEQ is good, since they are 234 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 235 // and ONE are tested through !lt, !gt and !eq, and these are true. 236 case CmpInst::FCMP_UEQ: 237 case CmpInst::FCMP_UGT: 238 case CmpInst::FCMP_ULT: 239 case CmpInst::FCMP_OGE: 240 case CmpInst::FCMP_OLE: 241 case CmpInst::FCMP_ONE: 242 default: 243 return Optional<PPC::Predicate>(); 244 245 case CmpInst::FCMP_OEQ: 246 case CmpInst::ICMP_EQ: 247 return PPC::PRED_EQ; 248 249 case CmpInst::FCMP_OGT: 250 case CmpInst::ICMP_UGT: 251 case CmpInst::ICMP_SGT: 252 return PPC::PRED_GT; 253 254 case CmpInst::FCMP_UGE: 255 case CmpInst::ICMP_UGE: 256 case CmpInst::ICMP_SGE: 257 return PPC::PRED_GE; 258 259 case CmpInst::FCMP_OLT: 260 case CmpInst::ICMP_ULT: 261 case CmpInst::ICMP_SLT: 262 return PPC::PRED_LT; 263 264 case CmpInst::FCMP_ULE: 265 case CmpInst::ICMP_ULE: 266 case CmpInst::ICMP_SLE: 267 return PPC::PRED_LE; 268 269 case CmpInst::FCMP_UNE: 270 case CmpInst::ICMP_NE: 271 return PPC::PRED_NE; 272 273 case CmpInst::FCMP_ORD: 274 return PPC::PRED_NU; 275 276 case CmpInst::FCMP_UNO: 277 return PPC::PRED_UN; 278 } 279 } 280 281 // Determine whether the type Ty is simple enough to be handled by 282 // fast-isel, and return its equivalent machine type in VT. 283 // FIXME: Copied directly from ARM -- factor into base class? 284 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 285 EVT Evt = TLI.getValueType(DL, Ty, true); 286 287 // Only handle simple types. 288 if (Evt == MVT::Other || !Evt.isSimple()) return false; 289 VT = Evt.getSimpleVT(); 290 291 // Handle all legal types, i.e. a register that will directly hold this 292 // value. 293 return TLI.isTypeLegal(VT); 294 } 295 296 // Determine whether the type Ty is simple enough to be handled by 297 // fast-isel as a load target, and return its equivalent machine type in VT. 298 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 299 if (isTypeLegal(Ty, VT)) return true; 300 301 // If this is a type than can be sign or zero-extended to a basic operation 302 // go ahead and accept it now. 303 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 304 return true; 305 } 306 307 return false; 308 } 309 310 bool PPCFastISel::isValueAvailable(const Value *V) const { 311 if (!isa<Instruction>(V)) 312 return true; 313 314 const auto *I = cast<Instruction>(V); 315 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 316 } 317 318 // Given a value Obj, create an Address object Addr that represents its 319 // address. Return false if we can't handle it. 320 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 321 const User *U = nullptr; 322 unsigned Opcode = Instruction::UserOp1; 323 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 324 // Don't walk into other basic blocks unless the object is an alloca from 325 // another block, otherwise it may not have a virtual register assigned. 326 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 327 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 328 Opcode = I->getOpcode(); 329 U = I; 330 } 331 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 332 Opcode = C->getOpcode(); 333 U = C; 334 } 335 336 switch (Opcode) { 337 default: 338 break; 339 case Instruction::BitCast: 340 // Look through bitcasts. 341 return PPCComputeAddress(U->getOperand(0), Addr); 342 case Instruction::IntToPtr: 343 // Look past no-op inttoptrs. 344 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 345 TLI.getPointerTy(DL)) 346 return PPCComputeAddress(U->getOperand(0), Addr); 347 break; 348 case Instruction::PtrToInt: 349 // Look past no-op ptrtoints. 350 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 351 return PPCComputeAddress(U->getOperand(0), Addr); 352 break; 353 case Instruction::GetElementPtr: { 354 Address SavedAddr = Addr; 355 long TmpOffset = Addr.Offset; 356 357 // Iterate through the GEP folding the constants into offsets where 358 // we can. 359 gep_type_iterator GTI = gep_type_begin(U); 360 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 361 II != IE; ++II, ++GTI) { 362 const Value *Op = *II; 363 if (StructType *STy = GTI.getStructTypeOrNull()) { 364 const StructLayout *SL = DL.getStructLayout(STy); 365 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 366 TmpOffset += SL->getElementOffset(Idx); 367 } else { 368 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 369 for (;;) { 370 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 371 // Constant-offset addressing. 372 TmpOffset += CI->getSExtValue() * S; 373 break; 374 } 375 if (canFoldAddIntoGEP(U, Op)) { 376 // A compatible add with a constant operand. Fold the constant. 377 ConstantInt *CI = 378 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 379 TmpOffset += CI->getSExtValue() * S; 380 // Iterate on the other operand. 381 Op = cast<AddOperator>(Op)->getOperand(0); 382 continue; 383 } 384 // Unsupported 385 goto unsupported_gep; 386 } 387 } 388 } 389 390 // Try to grab the base operand now. 391 Addr.Offset = TmpOffset; 392 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 393 394 // We failed, restore everything and try the other options. 395 Addr = SavedAddr; 396 397 unsupported_gep: 398 break; 399 } 400 case Instruction::Alloca: { 401 const AllocaInst *AI = cast<AllocaInst>(Obj); 402 DenseMap<const AllocaInst*, int>::iterator SI = 403 FuncInfo.StaticAllocaMap.find(AI); 404 if (SI != FuncInfo.StaticAllocaMap.end()) { 405 Addr.BaseType = Address::FrameIndexBase; 406 Addr.Base.FI = SI->second; 407 return true; 408 } 409 break; 410 } 411 } 412 413 // FIXME: References to parameters fall through to the behavior 414 // below. They should be able to reference a frame index since 415 // they are stored to the stack, so we can get "ld rx, offset(r1)" 416 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 417 // just contain the parameter. Try to handle this with a FI. 418 419 // Try to get this in a register if nothing else has worked. 420 if (Addr.Base.Reg == 0) 421 Addr.Base.Reg = getRegForValue(Obj); 422 423 // Prevent assignment of base register to X0, which is inappropriate 424 // for loads and stores alike. 425 if (Addr.Base.Reg != 0) 426 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 427 428 return Addr.Base.Reg != 0; 429 } 430 431 // Fix up some addresses that can't be used directly. For example, if 432 // an offset won't fit in an instruction field, we may need to move it 433 // into an index register. 434 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 435 unsigned &IndexReg) { 436 437 // Check whether the offset fits in the instruction field. 438 if (!isInt<16>(Addr.Offset)) 439 UseOffset = false; 440 441 // If this is a stack pointer and the offset needs to be simplified then 442 // put the alloca address into a register, set the base type back to 443 // register and continue. This should almost never happen. 444 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 445 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 446 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 447 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 448 Addr.Base.Reg = ResultReg; 449 Addr.BaseType = Address::RegBase; 450 } 451 452 if (!UseOffset) { 453 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 454 const ConstantInt *Offset = 455 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 456 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 457 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 458 } 459 } 460 461 // Emit a load instruction if possible, returning true if we succeeded, 462 // otherwise false. See commentary below for how the register class of 463 // the load is determined. 464 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 465 const TargetRegisterClass *RC, 466 bool IsZExt, unsigned FP64LoadOpc) { 467 unsigned Opc; 468 bool UseOffset = true; 469 bool HasSPE = PPCSubTarget->hasSPE(); 470 471 // If ResultReg is given, it determines the register class of the load. 472 // Otherwise, RC is the register class to use. If the result of the 473 // load isn't anticipated in this block, both may be zero, in which 474 // case we must make a conservative guess. In particular, don't assign 475 // R0 or X0 to the result register, as the result may be used in a load, 476 // store, add-immediate, or isel that won't permit this. (Though 477 // perhaps the spill and reload of live-exit values would handle this?) 478 const TargetRegisterClass *UseRC = 479 (ResultReg ? MRI.getRegClass(ResultReg) : 480 (RC ? RC : 481 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 482 (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) : 483 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 484 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 485 486 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 487 488 switch (VT.SimpleTy) { 489 default: // e.g., vector types not handled 490 return false; 491 case MVT::i8: 492 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 493 break; 494 case MVT::i16: 495 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 496 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 497 break; 498 case MVT::i32: 499 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 500 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 501 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 502 UseOffset = false; 503 break; 504 case MVT::i64: 505 Opc = PPC::LD; 506 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 507 "64-bit load with 32-bit target??"); 508 UseOffset = ((Addr.Offset & 3) == 0); 509 break; 510 case MVT::f32: 511 Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 512 break; 513 case MVT::f64: 514 Opc = FP64LoadOpc; 515 break; 516 } 517 518 // If necessary, materialize the offset into a register and use 519 // the indexed form. Also handle stack pointers with special needs. 520 unsigned IndexReg = 0; 521 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 522 523 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 524 // be used. 525 bool IsVSSRC = isVSSRCRegClass(UseRC); 526 bool IsVSFRC = isVSFRCRegClass(UseRC); 527 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 528 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 529 if ((Is32VSXLoad || Is64VSXLoad) && 530 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 531 (Addr.Offset == 0)) { 532 UseOffset = false; 533 } 534 535 if (ResultReg == 0) 536 ResultReg = createResultReg(UseRC); 537 538 // Note: If we still have a frame index here, we know the offset is 539 // in range, as otherwise PPCSimplifyAddress would have converted it 540 // into a RegBase. 541 if (Addr.BaseType == Address::FrameIndexBase) { 542 // VSX only provides an indexed load. 543 if (Is32VSXLoad || Is64VSXLoad) return false; 544 545 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 546 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 547 Addr.Offset), 548 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 549 MFI.getObjectAlignment(Addr.Base.FI)); 550 551 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 552 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 553 554 // Base reg with offset in range. 555 } else if (UseOffset) { 556 // VSX only provides an indexed load. 557 if (Is32VSXLoad || Is64VSXLoad) return false; 558 559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 560 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 561 562 // Indexed form. 563 } else { 564 // Get the RR opcode corresponding to the RI one. FIXME: It would be 565 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 566 // is hard to get at. 567 switch (Opc) { 568 default: llvm_unreachable("Unexpected opcode!"); 569 case PPC::LBZ: Opc = PPC::LBZX; break; 570 case PPC::LBZ8: Opc = PPC::LBZX8; break; 571 case PPC::LHZ: Opc = PPC::LHZX; break; 572 case PPC::LHZ8: Opc = PPC::LHZX8; break; 573 case PPC::LHA: Opc = PPC::LHAX; break; 574 case PPC::LHA8: Opc = PPC::LHAX8; break; 575 case PPC::LWZ: Opc = PPC::LWZX; break; 576 case PPC::LWZ8: Opc = PPC::LWZX8; break; 577 case PPC::LWA: Opc = PPC::LWAX; break; 578 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 579 case PPC::LD: Opc = PPC::LDX; break; 580 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 581 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 582 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 583 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 584 } 585 586 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 587 ResultReg); 588 589 // If we have an index register defined we use it in the store inst, 590 // otherwise we use X0 as base as it makes the vector instructions to 591 // use zero in the computation of the effective address regardless the 592 // content of the register. 593 if (IndexReg) 594 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 595 else 596 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 597 } 598 599 return true; 600 } 601 602 // Attempt to fast-select a load instruction. 603 bool PPCFastISel::SelectLoad(const Instruction *I) { 604 // FIXME: No atomic loads are supported. 605 if (cast<LoadInst>(I)->isAtomic()) 606 return false; 607 608 // Verify we have a legal type before going any further. 609 MVT VT; 610 if (!isLoadTypeLegal(I->getType(), VT)) 611 return false; 612 613 // See if we can handle this address. 614 Address Addr; 615 if (!PPCComputeAddress(I->getOperand(0), Addr)) 616 return false; 617 618 // Look at the currently assigned register for this instruction 619 // to determine the required register class. This is necessary 620 // to constrain RA from using R0/X0 when this is not legal. 621 unsigned AssignedReg = FuncInfo.ValueMap[I]; 622 const TargetRegisterClass *RC = 623 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 624 625 unsigned ResultReg = 0; 626 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 627 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 628 return false; 629 updateValueMap(I, ResultReg); 630 return true; 631 } 632 633 // Emit a store instruction to store SrcReg at Addr. 634 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 635 assert(SrcReg && "Nothing to store!"); 636 unsigned Opc; 637 bool UseOffset = true; 638 639 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 640 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 641 642 switch (VT.SimpleTy) { 643 default: // e.g., vector types not handled 644 return false; 645 case MVT::i8: 646 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 647 break; 648 case MVT::i16: 649 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 650 break; 651 case MVT::i32: 652 assert(Is32BitInt && "Not GPRC for i32??"); 653 Opc = PPC::STW; 654 break; 655 case MVT::i64: 656 Opc = PPC::STD; 657 UseOffset = ((Addr.Offset & 3) == 0); 658 break; 659 case MVT::f32: 660 Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 661 break; 662 case MVT::f64: 663 Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 664 break; 665 } 666 667 // If necessary, materialize the offset into a register and use 668 // the indexed form. Also handle stack pointers with special needs. 669 unsigned IndexReg = 0; 670 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 671 672 // If this is a potential VSX store with an offset of 0, a VSX indexed store 673 // can be used. 674 bool IsVSSRC = isVSSRCRegClass(RC); 675 bool IsVSFRC = isVSFRCRegClass(RC); 676 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 677 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 678 if ((Is32VSXStore || Is64VSXStore) && 679 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 680 (Addr.Offset == 0)) { 681 UseOffset = false; 682 } 683 684 // Note: If we still have a frame index here, we know the offset is 685 // in range, as otherwise PPCSimplifyAddress would have converted it 686 // into a RegBase. 687 if (Addr.BaseType == Address::FrameIndexBase) { 688 // VSX only provides an indexed store. 689 if (Is32VSXStore || Is64VSXStore) return false; 690 691 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 692 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 693 Addr.Offset), 694 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 695 MFI.getObjectAlignment(Addr.Base.FI)); 696 697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 698 .addReg(SrcReg) 699 .addImm(Addr.Offset) 700 .addFrameIndex(Addr.Base.FI) 701 .addMemOperand(MMO); 702 703 // Base reg with offset in range. 704 } else if (UseOffset) { 705 // VSX only provides an indexed store. 706 if (Is32VSXStore || Is64VSXStore) 707 return false; 708 709 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 710 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 711 712 // Indexed form. 713 } else { 714 // Get the RR opcode corresponding to the RI one. FIXME: It would be 715 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 716 // is hard to get at. 717 switch (Opc) { 718 default: llvm_unreachable("Unexpected opcode!"); 719 case PPC::STB: Opc = PPC::STBX; break; 720 case PPC::STH : Opc = PPC::STHX; break; 721 case PPC::STW : Opc = PPC::STWX; break; 722 case PPC::STB8: Opc = PPC::STBX8; break; 723 case PPC::STH8: Opc = PPC::STHX8; break; 724 case PPC::STW8: Opc = PPC::STWX8; break; 725 case PPC::STD: Opc = PPC::STDX; break; 726 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 727 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 728 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 729 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 730 } 731 732 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 733 .addReg(SrcReg); 734 735 // If we have an index register defined we use it in the store inst, 736 // otherwise we use X0 as base as it makes the vector instructions to 737 // use zero in the computation of the effective address regardless the 738 // content of the register. 739 if (IndexReg) 740 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 741 else 742 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 743 } 744 745 return true; 746 } 747 748 // Attempt to fast-select a store instruction. 749 bool PPCFastISel::SelectStore(const Instruction *I) { 750 Value *Op0 = I->getOperand(0); 751 unsigned SrcReg = 0; 752 753 // FIXME: No atomics loads are supported. 754 if (cast<StoreInst>(I)->isAtomic()) 755 return false; 756 757 // Verify we have a legal type before going any further. 758 MVT VT; 759 if (!isLoadTypeLegal(Op0->getType(), VT)) 760 return false; 761 762 // Get the value to be stored into a register. 763 SrcReg = getRegForValue(Op0); 764 if (SrcReg == 0) 765 return false; 766 767 // See if we can handle this address. 768 Address Addr; 769 if (!PPCComputeAddress(I->getOperand(1), Addr)) 770 return false; 771 772 if (!PPCEmitStore(VT, SrcReg, Addr)) 773 return false; 774 775 return true; 776 } 777 778 // Attempt to fast-select a branch instruction. 779 bool PPCFastISel::SelectBranch(const Instruction *I) { 780 const BranchInst *BI = cast<BranchInst>(I); 781 MachineBasicBlock *BrBB = FuncInfo.MBB; 782 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 783 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 784 785 // For now, just try the simplest case where it's fed by a compare. 786 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 787 if (isValueAvailable(CI)) { 788 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 789 if (!OptPPCPred) 790 return false; 791 792 PPC::Predicate PPCPred = OptPPCPred.getValue(); 793 794 // Take advantage of fall-through opportunities. 795 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 796 std::swap(TBB, FBB); 797 PPCPred = PPC::InvertPredicate(PPCPred); 798 } 799 800 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 801 802 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 803 CondReg, PPCPred)) 804 return false; 805 806 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 807 .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 808 .addReg(CondReg).addMBB(TBB); 809 finishCondBranch(BI->getParent(), TBB, FBB); 810 return true; 811 } 812 } else if (const ConstantInt *CI = 813 dyn_cast<ConstantInt>(BI->getCondition())) { 814 uint64_t Imm = CI->getZExtValue(); 815 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 816 fastEmitBranch(Target, DbgLoc); 817 return true; 818 } 819 820 // FIXME: ARM looks for a case where the block containing the compare 821 // has been split from the block containing the branch. If this happens, 822 // there is a vreg available containing the result of the compare. I'm 823 // not sure we can do much, as we've lost the predicate information with 824 // the compare instruction -- we have a 4-bit CR but don't know which bit 825 // to test here. 826 return false; 827 } 828 829 // Attempt to emit a compare of the two source values. Signed and unsigned 830 // comparisons are supported. Return false if we can't handle it. 831 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 832 bool IsZExt, unsigned DestReg, 833 const PPC::Predicate Pred) { 834 Type *Ty = SrcValue1->getType(); 835 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 836 if (!SrcEVT.isSimple()) 837 return false; 838 MVT SrcVT = SrcEVT.getSimpleVT(); 839 840 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 841 return false; 842 843 // See if operand 2 is an immediate encodeable in the compare. 844 // FIXME: Operands are not in canonical order at -O0, so an immediate 845 // operand in position 1 is a lost opportunity for now. We are 846 // similar to ARM in this regard. 847 long Imm = 0; 848 bool UseImm = false; 849 const bool HasSPE = PPCSubTarget->hasSPE(); 850 851 // Only 16-bit integer constants can be represented in compares for 852 // PowerPC. Others will be materialized into a register. 853 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 854 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 855 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 856 const APInt &CIVal = ConstInt->getValue(); 857 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 858 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 859 UseImm = true; 860 } 861 } 862 863 unsigned SrcReg1 = getRegForValue(SrcValue1); 864 if (SrcReg1 == 0) 865 return false; 866 867 unsigned SrcReg2 = 0; 868 if (!UseImm) { 869 SrcReg2 = getRegForValue(SrcValue2); 870 if (SrcReg2 == 0) 871 return false; 872 } 873 874 unsigned CmpOpc; 875 bool NeedsExt = false; 876 auto RC = MRI.getRegClass(SrcReg1); 877 switch (SrcVT.SimpleTy) { 878 default: return false; 879 case MVT::f32: 880 if (HasSPE) { 881 switch (Pred) { 882 default: return false; 883 case PPC::PRED_EQ: 884 CmpOpc = PPC::EFSCMPEQ; 885 break; 886 case PPC::PRED_LT: 887 CmpOpc = PPC::EFSCMPLT; 888 break; 889 case PPC::PRED_GT: 890 CmpOpc = PPC::EFSCMPGT; 891 break; 892 } 893 } else { 894 CmpOpc = PPC::FCMPUS; 895 if (isVSSRCRegClass(RC)) { 896 unsigned TmpReg = createResultReg(&PPC::F4RCRegClass); 897 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 898 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg1); 899 SrcReg1 = TmpReg; 900 } 901 } 902 break; 903 case MVT::f64: 904 if (HasSPE) { 905 switch (Pred) { 906 default: return false; 907 case PPC::PRED_EQ: 908 CmpOpc = PPC::EFDCMPEQ; 909 break; 910 case PPC::PRED_LT: 911 CmpOpc = PPC::EFDCMPLT; 912 break; 913 case PPC::PRED_GT: 914 CmpOpc = PPC::EFDCMPGT; 915 break; 916 } 917 } else if (isVSFRCRegClass(RC)) { 918 CmpOpc = PPC::XSCMPUDP; 919 } else { 920 CmpOpc = PPC::FCMPUD; 921 } 922 break; 923 case MVT::i1: 924 case MVT::i8: 925 case MVT::i16: 926 NeedsExt = true; 927 LLVM_FALLTHROUGH; 928 case MVT::i32: 929 if (!UseImm) 930 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 931 else 932 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 933 break; 934 case MVT::i64: 935 if (!UseImm) 936 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 937 else 938 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 939 break; 940 } 941 942 if (NeedsExt) { 943 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 944 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 945 return false; 946 SrcReg1 = ExtReg; 947 948 if (!UseImm) { 949 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 950 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 951 return false; 952 SrcReg2 = ExtReg; 953 } 954 } 955 956 if (!UseImm) 957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 958 .addReg(SrcReg1).addReg(SrcReg2); 959 else 960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 961 .addReg(SrcReg1).addImm(Imm); 962 963 return true; 964 } 965 966 // Attempt to fast-select a floating-point extend instruction. 967 bool PPCFastISel::SelectFPExt(const Instruction *I) { 968 Value *Src = I->getOperand(0); 969 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 970 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 971 972 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 973 return false; 974 975 unsigned SrcReg = getRegForValue(Src); 976 if (!SrcReg) 977 return false; 978 979 // No code is generated for a FP extend. 980 updateValueMap(I, SrcReg); 981 return true; 982 } 983 984 // Attempt to fast-select a floating-point truncate instruction. 985 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 986 Value *Src = I->getOperand(0); 987 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 988 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 989 990 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 991 return false; 992 993 unsigned SrcReg = getRegForValue(Src); 994 if (!SrcReg) 995 return false; 996 997 // Round the result to single precision. 998 unsigned DestReg; 999 1000 if (PPCSubTarget->hasSPE()) { 1001 DestReg = createResultReg(&PPC::SPE4RCRegClass); 1002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1003 TII.get(PPC::EFSCFD), DestReg) 1004 .addReg(SrcReg); 1005 } else { 1006 DestReg = createResultReg(&PPC::F4RCRegClass); 1007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1008 TII.get(PPC::FRSP), DestReg) 1009 .addReg(SrcReg); 1010 } 1011 1012 updateValueMap(I, DestReg); 1013 return true; 1014 } 1015 1016 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1017 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1018 // those should be used instead of moving via a stack slot when the 1019 // subtarget permits. 1020 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1021 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1022 // case to 8 bytes which produces tighter code but wastes stack space. 1023 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1024 bool IsSigned) { 1025 1026 // If necessary, extend 32-bit int to 64-bit. 1027 if (SrcVT == MVT::i32) { 1028 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1029 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1030 return 0; 1031 SrcReg = TmpReg; 1032 } 1033 1034 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1035 Address Addr; 1036 Addr.BaseType = Address::FrameIndexBase; 1037 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1038 1039 // Store the value from the GPR. 1040 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1041 return 0; 1042 1043 // Load the integer value into an FPR. The kind of load used depends 1044 // on a number of conditions. 1045 unsigned LoadOpc = PPC::LFD; 1046 1047 if (SrcVT == MVT::i32) { 1048 if (!IsSigned) { 1049 LoadOpc = PPC::LFIWZX; 1050 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1051 } else if (PPCSubTarget->hasLFIWAX()) { 1052 LoadOpc = PPC::LFIWAX; 1053 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1054 } 1055 } 1056 1057 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1058 unsigned ResultReg = 0; 1059 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1060 return 0; 1061 1062 return ResultReg; 1063 } 1064 1065 // Attempt to fast-select an integer-to-floating-point conversion. 1066 // FIXME: Once fast-isel has better support for VSX, conversions using 1067 // direct moves should be implemented. 1068 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1069 MVT DstVT; 1070 Type *DstTy = I->getType(); 1071 if (!isTypeLegal(DstTy, DstVT)) 1072 return false; 1073 1074 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1075 return false; 1076 1077 Value *Src = I->getOperand(0); 1078 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1079 if (!SrcEVT.isSimple()) 1080 return false; 1081 1082 MVT SrcVT = SrcEVT.getSimpleVT(); 1083 1084 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1085 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1086 return false; 1087 1088 unsigned SrcReg = getRegForValue(Src); 1089 if (SrcReg == 0) 1090 return false; 1091 1092 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1093 if (PPCSubTarget->hasSPE()) { 1094 unsigned Opc; 1095 if (DstVT == MVT::f32) 1096 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1097 else 1098 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1099 1100 unsigned DestReg = createResultReg(&PPC::SPERCRegClass); 1101 // Generate the convert. 1102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1103 .addReg(SrcReg); 1104 updateValueMap(I, DestReg); 1105 return true; 1106 } 1107 1108 // We can only lower an unsigned convert if we have the newer 1109 // floating-point conversion operations. 1110 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1111 return false; 1112 1113 // FIXME: For now we require the newer floating-point conversion operations 1114 // (which are present only on P7 and A2 server models) when converting 1115 // to single-precision float. Otherwise we have to generate a lot of 1116 // fiddly code to avoid double rounding. If necessary, the fiddly code 1117 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1118 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1119 return false; 1120 1121 // Extend the input if necessary. 1122 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1123 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1124 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1125 return false; 1126 SrcVT = MVT::i64; 1127 SrcReg = TmpReg; 1128 } 1129 1130 // Move the integer value to an FPR. 1131 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1132 if (FPReg == 0) 1133 return false; 1134 1135 // Determine the opcode for the conversion. 1136 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1137 unsigned DestReg = createResultReg(RC); 1138 unsigned Opc; 1139 1140 if (DstVT == MVT::f32) 1141 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1142 else 1143 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1144 1145 // Generate the convert. 1146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1147 .addReg(FPReg); 1148 1149 updateValueMap(I, DestReg); 1150 return true; 1151 } 1152 1153 // Move the floating-point value in SrcReg into an integer destination 1154 // register, and return the register (or zero if we can't handle it). 1155 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1156 // those should be used instead of moving via a stack slot when the 1157 // subtarget permits. 1158 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1159 unsigned SrcReg, bool IsSigned) { 1160 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1161 // Note that if have STFIWX available, we could use a 4-byte stack 1162 // slot for i32, but this being fast-isel we'll just go with the 1163 // easiest code gen possible. 1164 Address Addr; 1165 Addr.BaseType = Address::FrameIndexBase; 1166 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1167 1168 // Store the value from the FPR. 1169 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1170 return 0; 1171 1172 // Reload it into a GPR. If we want an i32 on big endian, modify the 1173 // address to have a 4-byte offset so we load from the right place. 1174 if (VT == MVT::i32) 1175 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1176 1177 // Look at the currently assigned register for this instruction 1178 // to determine the required register class. 1179 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1180 const TargetRegisterClass *RC = 1181 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1182 1183 unsigned ResultReg = 0; 1184 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1185 return 0; 1186 1187 return ResultReg; 1188 } 1189 1190 // Attempt to fast-select a floating-point-to-integer conversion. 1191 // FIXME: Once fast-isel has better support for VSX, conversions using 1192 // direct moves should be implemented. 1193 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1194 MVT DstVT, SrcVT; 1195 Type *DstTy = I->getType(); 1196 if (!isTypeLegal(DstTy, DstVT)) 1197 return false; 1198 1199 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1200 return false; 1201 1202 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1203 if (DstVT == MVT::i64 && !IsSigned && 1204 !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE()) 1205 return false; 1206 1207 Value *Src = I->getOperand(0); 1208 Type *SrcTy = Src->getType(); 1209 if (!isTypeLegal(SrcTy, SrcVT)) 1210 return false; 1211 1212 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1213 return false; 1214 1215 unsigned SrcReg = getRegForValue(Src); 1216 if (SrcReg == 0) 1217 return false; 1218 1219 // Convert f32 to f64 if necessary. This is just a meaningless copy 1220 // to get the register class right. 1221 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1222 if (InRC == &PPC::F4RCRegClass) { 1223 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1224 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1225 TII.get(TargetOpcode::COPY), TmpReg) 1226 .addReg(SrcReg); 1227 SrcReg = TmpReg; 1228 } 1229 1230 // Determine the opcode for the conversion, which takes place 1231 // entirely within FPRs. 1232 unsigned DestReg; 1233 unsigned Opc; 1234 1235 if (PPCSubTarget->hasSPE()) { 1236 DestReg = createResultReg(&PPC::GPRCRegClass); 1237 if (IsSigned) 1238 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1239 else 1240 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1241 } else { 1242 DestReg = createResultReg(&PPC::F8RCRegClass); 1243 if (DstVT == MVT::i32) 1244 if (IsSigned) 1245 Opc = PPC::FCTIWZ; 1246 else 1247 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1248 else 1249 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1250 } 1251 1252 // Generate the convert. 1253 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1254 .addReg(SrcReg); 1255 1256 // Now move the integer value from a float register to an integer register. 1257 unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg : 1258 PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1259 1260 if (IntReg == 0) 1261 return false; 1262 1263 updateValueMap(I, IntReg); 1264 return true; 1265 } 1266 1267 // Attempt to fast-select a binary integer operation that isn't already 1268 // handled automatically. 1269 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1270 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1271 1272 // We can get here in the case when we have a binary operation on a non-legal 1273 // type and the target independent selector doesn't know how to handle it. 1274 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1275 return false; 1276 1277 // Look at the currently assigned register for this instruction 1278 // to determine the required register class. If there is no register, 1279 // make a conservative choice (don't assign R0). 1280 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1281 const TargetRegisterClass *RC = 1282 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1283 &PPC::GPRC_and_GPRC_NOR0RegClass); 1284 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1285 1286 unsigned Opc; 1287 switch (ISDOpcode) { 1288 default: return false; 1289 case ISD::ADD: 1290 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1291 break; 1292 case ISD::OR: 1293 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1294 break; 1295 case ISD::SUB: 1296 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1297 break; 1298 } 1299 1300 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1301 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1302 if (SrcReg1 == 0) return false; 1303 1304 // Handle case of small immediate operand. 1305 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1306 const APInt &CIVal = ConstInt->getValue(); 1307 int Imm = (int)CIVal.getSExtValue(); 1308 bool UseImm = true; 1309 if (isInt<16>(Imm)) { 1310 switch (Opc) { 1311 default: 1312 llvm_unreachable("Missing case!"); 1313 case PPC::ADD4: 1314 Opc = PPC::ADDI; 1315 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1316 break; 1317 case PPC::ADD8: 1318 Opc = PPC::ADDI8; 1319 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1320 break; 1321 case PPC::OR: 1322 Opc = PPC::ORI; 1323 break; 1324 case PPC::OR8: 1325 Opc = PPC::ORI8; 1326 break; 1327 case PPC::SUBF: 1328 if (Imm == -32768) 1329 UseImm = false; 1330 else { 1331 Opc = PPC::ADDI; 1332 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1333 Imm = -Imm; 1334 } 1335 break; 1336 case PPC::SUBF8: 1337 if (Imm == -32768) 1338 UseImm = false; 1339 else { 1340 Opc = PPC::ADDI8; 1341 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1342 Imm = -Imm; 1343 } 1344 break; 1345 } 1346 1347 if (UseImm) { 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1349 ResultReg) 1350 .addReg(SrcReg1) 1351 .addImm(Imm); 1352 updateValueMap(I, ResultReg); 1353 return true; 1354 } 1355 } 1356 } 1357 1358 // Reg-reg case. 1359 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1360 if (SrcReg2 == 0) return false; 1361 1362 // Reverse operands for subtract-from. 1363 if (ISDOpcode == ISD::SUB) 1364 std::swap(SrcReg1, SrcReg2); 1365 1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1367 .addReg(SrcReg1).addReg(SrcReg2); 1368 updateValueMap(I, ResultReg); 1369 return true; 1370 } 1371 1372 // Handle arguments to a call that we're attempting to fast-select. 1373 // Return false if the arguments are too complex for us at the moment. 1374 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1375 SmallVectorImpl<unsigned> &ArgRegs, 1376 SmallVectorImpl<MVT> &ArgVTs, 1377 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1378 SmallVectorImpl<unsigned> &RegArgs, 1379 CallingConv::ID CC, 1380 unsigned &NumBytes, 1381 bool IsVarArg) { 1382 SmallVector<CCValAssign, 16> ArgLocs; 1383 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1384 1385 // Reserve space for the linkage area on the stack. 1386 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1387 CCInfo.AllocateStack(LinkageSize, 8); 1388 1389 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1390 1391 // Bail out if we can't handle any of the arguments. 1392 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1393 CCValAssign &VA = ArgLocs[I]; 1394 MVT ArgVT = ArgVTs[VA.getValNo()]; 1395 1396 // Skip vector arguments for now, as well as long double and 1397 // uint128_t, and anything that isn't passed in a register. 1398 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1399 !VA.isRegLoc() || VA.needsCustom()) 1400 return false; 1401 1402 // Skip bit-converted arguments for now. 1403 if (VA.getLocInfo() == CCValAssign::BCvt) 1404 return false; 1405 } 1406 1407 // Get a count of how many bytes are to be pushed onto the stack. 1408 NumBytes = CCInfo.getNextStackOffset(); 1409 1410 // The prolog code of the callee may store up to 8 GPR argument registers to 1411 // the stack, allowing va_start to index over them in memory if its varargs. 1412 // Because we cannot tell if this is needed on the caller side, we have to 1413 // conservatively assume that it is needed. As such, make sure we have at 1414 // least enough stack space for the caller to store the 8 GPRs. 1415 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1416 NumBytes = std::max(NumBytes, LinkageSize + 64); 1417 1418 // Issue CALLSEQ_START. 1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1420 TII.get(TII.getCallFrameSetupOpcode())) 1421 .addImm(NumBytes).addImm(0); 1422 1423 // Prepare to assign register arguments. Every argument uses up a 1424 // GPR protocol register even if it's passed in a floating-point 1425 // register (unless we're using the fast calling convention). 1426 unsigned NextGPR = PPC::X3; 1427 unsigned NextFPR = PPC::F1; 1428 1429 // Process arguments. 1430 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1431 CCValAssign &VA = ArgLocs[I]; 1432 unsigned Arg = ArgRegs[VA.getValNo()]; 1433 MVT ArgVT = ArgVTs[VA.getValNo()]; 1434 1435 // Handle argument promotion and bitcasts. 1436 switch (VA.getLocInfo()) { 1437 default: 1438 llvm_unreachable("Unknown loc info!"); 1439 case CCValAssign::Full: 1440 break; 1441 case CCValAssign::SExt: { 1442 MVT DestVT = VA.getLocVT(); 1443 const TargetRegisterClass *RC = 1444 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1445 unsigned TmpReg = createResultReg(RC); 1446 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1447 llvm_unreachable("Failed to emit a sext!"); 1448 ArgVT = DestVT; 1449 Arg = TmpReg; 1450 break; 1451 } 1452 case CCValAssign::AExt: 1453 case CCValAssign::ZExt: { 1454 MVT DestVT = VA.getLocVT(); 1455 const TargetRegisterClass *RC = 1456 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1457 unsigned TmpReg = createResultReg(RC); 1458 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1459 llvm_unreachable("Failed to emit a zext!"); 1460 ArgVT = DestVT; 1461 Arg = TmpReg; 1462 break; 1463 } 1464 case CCValAssign::BCvt: { 1465 // FIXME: Not yet handled. 1466 llvm_unreachable("Should have bailed before getting here!"); 1467 break; 1468 } 1469 } 1470 1471 // Copy this argument to the appropriate register. 1472 unsigned ArgReg; 1473 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1474 ArgReg = NextFPR++; 1475 if (CC != CallingConv::Fast) 1476 ++NextGPR; 1477 } else 1478 ArgReg = NextGPR++; 1479 1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1481 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1482 RegArgs.push_back(ArgReg); 1483 } 1484 1485 return true; 1486 } 1487 1488 // For a call that we've determined we can fast-select, finish the 1489 // call sequence and generate a copy to obtain the return value (if any). 1490 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1491 CallingConv::ID CC = CLI.CallConv; 1492 1493 // Issue CallSEQ_END. 1494 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1495 TII.get(TII.getCallFrameDestroyOpcode())) 1496 .addImm(NumBytes).addImm(0); 1497 1498 // Next, generate a copy to obtain the return value. 1499 // FIXME: No multi-register return values yet, though I don't foresee 1500 // any real difficulties there. 1501 if (RetVT != MVT::isVoid) { 1502 SmallVector<CCValAssign, 16> RVLocs; 1503 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1504 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1505 CCValAssign &VA = RVLocs[0]; 1506 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1507 assert(VA.isRegLoc() && "Can only return in registers!"); 1508 1509 MVT DestVT = VA.getValVT(); 1510 MVT CopyVT = DestVT; 1511 1512 // Ints smaller than a register still arrive in a full 64-bit 1513 // register, so make sure we recognize this. 1514 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1515 CopyVT = MVT::i64; 1516 1517 unsigned SourcePhysReg = VA.getLocReg(); 1518 unsigned ResultReg = 0; 1519 1520 if (RetVT == CopyVT) { 1521 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1522 ResultReg = createResultReg(CpyRC); 1523 1524 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1525 TII.get(TargetOpcode::COPY), ResultReg) 1526 .addReg(SourcePhysReg); 1527 1528 // If necessary, round the floating result to single precision. 1529 } else if (CopyVT == MVT::f64) { 1530 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1531 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1532 ResultReg).addReg(SourcePhysReg); 1533 1534 // If only the low half of a general register is needed, generate 1535 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1536 // used along the fast-isel path (not lowered), and downstream logic 1537 // also doesn't like a direct subreg copy on a physical reg.) 1538 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1539 ResultReg = createResultReg(&PPC::GPRCRegClass); 1540 // Convert physical register from G8RC to GPRC. 1541 SourcePhysReg -= PPC::X0 - PPC::R0; 1542 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1543 TII.get(TargetOpcode::COPY), ResultReg) 1544 .addReg(SourcePhysReg); 1545 } 1546 1547 assert(ResultReg && "ResultReg unset!"); 1548 CLI.InRegs.push_back(SourcePhysReg); 1549 CLI.ResultReg = ResultReg; 1550 CLI.NumResultRegs = 1; 1551 } 1552 1553 return true; 1554 } 1555 1556 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1557 CallingConv::ID CC = CLI.CallConv; 1558 bool IsTailCall = CLI.IsTailCall; 1559 bool IsVarArg = CLI.IsVarArg; 1560 const Value *Callee = CLI.Callee; 1561 const MCSymbol *Symbol = CLI.Symbol; 1562 1563 if (!Callee && !Symbol) 1564 return false; 1565 1566 // Allow SelectionDAG isel to handle tail calls. 1567 if (IsTailCall) 1568 return false; 1569 1570 // Let SDISel handle vararg functions. 1571 if (IsVarArg) 1572 return false; 1573 1574 // Handle simple calls for now, with legal return types and 1575 // those that can be extended. 1576 Type *RetTy = CLI.RetTy; 1577 MVT RetVT; 1578 if (RetTy->isVoidTy()) 1579 RetVT = MVT::isVoid; 1580 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1581 RetVT != MVT::i8) 1582 return false; 1583 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1584 // We can't handle boolean returns when CR bits are in use. 1585 return false; 1586 1587 // FIXME: No multi-register return values yet. 1588 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1589 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1590 RetVT != MVT::f64) { 1591 SmallVector<CCValAssign, 16> RVLocs; 1592 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1593 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1594 if (RVLocs.size() > 1) 1595 return false; 1596 } 1597 1598 // Bail early if more than 8 arguments, as we only currently 1599 // handle arguments passed in registers. 1600 unsigned NumArgs = CLI.OutVals.size(); 1601 if (NumArgs > 8) 1602 return false; 1603 1604 // Set up the argument vectors. 1605 SmallVector<Value*, 8> Args; 1606 SmallVector<unsigned, 8> ArgRegs; 1607 SmallVector<MVT, 8> ArgVTs; 1608 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1609 1610 Args.reserve(NumArgs); 1611 ArgRegs.reserve(NumArgs); 1612 ArgVTs.reserve(NumArgs); 1613 ArgFlags.reserve(NumArgs); 1614 1615 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1616 // Only handle easy calls for now. It would be reasonably easy 1617 // to handle <= 8-byte structures passed ByVal in registers, but we 1618 // have to ensure they are right-justified in the register. 1619 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1620 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1621 return false; 1622 1623 Value *ArgValue = CLI.OutVals[i]; 1624 Type *ArgTy = ArgValue->getType(); 1625 MVT ArgVT; 1626 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1627 return false; 1628 1629 if (ArgVT.isVector()) 1630 return false; 1631 1632 unsigned Arg = getRegForValue(ArgValue); 1633 if (Arg == 0) 1634 return false; 1635 1636 Args.push_back(ArgValue); 1637 ArgRegs.push_back(Arg); 1638 ArgVTs.push_back(ArgVT); 1639 ArgFlags.push_back(Flags); 1640 } 1641 1642 // Process the arguments. 1643 SmallVector<unsigned, 8> RegArgs; 1644 unsigned NumBytes; 1645 1646 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1647 RegArgs, CC, NumBytes, IsVarArg)) 1648 return false; 1649 1650 MachineInstrBuilder MIB; 1651 // FIXME: No handling for function pointers yet. This requires 1652 // implementing the function descriptor (OPD) setup. 1653 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1654 if (!GV) { 1655 // patchpoints are a special case; they always dispatch to a pointer value. 1656 // However, we don't actually want to generate the indirect call sequence 1657 // here (that will be generated, as necessary, during asm printing), and 1658 // the call we generate here will be erased by FastISel::selectPatchpoint, 1659 // so don't try very hard... 1660 if (CLI.IsPatchPoint) 1661 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1662 else 1663 return false; 1664 } else { 1665 // Build direct call with NOP for TOC restore. 1666 // FIXME: We can and should optimize away the NOP for local calls. 1667 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1668 TII.get(PPC::BL8_NOP)); 1669 // Add callee. 1670 MIB.addGlobalAddress(GV); 1671 } 1672 1673 // Add implicit physical register uses to the call. 1674 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1675 MIB.addReg(RegArgs[II], RegState::Implicit); 1676 1677 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1678 // into the call. 1679 PPCFuncInfo->setUsesTOCBasePtr(); 1680 MIB.addReg(PPC::X2, RegState::Implicit); 1681 1682 // Add a register mask with the call-preserved registers. Proper 1683 // defs for return values will be added by setPhysRegsDeadExcept(). 1684 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1685 1686 CLI.Call = MIB; 1687 1688 // Finish off the call including any return values. 1689 return finishCall(RetVT, CLI, NumBytes); 1690 } 1691 1692 // Attempt to fast-select a return instruction. 1693 bool PPCFastISel::SelectRet(const Instruction *I) { 1694 1695 if (!FuncInfo.CanLowerReturn) 1696 return false; 1697 1698 if (TLI.supportSplitCSR(FuncInfo.MF)) 1699 return false; 1700 1701 const ReturnInst *Ret = cast<ReturnInst>(I); 1702 const Function &F = *I->getParent()->getParent(); 1703 1704 // Build a list of return value registers. 1705 SmallVector<unsigned, 4> RetRegs; 1706 CallingConv::ID CC = F.getCallingConv(); 1707 1708 if (Ret->getNumOperands() > 0) { 1709 SmallVector<ISD::OutputArg, 4> Outs; 1710 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1711 1712 // Analyze operands of the call, assigning locations to each operand. 1713 SmallVector<CCValAssign, 16> ValLocs; 1714 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1715 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1716 const Value *RV = Ret->getOperand(0); 1717 1718 // FIXME: Only one output register for now. 1719 if (ValLocs.size() > 1) 1720 return false; 1721 1722 // Special case for returning a constant integer of any size - materialize 1723 // the constant as an i64 and copy it to the return register. 1724 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1725 CCValAssign &VA = ValLocs[0]; 1726 1727 unsigned RetReg = VA.getLocReg(); 1728 // We still need to worry about properly extending the sign. For example, 1729 // we could have only a single bit or a constant that needs zero 1730 // extension rather than sign extension. Make sure we pass the return 1731 // value extension property to integer materialization. 1732 unsigned SrcReg = 1733 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1734 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1736 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1737 1738 RetRegs.push_back(RetReg); 1739 1740 } else { 1741 unsigned Reg = getRegForValue(RV); 1742 1743 if (Reg == 0) 1744 return false; 1745 1746 // Copy the result values into the output registers. 1747 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1748 1749 CCValAssign &VA = ValLocs[i]; 1750 assert(VA.isRegLoc() && "Can only return in registers!"); 1751 RetRegs.push_back(VA.getLocReg()); 1752 unsigned SrcReg = Reg + VA.getValNo(); 1753 1754 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1755 if (!RVEVT.isSimple()) 1756 return false; 1757 MVT RVVT = RVEVT.getSimpleVT(); 1758 MVT DestVT = VA.getLocVT(); 1759 1760 if (RVVT != DestVT && RVVT != MVT::i8 && 1761 RVVT != MVT::i16 && RVVT != MVT::i32) 1762 return false; 1763 1764 if (RVVT != DestVT) { 1765 switch (VA.getLocInfo()) { 1766 default: 1767 llvm_unreachable("Unknown loc info!"); 1768 case CCValAssign::Full: 1769 llvm_unreachable("Full value assign but types don't match?"); 1770 case CCValAssign::AExt: 1771 case CCValAssign::ZExt: { 1772 const TargetRegisterClass *RC = 1773 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1774 unsigned TmpReg = createResultReg(RC); 1775 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1776 return false; 1777 SrcReg = TmpReg; 1778 break; 1779 } 1780 case CCValAssign::SExt: { 1781 const TargetRegisterClass *RC = 1782 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1783 unsigned TmpReg = createResultReg(RC); 1784 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1785 return false; 1786 SrcReg = TmpReg; 1787 break; 1788 } 1789 } 1790 } 1791 1792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1793 TII.get(TargetOpcode::COPY), RetRegs[i]) 1794 .addReg(SrcReg); 1795 } 1796 } 1797 } 1798 1799 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1800 TII.get(PPC::BLR8)); 1801 1802 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1803 MIB.addReg(RetRegs[i], RegState::Implicit); 1804 1805 return true; 1806 } 1807 1808 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1809 // signed and zero extensions are supported. Return false if we 1810 // can't handle it. 1811 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1812 unsigned DestReg, bool IsZExt) { 1813 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1814 return false; 1815 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1816 return false; 1817 1818 // Signed extensions use EXTSB, EXTSH, EXTSW. 1819 if (!IsZExt) { 1820 unsigned Opc; 1821 if (SrcVT == MVT::i8) 1822 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1823 else if (SrcVT == MVT::i16) 1824 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1825 else { 1826 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1827 Opc = PPC::EXTSW_32_64; 1828 } 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1830 .addReg(SrcReg); 1831 1832 // Unsigned 32-bit extensions use RLWINM. 1833 } else if (DestVT == MVT::i32) { 1834 unsigned MB; 1835 if (SrcVT == MVT::i8) 1836 MB = 24; 1837 else { 1838 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1839 MB = 16; 1840 } 1841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1842 DestReg) 1843 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1844 1845 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1846 } else { 1847 unsigned MB; 1848 if (SrcVT == MVT::i8) 1849 MB = 56; 1850 else if (SrcVT == MVT::i16) 1851 MB = 48; 1852 else 1853 MB = 32; 1854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1855 TII.get(PPC::RLDICL_32_64), DestReg) 1856 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1857 } 1858 1859 return true; 1860 } 1861 1862 // Attempt to fast-select an indirect branch instruction. 1863 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1864 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1865 if (AddrReg == 0) 1866 return false; 1867 1868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1869 .addReg(AddrReg); 1870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1871 1872 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1873 for (const BasicBlock *SuccBB : IB->successors()) 1874 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1875 1876 return true; 1877 } 1878 1879 // Attempt to fast-select an integer truncate instruction. 1880 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1881 Value *Src = I->getOperand(0); 1882 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1883 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1884 1885 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1886 return false; 1887 1888 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1889 return false; 1890 1891 unsigned SrcReg = getRegForValue(Src); 1892 if (!SrcReg) 1893 return false; 1894 1895 // The only interesting case is when we need to switch register classes. 1896 if (SrcVT == MVT::i64) { 1897 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1899 TII.get(TargetOpcode::COPY), 1900 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1901 SrcReg = ResultReg; 1902 } 1903 1904 updateValueMap(I, SrcReg); 1905 return true; 1906 } 1907 1908 // Attempt to fast-select an integer extend instruction. 1909 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1910 Type *DestTy = I->getType(); 1911 Value *Src = I->getOperand(0); 1912 Type *SrcTy = Src->getType(); 1913 1914 bool IsZExt = isa<ZExtInst>(I); 1915 unsigned SrcReg = getRegForValue(Src); 1916 if (!SrcReg) return false; 1917 1918 EVT SrcEVT, DestEVT; 1919 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1920 DestEVT = TLI.getValueType(DL, DestTy, true); 1921 if (!SrcEVT.isSimple()) 1922 return false; 1923 if (!DestEVT.isSimple()) 1924 return false; 1925 1926 MVT SrcVT = SrcEVT.getSimpleVT(); 1927 MVT DestVT = DestEVT.getSimpleVT(); 1928 1929 // If we know the register class needed for the result of this 1930 // instruction, use it. Otherwise pick the register class of the 1931 // correct size that does not contain X0/R0, since we don't know 1932 // whether downstream uses permit that assignment. 1933 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1934 const TargetRegisterClass *RC = 1935 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1936 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1937 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1938 unsigned ResultReg = createResultReg(RC); 1939 1940 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1941 return false; 1942 1943 updateValueMap(I, ResultReg); 1944 return true; 1945 } 1946 1947 // Attempt to fast-select an instruction that wasn't handled by 1948 // the table-generated machinery. 1949 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1950 1951 switch (I->getOpcode()) { 1952 case Instruction::Load: 1953 return SelectLoad(I); 1954 case Instruction::Store: 1955 return SelectStore(I); 1956 case Instruction::Br: 1957 return SelectBranch(I); 1958 case Instruction::IndirectBr: 1959 return SelectIndirectBr(I); 1960 case Instruction::FPExt: 1961 return SelectFPExt(I); 1962 case Instruction::FPTrunc: 1963 return SelectFPTrunc(I); 1964 case Instruction::SIToFP: 1965 return SelectIToFP(I, /*IsSigned*/ true); 1966 case Instruction::UIToFP: 1967 return SelectIToFP(I, /*IsSigned*/ false); 1968 case Instruction::FPToSI: 1969 return SelectFPToI(I, /*IsSigned*/ true); 1970 case Instruction::FPToUI: 1971 return SelectFPToI(I, /*IsSigned*/ false); 1972 case Instruction::Add: 1973 return SelectBinaryIntOp(I, ISD::ADD); 1974 case Instruction::Or: 1975 return SelectBinaryIntOp(I, ISD::OR); 1976 case Instruction::Sub: 1977 return SelectBinaryIntOp(I, ISD::SUB); 1978 case Instruction::Call: 1979 return selectCall(I); 1980 case Instruction::Ret: 1981 return SelectRet(I); 1982 case Instruction::Trunc: 1983 return SelectTrunc(I); 1984 case Instruction::ZExt: 1985 case Instruction::SExt: 1986 return SelectIntExt(I); 1987 // Here add other flavors of Instruction::XXX that automated 1988 // cases don't catch. For example, switches are terminators 1989 // that aren't yet handled. 1990 default: 1991 break; 1992 } 1993 return false; 1994 } 1995 1996 // Materialize a floating-point constant into a register, and return 1997 // the register number (or zero if we failed to handle it). 1998 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1999 // No plans to handle long double here. 2000 if (VT != MVT::f32 && VT != MVT::f64) 2001 return 0; 2002 2003 // All FP constants are loaded from the constant pool. 2004 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 2005 assert(Align > 0 && "Unexpectedly missing alignment information!"); 2006 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 2007 const bool HasSPE = PPCSubTarget->hasSPE(); 2008 const TargetRegisterClass *RC; 2009 if (HasSPE) 2010 RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass); 2011 else 2012 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 2013 2014 unsigned DestReg = createResultReg(RC); 2015 CodeModel::Model CModel = TM.getCodeModel(); 2016 2017 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2018 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2019 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 2020 2021 unsigned Opc; 2022 2023 if (HasSPE) 2024 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2025 else 2026 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2027 2028 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2029 2030 PPCFuncInfo->setUsesTOCBasePtr(); 2031 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2032 if (CModel == CodeModel::Small) { 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 2034 TmpReg) 2035 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2037 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2038 } else { 2039 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2041 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2042 // But for large code model, we must generate a LDtocL followed 2043 // by the LF[SD]. 2044 if (CModel == CodeModel::Large) { 2045 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2047 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2049 .addImm(0) 2050 .addReg(TmpReg2); 2051 } else 2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2053 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2054 .addReg(TmpReg) 2055 .addMemOperand(MMO); 2056 } 2057 2058 return DestReg; 2059 } 2060 2061 // Materialize the address of a global value into a register, and return 2062 // the register number (or zero if we failed to handle it). 2063 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2064 assert(VT == MVT::i64 && "Non-address!"); 2065 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2066 unsigned DestReg = createResultReg(RC); 2067 2068 // Global values may be plain old object addresses, TLS object 2069 // addresses, constant pool entries, or jump tables. How we generate 2070 // code for these may depend on small, medium, or large code model. 2071 CodeModel::Model CModel = TM.getCodeModel(); 2072 2073 // FIXME: Jump tables are not yet required because fast-isel doesn't 2074 // handle switches; if that changes, we need them as well. For now, 2075 // what follows assumes everything's a generic (or TLS) global address. 2076 2077 // FIXME: We don't yet handle the complexity of TLS. 2078 if (GV->isThreadLocal()) 2079 return 0; 2080 2081 PPCFuncInfo->setUsesTOCBasePtr(); 2082 // For small code model, generate a simple TOC load. 2083 if (CModel == CodeModel::Small) 2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 2085 DestReg) 2086 .addGlobalAddress(GV) 2087 .addReg(PPC::X2); 2088 else { 2089 // If the address is an externally defined symbol, a symbol with common 2090 // or externally available linkage, a non-local function address, or a 2091 // jump table address (not yet needed), or if we are generating code 2092 // for large code model, we generate: 2093 // LDtocL(GV, ADDIStocHA(%x2, GV)) 2094 // Otherwise we generate: 2095 // ADDItocL(ADDIStocHA(%x2, GV), GV) 2096 // Either way, start with the ADDIStocHA: 2097 unsigned HighPartReg = createResultReg(RC); 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2099 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2100 2101 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 2102 if (GVFlags & PPCII::MO_NLP_FLAG) { 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2104 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2105 } else { 2106 // Otherwise generate the ADDItocL. 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2108 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2109 } 2110 } 2111 2112 return DestReg; 2113 } 2114 2115 // Materialize a 32-bit integer constant into a register, and return 2116 // the register number (or zero if we failed to handle it). 2117 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2118 const TargetRegisterClass *RC) { 2119 unsigned Lo = Imm & 0xFFFF; 2120 unsigned Hi = (Imm >> 16) & 0xFFFF; 2121 2122 unsigned ResultReg = createResultReg(RC); 2123 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2124 2125 if (isInt<16>(Imm)) 2126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2127 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2128 .addImm(Imm); 2129 else if (Lo) { 2130 // Both Lo and Hi have nonzero bits. 2131 unsigned TmpReg = createResultReg(RC); 2132 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2133 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2134 .addImm(Hi); 2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2136 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2137 .addReg(TmpReg).addImm(Lo); 2138 } else 2139 // Just Hi bits. 2140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2141 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2142 .addImm(Hi); 2143 2144 return ResultReg; 2145 } 2146 2147 // Materialize a 64-bit integer constant into a register, and return 2148 // the register number (or zero if we failed to handle it). 2149 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2150 const TargetRegisterClass *RC) { 2151 unsigned Remainder = 0; 2152 unsigned Shift = 0; 2153 2154 // If the value doesn't fit in 32 bits, see if we can shift it 2155 // so that it fits in 32 bits. 2156 if (!isInt<32>(Imm)) { 2157 Shift = countTrailingZeros<uint64_t>(Imm); 2158 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2159 2160 if (isInt<32>(ImmSh)) 2161 Imm = ImmSh; 2162 else { 2163 Remainder = Imm; 2164 Shift = 32; 2165 Imm >>= 32; 2166 } 2167 } 2168 2169 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2170 // (if not shifted). 2171 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2172 if (!Shift) 2173 return TmpReg1; 2174 2175 // If upper 32 bits were not zero, we've built them and need to shift 2176 // them into place. 2177 unsigned TmpReg2; 2178 if (Imm) { 2179 TmpReg2 = createResultReg(RC); 2180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2181 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2182 } else 2183 TmpReg2 = TmpReg1; 2184 2185 unsigned TmpReg3, Hi, Lo; 2186 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2187 TmpReg3 = createResultReg(RC); 2188 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2189 TmpReg3).addReg(TmpReg2).addImm(Hi); 2190 } else 2191 TmpReg3 = TmpReg2; 2192 2193 if ((Lo = Remainder & 0xFFFF)) { 2194 unsigned ResultReg = createResultReg(RC); 2195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2196 ResultReg).addReg(TmpReg3).addImm(Lo); 2197 return ResultReg; 2198 } 2199 2200 return TmpReg3; 2201 } 2202 2203 // Materialize an integer constant into a register, and return 2204 // the register number (or zero if we failed to handle it). 2205 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2206 bool UseSExt) { 2207 // If we're using CR bit registers for i1 values, handle that as a special 2208 // case first. 2209 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2210 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2212 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2213 return ImmReg; 2214 } 2215 2216 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2217 VT != MVT::i1) 2218 return 0; 2219 2220 const TargetRegisterClass *RC = 2221 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2222 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2223 2224 // If the constant is in range, use a load-immediate. 2225 // Since LI will sign extend the constant we need to make sure that for 2226 // our zeroext constants that the sign extended constant fits into 16-bits - 2227 // a range of 0..0x7fff. 2228 if (isInt<16>(Imm)) { 2229 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2230 unsigned ImmReg = createResultReg(RC); 2231 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2232 .addImm(Imm); 2233 return ImmReg; 2234 } 2235 2236 // Construct the constant piecewise. 2237 if (VT == MVT::i64) 2238 return PPCMaterialize64BitInt(Imm, RC); 2239 else if (VT == MVT::i32) 2240 return PPCMaterialize32BitInt(Imm, RC); 2241 2242 return 0; 2243 } 2244 2245 // Materialize a constant into a register, and return the register 2246 // number (or zero if we failed to handle it). 2247 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2248 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2249 2250 // Only handle simple types. 2251 if (!CEVT.isSimple()) return 0; 2252 MVT VT = CEVT.getSimpleVT(); 2253 2254 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2255 return PPCMaterializeFP(CFP, VT); 2256 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2257 return PPCMaterializeGV(GV, VT); 2258 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2259 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2260 // assumes that constant PHI operands will be zero extended, and failure to 2261 // match that assumption will cause problems if we sign extend here but 2262 // some user of a PHI is in a block for which we fall back to full SDAG 2263 // instruction selection. 2264 return PPCMaterializeInt(CI, VT, false); 2265 2266 return 0; 2267 } 2268 2269 // Materialize the address created by an alloca into a register, and 2270 // return the register number (or zero if we failed to handle it). 2271 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2272 // Don't handle dynamic allocas. 2273 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2274 2275 MVT VT; 2276 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2277 2278 DenseMap<const AllocaInst*, int>::iterator SI = 2279 FuncInfo.StaticAllocaMap.find(AI); 2280 2281 if (SI != FuncInfo.StaticAllocaMap.end()) { 2282 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2283 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2284 ResultReg).addFrameIndex(SI->second).addImm(0); 2285 return ResultReg; 2286 } 2287 2288 return 0; 2289 } 2290 2291 // Fold loads into extends when possible. 2292 // FIXME: We can have multiple redundant extend/trunc instructions 2293 // following a load. The folding only picks up one. Extend this 2294 // to check subsequent instructions for the same pattern and remove 2295 // them. Thus ResultReg should be the def reg for the last redundant 2296 // instruction in a chain, and all intervening instructions can be 2297 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2298 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2299 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2300 const LoadInst *LI) { 2301 // Verify we have a legal type before going any further. 2302 MVT VT; 2303 if (!isLoadTypeLegal(LI->getType(), VT)) 2304 return false; 2305 2306 // Combine load followed by zero- or sign-extend. 2307 bool IsZExt = false; 2308 switch(MI->getOpcode()) { 2309 default: 2310 return false; 2311 2312 case PPC::RLDICL: 2313 case PPC::RLDICL_32_64: { 2314 IsZExt = true; 2315 unsigned MB = MI->getOperand(3).getImm(); 2316 if ((VT == MVT::i8 && MB <= 56) || 2317 (VT == MVT::i16 && MB <= 48) || 2318 (VT == MVT::i32 && MB <= 32)) 2319 break; 2320 return false; 2321 } 2322 2323 case PPC::RLWINM: 2324 case PPC::RLWINM8: { 2325 IsZExt = true; 2326 unsigned MB = MI->getOperand(3).getImm(); 2327 if ((VT == MVT::i8 && MB <= 24) || 2328 (VT == MVT::i16 && MB <= 16)) 2329 break; 2330 return false; 2331 } 2332 2333 case PPC::EXTSB: 2334 case PPC::EXTSB8: 2335 case PPC::EXTSB8_32_64: 2336 /* There is no sign-extending load-byte instruction. */ 2337 return false; 2338 2339 case PPC::EXTSH: 2340 case PPC::EXTSH8: 2341 case PPC::EXTSH8_32_64: { 2342 if (VT != MVT::i16 && VT != MVT::i8) 2343 return false; 2344 break; 2345 } 2346 2347 case PPC::EXTSW: 2348 case PPC::EXTSW_32: 2349 case PPC::EXTSW_32_64: { 2350 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2351 return false; 2352 break; 2353 } 2354 } 2355 2356 // See if we can handle this address. 2357 Address Addr; 2358 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2359 return false; 2360 2361 unsigned ResultReg = MI->getOperand(0).getReg(); 2362 2363 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2364 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2365 return false; 2366 2367 MachineBasicBlock::iterator I(MI); 2368 removeDeadCode(I, std::next(I)); 2369 return true; 2370 } 2371 2372 // Attempt to lower call arguments in a faster way than done by 2373 // the selection DAG code. 2374 bool PPCFastISel::fastLowerArguments() { 2375 // Defer to normal argument lowering for now. It's reasonably 2376 // efficient. Consider doing something like ARM to handle the 2377 // case where all args fit in registers, no varargs, no float 2378 // or vector args. 2379 return false; 2380 } 2381 2382 // Handle materializing integer constants into a register. This is not 2383 // automatically generated for PowerPC, so must be explicitly created here. 2384 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2385 2386 if (Opc != ISD::Constant) 2387 return 0; 2388 2389 // If we're using CR bit registers for i1 values, handle that as a special 2390 // case first. 2391 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2392 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2394 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2395 return ImmReg; 2396 } 2397 2398 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2399 VT != MVT::i1) 2400 return 0; 2401 2402 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2403 &PPC::GPRCRegClass); 2404 if (VT == MVT::i64) 2405 return PPCMaterialize64BitInt(Imm, RC); 2406 else 2407 return PPCMaterialize32BitInt(Imm, RC); 2408 } 2409 2410 // Override for ADDI and ADDI8 to set the correct register class 2411 // on RHS operand 0. The automatic infrastructure naively assumes 2412 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2413 // for these cases. At the moment, none of the other automatically 2414 // generated RI instructions require special treatment. However, once 2415 // SelectSelect is implemented, "isel" requires similar handling. 2416 // 2417 // Also be conservative about the output register class. Avoid 2418 // assigning R0 or X0 to the output register for GPRC and G8RC 2419 // register classes, as any such result could be used in ADDI, etc., 2420 // where those regs have another meaning. 2421 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2422 const TargetRegisterClass *RC, 2423 unsigned Op0, bool Op0IsKill, 2424 uint64_t Imm) { 2425 if (MachineInstOpcode == PPC::ADDI) 2426 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2427 else if (MachineInstOpcode == PPC::ADDI8) 2428 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2429 2430 const TargetRegisterClass *UseRC = 2431 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2432 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2433 2434 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2435 Op0, Op0IsKill, Imm); 2436 } 2437 2438 // Override for instructions with one register operand to avoid use of 2439 // R0/X0. The automatic infrastructure isn't aware of the context so 2440 // we must be conservative. 2441 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2442 const TargetRegisterClass* RC, 2443 unsigned Op0, bool Op0IsKill) { 2444 const TargetRegisterClass *UseRC = 2445 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2446 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2447 2448 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2449 } 2450 2451 // Override for instructions with two register operands to avoid use 2452 // of R0/X0. The automatic infrastructure isn't aware of the context 2453 // so we must be conservative. 2454 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2455 const TargetRegisterClass* RC, 2456 unsigned Op0, bool Op0IsKill, 2457 unsigned Op1, bool Op1IsKill) { 2458 const TargetRegisterClass *UseRC = 2459 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2460 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2461 2462 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2463 Op1, Op1IsKill); 2464 } 2465 2466 namespace llvm { 2467 // Create the fast instruction selector for PowerPC64 ELF. 2468 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2469 const TargetLibraryInfo *LibInfo) { 2470 // Only available on 64-bit ELF for now. 2471 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2472 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2473 return new PPCFastISel(FuncInfo, LibInfo); 2474 return nullptr; 2475 } 2476 } 2477