1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isValueAvailable(const Value *V) const; 148 bool isVSFRCRegister(unsigned Register) const { 149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 150 } 151 bool isVSSRCRegister(unsigned Register) const { 152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 153 } 154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 155 bool isZExt, unsigned DestReg); 156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 157 const TargetRegisterClass *RC, bool IsZExt = true, 158 unsigned FP64LoadOpc = PPC::LFD); 159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 160 bool PPCComputeAddress(const Value *Obj, Address &Addr); 161 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 162 unsigned &IndexReg); 163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 164 unsigned DestReg, bool IsZExt); 165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 167 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 168 bool UseSExt = true); 169 unsigned PPCMaterialize32BitInt(int64_t Imm, 170 const TargetRegisterClass *RC); 171 unsigned PPCMaterialize64BitInt(int64_t Imm, 172 const TargetRegisterClass *RC); 173 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 174 unsigned SrcReg, bool IsSigned); 175 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 176 177 // Call handling routines. 178 private: 179 bool processCallArgs(SmallVectorImpl<Value*> &Args, 180 SmallVectorImpl<unsigned> &ArgRegs, 181 SmallVectorImpl<MVT> &ArgVTs, 182 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 183 SmallVectorImpl<unsigned> &RegArgs, 184 CallingConv::ID CC, 185 unsigned &NumBytes, 186 bool IsVarArg); 187 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 188 CCAssignFn *usePPC32CCs(unsigned Flag); 189 190 private: 191 #include "PPCGenFastISel.inc" 192 193 }; 194 195 } // end anonymous namespace 196 197 #include "PPCGenCallingConv.inc" 198 199 // Function whose sole purpose is to kill compiler warnings 200 // stemming from unused functions included from PPCGenCallingConv.inc. 201 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 202 if (Flag == 1) 203 return CC_PPC32_SVR4; 204 else if (Flag == 2) 205 return CC_PPC32_SVR4_ByVal; 206 else if (Flag == 3) 207 return CC_PPC32_SVR4_VarArg; 208 else 209 return RetCC_PPC; 210 } 211 212 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 213 switch (Pred) { 214 // These are not representable with any single compare. 215 case CmpInst::FCMP_FALSE: 216 case CmpInst::FCMP_TRUE: 217 // Major concern about the following 6 cases is NaN result. The comparison 218 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 219 // only one of which will be set. The result is generated by fcmpu 220 // instruction. However, bc instruction only inspects one of the first 3 221 // bits, so when un is set, bc instruction may jump to to an undesired 222 // place. 223 // 224 // More specifically, if we expect an unordered comparison and un is set, we 225 // expect to always go to true branch; in such case UEQ, UGT and ULT still 226 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 227 // since they are tested by inspecting !eq, !lt, !gt, respectively. 228 // 229 // Similarly, for ordered comparison, when un is set, we always expect the 230 // result to be false. In such case OGT, OLT and OEQ is good, since they are 231 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 232 // and ONE are tested through !lt, !gt and !eq, and these are true. 233 case CmpInst::FCMP_UEQ: 234 case CmpInst::FCMP_UGT: 235 case CmpInst::FCMP_ULT: 236 case CmpInst::FCMP_OGE: 237 case CmpInst::FCMP_OLE: 238 case CmpInst::FCMP_ONE: 239 default: 240 return Optional<PPC::Predicate>(); 241 242 case CmpInst::FCMP_OEQ: 243 case CmpInst::ICMP_EQ: 244 return PPC::PRED_EQ; 245 246 case CmpInst::FCMP_OGT: 247 case CmpInst::ICMP_UGT: 248 case CmpInst::ICMP_SGT: 249 return PPC::PRED_GT; 250 251 case CmpInst::FCMP_UGE: 252 case CmpInst::ICMP_UGE: 253 case CmpInst::ICMP_SGE: 254 return PPC::PRED_GE; 255 256 case CmpInst::FCMP_OLT: 257 case CmpInst::ICMP_ULT: 258 case CmpInst::ICMP_SLT: 259 return PPC::PRED_LT; 260 261 case CmpInst::FCMP_ULE: 262 case CmpInst::ICMP_ULE: 263 case CmpInst::ICMP_SLE: 264 return PPC::PRED_LE; 265 266 case CmpInst::FCMP_UNE: 267 case CmpInst::ICMP_NE: 268 return PPC::PRED_NE; 269 270 case CmpInst::FCMP_ORD: 271 return PPC::PRED_NU; 272 273 case CmpInst::FCMP_UNO: 274 return PPC::PRED_UN; 275 } 276 } 277 278 // Determine whether the type Ty is simple enough to be handled by 279 // fast-isel, and return its equivalent machine type in VT. 280 // FIXME: Copied directly from ARM -- factor into base class? 281 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 282 EVT Evt = TLI.getValueType(DL, Ty, true); 283 284 // Only handle simple types. 285 if (Evt == MVT::Other || !Evt.isSimple()) return false; 286 VT = Evt.getSimpleVT(); 287 288 // Handle all legal types, i.e. a register that will directly hold this 289 // value. 290 return TLI.isTypeLegal(VT); 291 } 292 293 // Determine whether the type Ty is simple enough to be handled by 294 // fast-isel as a load target, and return its equivalent machine type in VT. 295 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 296 if (isTypeLegal(Ty, VT)) return true; 297 298 // If this is a type than can be sign or zero-extended to a basic operation 299 // go ahead and accept it now. 300 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 301 return true; 302 } 303 304 return false; 305 } 306 307 bool PPCFastISel::isValueAvailable(const Value *V) const { 308 if (!isa<Instruction>(V)) 309 return true; 310 311 const auto *I = cast<Instruction>(V); 312 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 313 } 314 315 // Given a value Obj, create an Address object Addr that represents its 316 // address. Return false if we can't handle it. 317 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 318 const User *U = nullptr; 319 unsigned Opcode = Instruction::UserOp1; 320 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 321 // Don't walk into other basic blocks unless the object is an alloca from 322 // another block, otherwise it may not have a virtual register assigned. 323 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 324 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 325 Opcode = I->getOpcode(); 326 U = I; 327 } 328 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 329 Opcode = C->getOpcode(); 330 U = C; 331 } 332 333 switch (Opcode) { 334 default: 335 break; 336 case Instruction::BitCast: 337 // Look through bitcasts. 338 return PPCComputeAddress(U->getOperand(0), Addr); 339 case Instruction::IntToPtr: 340 // Look past no-op inttoptrs. 341 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 342 TLI.getPointerTy(DL)) 343 return PPCComputeAddress(U->getOperand(0), Addr); 344 break; 345 case Instruction::PtrToInt: 346 // Look past no-op ptrtoints. 347 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 348 return PPCComputeAddress(U->getOperand(0), Addr); 349 break; 350 case Instruction::GetElementPtr: { 351 Address SavedAddr = Addr; 352 long TmpOffset = Addr.Offset; 353 354 // Iterate through the GEP folding the constants into offsets where 355 // we can. 356 gep_type_iterator GTI = gep_type_begin(U); 357 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 358 II != IE; ++II, ++GTI) { 359 const Value *Op = *II; 360 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 361 const StructLayout *SL = DL.getStructLayout(STy); 362 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 363 TmpOffset += SL->getElementOffset(Idx); 364 } else { 365 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 366 for (;;) { 367 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 368 // Constant-offset addressing. 369 TmpOffset += CI->getSExtValue() * S; 370 break; 371 } 372 if (canFoldAddIntoGEP(U, Op)) { 373 // A compatible add with a constant operand. Fold the constant. 374 ConstantInt *CI = 375 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 376 TmpOffset += CI->getSExtValue() * S; 377 // Iterate on the other operand. 378 Op = cast<AddOperator>(Op)->getOperand(0); 379 continue; 380 } 381 // Unsupported 382 goto unsupported_gep; 383 } 384 } 385 } 386 387 // Try to grab the base operand now. 388 Addr.Offset = TmpOffset; 389 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 390 391 // We failed, restore everything and try the other options. 392 Addr = SavedAddr; 393 394 unsupported_gep: 395 break; 396 } 397 case Instruction::Alloca: { 398 const AllocaInst *AI = cast<AllocaInst>(Obj); 399 DenseMap<const AllocaInst*, int>::iterator SI = 400 FuncInfo.StaticAllocaMap.find(AI); 401 if (SI != FuncInfo.StaticAllocaMap.end()) { 402 Addr.BaseType = Address::FrameIndexBase; 403 Addr.Base.FI = SI->second; 404 return true; 405 } 406 break; 407 } 408 } 409 410 // FIXME: References to parameters fall through to the behavior 411 // below. They should be able to reference a frame index since 412 // they are stored to the stack, so we can get "ld rx, offset(r1)" 413 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 414 // just contain the parameter. Try to handle this with a FI. 415 416 // Try to get this in a register if nothing else has worked. 417 if (Addr.Base.Reg == 0) 418 Addr.Base.Reg = getRegForValue(Obj); 419 420 // Prevent assignment of base register to X0, which is inappropriate 421 // for loads and stores alike. 422 if (Addr.Base.Reg != 0) 423 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 424 425 return Addr.Base.Reg != 0; 426 } 427 428 // Fix up some addresses that can't be used directly. For example, if 429 // an offset won't fit in an instruction field, we may need to move it 430 // into an index register. 431 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 432 unsigned &IndexReg) { 433 434 // Check whether the offset fits in the instruction field. 435 if (!isInt<16>(Addr.Offset)) 436 UseOffset = false; 437 438 // If this is a stack pointer and the offset needs to be simplified then 439 // put the alloca address into a register, set the base type back to 440 // register and continue. This should almost never happen. 441 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 442 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 444 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 445 Addr.Base.Reg = ResultReg; 446 Addr.BaseType = Address::RegBase; 447 } 448 449 if (!UseOffset) { 450 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 451 const ConstantInt *Offset = 452 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 453 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 454 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 455 } 456 } 457 458 // Emit a load instruction if possible, returning true if we succeeded, 459 // otherwise false. See commentary below for how the register class of 460 // the load is determined. 461 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 462 const TargetRegisterClass *RC, 463 bool IsZExt, unsigned FP64LoadOpc) { 464 unsigned Opc; 465 bool UseOffset = true; 466 467 // If ResultReg is given, it determines the register class of the load. 468 // Otherwise, RC is the register class to use. If the result of the 469 // load isn't anticipated in this block, both may be zero, in which 470 // case we must make a conservative guess. In particular, don't assign 471 // R0 or X0 to the result register, as the result may be used in a load, 472 // store, add-immediate, or isel that won't permit this. (Though 473 // perhaps the spill and reload of live-exit values would handle this?) 474 const TargetRegisterClass *UseRC = 475 (ResultReg ? MRI.getRegClass(ResultReg) : 476 (RC ? RC : 477 (VT == MVT::f64 ? &PPC::F8RCRegClass : 478 (VT == MVT::f32 ? &PPC::F4RCRegClass : 479 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 480 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 481 482 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 483 484 switch (VT.SimpleTy) { 485 default: // e.g., vector types not handled 486 return false; 487 case MVT::i8: 488 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 489 break; 490 case MVT::i16: 491 Opc = (IsZExt ? 492 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 493 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 494 break; 495 case MVT::i32: 496 Opc = (IsZExt ? 497 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 498 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 499 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 500 UseOffset = false; 501 break; 502 case MVT::i64: 503 Opc = PPC::LD; 504 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 505 "64-bit load with 32-bit target??"); 506 UseOffset = ((Addr.Offset & 3) == 0); 507 break; 508 case MVT::f32: 509 Opc = PPC::LFS; 510 break; 511 case MVT::f64: 512 Opc = FP64LoadOpc; 513 break; 514 } 515 516 // If necessary, materialize the offset into a register and use 517 // the indexed form. Also handle stack pointers with special needs. 518 unsigned IndexReg = 0; 519 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 520 521 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 522 // be used. 523 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 524 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 525 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 526 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 527 if ((Is32VSXLoad || Is64VSXLoad) && 528 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 529 (Addr.Offset == 0)) { 530 UseOffset = false; 531 } 532 533 if (ResultReg == 0) 534 ResultReg = createResultReg(UseRC); 535 536 // Note: If we still have a frame index here, we know the offset is 537 // in range, as otherwise PPCSimplifyAddress would have converted it 538 // into a RegBase. 539 if (Addr.BaseType == Address::FrameIndexBase) { 540 // VSX only provides an indexed load. 541 if (Is32VSXLoad || Is64VSXLoad) return false; 542 543 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 544 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 545 Addr.Offset), 546 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 547 MFI.getObjectAlignment(Addr.Base.FI)); 548 549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 550 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 551 552 // Base reg with offset in range. 553 } else if (UseOffset) { 554 // VSX only provides an indexed load. 555 if (Is32VSXLoad || Is64VSXLoad) return false; 556 557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 558 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 559 560 // Indexed form. 561 } else { 562 // Get the RR opcode corresponding to the RI one. FIXME: It would be 563 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 564 // is hard to get at. 565 switch (Opc) { 566 default: llvm_unreachable("Unexpected opcode!"); 567 case PPC::LBZ: Opc = PPC::LBZX; break; 568 case PPC::LBZ8: Opc = PPC::LBZX8; break; 569 case PPC::LHZ: Opc = PPC::LHZX; break; 570 case PPC::LHZ8: Opc = PPC::LHZX8; break; 571 case PPC::LHA: Opc = PPC::LHAX; break; 572 case PPC::LHA8: Opc = PPC::LHAX8; break; 573 case PPC::LWZ: Opc = PPC::LWZX; break; 574 case PPC::LWZ8: Opc = PPC::LWZX8; break; 575 case PPC::LWA: Opc = PPC::LWAX; break; 576 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 577 case PPC::LD: Opc = PPC::LDX; break; 578 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 579 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 580 } 581 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 582 .addReg(Addr.Base.Reg).addReg(IndexReg); 583 } 584 585 return true; 586 } 587 588 // Attempt to fast-select a load instruction. 589 bool PPCFastISel::SelectLoad(const Instruction *I) { 590 // FIXME: No atomic loads are supported. 591 if (cast<LoadInst>(I)->isAtomic()) 592 return false; 593 594 // Verify we have a legal type before going any further. 595 MVT VT; 596 if (!isLoadTypeLegal(I->getType(), VT)) 597 return false; 598 599 // See if we can handle this address. 600 Address Addr; 601 if (!PPCComputeAddress(I->getOperand(0), Addr)) 602 return false; 603 604 // Look at the currently assigned register for this instruction 605 // to determine the required register class. This is necessary 606 // to constrain RA from using R0/X0 when this is not legal. 607 unsigned AssignedReg = FuncInfo.ValueMap[I]; 608 const TargetRegisterClass *RC = 609 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 610 611 unsigned ResultReg = 0; 612 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 613 return false; 614 updateValueMap(I, ResultReg); 615 return true; 616 } 617 618 // Emit a store instruction to store SrcReg at Addr. 619 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 620 assert(SrcReg && "Nothing to store!"); 621 unsigned Opc; 622 bool UseOffset = true; 623 624 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 625 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 626 627 switch (VT.SimpleTy) { 628 default: // e.g., vector types not handled 629 return false; 630 case MVT::i8: 631 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 632 break; 633 case MVT::i16: 634 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 635 break; 636 case MVT::i32: 637 assert(Is32BitInt && "Not GPRC for i32??"); 638 Opc = PPC::STW; 639 break; 640 case MVT::i64: 641 Opc = PPC::STD; 642 UseOffset = ((Addr.Offset & 3) == 0); 643 break; 644 case MVT::f32: 645 Opc = PPC::STFS; 646 break; 647 case MVT::f64: 648 Opc = PPC::STFD; 649 break; 650 } 651 652 // If necessary, materialize the offset into a register and use 653 // the indexed form. Also handle stack pointers with special needs. 654 unsigned IndexReg = 0; 655 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 656 657 // If this is a potential VSX store with an offset of 0, a VSX indexed store 658 // can be used. 659 bool IsVSSRC = isVSSRCRegister(SrcReg); 660 bool IsVSFRC = isVSFRCRegister(SrcReg); 661 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 662 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 663 if ((Is32VSXStore || Is64VSXStore) && 664 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 665 (Addr.Offset == 0)) { 666 UseOffset = false; 667 } 668 669 // Note: If we still have a frame index here, we know the offset is 670 // in range, as otherwise PPCSimplifyAddress would have converted it 671 // into a RegBase. 672 if (Addr.BaseType == Address::FrameIndexBase) { 673 // VSX only provides an indexed store. 674 if (Is32VSXStore || Is64VSXStore) return false; 675 676 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 677 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 678 Addr.Offset), 679 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 680 MFI.getObjectAlignment(Addr.Base.FI)); 681 682 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 683 .addReg(SrcReg) 684 .addImm(Addr.Offset) 685 .addFrameIndex(Addr.Base.FI) 686 .addMemOperand(MMO); 687 688 // Base reg with offset in range. 689 } else if (UseOffset) { 690 // VSX only provides an indexed store. 691 if (Is32VSXStore || Is64VSXStore) return false; 692 693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 694 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 695 696 // Indexed form. 697 } else { 698 // Get the RR opcode corresponding to the RI one. FIXME: It would be 699 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 700 // is hard to get at. 701 switch (Opc) { 702 default: llvm_unreachable("Unexpected opcode!"); 703 case PPC::STB: Opc = PPC::STBX; break; 704 case PPC::STH : Opc = PPC::STHX; break; 705 case PPC::STW : Opc = PPC::STWX; break; 706 case PPC::STB8: Opc = PPC::STBX8; break; 707 case PPC::STH8: Opc = PPC::STHX8; break; 708 case PPC::STW8: Opc = PPC::STWX8; break; 709 case PPC::STD: Opc = PPC::STDX; break; 710 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 711 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 712 } 713 714 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 715 .addReg(SrcReg); 716 717 // If we have an index register defined we use it in the store inst, 718 // otherwise we use X0 as base as it makes the vector instructions to 719 // use zero in the computation of the effective address regardless the 720 // content of the register. 721 if (IndexReg) 722 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 723 else 724 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 725 } 726 727 return true; 728 } 729 730 // Attempt to fast-select a store instruction. 731 bool PPCFastISel::SelectStore(const Instruction *I) { 732 Value *Op0 = I->getOperand(0); 733 unsigned SrcReg = 0; 734 735 // FIXME: No atomics loads are supported. 736 if (cast<StoreInst>(I)->isAtomic()) 737 return false; 738 739 // Verify we have a legal type before going any further. 740 MVT VT; 741 if (!isLoadTypeLegal(Op0->getType(), VT)) 742 return false; 743 744 // Get the value to be stored into a register. 745 SrcReg = getRegForValue(Op0); 746 if (SrcReg == 0) 747 return false; 748 749 // See if we can handle this address. 750 Address Addr; 751 if (!PPCComputeAddress(I->getOperand(1), Addr)) 752 return false; 753 754 if (!PPCEmitStore(VT, SrcReg, Addr)) 755 return false; 756 757 return true; 758 } 759 760 // Attempt to fast-select a branch instruction. 761 bool PPCFastISel::SelectBranch(const Instruction *I) { 762 const BranchInst *BI = cast<BranchInst>(I); 763 MachineBasicBlock *BrBB = FuncInfo.MBB; 764 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 765 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 766 767 // For now, just try the simplest case where it's fed by a compare. 768 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 769 if (isValueAvailable(CI)) { 770 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 771 if (!OptPPCPred) 772 return false; 773 774 PPC::Predicate PPCPred = OptPPCPred.getValue(); 775 776 // Take advantage of fall-through opportunities. 777 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 778 std::swap(TBB, FBB); 779 PPCPred = PPC::InvertPredicate(PPCPred); 780 } 781 782 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 783 784 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 785 CondReg)) 786 return false; 787 788 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 789 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 790 finishCondBranch(BI->getParent(), TBB, FBB); 791 return true; 792 } 793 } else if (const ConstantInt *CI = 794 dyn_cast<ConstantInt>(BI->getCondition())) { 795 uint64_t Imm = CI->getZExtValue(); 796 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 797 fastEmitBranch(Target, DbgLoc); 798 return true; 799 } 800 801 // FIXME: ARM looks for a case where the block containing the compare 802 // has been split from the block containing the branch. If this happens, 803 // there is a vreg available containing the result of the compare. I'm 804 // not sure we can do much, as we've lost the predicate information with 805 // the compare instruction -- we have a 4-bit CR but don't know which bit 806 // to test here. 807 return false; 808 } 809 810 // Attempt to emit a compare of the two source values. Signed and unsigned 811 // comparisons are supported. Return false if we can't handle it. 812 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 813 bool IsZExt, unsigned DestReg) { 814 Type *Ty = SrcValue1->getType(); 815 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 816 if (!SrcEVT.isSimple()) 817 return false; 818 MVT SrcVT = SrcEVT.getSimpleVT(); 819 820 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 821 return false; 822 823 // See if operand 2 is an immediate encodeable in the compare. 824 // FIXME: Operands are not in canonical order at -O0, so an immediate 825 // operand in position 1 is a lost opportunity for now. We are 826 // similar to ARM in this regard. 827 long Imm = 0; 828 bool UseImm = false; 829 830 // Only 16-bit integer constants can be represented in compares for 831 // PowerPC. Others will be materialized into a register. 832 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 833 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 834 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 835 const APInt &CIVal = ConstInt->getValue(); 836 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 837 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 838 UseImm = true; 839 } 840 } 841 842 unsigned CmpOpc; 843 bool NeedsExt = false; 844 switch (SrcVT.SimpleTy) { 845 default: return false; 846 case MVT::f32: 847 CmpOpc = PPC::FCMPUS; 848 break; 849 case MVT::f64: 850 CmpOpc = PPC::FCMPUD; 851 break; 852 case MVT::i1: 853 case MVT::i8: 854 case MVT::i16: 855 NeedsExt = true; 856 // Intentional fall-through. 857 case MVT::i32: 858 if (!UseImm) 859 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 860 else 861 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 862 break; 863 case MVT::i64: 864 if (!UseImm) 865 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 866 else 867 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 868 break; 869 } 870 871 unsigned SrcReg1 = getRegForValue(SrcValue1); 872 if (SrcReg1 == 0) 873 return false; 874 875 unsigned SrcReg2 = 0; 876 if (!UseImm) { 877 SrcReg2 = getRegForValue(SrcValue2); 878 if (SrcReg2 == 0) 879 return false; 880 } 881 882 if (NeedsExt) { 883 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 884 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 885 return false; 886 SrcReg1 = ExtReg; 887 888 if (!UseImm) { 889 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 890 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 891 return false; 892 SrcReg2 = ExtReg; 893 } 894 } 895 896 if (!UseImm) 897 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 898 .addReg(SrcReg1).addReg(SrcReg2); 899 else 900 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 901 .addReg(SrcReg1).addImm(Imm); 902 903 return true; 904 } 905 906 // Attempt to fast-select a floating-point extend instruction. 907 bool PPCFastISel::SelectFPExt(const Instruction *I) { 908 Value *Src = I->getOperand(0); 909 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 910 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 911 912 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 913 return false; 914 915 unsigned SrcReg = getRegForValue(Src); 916 if (!SrcReg) 917 return false; 918 919 // No code is generated for a FP extend. 920 updateValueMap(I, SrcReg); 921 return true; 922 } 923 924 // Attempt to fast-select a floating-point truncate instruction. 925 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 926 Value *Src = I->getOperand(0); 927 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 928 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 929 930 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 931 return false; 932 933 unsigned SrcReg = getRegForValue(Src); 934 if (!SrcReg) 935 return false; 936 937 // Round the result to single precision. 938 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 940 .addReg(SrcReg); 941 942 updateValueMap(I, DestReg); 943 return true; 944 } 945 946 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 947 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 948 // those should be used instead of moving via a stack slot when the 949 // subtarget permits. 950 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 951 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 952 // case to 8 bytes which produces tighter code but wastes stack space. 953 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 954 bool IsSigned) { 955 956 // If necessary, extend 32-bit int to 64-bit. 957 if (SrcVT == MVT::i32) { 958 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 959 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 960 return 0; 961 SrcReg = TmpReg; 962 } 963 964 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 965 Address Addr; 966 Addr.BaseType = Address::FrameIndexBase; 967 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 968 969 // Store the value from the GPR. 970 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 971 return 0; 972 973 // Load the integer value into an FPR. The kind of load used depends 974 // on a number of conditions. 975 unsigned LoadOpc = PPC::LFD; 976 977 if (SrcVT == MVT::i32) { 978 if (!IsSigned) { 979 LoadOpc = PPC::LFIWZX; 980 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 981 } else if (PPCSubTarget->hasLFIWAX()) { 982 LoadOpc = PPC::LFIWAX; 983 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 984 } 985 } 986 987 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 988 unsigned ResultReg = 0; 989 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 990 return 0; 991 992 return ResultReg; 993 } 994 995 // Attempt to fast-select an integer-to-floating-point conversion. 996 // FIXME: Once fast-isel has better support for VSX, conversions using 997 // direct moves should be implemented. 998 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 999 MVT DstVT; 1000 Type *DstTy = I->getType(); 1001 if (!isTypeLegal(DstTy, DstVT)) 1002 return false; 1003 1004 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1005 return false; 1006 1007 Value *Src = I->getOperand(0); 1008 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1009 if (!SrcEVT.isSimple()) 1010 return false; 1011 1012 MVT SrcVT = SrcEVT.getSimpleVT(); 1013 1014 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1015 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1016 return false; 1017 1018 unsigned SrcReg = getRegForValue(Src); 1019 if (SrcReg == 0) 1020 return false; 1021 1022 // We can only lower an unsigned convert if we have the newer 1023 // floating-point conversion operations. 1024 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1025 return false; 1026 1027 // FIXME: For now we require the newer floating-point conversion operations 1028 // (which are present only on P7 and A2 server models) when converting 1029 // to single-precision float. Otherwise we have to generate a lot of 1030 // fiddly code to avoid double rounding. If necessary, the fiddly code 1031 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1032 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1033 return false; 1034 1035 // Extend the input if necessary. 1036 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1037 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1038 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1039 return false; 1040 SrcVT = MVT::i64; 1041 SrcReg = TmpReg; 1042 } 1043 1044 // Move the integer value to an FPR. 1045 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1046 if (FPReg == 0) 1047 return false; 1048 1049 // Determine the opcode for the conversion. 1050 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1051 unsigned DestReg = createResultReg(RC); 1052 unsigned Opc; 1053 1054 if (DstVT == MVT::f32) 1055 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1056 else 1057 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1058 1059 // Generate the convert. 1060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1061 .addReg(FPReg); 1062 1063 updateValueMap(I, DestReg); 1064 return true; 1065 } 1066 1067 // Move the floating-point value in SrcReg into an integer destination 1068 // register, and return the register (or zero if we can't handle it). 1069 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1070 // those should be used instead of moving via a stack slot when the 1071 // subtarget permits. 1072 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1073 unsigned SrcReg, bool IsSigned) { 1074 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1075 // Note that if have STFIWX available, we could use a 4-byte stack 1076 // slot for i32, but this being fast-isel we'll just go with the 1077 // easiest code gen possible. 1078 Address Addr; 1079 Addr.BaseType = Address::FrameIndexBase; 1080 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1081 1082 // Store the value from the FPR. 1083 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1084 return 0; 1085 1086 // Reload it into a GPR. If we want an i32 on big endian, modify the 1087 // address to have a 4-byte offset so we load from the right place. 1088 if (VT == MVT::i32) 1089 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1090 1091 // Look at the currently assigned register for this instruction 1092 // to determine the required register class. 1093 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1094 const TargetRegisterClass *RC = 1095 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1096 1097 unsigned ResultReg = 0; 1098 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1099 return 0; 1100 1101 return ResultReg; 1102 } 1103 1104 // Attempt to fast-select a floating-point-to-integer conversion. 1105 // FIXME: Once fast-isel has better support for VSX, conversions using 1106 // direct moves should be implemented. 1107 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1108 MVT DstVT, SrcVT; 1109 Type *DstTy = I->getType(); 1110 if (!isTypeLegal(DstTy, DstVT)) 1111 return false; 1112 1113 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1114 return false; 1115 1116 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1117 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1118 return false; 1119 1120 Value *Src = I->getOperand(0); 1121 Type *SrcTy = Src->getType(); 1122 if (!isTypeLegal(SrcTy, SrcVT)) 1123 return false; 1124 1125 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1126 return false; 1127 1128 unsigned SrcReg = getRegForValue(Src); 1129 if (SrcReg == 0) 1130 return false; 1131 1132 // Convert f32 to f64 if necessary. This is just a meaningless copy 1133 // to get the register class right. 1134 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1135 if (InRC == &PPC::F4RCRegClass) { 1136 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1138 TII.get(TargetOpcode::COPY), TmpReg) 1139 .addReg(SrcReg); 1140 SrcReg = TmpReg; 1141 } 1142 1143 // Determine the opcode for the conversion, which takes place 1144 // entirely within FPRs. 1145 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1146 unsigned Opc; 1147 1148 if (DstVT == MVT::i32) 1149 if (IsSigned) 1150 Opc = PPC::FCTIWZ; 1151 else 1152 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1153 else 1154 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1155 1156 // Generate the convert. 1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1158 .addReg(SrcReg); 1159 1160 // Now move the integer value from a float register to an integer register. 1161 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1162 if (IntReg == 0) 1163 return false; 1164 1165 updateValueMap(I, IntReg); 1166 return true; 1167 } 1168 1169 // Attempt to fast-select a binary integer operation that isn't already 1170 // handled automatically. 1171 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1172 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1173 1174 // We can get here in the case when we have a binary operation on a non-legal 1175 // type and the target independent selector doesn't know how to handle it. 1176 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1177 return false; 1178 1179 // Look at the currently assigned register for this instruction 1180 // to determine the required register class. If there is no register, 1181 // make a conservative choice (don't assign R0). 1182 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1183 const TargetRegisterClass *RC = 1184 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1185 &PPC::GPRC_and_GPRC_NOR0RegClass); 1186 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1187 1188 unsigned Opc; 1189 switch (ISDOpcode) { 1190 default: return false; 1191 case ISD::ADD: 1192 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1193 break; 1194 case ISD::OR: 1195 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1196 break; 1197 case ISD::SUB: 1198 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1199 break; 1200 } 1201 1202 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1203 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1204 if (SrcReg1 == 0) return false; 1205 1206 // Handle case of small immediate operand. 1207 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1208 const APInt &CIVal = ConstInt->getValue(); 1209 int Imm = (int)CIVal.getSExtValue(); 1210 bool UseImm = true; 1211 if (isInt<16>(Imm)) { 1212 switch (Opc) { 1213 default: 1214 llvm_unreachable("Missing case!"); 1215 case PPC::ADD4: 1216 Opc = PPC::ADDI; 1217 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1218 break; 1219 case PPC::ADD8: 1220 Opc = PPC::ADDI8; 1221 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1222 break; 1223 case PPC::OR: 1224 Opc = PPC::ORI; 1225 break; 1226 case PPC::OR8: 1227 Opc = PPC::ORI8; 1228 break; 1229 case PPC::SUBF: 1230 if (Imm == -32768) 1231 UseImm = false; 1232 else { 1233 Opc = PPC::ADDI; 1234 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1235 Imm = -Imm; 1236 } 1237 break; 1238 case PPC::SUBF8: 1239 if (Imm == -32768) 1240 UseImm = false; 1241 else { 1242 Opc = PPC::ADDI8; 1243 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1244 Imm = -Imm; 1245 } 1246 break; 1247 } 1248 1249 if (UseImm) { 1250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1251 ResultReg) 1252 .addReg(SrcReg1) 1253 .addImm(Imm); 1254 updateValueMap(I, ResultReg); 1255 return true; 1256 } 1257 } 1258 } 1259 1260 // Reg-reg case. 1261 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1262 if (SrcReg2 == 0) return false; 1263 1264 // Reverse operands for subtract-from. 1265 if (ISDOpcode == ISD::SUB) 1266 std::swap(SrcReg1, SrcReg2); 1267 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1269 .addReg(SrcReg1).addReg(SrcReg2); 1270 updateValueMap(I, ResultReg); 1271 return true; 1272 } 1273 1274 // Handle arguments to a call that we're attempting to fast-select. 1275 // Return false if the arguments are too complex for us at the moment. 1276 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1277 SmallVectorImpl<unsigned> &ArgRegs, 1278 SmallVectorImpl<MVT> &ArgVTs, 1279 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1280 SmallVectorImpl<unsigned> &RegArgs, 1281 CallingConv::ID CC, 1282 unsigned &NumBytes, 1283 bool IsVarArg) { 1284 SmallVector<CCValAssign, 16> ArgLocs; 1285 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1286 1287 // Reserve space for the linkage area on the stack. 1288 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1289 CCInfo.AllocateStack(LinkageSize, 8); 1290 1291 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1292 1293 // Bail out if we can't handle any of the arguments. 1294 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1295 CCValAssign &VA = ArgLocs[I]; 1296 MVT ArgVT = ArgVTs[VA.getValNo()]; 1297 1298 // Skip vector arguments for now, as well as long double and 1299 // uint128_t, and anything that isn't passed in a register. 1300 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1301 !VA.isRegLoc() || VA.needsCustom()) 1302 return false; 1303 1304 // Skip bit-converted arguments for now. 1305 if (VA.getLocInfo() == CCValAssign::BCvt) 1306 return false; 1307 } 1308 1309 // Get a count of how many bytes are to be pushed onto the stack. 1310 NumBytes = CCInfo.getNextStackOffset(); 1311 1312 // The prolog code of the callee may store up to 8 GPR argument registers to 1313 // the stack, allowing va_start to index over them in memory if its varargs. 1314 // Because we cannot tell if this is needed on the caller side, we have to 1315 // conservatively assume that it is needed. As such, make sure we have at 1316 // least enough stack space for the caller to store the 8 GPRs. 1317 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1318 NumBytes = std::max(NumBytes, LinkageSize + 64); 1319 1320 // Issue CALLSEQ_START. 1321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1322 TII.get(TII.getCallFrameSetupOpcode())) 1323 .addImm(NumBytes); 1324 1325 // Prepare to assign register arguments. Every argument uses up a 1326 // GPR protocol register even if it's passed in a floating-point 1327 // register (unless we're using the fast calling convention). 1328 unsigned NextGPR = PPC::X3; 1329 unsigned NextFPR = PPC::F1; 1330 1331 // Process arguments. 1332 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1333 CCValAssign &VA = ArgLocs[I]; 1334 unsigned Arg = ArgRegs[VA.getValNo()]; 1335 MVT ArgVT = ArgVTs[VA.getValNo()]; 1336 1337 // Handle argument promotion and bitcasts. 1338 switch (VA.getLocInfo()) { 1339 default: 1340 llvm_unreachable("Unknown loc info!"); 1341 case CCValAssign::Full: 1342 break; 1343 case CCValAssign::SExt: { 1344 MVT DestVT = VA.getLocVT(); 1345 const TargetRegisterClass *RC = 1346 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1347 unsigned TmpReg = createResultReg(RC); 1348 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1349 llvm_unreachable("Failed to emit a sext!"); 1350 ArgVT = DestVT; 1351 Arg = TmpReg; 1352 break; 1353 } 1354 case CCValAssign::AExt: 1355 case CCValAssign::ZExt: { 1356 MVT DestVT = VA.getLocVT(); 1357 const TargetRegisterClass *RC = 1358 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1359 unsigned TmpReg = createResultReg(RC); 1360 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1361 llvm_unreachable("Failed to emit a zext!"); 1362 ArgVT = DestVT; 1363 Arg = TmpReg; 1364 break; 1365 } 1366 case CCValAssign::BCvt: { 1367 // FIXME: Not yet handled. 1368 llvm_unreachable("Should have bailed before getting here!"); 1369 break; 1370 } 1371 } 1372 1373 // Copy this argument to the appropriate register. 1374 unsigned ArgReg; 1375 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1376 ArgReg = NextFPR++; 1377 if (CC != CallingConv::Fast) 1378 ++NextGPR; 1379 } else 1380 ArgReg = NextGPR++; 1381 1382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1383 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1384 RegArgs.push_back(ArgReg); 1385 } 1386 1387 return true; 1388 } 1389 1390 // For a call that we've determined we can fast-select, finish the 1391 // call sequence and generate a copy to obtain the return value (if any). 1392 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1393 CallingConv::ID CC = CLI.CallConv; 1394 1395 // Issue CallSEQ_END. 1396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1397 TII.get(TII.getCallFrameDestroyOpcode())) 1398 .addImm(NumBytes).addImm(0); 1399 1400 // Next, generate a copy to obtain the return value. 1401 // FIXME: No multi-register return values yet, though I don't foresee 1402 // any real difficulties there. 1403 if (RetVT != MVT::isVoid) { 1404 SmallVector<CCValAssign, 16> RVLocs; 1405 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1406 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1407 CCValAssign &VA = RVLocs[0]; 1408 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1409 assert(VA.isRegLoc() && "Can only return in registers!"); 1410 1411 MVT DestVT = VA.getValVT(); 1412 MVT CopyVT = DestVT; 1413 1414 // Ints smaller than a register still arrive in a full 64-bit 1415 // register, so make sure we recognize this. 1416 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1417 CopyVT = MVT::i64; 1418 1419 unsigned SourcePhysReg = VA.getLocReg(); 1420 unsigned ResultReg = 0; 1421 1422 if (RetVT == CopyVT) { 1423 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1424 ResultReg = createResultReg(CpyRC); 1425 1426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1427 TII.get(TargetOpcode::COPY), ResultReg) 1428 .addReg(SourcePhysReg); 1429 1430 // If necessary, round the floating result to single precision. 1431 } else if (CopyVT == MVT::f64) { 1432 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1433 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1434 ResultReg).addReg(SourcePhysReg); 1435 1436 // If only the low half of a general register is needed, generate 1437 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1438 // used along the fast-isel path (not lowered), and downstream logic 1439 // also doesn't like a direct subreg copy on a physical reg.) 1440 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1441 ResultReg = createResultReg(&PPC::GPRCRegClass); 1442 // Convert physical register from G8RC to GPRC. 1443 SourcePhysReg -= PPC::X0 - PPC::R0; 1444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1445 TII.get(TargetOpcode::COPY), ResultReg) 1446 .addReg(SourcePhysReg); 1447 } 1448 1449 assert(ResultReg && "ResultReg unset!"); 1450 CLI.InRegs.push_back(SourcePhysReg); 1451 CLI.ResultReg = ResultReg; 1452 CLI.NumResultRegs = 1; 1453 } 1454 1455 return true; 1456 } 1457 1458 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1459 CallingConv::ID CC = CLI.CallConv; 1460 bool IsTailCall = CLI.IsTailCall; 1461 bool IsVarArg = CLI.IsVarArg; 1462 const Value *Callee = CLI.Callee; 1463 const MCSymbol *Symbol = CLI.Symbol; 1464 1465 if (!Callee && !Symbol) 1466 return false; 1467 1468 // Allow SelectionDAG isel to handle tail calls. 1469 if (IsTailCall) 1470 return false; 1471 1472 // Let SDISel handle vararg functions. 1473 if (IsVarArg) 1474 return false; 1475 1476 // Handle simple calls for now, with legal return types and 1477 // those that can be extended. 1478 Type *RetTy = CLI.RetTy; 1479 MVT RetVT; 1480 if (RetTy->isVoidTy()) 1481 RetVT = MVT::isVoid; 1482 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1483 RetVT != MVT::i8) 1484 return false; 1485 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1486 // We can't handle boolean returns when CR bits are in use. 1487 return false; 1488 1489 // FIXME: No multi-register return values yet. 1490 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1491 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1492 RetVT != MVT::f64) { 1493 SmallVector<CCValAssign, 16> RVLocs; 1494 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1495 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1496 if (RVLocs.size() > 1) 1497 return false; 1498 } 1499 1500 // Bail early if more than 8 arguments, as we only currently 1501 // handle arguments passed in registers. 1502 unsigned NumArgs = CLI.OutVals.size(); 1503 if (NumArgs > 8) 1504 return false; 1505 1506 // Set up the argument vectors. 1507 SmallVector<Value*, 8> Args; 1508 SmallVector<unsigned, 8> ArgRegs; 1509 SmallVector<MVT, 8> ArgVTs; 1510 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1511 1512 Args.reserve(NumArgs); 1513 ArgRegs.reserve(NumArgs); 1514 ArgVTs.reserve(NumArgs); 1515 ArgFlags.reserve(NumArgs); 1516 1517 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1518 // Only handle easy calls for now. It would be reasonably easy 1519 // to handle <= 8-byte structures passed ByVal in registers, but we 1520 // have to ensure they are right-justified in the register. 1521 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1522 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1523 return false; 1524 1525 Value *ArgValue = CLI.OutVals[i]; 1526 Type *ArgTy = ArgValue->getType(); 1527 MVT ArgVT; 1528 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1529 return false; 1530 1531 if (ArgVT.isVector()) 1532 return false; 1533 1534 unsigned Arg = getRegForValue(ArgValue); 1535 if (Arg == 0) 1536 return false; 1537 1538 Args.push_back(ArgValue); 1539 ArgRegs.push_back(Arg); 1540 ArgVTs.push_back(ArgVT); 1541 ArgFlags.push_back(Flags); 1542 } 1543 1544 // Process the arguments. 1545 SmallVector<unsigned, 8> RegArgs; 1546 unsigned NumBytes; 1547 1548 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1549 RegArgs, CC, NumBytes, IsVarArg)) 1550 return false; 1551 1552 MachineInstrBuilder MIB; 1553 // FIXME: No handling for function pointers yet. This requires 1554 // implementing the function descriptor (OPD) setup. 1555 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1556 if (!GV) { 1557 // patchpoints are a special case; they always dispatch to a pointer value. 1558 // However, we don't actually want to generate the indirect call sequence 1559 // here (that will be generated, as necessary, during asm printing), and 1560 // the call we generate here will be erased by FastISel::selectPatchpoint, 1561 // so don't try very hard... 1562 if (CLI.IsPatchPoint) 1563 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1564 else 1565 return false; 1566 } else { 1567 // Build direct call with NOP for TOC restore. 1568 // FIXME: We can and should optimize away the NOP for local calls. 1569 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1570 TII.get(PPC::BL8_NOP)); 1571 // Add callee. 1572 MIB.addGlobalAddress(GV); 1573 } 1574 1575 // Add implicit physical register uses to the call. 1576 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1577 MIB.addReg(RegArgs[II], RegState::Implicit); 1578 1579 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1580 // into the call. 1581 PPCFuncInfo->setUsesTOCBasePtr(); 1582 MIB.addReg(PPC::X2, RegState::Implicit); 1583 1584 // Add a register mask with the call-preserved registers. Proper 1585 // defs for return values will be added by setPhysRegsDeadExcept(). 1586 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1587 1588 CLI.Call = MIB; 1589 1590 // Finish off the call including any return values. 1591 return finishCall(RetVT, CLI, NumBytes); 1592 } 1593 1594 // Attempt to fast-select a return instruction. 1595 bool PPCFastISel::SelectRet(const Instruction *I) { 1596 1597 if (!FuncInfo.CanLowerReturn) 1598 return false; 1599 1600 if (TLI.supportSplitCSR(FuncInfo.MF)) 1601 return false; 1602 1603 const ReturnInst *Ret = cast<ReturnInst>(I); 1604 const Function &F = *I->getParent()->getParent(); 1605 1606 // Build a list of return value registers. 1607 SmallVector<unsigned, 4> RetRegs; 1608 CallingConv::ID CC = F.getCallingConv(); 1609 1610 if (Ret->getNumOperands() > 0) { 1611 SmallVector<ISD::OutputArg, 4> Outs; 1612 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1613 1614 // Analyze operands of the call, assigning locations to each operand. 1615 SmallVector<CCValAssign, 16> ValLocs; 1616 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1617 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1618 const Value *RV = Ret->getOperand(0); 1619 1620 // FIXME: Only one output register for now. 1621 if (ValLocs.size() > 1) 1622 return false; 1623 1624 // Special case for returning a constant integer of any size - materialize 1625 // the constant as an i64 and copy it to the return register. 1626 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1627 CCValAssign &VA = ValLocs[0]; 1628 1629 unsigned RetReg = VA.getLocReg(); 1630 // We still need to worry about properly extending the sign. For example, 1631 // we could have only a single bit or a constant that needs zero 1632 // extension rather than sign extension. Make sure we pass the return 1633 // value extension property to integer materialization. 1634 unsigned SrcReg = 1635 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1636 1637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1638 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1639 1640 RetRegs.push_back(RetReg); 1641 1642 } else { 1643 unsigned Reg = getRegForValue(RV); 1644 1645 if (Reg == 0) 1646 return false; 1647 1648 // Copy the result values into the output registers. 1649 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1650 1651 CCValAssign &VA = ValLocs[i]; 1652 assert(VA.isRegLoc() && "Can only return in registers!"); 1653 RetRegs.push_back(VA.getLocReg()); 1654 unsigned SrcReg = Reg + VA.getValNo(); 1655 1656 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1657 if (!RVEVT.isSimple()) 1658 return false; 1659 MVT RVVT = RVEVT.getSimpleVT(); 1660 MVT DestVT = VA.getLocVT(); 1661 1662 if (RVVT != DestVT && RVVT != MVT::i8 && 1663 RVVT != MVT::i16 && RVVT != MVT::i32) 1664 return false; 1665 1666 if (RVVT != DestVT) { 1667 switch (VA.getLocInfo()) { 1668 default: 1669 llvm_unreachable("Unknown loc info!"); 1670 case CCValAssign::Full: 1671 llvm_unreachable("Full value assign but types don't match?"); 1672 case CCValAssign::AExt: 1673 case CCValAssign::ZExt: { 1674 const TargetRegisterClass *RC = 1675 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1676 unsigned TmpReg = createResultReg(RC); 1677 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1678 return false; 1679 SrcReg = TmpReg; 1680 break; 1681 } 1682 case CCValAssign::SExt: { 1683 const TargetRegisterClass *RC = 1684 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1685 unsigned TmpReg = createResultReg(RC); 1686 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1687 return false; 1688 SrcReg = TmpReg; 1689 break; 1690 } 1691 } 1692 } 1693 1694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1695 TII.get(TargetOpcode::COPY), RetRegs[i]) 1696 .addReg(SrcReg); 1697 } 1698 } 1699 } 1700 1701 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1702 TII.get(PPC::BLR8)); 1703 1704 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1705 MIB.addReg(RetRegs[i], RegState::Implicit); 1706 1707 return true; 1708 } 1709 1710 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1711 // signed and zero extensions are supported. Return false if we 1712 // can't handle it. 1713 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1714 unsigned DestReg, bool IsZExt) { 1715 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1716 return false; 1717 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1718 return false; 1719 1720 // Signed extensions use EXTSB, EXTSH, EXTSW. 1721 if (!IsZExt) { 1722 unsigned Opc; 1723 if (SrcVT == MVT::i8) 1724 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1725 else if (SrcVT == MVT::i16) 1726 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1727 else { 1728 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1729 Opc = PPC::EXTSW_32_64; 1730 } 1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1732 .addReg(SrcReg); 1733 1734 // Unsigned 32-bit extensions use RLWINM. 1735 } else if (DestVT == MVT::i32) { 1736 unsigned MB; 1737 if (SrcVT == MVT::i8) 1738 MB = 24; 1739 else { 1740 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1741 MB = 16; 1742 } 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1744 DestReg) 1745 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1746 1747 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1748 } else { 1749 unsigned MB; 1750 if (SrcVT == MVT::i8) 1751 MB = 56; 1752 else if (SrcVT == MVT::i16) 1753 MB = 48; 1754 else 1755 MB = 32; 1756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1757 TII.get(PPC::RLDICL_32_64), DestReg) 1758 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1759 } 1760 1761 return true; 1762 } 1763 1764 // Attempt to fast-select an indirect branch instruction. 1765 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1766 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1767 if (AddrReg == 0) 1768 return false; 1769 1770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1771 .addReg(AddrReg); 1772 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1773 1774 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1775 for (const BasicBlock *SuccBB : IB->successors()) 1776 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1777 1778 return true; 1779 } 1780 1781 // Attempt to fast-select an integer truncate instruction. 1782 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1783 Value *Src = I->getOperand(0); 1784 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1785 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1786 1787 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1788 return false; 1789 1790 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1791 return false; 1792 1793 unsigned SrcReg = getRegForValue(Src); 1794 if (!SrcReg) 1795 return false; 1796 1797 // The only interesting case is when we need to switch register classes. 1798 if (SrcVT == MVT::i64) { 1799 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1800 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1801 TII.get(TargetOpcode::COPY), 1802 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1803 SrcReg = ResultReg; 1804 } 1805 1806 updateValueMap(I, SrcReg); 1807 return true; 1808 } 1809 1810 // Attempt to fast-select an integer extend instruction. 1811 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1812 Type *DestTy = I->getType(); 1813 Value *Src = I->getOperand(0); 1814 Type *SrcTy = Src->getType(); 1815 1816 bool IsZExt = isa<ZExtInst>(I); 1817 unsigned SrcReg = getRegForValue(Src); 1818 if (!SrcReg) return false; 1819 1820 EVT SrcEVT, DestEVT; 1821 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1822 DestEVT = TLI.getValueType(DL, DestTy, true); 1823 if (!SrcEVT.isSimple()) 1824 return false; 1825 if (!DestEVT.isSimple()) 1826 return false; 1827 1828 MVT SrcVT = SrcEVT.getSimpleVT(); 1829 MVT DestVT = DestEVT.getSimpleVT(); 1830 1831 // If we know the register class needed for the result of this 1832 // instruction, use it. Otherwise pick the register class of the 1833 // correct size that does not contain X0/R0, since we don't know 1834 // whether downstream uses permit that assignment. 1835 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1836 const TargetRegisterClass *RC = 1837 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1838 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1839 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1840 unsigned ResultReg = createResultReg(RC); 1841 1842 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1843 return false; 1844 1845 updateValueMap(I, ResultReg); 1846 return true; 1847 } 1848 1849 // Attempt to fast-select an instruction that wasn't handled by 1850 // the table-generated machinery. 1851 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1852 1853 switch (I->getOpcode()) { 1854 case Instruction::Load: 1855 return SelectLoad(I); 1856 case Instruction::Store: 1857 return SelectStore(I); 1858 case Instruction::Br: 1859 return SelectBranch(I); 1860 case Instruction::IndirectBr: 1861 return SelectIndirectBr(I); 1862 case Instruction::FPExt: 1863 return SelectFPExt(I); 1864 case Instruction::FPTrunc: 1865 return SelectFPTrunc(I); 1866 case Instruction::SIToFP: 1867 return SelectIToFP(I, /*IsSigned*/ true); 1868 case Instruction::UIToFP: 1869 return SelectIToFP(I, /*IsSigned*/ false); 1870 case Instruction::FPToSI: 1871 return SelectFPToI(I, /*IsSigned*/ true); 1872 case Instruction::FPToUI: 1873 return SelectFPToI(I, /*IsSigned*/ false); 1874 case Instruction::Add: 1875 return SelectBinaryIntOp(I, ISD::ADD); 1876 case Instruction::Or: 1877 return SelectBinaryIntOp(I, ISD::OR); 1878 case Instruction::Sub: 1879 return SelectBinaryIntOp(I, ISD::SUB); 1880 case Instruction::Call: 1881 return selectCall(I); 1882 case Instruction::Ret: 1883 return SelectRet(I); 1884 case Instruction::Trunc: 1885 return SelectTrunc(I); 1886 case Instruction::ZExt: 1887 case Instruction::SExt: 1888 return SelectIntExt(I); 1889 // Here add other flavors of Instruction::XXX that automated 1890 // cases don't catch. For example, switches are terminators 1891 // that aren't yet handled. 1892 default: 1893 break; 1894 } 1895 return false; 1896 } 1897 1898 // Materialize a floating-point constant into a register, and return 1899 // the register number (or zero if we failed to handle it). 1900 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1901 // No plans to handle long double here. 1902 if (VT != MVT::f32 && VT != MVT::f64) 1903 return 0; 1904 1905 // All FP constants are loaded from the constant pool. 1906 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1907 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1908 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1909 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1910 CodeModel::Model CModel = TM.getCodeModel(); 1911 1912 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1913 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1914 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1915 1916 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1917 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1918 1919 PPCFuncInfo->setUsesTOCBasePtr(); 1920 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1921 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1923 TmpReg) 1924 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1926 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1927 } else { 1928 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1930 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1931 // But for large code model, we must generate a LDtocL followed 1932 // by the LF[SD]. 1933 if (CModel == CodeModel::Large) { 1934 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1936 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1938 .addImm(0).addReg(TmpReg2); 1939 } else 1940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1941 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1942 .addReg(TmpReg) 1943 .addMemOperand(MMO); 1944 } 1945 1946 return DestReg; 1947 } 1948 1949 // Materialize the address of a global value into a register, and return 1950 // the register number (or zero if we failed to handle it). 1951 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1952 assert(VT == MVT::i64 && "Non-address!"); 1953 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1954 unsigned DestReg = createResultReg(RC); 1955 1956 // Global values may be plain old object addresses, TLS object 1957 // addresses, constant pool entries, or jump tables. How we generate 1958 // code for these may depend on small, medium, or large code model. 1959 CodeModel::Model CModel = TM.getCodeModel(); 1960 1961 // FIXME: Jump tables are not yet required because fast-isel doesn't 1962 // handle switches; if that changes, we need them as well. For now, 1963 // what follows assumes everything's a generic (or TLS) global address. 1964 1965 // FIXME: We don't yet handle the complexity of TLS. 1966 if (GV->isThreadLocal()) 1967 return 0; 1968 1969 PPCFuncInfo->setUsesTOCBasePtr(); 1970 // For small code model, generate a simple TOC load. 1971 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1973 DestReg) 1974 .addGlobalAddress(GV) 1975 .addReg(PPC::X2); 1976 else { 1977 // If the address is an externally defined symbol, a symbol with common 1978 // or externally available linkage, a non-local function address, or a 1979 // jump table address (not yet needed), or if we are generating code 1980 // for large code model, we generate: 1981 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1982 // Otherwise we generate: 1983 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1984 // Either way, start with the ADDIStocHA: 1985 unsigned HighPartReg = createResultReg(RC); 1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1987 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1988 1989 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 1990 if (GVFlags & PPCII::MO_NLP_FLAG) { 1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1992 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1993 } else { 1994 // Otherwise generate the ADDItocL. 1995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1996 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1997 } 1998 } 1999 2000 return DestReg; 2001 } 2002 2003 // Materialize a 32-bit integer constant into a register, and return 2004 // the register number (or zero if we failed to handle it). 2005 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2006 const TargetRegisterClass *RC) { 2007 unsigned Lo = Imm & 0xFFFF; 2008 unsigned Hi = (Imm >> 16) & 0xFFFF; 2009 2010 unsigned ResultReg = createResultReg(RC); 2011 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2012 2013 if (isInt<16>(Imm)) 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2015 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2016 .addImm(Imm); 2017 else if (Lo) { 2018 // Both Lo and Hi have nonzero bits. 2019 unsigned TmpReg = createResultReg(RC); 2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2021 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2022 .addImm(Hi); 2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2024 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2025 .addReg(TmpReg).addImm(Lo); 2026 } else 2027 // Just Hi bits. 2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2029 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2030 .addImm(Hi); 2031 2032 return ResultReg; 2033 } 2034 2035 // Materialize a 64-bit integer constant into a register, and return 2036 // the register number (or zero if we failed to handle it). 2037 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2038 const TargetRegisterClass *RC) { 2039 unsigned Remainder = 0; 2040 unsigned Shift = 0; 2041 2042 // If the value doesn't fit in 32 bits, see if we can shift it 2043 // so that it fits in 32 bits. 2044 if (!isInt<32>(Imm)) { 2045 Shift = countTrailingZeros<uint64_t>(Imm); 2046 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2047 2048 if (isInt<32>(ImmSh)) 2049 Imm = ImmSh; 2050 else { 2051 Remainder = Imm; 2052 Shift = 32; 2053 Imm >>= 32; 2054 } 2055 } 2056 2057 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2058 // (if not shifted). 2059 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2060 if (!Shift) 2061 return TmpReg1; 2062 2063 // If upper 32 bits were not zero, we've built them and need to shift 2064 // them into place. 2065 unsigned TmpReg2; 2066 if (Imm) { 2067 TmpReg2 = createResultReg(RC); 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2069 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2070 } else 2071 TmpReg2 = TmpReg1; 2072 2073 unsigned TmpReg3, Hi, Lo; 2074 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2075 TmpReg3 = createResultReg(RC); 2076 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2077 TmpReg3).addReg(TmpReg2).addImm(Hi); 2078 } else 2079 TmpReg3 = TmpReg2; 2080 2081 if ((Lo = Remainder & 0xFFFF)) { 2082 unsigned ResultReg = createResultReg(RC); 2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2084 ResultReg).addReg(TmpReg3).addImm(Lo); 2085 return ResultReg; 2086 } 2087 2088 return TmpReg3; 2089 } 2090 2091 // Materialize an integer constant into a register, and return 2092 // the register number (or zero if we failed to handle it). 2093 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2094 bool UseSExt) { 2095 // If we're using CR bit registers for i1 values, handle that as a special 2096 // case first. 2097 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2098 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2100 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2101 return ImmReg; 2102 } 2103 2104 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2105 VT != MVT::i1) 2106 return 0; 2107 2108 const TargetRegisterClass *RC = 2109 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2110 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2111 2112 // If the constant is in range, use a load-immediate. 2113 // Since LI will sign extend the constant we need to make sure that for 2114 // our zeroext constants that the sign extended constant fits into 16-bits - 2115 // a range of 0..0x7fff. 2116 if (isInt<16>(Imm)) { 2117 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2118 unsigned ImmReg = createResultReg(RC); 2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2120 .addImm(Imm); 2121 return ImmReg; 2122 } 2123 2124 // Construct the constant piecewise. 2125 if (VT == MVT::i64) 2126 return PPCMaterialize64BitInt(Imm, RC); 2127 else if (VT == MVT::i32) 2128 return PPCMaterialize32BitInt(Imm, RC); 2129 2130 return 0; 2131 } 2132 2133 // Materialize a constant into a register, and return the register 2134 // number (or zero if we failed to handle it). 2135 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2136 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2137 2138 // Only handle simple types. 2139 if (!CEVT.isSimple()) return 0; 2140 MVT VT = CEVT.getSimpleVT(); 2141 2142 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2143 return PPCMaterializeFP(CFP, VT); 2144 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2145 return PPCMaterializeGV(GV, VT); 2146 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2147 return PPCMaterializeInt(CI, VT, VT != MVT::i1); 2148 2149 return 0; 2150 } 2151 2152 // Materialize the address created by an alloca into a register, and 2153 // return the register number (or zero if we failed to handle it). 2154 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2155 // Don't handle dynamic allocas. 2156 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2157 2158 MVT VT; 2159 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2160 2161 DenseMap<const AllocaInst*, int>::iterator SI = 2162 FuncInfo.StaticAllocaMap.find(AI); 2163 2164 if (SI != FuncInfo.StaticAllocaMap.end()) { 2165 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2166 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2167 ResultReg).addFrameIndex(SI->second).addImm(0); 2168 return ResultReg; 2169 } 2170 2171 return 0; 2172 } 2173 2174 // Fold loads into extends when possible. 2175 // FIXME: We can have multiple redundant extend/trunc instructions 2176 // following a load. The folding only picks up one. Extend this 2177 // to check subsequent instructions for the same pattern and remove 2178 // them. Thus ResultReg should be the def reg for the last redundant 2179 // instruction in a chain, and all intervening instructions can be 2180 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2181 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2182 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2183 const LoadInst *LI) { 2184 // Verify we have a legal type before going any further. 2185 MVT VT; 2186 if (!isLoadTypeLegal(LI->getType(), VT)) 2187 return false; 2188 2189 // Combine load followed by zero- or sign-extend. 2190 bool IsZExt = false; 2191 switch(MI->getOpcode()) { 2192 default: 2193 return false; 2194 2195 case PPC::RLDICL: 2196 case PPC::RLDICL_32_64: { 2197 IsZExt = true; 2198 unsigned MB = MI->getOperand(3).getImm(); 2199 if ((VT == MVT::i8 && MB <= 56) || 2200 (VT == MVT::i16 && MB <= 48) || 2201 (VT == MVT::i32 && MB <= 32)) 2202 break; 2203 return false; 2204 } 2205 2206 case PPC::RLWINM: 2207 case PPC::RLWINM8: { 2208 IsZExt = true; 2209 unsigned MB = MI->getOperand(3).getImm(); 2210 if ((VT == MVT::i8 && MB <= 24) || 2211 (VT == MVT::i16 && MB <= 16)) 2212 break; 2213 return false; 2214 } 2215 2216 case PPC::EXTSB: 2217 case PPC::EXTSB8: 2218 case PPC::EXTSB8_32_64: 2219 /* There is no sign-extending load-byte instruction. */ 2220 return false; 2221 2222 case PPC::EXTSH: 2223 case PPC::EXTSH8: 2224 case PPC::EXTSH8_32_64: { 2225 if (VT != MVT::i16 && VT != MVT::i8) 2226 return false; 2227 break; 2228 } 2229 2230 case PPC::EXTSW: 2231 case PPC::EXTSW_32_64: { 2232 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2233 return false; 2234 break; 2235 } 2236 } 2237 2238 // See if we can handle this address. 2239 Address Addr; 2240 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2241 return false; 2242 2243 unsigned ResultReg = MI->getOperand(0).getReg(); 2244 2245 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2246 return false; 2247 2248 MI->eraseFromParent(); 2249 return true; 2250 } 2251 2252 // Attempt to lower call arguments in a faster way than done by 2253 // the selection DAG code. 2254 bool PPCFastISel::fastLowerArguments() { 2255 // Defer to normal argument lowering for now. It's reasonably 2256 // efficient. Consider doing something like ARM to handle the 2257 // case where all args fit in registers, no varargs, no float 2258 // or vector args. 2259 return false; 2260 } 2261 2262 // Handle materializing integer constants into a register. This is not 2263 // automatically generated for PowerPC, so must be explicitly created here. 2264 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2265 2266 if (Opc != ISD::Constant) 2267 return 0; 2268 2269 // If we're using CR bit registers for i1 values, handle that as a special 2270 // case first. 2271 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2272 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2274 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2275 return ImmReg; 2276 } 2277 2278 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2279 VT != MVT::i8 && VT != MVT::i1) 2280 return 0; 2281 2282 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2283 &PPC::GPRCRegClass); 2284 if (VT == MVT::i64) 2285 return PPCMaterialize64BitInt(Imm, RC); 2286 else 2287 return PPCMaterialize32BitInt(Imm, RC); 2288 } 2289 2290 // Override for ADDI and ADDI8 to set the correct register class 2291 // on RHS operand 0. The automatic infrastructure naively assumes 2292 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2293 // for these cases. At the moment, none of the other automatically 2294 // generated RI instructions require special treatment. However, once 2295 // SelectSelect is implemented, "isel" requires similar handling. 2296 // 2297 // Also be conservative about the output register class. Avoid 2298 // assigning R0 or X0 to the output register for GPRC and G8RC 2299 // register classes, as any such result could be used in ADDI, etc., 2300 // where those regs have another meaning. 2301 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2302 const TargetRegisterClass *RC, 2303 unsigned Op0, bool Op0IsKill, 2304 uint64_t Imm) { 2305 if (MachineInstOpcode == PPC::ADDI) 2306 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2307 else if (MachineInstOpcode == PPC::ADDI8) 2308 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2309 2310 const TargetRegisterClass *UseRC = 2311 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2312 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2313 2314 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2315 Op0, Op0IsKill, Imm); 2316 } 2317 2318 // Override for instructions with one register operand to avoid use of 2319 // R0/X0. The automatic infrastructure isn't aware of the context so 2320 // we must be conservative. 2321 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2322 const TargetRegisterClass* RC, 2323 unsigned Op0, bool Op0IsKill) { 2324 const TargetRegisterClass *UseRC = 2325 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2326 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2327 2328 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2329 } 2330 2331 // Override for instructions with two register operands to avoid use 2332 // of R0/X0. The automatic infrastructure isn't aware of the context 2333 // so we must be conservative. 2334 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2335 const TargetRegisterClass* RC, 2336 unsigned Op0, bool Op0IsKill, 2337 unsigned Op1, bool Op1IsKill) { 2338 const TargetRegisterClass *UseRC = 2339 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2340 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2341 2342 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2343 Op1, Op1IsKill); 2344 } 2345 2346 namespace llvm { 2347 // Create the fast instruction selector for PowerPC64 ELF. 2348 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2349 const TargetLibraryInfo *LibInfo) { 2350 // Only available on 64-bit ELF for now. 2351 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2352 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2353 return new PPCFastISel(FuncInfo, LibInfo); 2354 return nullptr; 2355 } 2356 } 2357