1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/Process.h" 66 #include "llvm/Support/TargetRegistry.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/ModuleUtils.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <memory> 74 #include <new> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "asmprinter" 79 80 namespace { 81 82 class PPCAsmPrinter : public AsmPrinter { 83 protected: 84 MapVector<const MCSymbol *, MCSymbol *> TOC; 85 const PPCSubtarget *Subtarget = nullptr; 86 StackMaps SM; 87 88 public: 89 explicit PPCAsmPrinter(TargetMachine &TM, 90 std::unique_ptr<MCStreamer> Streamer) 91 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 92 93 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 94 95 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym); 96 97 bool doInitialization(Module &M) override { 98 if (!TOC.empty()) 99 TOC.clear(); 100 return AsmPrinter::doInitialization(M); 101 } 102 103 void emitInstruction(const MachineInstr *MI) override; 104 105 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 106 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 107 /// The \p MI would be INLINEASM ONLY. 108 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 109 110 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 111 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 112 const char *ExtraCode, raw_ostream &O) override; 113 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 114 const char *ExtraCode, raw_ostream &O) override; 115 116 void emitEndOfAsmFile(Module &M) override; 117 118 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 119 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 120 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 121 bool runOnMachineFunction(MachineFunction &MF) override { 122 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 123 bool Changed = AsmPrinter::runOnMachineFunction(MF); 124 emitXRayTable(); 125 return Changed; 126 } 127 }; 128 129 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 130 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 131 public: 132 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 133 std::unique_ptr<MCStreamer> Streamer) 134 : PPCAsmPrinter(TM, std::move(Streamer)) {} 135 136 StringRef getPassName() const override { 137 return "Linux PPC Assembly Printer"; 138 } 139 140 void emitStartOfAsmFile(Module &M) override; 141 void emitEndOfAsmFile(Module &) override; 142 143 void emitFunctionEntryLabel() override; 144 145 void emitFunctionBodyStart() override; 146 void emitFunctionBodyEnd() override; 147 void emitInstruction(const MachineInstr *MI) override; 148 }; 149 150 class PPCAIXAsmPrinter : public PPCAsmPrinter { 151 private: 152 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 153 /// linkage for them in AIX. 154 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 155 156 /// A format indicator and unique trailing identifier to form part of the 157 /// sinit/sterm function names. 158 std::string FormatIndicatorAndUniqueModId; 159 160 static void ValidateGV(const GlobalVariable *GV); 161 // Record a list of GlobalAlias associated with a GlobalObject. 162 // This is used for AIX's extra-label-at-definition aliasing strategy. 163 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 164 GOAliasMap; 165 166 public: 167 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 168 : PPCAsmPrinter(TM, std::move(Streamer)) { 169 if (MAI->isLittleEndian()) 170 report_fatal_error( 171 "cannot create AIX PPC Assembly Printer for a little-endian target"); 172 } 173 174 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 175 176 bool doInitialization(Module &M) override; 177 178 void emitXXStructorList(const DataLayout &DL, const Constant *List, 179 bool IsCtor) override; 180 181 void SetupMachineFunction(MachineFunction &MF) override; 182 183 void emitGlobalVariable(const GlobalVariable *GV) override; 184 185 void emitFunctionDescriptor() override; 186 187 void emitFunctionEntryLabel() override; 188 189 void emitEndOfAsmFile(Module &) override; 190 191 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 192 193 void emitInstruction(const MachineInstr *MI) override; 194 195 bool doFinalization(Module &M) override; 196 }; 197 198 } // end anonymous namespace 199 200 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 201 raw_ostream &O) { 202 // Computing the address of a global symbol, not calling it. 203 const GlobalValue *GV = MO.getGlobal(); 204 getSymbol(GV)->print(O, MAI); 205 printOffset(MO.getOffset(), O); 206 } 207 208 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 209 raw_ostream &O) { 210 const DataLayout &DL = getDataLayout(); 211 const MachineOperand &MO = MI->getOperand(OpNo); 212 213 switch (MO.getType()) { 214 case MachineOperand::MO_Register: { 215 // The MI is INLINEASM ONLY and UseVSXReg is always false. 216 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 217 218 // Linux assembler (Others?) does not take register mnemonics. 219 // FIXME - What about special registers used in mfspr/mtspr? 220 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 221 return; 222 } 223 case MachineOperand::MO_Immediate: 224 O << MO.getImm(); 225 return; 226 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_ConstantPoolIndex: 231 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 232 << MO.getIndex(); 233 return; 234 case MachineOperand::MO_BlockAddress: 235 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 236 return; 237 case MachineOperand::MO_GlobalAddress: { 238 PrintSymbolOperand(MO, O); 239 return; 240 } 241 242 default: 243 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 244 return; 245 } 246 } 247 248 /// PrintAsmOperand - Print out an operand for an inline asm expression. 249 /// 250 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 251 const char *ExtraCode, raw_ostream &O) { 252 // Does this asm operand have a single letter operand modifier? 253 if (ExtraCode && ExtraCode[0]) { 254 if (ExtraCode[1] != 0) return true; // Unknown modifier. 255 256 switch (ExtraCode[0]) { 257 default: 258 // See if this is a generic print operand 259 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 260 case 'L': // Write second word of DImode reference. 261 // Verify that this operand has two consecutive registers. 262 if (!MI->getOperand(OpNo).isReg() || 263 OpNo+1 == MI->getNumOperands() || 264 !MI->getOperand(OpNo+1).isReg()) 265 return true; 266 ++OpNo; // Return the high-part. 267 break; 268 case 'I': 269 // Write 'i' if an integer constant, otherwise nothing. Used to print 270 // addi vs add, etc. 271 if (MI->getOperand(OpNo).isImm()) 272 O << "i"; 273 return false; 274 case 'x': 275 if(!MI->getOperand(OpNo).isReg()) 276 return true; 277 // This operand uses VSX numbering. 278 // If the operand is a VMX register, convert it to a VSX register. 279 Register Reg = MI->getOperand(OpNo).getReg(); 280 if (PPCInstrInfo::isVRRegister(Reg)) 281 Reg = PPC::VSX32 + (Reg - PPC::V0); 282 else if (PPCInstrInfo::isVFRegister(Reg)) 283 Reg = PPC::VSX32 + (Reg - PPC::VF0); 284 const char *RegName; 285 RegName = PPCInstPrinter::getRegisterName(Reg); 286 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 287 O << RegName; 288 return false; 289 } 290 } 291 292 printOperand(MI, OpNo, O); 293 return false; 294 } 295 296 // At the moment, all inline asm memory operands are a single register. 297 // In any case, the output of this routine should always be just one 298 // assembler operand. 299 300 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 301 const char *ExtraCode, 302 raw_ostream &O) { 303 if (ExtraCode && ExtraCode[0]) { 304 if (ExtraCode[1] != 0) return true; // Unknown modifier. 305 306 switch (ExtraCode[0]) { 307 default: return true; // Unknown modifier. 308 case 'L': // A memory reference to the upper word of a double word op. 309 O << getDataLayout().getPointerSize() << "("; 310 printOperand(MI, OpNo, O); 311 O << ")"; 312 return false; 313 case 'y': // A memory reference for an X-form instruction 314 O << "0, "; 315 printOperand(MI, OpNo, O); 316 return false; 317 case 'U': // Print 'u' for update form. 318 case 'X': // Print 'x' for indexed form. 319 // FIXME: Currently for PowerPC memory operands are always loaded 320 // into a register, so we never get an update or indexed form. 321 // This is bad even for offset forms, since even if we know we 322 // have a value in -16(r1), we will generate a load into r<n> 323 // and then load from 0(r<n>). Until that issue is fixed, 324 // tolerate 'U' and 'X' but don't output anything. 325 assert(MI->getOperand(OpNo).isReg()); 326 return false; 327 } 328 } 329 330 assert(MI->getOperand(OpNo).isReg()); 331 O << "0("; 332 printOperand(MI, OpNo, O); 333 O << ")"; 334 return false; 335 } 336 337 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 338 /// exists for it. If not, create one. Then return a symbol that references 339 /// the TOC entry. 340 MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym) { 341 MCSymbol *&TOCEntry = TOC[Sym]; 342 if (!TOCEntry) 343 TOCEntry = createTempSymbol("C"); 344 return TOCEntry; 345 } 346 347 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 348 emitStackMaps(SM); 349 } 350 351 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 352 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 353 354 auto &Ctx = OutStreamer->getContext(); 355 MCSymbol *MILabel = Ctx.createTempSymbol(); 356 OutStreamer->emitLabel(MILabel); 357 358 SM.recordStackMap(*MILabel, MI); 359 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 360 361 // Scan ahead to trim the shadow. 362 const MachineBasicBlock &MBB = *MI.getParent(); 363 MachineBasicBlock::const_iterator MII(MI); 364 ++MII; 365 while (NumNOPBytes > 0) { 366 if (MII == MBB.end() || MII->isCall() || 367 MII->getOpcode() == PPC::DBG_VALUE || 368 MII->getOpcode() == TargetOpcode::PATCHPOINT || 369 MII->getOpcode() == TargetOpcode::STACKMAP) 370 break; 371 ++MII; 372 NumNOPBytes -= 4; 373 } 374 375 // Emit nops. 376 for (unsigned i = 0; i < NumNOPBytes; i += 4) 377 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 378 } 379 380 // Lower a patchpoint of the form: 381 // [<def>], <id>, <numBytes>, <target>, <numArgs> 382 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 383 auto &Ctx = OutStreamer->getContext(); 384 MCSymbol *MILabel = Ctx.createTempSymbol(); 385 OutStreamer->emitLabel(MILabel); 386 387 SM.recordPatchPoint(*MILabel, MI); 388 PatchPointOpers Opers(&MI); 389 390 unsigned EncodedBytes = 0; 391 const MachineOperand &CalleeMO = Opers.getCallTarget(); 392 393 if (CalleeMO.isImm()) { 394 int64_t CallTarget = CalleeMO.getImm(); 395 if (CallTarget) { 396 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 397 "High 16 bits of call target should be zero."); 398 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 399 EncodedBytes = 0; 400 // Materialize the jump address: 401 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 402 .addReg(ScratchReg) 403 .addImm((CallTarget >> 32) & 0xFFFF)); 404 ++EncodedBytes; 405 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 406 .addReg(ScratchReg) 407 .addReg(ScratchReg) 408 .addImm(32).addImm(16)); 409 ++EncodedBytes; 410 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 411 .addReg(ScratchReg) 412 .addReg(ScratchReg) 413 .addImm((CallTarget >> 16) & 0xFFFF)); 414 ++EncodedBytes; 415 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 416 .addReg(ScratchReg) 417 .addReg(ScratchReg) 418 .addImm(CallTarget & 0xFFFF)); 419 420 // Save the current TOC pointer before the remote call. 421 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 422 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 423 .addReg(PPC::X2) 424 .addImm(TOCSaveOffset) 425 .addReg(PPC::X1)); 426 ++EncodedBytes; 427 428 // If we're on ELFv1, then we need to load the actual function pointer 429 // from the function descriptor. 430 if (!Subtarget->isELFv2ABI()) { 431 // Load the new TOC pointer and the function address, but not r11 432 // (needing this is rare, and loading it here would prevent passing it 433 // via a 'nest' parameter. 434 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 435 .addReg(PPC::X2) 436 .addImm(8) 437 .addReg(ScratchReg)); 438 ++EncodedBytes; 439 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 440 .addReg(ScratchReg) 441 .addImm(0) 442 .addReg(ScratchReg)); 443 ++EncodedBytes; 444 } 445 446 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 447 .addReg(ScratchReg)); 448 ++EncodedBytes; 449 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 450 ++EncodedBytes; 451 452 // Restore the TOC pointer after the call. 453 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 454 .addReg(PPC::X2) 455 .addImm(TOCSaveOffset) 456 .addReg(PPC::X1)); 457 ++EncodedBytes; 458 } 459 } else if (CalleeMO.isGlobal()) { 460 const GlobalValue *GValue = CalleeMO.getGlobal(); 461 MCSymbol *MOSymbol = getSymbol(GValue); 462 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 463 464 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 465 .addExpr(SymVar)); 466 EncodedBytes += 2; 467 } 468 469 // Each instruction is 4 bytes. 470 EncodedBytes *= 4; 471 472 // Emit padding. 473 unsigned NumBytes = Opers.getNumPatchBytes(); 474 assert(NumBytes >= EncodedBytes && 475 "Patchpoint can't request size less than the length of a call."); 476 assert((NumBytes - EncodedBytes) % 4 == 0 && 477 "Invalid number of NOP bytes requested!"); 478 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 479 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 480 } 481 482 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 483 /// call to __tls_get_addr to the current output stream. 484 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 485 MCSymbolRefExpr::VariantKind VK) { 486 StringRef Name = "__tls_get_addr"; 487 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 488 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 489 unsigned Opcode = PPC::BL8_NOP_TLS; 490 491 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 492 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 493 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 494 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 495 Opcode = PPC::BL8_NOTOC_TLS; 496 } 497 const Module *M = MF->getFunction().getParent(); 498 499 assert(MI->getOperand(0).isReg() && 500 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 501 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 502 "GETtls[ld]ADDR[32] must define GPR3"); 503 assert(MI->getOperand(1).isReg() && 504 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 505 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 506 "GETtls[ld]ADDR[32] must read GPR3"); 507 508 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 509 Kind = MCSymbolRefExpr::VK_PLT; 510 511 const MCExpr *TlsRef = 512 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 513 514 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 515 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 516 M->getPICLevel() == PICLevel::BigPIC) 517 TlsRef = MCBinaryExpr::createAdd( 518 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 519 const MachineOperand &MO = MI->getOperand(2); 520 const GlobalValue *GValue = MO.getGlobal(); 521 MCSymbol *MOSymbol = getSymbol(GValue); 522 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 523 EmitToStreamer(*OutStreamer, 524 MCInstBuilder(Subtarget->isPPC64() ? Opcode 525 : (unsigned)PPC::BL_TLS) 526 .addExpr(TlsRef) 527 .addExpr(SymVar)); 528 } 529 530 /// Map a machine operand for a TOC pseudo-machine instruction to its 531 /// corresponding MCSymbol. 532 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 533 AsmPrinter &AP) { 534 switch (MO.getType()) { 535 case MachineOperand::MO_GlobalAddress: 536 return AP.getSymbol(MO.getGlobal()); 537 case MachineOperand::MO_ConstantPoolIndex: 538 return AP.GetCPISymbol(MO.getIndex()); 539 case MachineOperand::MO_JumpTableIndex: 540 return AP.GetJTISymbol(MO.getIndex()); 541 case MachineOperand::MO_BlockAddress: 542 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 543 default: 544 llvm_unreachable("Unexpected operand type to get symbol."); 545 } 546 } 547 548 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 549 /// the current output stream. 550 /// 551 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 552 MCInst TmpInst; 553 const bool IsPPC64 = Subtarget->isPPC64(); 554 const bool IsAIX = Subtarget->isAIXABI(); 555 const Module *M = MF->getFunction().getParent(); 556 PICLevel::Level PL = M->getPICLevel(); 557 558 #ifndef NDEBUG 559 // Validate that SPE and FPU are mutually exclusive in codegen 560 if (!MI->isInlineAsm()) { 561 for (const MachineOperand &MO: MI->operands()) { 562 if (MO.isReg()) { 563 Register Reg = MO.getReg(); 564 if (Subtarget->hasSPE()) { 565 if (PPC::F4RCRegClass.contains(Reg) || 566 PPC::F8RCRegClass.contains(Reg) || 567 PPC::VFRCRegClass.contains(Reg) || 568 PPC::VRRCRegClass.contains(Reg) || 569 PPC::VSFRCRegClass.contains(Reg) || 570 PPC::VSSRCRegClass.contains(Reg) 571 ) 572 llvm_unreachable("SPE targets cannot have FPRegs!"); 573 } else { 574 if (PPC::SPERCRegClass.contains(Reg)) 575 llvm_unreachable("SPE register found in FPU-targeted code!"); 576 } 577 } 578 } 579 } 580 #endif 581 582 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 583 ptrdiff_t OriginalOffset) { 584 // Apply an offset to the TOC-based expression such that the adjusted 585 // notional offset from the TOC base (to be encoded into the instruction's D 586 // or DS field) is the signed 16-bit truncation of the original notional 587 // offset from the TOC base. 588 // This is consistent with the treatment used both by XL C/C++ and 589 // by AIX ld -r. 590 ptrdiff_t Adjustment = 591 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 592 return MCBinaryExpr::createAdd( 593 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 594 }; 595 596 auto getTOCEntryLoadingExprForXCOFF = 597 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 598 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 599 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 600 const auto TOCEntryIter = TOC.find(MOSymbol); 601 assert(TOCEntryIter != TOC.end() && 602 "Could not find the TOC entry for this symbol."); 603 const ptrdiff_t EntryDistanceFromTOCBase = 604 (TOCEntryIter - TOC.begin()) * EntryByteSize; 605 constexpr int16_t PositiveTOCRange = INT16_MAX; 606 607 if (EntryDistanceFromTOCBase > PositiveTOCRange) 608 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 609 610 return Expr; 611 }; 612 613 // Lower multi-instruction pseudo operations. 614 switch (MI->getOpcode()) { 615 default: break; 616 case TargetOpcode::DBG_VALUE: 617 llvm_unreachable("Should be handled target independently"); 618 case TargetOpcode::STACKMAP: 619 return LowerSTACKMAP(SM, *MI); 620 case TargetOpcode::PATCHPOINT: 621 return LowerPATCHPOINT(SM, *MI); 622 623 case PPC::MoveGOTtoLR: { 624 // Transform %lr = MoveGOTtoLR 625 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 626 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 627 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 628 // blrl 629 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 630 MCSymbol *GOTSymbol = 631 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 632 const MCExpr *OffsExpr = 633 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 634 MCSymbolRefExpr::VK_PPC_LOCAL, 635 OutContext), 636 MCConstantExpr::create(4, OutContext), 637 OutContext); 638 639 // Emit the 'bl'. 640 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 641 return; 642 } 643 case PPC::MovePCtoLR: 644 case PPC::MovePCtoLR8: { 645 // Transform %lr = MovePCtoLR 646 // Into this, where the label is the PIC base: 647 // bl L1$pb 648 // L1$pb: 649 MCSymbol *PICBase = MF->getPICBaseSymbol(); 650 651 // Emit the 'bl'. 652 EmitToStreamer(*OutStreamer, 653 MCInstBuilder(PPC::BL) 654 // FIXME: We would like an efficient form for this, so we 655 // don't have to do a lot of extra uniquing. 656 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 657 658 // Emit the label. 659 OutStreamer->emitLabel(PICBase); 660 return; 661 } 662 case PPC::UpdateGBR: { 663 // Transform %rd = UpdateGBR(%rt, %ri) 664 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 665 // add %rd, %rt, %ri 666 // or into (if secure plt mode is on): 667 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 668 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 669 // Get the offset from the GOT Base Register to the GOT 670 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 671 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 672 unsigned PICR = TmpInst.getOperand(0).getReg(); 673 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 674 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 675 : ".LTOC"); 676 const MCExpr *PB = 677 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 678 679 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 680 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 681 682 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 683 EmitToStreamer( 684 *OutStreamer, 685 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 686 687 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 688 EmitToStreamer( 689 *OutStreamer, 690 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 691 return; 692 } else { 693 MCSymbol *PICOffset = 694 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 695 TmpInst.setOpcode(PPC::LWZ); 696 const MCExpr *Exp = 697 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 698 const MCExpr *PB = 699 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 700 MCSymbolRefExpr::VK_None, 701 OutContext); 702 const MCOperand TR = TmpInst.getOperand(1); 703 const MCOperand PICR = TmpInst.getOperand(0); 704 705 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 706 TmpInst.getOperand(1) = 707 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 708 TmpInst.getOperand(0) = TR; 709 TmpInst.getOperand(2) = PICR; 710 EmitToStreamer(*OutStreamer, TmpInst); 711 712 TmpInst.setOpcode(PPC::ADD4); 713 TmpInst.getOperand(0) = PICR; 714 TmpInst.getOperand(1) = TR; 715 TmpInst.getOperand(2) = PICR; 716 EmitToStreamer(*OutStreamer, TmpInst); 717 return; 718 } 719 } 720 case PPC::LWZtoc: { 721 // Transform %rN = LWZtoc @op1, %r2 722 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 723 724 // Change the opcode to LWZ. 725 TmpInst.setOpcode(PPC::LWZ); 726 727 const MachineOperand &MO = MI->getOperand(1); 728 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 729 "Invalid operand for LWZtoc."); 730 731 // Map the operand to its corresponding MCSymbol. 732 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 733 734 // Create a reference to the GOT entry for the symbol. The GOT entry will be 735 // synthesized later. 736 if (PL == PICLevel::SmallPIC && !IsAIX) { 737 const MCExpr *Exp = 738 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 739 OutContext); 740 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 741 EmitToStreamer(*OutStreamer, TmpInst); 742 return; 743 } 744 745 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 746 // storage allocated in the TOC which contains the address of 747 // 'MOSymbol'. Said TOC entry will be synthesized later. 748 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 749 const MCExpr *Exp = 750 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 751 752 // AIX uses the label directly as the lwz displacement operand for 753 // references into the toc section. The displacement value will be generated 754 // relative to the toc-base. 755 if (IsAIX) { 756 assert( 757 TM.getCodeModel() == CodeModel::Small && 758 "This pseudo should only be selected for 32-bit small code model."); 759 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 760 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 761 EmitToStreamer(*OutStreamer, TmpInst); 762 return; 763 } 764 765 // Create an explicit subtract expression between the local symbol and 766 // '.LTOC' to manifest the toc-relative offset. 767 const MCExpr *PB = MCSymbolRefExpr::create( 768 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 769 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 770 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 771 EmitToStreamer(*OutStreamer, TmpInst); 772 return; 773 } 774 case PPC::LDtocJTI: 775 case PPC::LDtocCPT: 776 case PPC::LDtocBA: 777 case PPC::LDtoc: { 778 // Transform %x3 = LDtoc @min1, %x2 779 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 780 781 // Change the opcode to LD. 782 TmpInst.setOpcode(PPC::LD); 783 784 const MachineOperand &MO = MI->getOperand(1); 785 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 786 "Invalid operand!"); 787 788 // Map the operand to its corresponding MCSymbol. 789 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 790 791 // Map the machine operand to its corresponding MCSymbol, then map the 792 // global address operand to be a reference to the TOC entry we will 793 // synthesize later. 794 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 795 796 const MCSymbolRefExpr::VariantKind VK = 797 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 798 const MCExpr *Exp = 799 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 800 TmpInst.getOperand(1) = MCOperand::createExpr( 801 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 802 EmitToStreamer(*OutStreamer, TmpInst); 803 return; 804 } 805 case PPC::ADDIStocHA: { 806 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 807 "This pseudo should only be selected for 32-bit large code model on" 808 " AIX."); 809 810 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 811 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 812 813 // Change the opcode to ADDIS. 814 TmpInst.setOpcode(PPC::ADDIS); 815 816 const MachineOperand &MO = MI->getOperand(2); 817 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 818 "Invalid operand for ADDIStocHA."); 819 820 // Map the machine operand to its corresponding MCSymbol. 821 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 822 823 // Always use TOC on AIX. Map the global address operand to be a reference 824 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 825 // reference the storage allocated in the TOC which contains the address of 826 // 'MOSymbol'. 827 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 828 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 829 MCSymbolRefExpr::VK_PPC_U, 830 OutContext); 831 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 832 EmitToStreamer(*OutStreamer, TmpInst); 833 return; 834 } 835 case PPC::LWZtocL: { 836 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 837 "This pseudo should only be selected for 32-bit large code model on" 838 " AIX."); 839 840 // Transform %rd = LWZtocL @sym, %rs. 841 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 842 843 // Change the opcode to lwz. 844 TmpInst.setOpcode(PPC::LWZ); 845 846 const MachineOperand &MO = MI->getOperand(1); 847 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 848 "Invalid operand for LWZtocL."); 849 850 // Map the machine operand to its corresponding MCSymbol. 851 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 852 853 // Always use TOC on AIX. Map the global address operand to be a reference 854 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 855 // reference the storage allocated in the TOC which contains the address of 856 // 'MOSymbol'. 857 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 858 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 859 MCSymbolRefExpr::VK_PPC_L, 860 OutContext); 861 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 862 EmitToStreamer(*OutStreamer, TmpInst); 863 return; 864 } 865 case PPC::ADDIStocHA8: { 866 // Transform %xd = ADDIStocHA8 %x2, @sym 867 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 868 869 // Change the opcode to ADDIS8. If the global address is the address of 870 // an external symbol, is a jump table address, is a block address, or is a 871 // constant pool index with large code model enabled, then generate a TOC 872 // entry and reference that. Otherwise, reference the symbol directly. 873 TmpInst.setOpcode(PPC::ADDIS8); 874 875 const MachineOperand &MO = MI->getOperand(2); 876 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 877 "Invalid operand for ADDIStocHA8!"); 878 879 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 880 881 const bool GlobalToc = 882 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 883 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 884 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 885 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 886 887 const MCSymbolRefExpr::VariantKind VK = 888 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 889 890 const MCExpr *Exp = 891 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 892 893 if (!MO.isJTI() && MO.getOffset()) 894 Exp = MCBinaryExpr::createAdd(Exp, 895 MCConstantExpr::create(MO.getOffset(), 896 OutContext), 897 OutContext); 898 899 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 900 EmitToStreamer(*OutStreamer, TmpInst); 901 return; 902 } 903 case PPC::LDtocL: { 904 // Transform %xd = LDtocL @sym, %xs 905 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 906 907 // Change the opcode to LD. If the global address is the address of 908 // an external symbol, is a jump table address, is a block address, or is 909 // a constant pool index with large code model enabled, then generate a 910 // TOC entry and reference that. Otherwise, reference the symbol directly. 911 TmpInst.setOpcode(PPC::LD); 912 913 const MachineOperand &MO = MI->getOperand(1); 914 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 915 MO.isBlockAddress()) && 916 "Invalid operand for LDtocL!"); 917 918 LLVM_DEBUG(assert( 919 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 920 "LDtocL used on symbol that could be accessed directly is " 921 "invalid. Must match ADDIStocHA8.")); 922 923 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 924 925 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 926 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 927 928 const MCSymbolRefExpr::VariantKind VK = 929 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 930 const MCExpr *Exp = 931 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 932 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 933 EmitToStreamer(*OutStreamer, TmpInst); 934 return; 935 } 936 case PPC::ADDItocL: { 937 // Transform %xd = ADDItocL %xs, @sym 938 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 939 940 // Change the opcode to ADDI8. If the global address is external, then 941 // generate a TOC entry and reference that. Otherwise, reference the 942 // symbol directly. 943 TmpInst.setOpcode(PPC::ADDI8); 944 945 const MachineOperand &MO = MI->getOperand(2); 946 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 947 948 LLVM_DEBUG(assert( 949 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 950 "Interposable definitions must use indirect access.")); 951 952 const MCExpr *Exp = 953 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 954 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 955 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 956 EmitToStreamer(*OutStreamer, TmpInst); 957 return; 958 } 959 case PPC::ADDISgotTprelHA: { 960 // Transform: %xd = ADDISgotTprelHA %x2, @sym 961 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 962 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 963 const MachineOperand &MO = MI->getOperand(2); 964 const GlobalValue *GValue = MO.getGlobal(); 965 MCSymbol *MOSymbol = getSymbol(GValue); 966 const MCExpr *SymGotTprel = 967 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 968 OutContext); 969 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 970 .addReg(MI->getOperand(0).getReg()) 971 .addReg(MI->getOperand(1).getReg()) 972 .addExpr(SymGotTprel)); 973 return; 974 } 975 case PPC::LDgotTprelL: 976 case PPC::LDgotTprelL32: { 977 // Transform %xd = LDgotTprelL @sym, %xs 978 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 979 980 // Change the opcode to LD. 981 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 982 const MachineOperand &MO = MI->getOperand(1); 983 const GlobalValue *GValue = MO.getGlobal(); 984 MCSymbol *MOSymbol = getSymbol(GValue); 985 const MCExpr *Exp = MCSymbolRefExpr::create( 986 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 987 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 988 OutContext); 989 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 990 EmitToStreamer(*OutStreamer, TmpInst); 991 return; 992 } 993 994 case PPC::PPC32PICGOT: { 995 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 996 MCSymbol *GOTRef = OutContext.createTempSymbol(); 997 MCSymbol *NextInstr = OutContext.createTempSymbol(); 998 999 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1000 // FIXME: We would like an efficient form for this, so we don't have to do 1001 // a lot of extra uniquing. 1002 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1003 const MCExpr *OffsExpr = 1004 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1005 MCSymbolRefExpr::create(GOTRef, OutContext), 1006 OutContext); 1007 OutStreamer->emitLabel(GOTRef); 1008 OutStreamer->emitValue(OffsExpr, 4); 1009 OutStreamer->emitLabel(NextInstr); 1010 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1011 .addReg(MI->getOperand(0).getReg())); 1012 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1013 .addReg(MI->getOperand(1).getReg()) 1014 .addImm(0) 1015 .addReg(MI->getOperand(0).getReg())); 1016 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1017 .addReg(MI->getOperand(0).getReg()) 1018 .addReg(MI->getOperand(1).getReg()) 1019 .addReg(MI->getOperand(0).getReg())); 1020 return; 1021 } 1022 case PPC::PPC32GOT: { 1023 MCSymbol *GOTSymbol = 1024 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1025 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1026 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1027 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1028 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1029 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1030 .addReg(MI->getOperand(0).getReg()) 1031 .addExpr(SymGotTlsL)); 1032 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1033 .addReg(MI->getOperand(0).getReg()) 1034 .addReg(MI->getOperand(0).getReg()) 1035 .addExpr(SymGotTlsHA)); 1036 return; 1037 } 1038 case PPC::ADDIStlsgdHA: { 1039 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1040 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1041 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1042 const MachineOperand &MO = MI->getOperand(2); 1043 const GlobalValue *GValue = MO.getGlobal(); 1044 MCSymbol *MOSymbol = getSymbol(GValue); 1045 const MCExpr *SymGotTlsGD = 1046 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1047 OutContext); 1048 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1049 .addReg(MI->getOperand(0).getReg()) 1050 .addReg(MI->getOperand(1).getReg()) 1051 .addExpr(SymGotTlsGD)); 1052 return; 1053 } 1054 case PPC::ADDItlsgdL: 1055 // Transform: %xd = ADDItlsgdL %xs, @sym 1056 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1057 case PPC::ADDItlsgdL32: { 1058 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1059 // Into: %rd = ADDI %rs, sym@got@tlsgd 1060 const MachineOperand &MO = MI->getOperand(2); 1061 const GlobalValue *GValue = MO.getGlobal(); 1062 MCSymbol *MOSymbol = getSymbol(GValue); 1063 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1064 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1065 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1066 OutContext); 1067 EmitToStreamer(*OutStreamer, 1068 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1069 .addReg(MI->getOperand(0).getReg()) 1070 .addReg(MI->getOperand(1).getReg()) 1071 .addExpr(SymGotTlsGD)); 1072 return; 1073 } 1074 case PPC::GETtlsADDR: 1075 // Transform: %x3 = GETtlsADDR %x3, @sym 1076 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1077 case PPC::GETtlsADDRPCREL: 1078 case PPC::GETtlsADDR32: { 1079 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1080 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1081 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1082 return; 1083 } 1084 case PPC::ADDIStlsldHA: { 1085 // Transform: %xd = ADDIStlsldHA %x2, @sym 1086 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1087 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1088 const MachineOperand &MO = MI->getOperand(2); 1089 const GlobalValue *GValue = MO.getGlobal(); 1090 MCSymbol *MOSymbol = getSymbol(GValue); 1091 const MCExpr *SymGotTlsLD = 1092 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1093 OutContext); 1094 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1095 .addReg(MI->getOperand(0).getReg()) 1096 .addReg(MI->getOperand(1).getReg()) 1097 .addExpr(SymGotTlsLD)); 1098 return; 1099 } 1100 case PPC::ADDItlsldL: 1101 // Transform: %xd = ADDItlsldL %xs, @sym 1102 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1103 case PPC::ADDItlsldL32: { 1104 // Transform: %rd = ADDItlsldL32 %rs, @sym 1105 // Into: %rd = ADDI %rs, sym@got@tlsld 1106 const MachineOperand &MO = MI->getOperand(2); 1107 const GlobalValue *GValue = MO.getGlobal(); 1108 MCSymbol *MOSymbol = getSymbol(GValue); 1109 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1110 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1111 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1112 OutContext); 1113 EmitToStreamer(*OutStreamer, 1114 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1115 .addReg(MI->getOperand(0).getReg()) 1116 .addReg(MI->getOperand(1).getReg()) 1117 .addExpr(SymGotTlsLD)); 1118 return; 1119 } 1120 case PPC::GETtlsldADDR: 1121 // Transform: %x3 = GETtlsldADDR %x3, @sym 1122 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1123 case PPC::GETtlsldADDRPCREL: 1124 case PPC::GETtlsldADDR32: { 1125 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1126 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1127 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1128 return; 1129 } 1130 case PPC::ADDISdtprelHA: 1131 // Transform: %xd = ADDISdtprelHA %xs, @sym 1132 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1133 case PPC::ADDISdtprelHA32: { 1134 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1135 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1136 const MachineOperand &MO = MI->getOperand(2); 1137 const GlobalValue *GValue = MO.getGlobal(); 1138 MCSymbol *MOSymbol = getSymbol(GValue); 1139 const MCExpr *SymDtprel = 1140 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1141 OutContext); 1142 EmitToStreamer( 1143 *OutStreamer, 1144 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1145 .addReg(MI->getOperand(0).getReg()) 1146 .addReg(MI->getOperand(1).getReg()) 1147 .addExpr(SymDtprel)); 1148 return; 1149 } 1150 case PPC::PADDIdtprel: { 1151 // Transform: %rd = PADDIdtprel %rs, @sym 1152 // Into: %rd = PADDI8 %rs, sym@dtprel 1153 const MachineOperand &MO = MI->getOperand(2); 1154 const GlobalValue *GValue = MO.getGlobal(); 1155 MCSymbol *MOSymbol = getSymbol(GValue); 1156 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1157 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1158 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1159 .addReg(MI->getOperand(0).getReg()) 1160 .addReg(MI->getOperand(1).getReg()) 1161 .addExpr(SymDtprel)); 1162 return; 1163 } 1164 1165 case PPC::ADDIdtprelL: 1166 // Transform: %xd = ADDIdtprelL %xs, @sym 1167 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1168 case PPC::ADDIdtprelL32: { 1169 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1170 // Into: %rd = ADDI %rs, sym@dtprel@l 1171 const MachineOperand &MO = MI->getOperand(2); 1172 const GlobalValue *GValue = MO.getGlobal(); 1173 MCSymbol *MOSymbol = getSymbol(GValue); 1174 const MCExpr *SymDtprel = 1175 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1176 OutContext); 1177 EmitToStreamer(*OutStreamer, 1178 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1179 .addReg(MI->getOperand(0).getReg()) 1180 .addReg(MI->getOperand(1).getReg()) 1181 .addExpr(SymDtprel)); 1182 return; 1183 } 1184 case PPC::MFOCRF: 1185 case PPC::MFOCRF8: 1186 if (!Subtarget->hasMFOCRF()) { 1187 // Transform: %r3 = MFOCRF %cr7 1188 // Into: %r3 = MFCR ;; cr7 1189 unsigned NewOpcode = 1190 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1191 OutStreamer->AddComment(PPCInstPrinter:: 1192 getRegisterName(MI->getOperand(1).getReg())); 1193 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1194 .addReg(MI->getOperand(0).getReg())); 1195 return; 1196 } 1197 break; 1198 case PPC::MTOCRF: 1199 case PPC::MTOCRF8: 1200 if (!Subtarget->hasMFOCRF()) { 1201 // Transform: %cr7 = MTOCRF %r3 1202 // Into: MTCRF mask, %r3 ;; cr7 1203 unsigned NewOpcode = 1204 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1205 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1206 ->getEncodingValue(MI->getOperand(0).getReg()); 1207 OutStreamer->AddComment(PPCInstPrinter:: 1208 getRegisterName(MI->getOperand(0).getReg())); 1209 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1210 .addImm(Mask) 1211 .addReg(MI->getOperand(1).getReg())); 1212 return; 1213 } 1214 break; 1215 case PPC::LD: 1216 case PPC::STD: 1217 case PPC::LWA_32: 1218 case PPC::LWA: { 1219 // Verify alignment is legal, so we don't create relocations 1220 // that can't be supported. 1221 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1222 const MachineOperand &MO = MI->getOperand(OpNum); 1223 if (MO.isGlobal()) { 1224 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1225 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1226 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1227 } 1228 // Now process the instruction normally. 1229 break; 1230 } 1231 } 1232 1233 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1234 EmitToStreamer(*OutStreamer, TmpInst); 1235 } 1236 1237 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1238 if (!Subtarget->isPPC64()) 1239 return PPCAsmPrinter::emitInstruction(MI); 1240 1241 switch (MI->getOpcode()) { 1242 default: 1243 return PPCAsmPrinter::emitInstruction(MI); 1244 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1245 // .begin: 1246 // b .end # lis 0, FuncId[16..32] 1247 // nop # li 0, FuncId[0..15] 1248 // std 0, -8(1) 1249 // mflr 0 1250 // bl __xray_FunctionEntry 1251 // mtlr 0 1252 // .end: 1253 // 1254 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1255 // of instructions change. 1256 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1257 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1258 OutStreamer->emitLabel(BeginOfSled); 1259 EmitToStreamer(*OutStreamer, 1260 MCInstBuilder(PPC::B).addExpr( 1261 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1262 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1263 EmitToStreamer( 1264 *OutStreamer, 1265 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1266 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1267 EmitToStreamer(*OutStreamer, 1268 MCInstBuilder(PPC::BL8_NOP) 1269 .addExpr(MCSymbolRefExpr::create( 1270 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1271 OutContext))); 1272 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1273 OutStreamer->emitLabel(EndOfSled); 1274 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1275 break; 1276 } 1277 case TargetOpcode::PATCHABLE_RET: { 1278 unsigned RetOpcode = MI->getOperand(0).getImm(); 1279 MCInst RetInst; 1280 RetInst.setOpcode(RetOpcode); 1281 for (const auto &MO : 1282 make_range(std::next(MI->operands_begin()), MI->operands_end())) { 1283 MCOperand MCOp; 1284 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1285 RetInst.addOperand(MCOp); 1286 } 1287 1288 bool IsConditional; 1289 if (RetOpcode == PPC::BCCLR) { 1290 IsConditional = true; 1291 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1292 RetOpcode == PPC::TCRETURNai8) { 1293 break; 1294 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1295 IsConditional = false; 1296 } else { 1297 EmitToStreamer(*OutStreamer, RetInst); 1298 break; 1299 } 1300 1301 MCSymbol *FallthroughLabel; 1302 if (IsConditional) { 1303 // Before: 1304 // bgtlr cr0 1305 // 1306 // After: 1307 // ble cr0, .end 1308 // .p2align 3 1309 // .begin: 1310 // blr # lis 0, FuncId[16..32] 1311 // nop # li 0, FuncId[0..15] 1312 // std 0, -8(1) 1313 // mflr 0 1314 // bl __xray_FunctionExit 1315 // mtlr 0 1316 // blr 1317 // .end: 1318 // 1319 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1320 // of instructions change. 1321 FallthroughLabel = OutContext.createTempSymbol(); 1322 EmitToStreamer( 1323 *OutStreamer, 1324 MCInstBuilder(PPC::BCC) 1325 .addImm(PPC::InvertPredicate( 1326 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1327 .addReg(MI->getOperand(2).getReg()) 1328 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1329 RetInst = MCInst(); 1330 RetInst.setOpcode(PPC::BLR8); 1331 } 1332 // .p2align 3 1333 // .begin: 1334 // b(lr)? # lis 0, FuncId[16..32] 1335 // nop # li 0, FuncId[0..15] 1336 // std 0, -8(1) 1337 // mflr 0 1338 // bl __xray_FunctionExit 1339 // mtlr 0 1340 // b(lr)? 1341 // 1342 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1343 // of instructions change. 1344 OutStreamer->emitCodeAlignment(8); 1345 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1346 OutStreamer->emitLabel(BeginOfSled); 1347 EmitToStreamer(*OutStreamer, RetInst); 1348 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1349 EmitToStreamer( 1350 *OutStreamer, 1351 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1352 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1353 EmitToStreamer(*OutStreamer, 1354 MCInstBuilder(PPC::BL8_NOP) 1355 .addExpr(MCSymbolRefExpr::create( 1356 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1357 OutContext))); 1358 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1359 EmitToStreamer(*OutStreamer, RetInst); 1360 if (IsConditional) 1361 OutStreamer->emitLabel(FallthroughLabel); 1362 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1363 break; 1364 } 1365 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1366 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1367 case TargetOpcode::PATCHABLE_TAIL_CALL: 1368 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1369 // normal function exit from a tail exit. 1370 llvm_unreachable("Tail call is handled in the normal case. See comments " 1371 "around this assert."); 1372 } 1373 } 1374 1375 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1376 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1377 PPCTargetStreamer *TS = 1378 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1379 1380 if (TS) 1381 TS->emitAbiVersion(2); 1382 } 1383 1384 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1385 !isPositionIndependent()) 1386 return AsmPrinter::emitStartOfAsmFile(M); 1387 1388 if (M.getPICLevel() == PICLevel::SmallPIC) 1389 return AsmPrinter::emitStartOfAsmFile(M); 1390 1391 OutStreamer->SwitchSection(OutContext.getELFSection( 1392 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1393 1394 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1395 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1396 1397 OutStreamer->emitLabel(CurrentPos); 1398 1399 // The GOT pointer points to the middle of the GOT, in order to reference the 1400 // entire 64kB range. 0x8000 is the midpoint. 1401 const MCExpr *tocExpr = 1402 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1403 MCConstantExpr::create(0x8000, OutContext), 1404 OutContext); 1405 1406 OutStreamer->emitAssignment(TOCSym, tocExpr); 1407 1408 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1409 } 1410 1411 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1412 // linux/ppc32 - Normal entry label. 1413 if (!Subtarget->isPPC64() && 1414 (!isPositionIndependent() || 1415 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1416 return AsmPrinter::emitFunctionEntryLabel(); 1417 1418 if (!Subtarget->isPPC64()) { 1419 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1420 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1421 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1422 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1423 OutStreamer->emitLabel(RelocSymbol); 1424 1425 const MCExpr *OffsExpr = 1426 MCBinaryExpr::createSub( 1427 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1428 OutContext), 1429 MCSymbolRefExpr::create(PICBase, OutContext), 1430 OutContext); 1431 OutStreamer->emitValue(OffsExpr, 4); 1432 OutStreamer->emitLabel(CurrentFnSym); 1433 return; 1434 } else 1435 return AsmPrinter::emitFunctionEntryLabel(); 1436 } 1437 1438 // ELFv2 ABI - Normal entry label. 1439 if (Subtarget->isELFv2ABI()) { 1440 // In the Large code model, we allow arbitrary displacements between 1441 // the text section and its associated TOC section. We place the 1442 // full 8-byte offset to the TOC in memory immediately preceding 1443 // the function global entry point. 1444 if (TM.getCodeModel() == CodeModel::Large 1445 && !MF->getRegInfo().use_empty(PPC::X2)) { 1446 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1447 1448 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1449 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1450 const MCExpr *TOCDeltaExpr = 1451 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1452 MCSymbolRefExpr::create(GlobalEPSymbol, 1453 OutContext), 1454 OutContext); 1455 1456 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1457 OutStreamer->emitValue(TOCDeltaExpr, 8); 1458 } 1459 return AsmPrinter::emitFunctionEntryLabel(); 1460 } 1461 1462 // Emit an official procedure descriptor. 1463 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1464 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1465 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1466 OutStreamer->SwitchSection(Section); 1467 OutStreamer->emitLabel(CurrentFnSym); 1468 OutStreamer->emitValueToAlignment(8); 1469 MCSymbol *Symbol1 = CurrentFnSymForSize; 1470 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1471 // entry point. 1472 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1473 8 /*size*/); 1474 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1475 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1476 OutStreamer->emitValue( 1477 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1478 8/*size*/); 1479 // Emit a null environment pointer. 1480 OutStreamer->emitIntValue(0, 8 /* size */); 1481 OutStreamer->SwitchSection(Current.first, Current.second); 1482 } 1483 1484 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1485 const DataLayout &DL = getDataLayout(); 1486 1487 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1488 1489 PPCTargetStreamer *TS = 1490 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1491 1492 if (!TOC.empty()) { 1493 const char *Name = isPPC64 ? ".toc" : ".got2"; 1494 MCSectionELF *Section = OutContext.getELFSection( 1495 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1496 OutStreamer->SwitchSection(Section); 1497 if (!isPPC64) 1498 OutStreamer->emitValueToAlignment(4); 1499 1500 for (const auto &TOCMapPair : TOC) { 1501 const MCSymbol *const TOCEntryTarget = TOCMapPair.first; 1502 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1503 1504 OutStreamer->emitLabel(TOCEntryLabel); 1505 if (isPPC64 && TS != nullptr) 1506 TS->emitTCEntry(*TOCEntryTarget); 1507 else 1508 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1509 } 1510 } 1511 1512 PPCAsmPrinter::emitEndOfAsmFile(M); 1513 } 1514 1515 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1516 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1517 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1518 // provide two entry points. The ABI guarantees that when calling the 1519 // local entry point, r2 is set up by the caller to contain the TOC base 1520 // for this function, and when calling the global entry point, r12 is set 1521 // up by the caller to hold the address of the global entry point. We 1522 // thus emit a prefix sequence along the following lines: 1523 // 1524 // func: 1525 // .Lfunc_gepNN: 1526 // # global entry point 1527 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1528 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1529 // .Lfunc_lepNN: 1530 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1531 // # local entry point, followed by function body 1532 // 1533 // For the Large code model, we create 1534 // 1535 // .Lfunc_tocNN: 1536 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1537 // func: 1538 // .Lfunc_gepNN: 1539 // # global entry point 1540 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1541 // add r2,r2,r12 1542 // .Lfunc_lepNN: 1543 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1544 // # local entry point, followed by function body 1545 // 1546 // This ensures we have r2 set up correctly while executing the function 1547 // body, no matter which entry point is called. 1548 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1549 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1550 !MF->getRegInfo().use_empty(PPC::R2); 1551 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1552 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1553 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1554 Subtarget->isELFv2ABI() && UsesX2OrR2; 1555 1556 // Only do all that if the function uses R2 as the TOC pointer 1557 // in the first place. We don't need the global entry point if the 1558 // function uses R2 as an allocatable register. 1559 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1560 // Note: The logic here must be synchronized with the code in the 1561 // branch-selection pass which sets the offset of the first block in the 1562 // function. This matters because it affects the alignment. 1563 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1564 OutStreamer->emitLabel(GlobalEntryLabel); 1565 const MCSymbolRefExpr *GlobalEntryLabelExp = 1566 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1567 1568 if (TM.getCodeModel() != CodeModel::Large) { 1569 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1570 const MCExpr *TOCDeltaExpr = 1571 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1572 GlobalEntryLabelExp, OutContext); 1573 1574 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1575 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1576 .addReg(PPC::X2) 1577 .addReg(PPC::X12) 1578 .addExpr(TOCDeltaHi)); 1579 1580 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1581 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1582 .addReg(PPC::X2) 1583 .addReg(PPC::X2) 1584 .addExpr(TOCDeltaLo)); 1585 } else { 1586 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1587 const MCExpr *TOCOffsetDeltaExpr = 1588 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1589 GlobalEntryLabelExp, OutContext); 1590 1591 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1592 .addReg(PPC::X2) 1593 .addExpr(TOCOffsetDeltaExpr) 1594 .addReg(PPC::X12)); 1595 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1596 .addReg(PPC::X2) 1597 .addReg(PPC::X2) 1598 .addReg(PPC::X12)); 1599 } 1600 1601 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1602 OutStreamer->emitLabel(LocalEntryLabel); 1603 const MCSymbolRefExpr *LocalEntryLabelExp = 1604 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1605 const MCExpr *LocalOffsetExp = 1606 MCBinaryExpr::createSub(LocalEntryLabelExp, 1607 GlobalEntryLabelExp, OutContext); 1608 1609 PPCTargetStreamer *TS = 1610 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1611 1612 if (TS) 1613 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1614 } else if (Subtarget->isUsingPCRelativeCalls()) { 1615 // When generating the entry point for a function we have a few scenarios 1616 // based on whether or not that function uses R2 and whether or not that 1617 // function makes calls (or is a leaf function). 1618 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1619 // and preserves it). In this case st_other=0 and both 1620 // the local and global entry points for the function are the same. 1621 // No special entry point code is required. 1622 // 2) A function uses the TOC pointer R2. This function may or may not have 1623 // calls. In this case st_other=[2,6] and the global and local entry 1624 // points are different. Code to correctly setup the TOC pointer in R2 1625 // is put between the global and local entry points. This case is 1626 // covered by the if statatement above. 1627 // 3) A function does not use the TOC pointer R2 but does have calls. 1628 // In this case st_other=1 since we do not know whether or not any 1629 // of the callees clobber R2. This case is dealt with in this else if 1630 // block. Tail calls are considered calls and the st_other should also 1631 // be set to 1 in that case as well. 1632 // 4) The function does not use the TOC pointer but R2 is used inside 1633 // the function. In this case st_other=1 once again. 1634 // 5) This function uses inline asm. We mark R2 as reserved if the function 1635 // has inline asm as we have to assume that it may be used. 1636 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1637 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1638 PPCTargetStreamer *TS = 1639 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1640 if (TS) 1641 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1642 MCConstantExpr::create(1, OutContext)); 1643 } 1644 } 1645 } 1646 1647 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1648 /// directive. 1649 /// 1650 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1651 // Only the 64-bit target requires a traceback table. For now, 1652 // we only emit the word of zeroes that GDB requires to find 1653 // the end of the function, and zeroes for the eight-byte 1654 // mandatory fields. 1655 // FIXME: We should fill in the eight-byte mandatory fields as described in 1656 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1657 // currently make use of these fields). 1658 if (Subtarget->isPPC64()) { 1659 OutStreamer->emitIntValue(0, 4/*size*/); 1660 OutStreamer->emitIntValue(0, 8/*size*/); 1661 } 1662 } 1663 1664 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1665 MCSymbol *GVSym) const { 1666 1667 assert(MAI->hasVisibilityOnlyWithLinkage() && 1668 "AIX's linkage directives take a visibility setting."); 1669 1670 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1671 switch (GV->getLinkage()) { 1672 case GlobalValue::ExternalLinkage: 1673 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1674 break; 1675 case GlobalValue::LinkOnceAnyLinkage: 1676 case GlobalValue::LinkOnceODRLinkage: 1677 case GlobalValue::WeakAnyLinkage: 1678 case GlobalValue::WeakODRLinkage: 1679 case GlobalValue::ExternalWeakLinkage: 1680 LinkageAttr = MCSA_Weak; 1681 break; 1682 case GlobalValue::AvailableExternallyLinkage: 1683 LinkageAttr = MCSA_Extern; 1684 break; 1685 case GlobalValue::PrivateLinkage: 1686 return; 1687 case GlobalValue::InternalLinkage: 1688 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1689 "InternalLinkage should not have other visibility setting."); 1690 LinkageAttr = MCSA_LGlobal; 1691 break; 1692 case GlobalValue::AppendingLinkage: 1693 llvm_unreachable("Should never emit this"); 1694 case GlobalValue::CommonLinkage: 1695 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1696 } 1697 1698 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1699 1700 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1701 if (!TM.getIgnoreXCOFFVisibility()) { 1702 switch (GV->getVisibility()) { 1703 1704 // TODO: "exported" and "internal" Visibility needs to go here. 1705 case GlobalValue::DefaultVisibility: 1706 break; 1707 case GlobalValue::HiddenVisibility: 1708 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1709 break; 1710 case GlobalValue::ProtectedVisibility: 1711 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1712 break; 1713 } 1714 } 1715 1716 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1717 VisibilityAttr); 1718 } 1719 1720 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1721 // Setup CurrentFnDescSym and its containing csect. 1722 MCSectionXCOFF *FnDescSec = 1723 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1724 &MF.getFunction(), TM)); 1725 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1726 1727 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1728 1729 return AsmPrinter::SetupMachineFunction(MF); 1730 } 1731 1732 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 1733 // Early error checking limiting what is supported. 1734 if (GV->isThreadLocal()) 1735 report_fatal_error("Thread local not yet supported on AIX."); 1736 1737 if (GV->hasComdat()) 1738 report_fatal_error("COMDAT not yet supported by AIX."); 1739 } 1740 1741 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 1742 return GV->hasAppendingLinkage() && 1743 StringSwitch<bool>(GV->getName()) 1744 // TODO: Linker could still eliminate the GV if we just skip 1745 // handling llvm.used array. Skipping them for now until we or the 1746 // AIX OS team come up with a good solution. 1747 .Case("llvm.used", true) 1748 // It's correct to just skip llvm.compiler.used array here. 1749 .Case("llvm.compiler.used", true) 1750 .Default(false); 1751 } 1752 1753 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 1754 return StringSwitch<bool>(GV->getName()) 1755 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 1756 .Default(false); 1757 } 1758 1759 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 1760 // Special LLVM global arrays have been handled at the initialization. 1761 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 1762 return; 1763 1764 assert(!GV->getName().startswith("llvm.") && 1765 "Unhandled intrinsic global variable."); 1766 ValidateGV(GV); 1767 1768 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 1769 1770 if (GV->isDeclarationForLinker()) { 1771 emitLinkage(GV, GVSym); 1772 return; 1773 } 1774 1775 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 1776 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 1777 report_fatal_error("Encountered a global variable kind that is " 1778 "not supported yet."); 1779 1780 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1781 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 1782 1783 // Switch to the containing csect. 1784 OutStreamer->SwitchSection(Csect); 1785 1786 const DataLayout &DL = GV->getParent()->getDataLayout(); 1787 1788 // Handle common symbols. 1789 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 1790 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 1791 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 1792 GVSym->setStorageClass( 1793 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 1794 1795 if (GVKind.isBSSLocal()) 1796 OutStreamer->emitXCOFFLocalCommonSymbol( 1797 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 1798 GVSym, Alignment.value()); 1799 else 1800 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 1801 return; 1802 } 1803 1804 MCSymbol *EmittedInitSym = GVSym; 1805 emitLinkage(GV, EmittedInitSym); 1806 emitAlignment(getGVAlignment(GV, DL), GV); 1807 1808 // When -fdata-sections is enabled, every GlobalVariable will 1809 // be put into its own csect; therefore, label is not necessary here. 1810 if (!TM.getDataSections() || GV->hasSection()) { 1811 OutStreamer->emitLabel(EmittedInitSym); 1812 } 1813 1814 // Emit aliasing label for global variable. 1815 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 1816 OutStreamer->emitLabel(getSymbol(Alias)); 1817 }); 1818 1819 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 1820 } 1821 1822 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 1823 const DataLayout &DL = getDataLayout(); 1824 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 1825 1826 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1827 // Emit function descriptor. 1828 OutStreamer->SwitchSection( 1829 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 1830 1831 // Emit aliasing label for function descriptor csect. 1832 llvm::for_each(GOAliasMap[&MF->getFunction()], 1833 [this](const GlobalAlias *Alias) { 1834 OutStreamer->emitLabel(getSymbol(Alias)); 1835 }); 1836 1837 // Emit function entry point address. 1838 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 1839 PointerSize); 1840 // Emit TOC base address. 1841 const MCSymbol *TOCBaseSym = 1842 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 1843 ->getQualNameSymbol(); 1844 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 1845 PointerSize); 1846 // Emit a null environment pointer. 1847 OutStreamer->emitIntValue(0, PointerSize); 1848 1849 OutStreamer->SwitchSection(Current.first, Current.second); 1850 } 1851 1852 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 1853 // It's not necessary to emit the label when we have individual 1854 // function in its own csect. 1855 if (!TM.getFunctionSections()) 1856 PPCAsmPrinter::emitFunctionEntryLabel(); 1857 1858 // Emit aliasing label for function entry point label. 1859 llvm::for_each( 1860 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 1861 OutStreamer->emitLabel( 1862 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 1863 }); 1864 } 1865 1866 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 1867 // If there are no functions in this module, we will never need to reference 1868 // the TOC base. 1869 if (M.empty()) 1870 return; 1871 1872 // Switch to section to emit TOC base. 1873 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 1874 1875 PPCTargetStreamer *TS = 1876 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1877 1878 for (auto &I : TOC) { 1879 // Setup the csect for the current TC entry. 1880 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 1881 getObjFileLowering().getSectionForTOCEntry(I.first, TM)); 1882 OutStreamer->SwitchSection(TCEntry); 1883 1884 OutStreamer->emitLabel(I.second); 1885 if (TS != nullptr) 1886 TS->emitTCEntry(*I.first); 1887 } 1888 } 1889 1890 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 1891 const bool Result = PPCAsmPrinter::doInitialization(M); 1892 1893 auto setCsectAlignment = [this](const GlobalObject *GO) { 1894 // Declarations have 0 alignment which is set by default. 1895 if (GO->isDeclarationForLinker()) 1896 return; 1897 1898 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 1899 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1900 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 1901 1902 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 1903 if (GOAlign > Csect->getAlignment()) 1904 Csect->setAlignment(GOAlign); 1905 }; 1906 1907 // We need to know, up front, the alignment of csects for the assembly path, 1908 // because once a .csect directive gets emitted, we could not change the 1909 // alignment value on it. 1910 for (const auto &G : M.globals()) { 1911 if (isSpecialLLVMGlobalArrayToSkip(&G)) 1912 continue; 1913 1914 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 1915 // Generate a format indicator and a unique module id to be a part of 1916 // the sinit and sterm function names. 1917 if (FormatIndicatorAndUniqueModId.empty()) { 1918 std::string UniqueModuleId = getUniqueModuleId(&M); 1919 if (UniqueModuleId.compare("") != 0) 1920 // TODO: Use source file full path to generate the unique module id 1921 // and add a format indicator as a part of function name in case we 1922 // will support more than one format. 1923 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 1924 else 1925 // Use the Pid and current time as the unique module id when we cannot 1926 // generate one based on a module's strong external symbols. 1927 // FIXME: Adjust the comment accordingly after we use source file full 1928 // path instead. 1929 FormatIndicatorAndUniqueModId = 1930 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 1931 "_" + llvm::itostr(time(nullptr)); 1932 } 1933 1934 emitSpecialLLVMGlobal(&G); 1935 continue; 1936 } 1937 1938 setCsectAlignment(&G); 1939 } 1940 1941 for (const auto &F : M) 1942 setCsectAlignment(&F); 1943 1944 // Construct an aliasing list for each GlobalObject. 1945 for (const auto &Alias : M.aliases()) { 1946 const GlobalObject *Base = Alias.getBaseObject(); 1947 if (!Base) 1948 report_fatal_error( 1949 "alias without a base object is not yet supported on AIX"); 1950 GOAliasMap[Base].push_back(&Alias); 1951 } 1952 1953 return Result; 1954 } 1955 1956 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 1957 switch (MI->getOpcode()) { 1958 default: 1959 break; 1960 case PPC::BL8: 1961 case PPC::BL: 1962 case PPC::BL8_NOP: 1963 case PPC::BL_NOP: { 1964 const MachineOperand &MO = MI->getOperand(0); 1965 if (MO.isSymbol()) { 1966 MCSymbolXCOFF *S = 1967 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 1968 ExtSymSDNodeSymbols.insert(S); 1969 } 1970 } break; 1971 case PPC::BL_TLS: 1972 case PPC::BL8_TLS: 1973 case PPC::BL8_TLS_: 1974 case PPC::BL8_NOP_TLS: 1975 report_fatal_error("TLS call not yet implemented"); 1976 case PPC::TAILB: 1977 case PPC::TAILB8: 1978 case PPC::TAILBA: 1979 case PPC::TAILBA8: 1980 case PPC::TAILBCTR: 1981 case PPC::TAILBCTR8: 1982 if (MI->getOperand(0).isSymbol()) 1983 report_fatal_error("Tail call for extern symbol not yet supported."); 1984 break; 1985 } 1986 return PPCAsmPrinter::emitInstruction(MI); 1987 } 1988 1989 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 1990 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 1991 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 1992 return PPCAsmPrinter::doFinalization(M); 1993 } 1994 1995 static unsigned mapToSinitPriority(int P) { 1996 if (P < 0 || P > 65535) 1997 report_fatal_error("invalid init priority"); 1998 1999 if (P <= 20) 2000 return P; 2001 2002 if (P < 81) 2003 return 20 + (P - 20) * 16; 2004 2005 if (P <= 1124) 2006 return 1004 + (P - 81); 2007 2008 if (P < 64512) 2009 return 2047 + (P - 1124) * 33878; 2010 2011 return 2147482625u + (P - 64512); 2012 } 2013 2014 static std::string convertToSinitPriority(int Priority) { 2015 // This helper function converts clang init priority to values used in sinit 2016 // and sterm functions. 2017 // 2018 // The conversion strategies are: 2019 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2020 // reserved priority range [0, 1023] by 2021 // - directly mapping the first 21 and the last 20 elements of the ranges 2022 // - linear interpolating the intermediate values with a step size of 16. 2023 // 2024 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2025 // sinit/sterm priority range [1024, 2147483648] by: 2026 // - directly mapping the first and the last 1024 elements of the ranges 2027 // - linear interpolating the intermediate values with a step size of 33878. 2028 unsigned int P = mapToSinitPriority(Priority); 2029 2030 std::string PrioritySuffix; 2031 llvm::raw_string_ostream os(PrioritySuffix); 2032 os << llvm::format_hex_no_prefix(P, 8); 2033 os.flush(); 2034 return PrioritySuffix; 2035 } 2036 2037 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2038 const Constant *List, bool IsCtor) { 2039 SmallVector<Structor, 8> Structors; 2040 preprocessXXStructorList(DL, List, Structors); 2041 if (Structors.empty()) 2042 return; 2043 2044 unsigned Index = 0; 2045 for (Structor &S : Structors) { 2046 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2047 S.Func = CE->getOperand(0); 2048 2049 llvm::GlobalAlias::create( 2050 GlobalValue::ExternalLinkage, 2051 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2052 llvm::Twine(convertToSinitPriority(S.Priority)) + 2053 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2054 llvm::Twine("_", llvm::utostr(Index++)), 2055 cast<Function>(S.Func)); 2056 } 2057 } 2058 2059 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2060 // given output stream. 2061 static AsmPrinter * 2062 createPPCAsmPrinterPass(TargetMachine &tm, 2063 std::unique_ptr<MCStreamer> &&Streamer) { 2064 if (tm.getTargetTriple().isOSAIX()) 2065 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2066 2067 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2068 } 2069 2070 // Force static initialization. 2071 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2072 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2073 createPPCAsmPrinterPass); 2074 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2075 createPPCAsmPrinterPass); 2076 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2077 createPPCAsmPrinterPass); 2078 } 2079