1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is
11 // the output mechanism used by `llc'.
12 //
13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/
14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "MCTargetDesc/PPCInstPrinter.h"
19 #include "MCTargetDesc/PPCMCExpr.h"
20 #include "MCTargetDesc/PPCMCTargetDesc.h"
21 #include "MCTargetDesc/PPCPredicates.h"
22 #include "PPC.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCSubtarget.h"
26 #include "PPCTargetMachine.h"
27 #include "PPCTargetStreamer.h"
28 #include "TargetInfo/PowerPCTargetInfo.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/Triple.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/AsmPrinter.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/MC/MCAsmInfo.h"
50 #include "llvm/MC/MCContext.h"
51 #include "llvm/MC/MCDirectives.h"
52 #include "llvm/MC/MCExpr.h"
53 #include "llvm/MC/MCInst.h"
54 #include "llvm/MC/MCInstBuilder.h"
55 #include "llvm/MC/MCSectionELF.h"
56 #include "llvm/MC/MCSectionXCOFF.h"
57 #include "llvm/MC/MCStreamer.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/MCSymbolELF.h"
60 #include "llvm/MC/MCSymbolXCOFF.h"
61 #include "llvm/MC/SectionKind.h"
62 #include "llvm/MC/TargetRegistry.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/Process.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Transforms/Utils/ModuleUtils.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <new>
77
78 using namespace llvm;
79 using namespace llvm::XCOFF;
80
81 #define DEBUG_TYPE "asmprinter"
82
83 static cl::opt<bool> EnableSSPCanaryBitInTB(
84 "aix-ssp-tb-bit", cl::init(false),
85 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
86
87 // Specialize DenseMapInfo to allow
88 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
89 // This specialization is needed here because that type is used as keys in the
90 // map representing TOC entries.
91 namespace llvm {
92 template <>
93 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
94 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
95
getEmptyKeyllvm::DenseMapInfo96 static inline TOCKey getEmptyKey() {
97 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
98 }
getTombstoneKeyllvm::DenseMapInfo99 static inline TOCKey getTombstoneKey() {
100 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
101 }
getHashValuellvm::DenseMapInfo102 static unsigned getHashValue(const TOCKey &PairVal) {
103 return detail::combineHashValue(
104 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
105 DenseMapInfo<int>::getHashValue(PairVal.second));
106 }
isEqualllvm::DenseMapInfo107 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
108 };
109 } // end namespace llvm
110
111 namespace {
112
113 enum {
114 // GNU attribute tags for PowerPC ABI
115 Tag_GNU_Power_ABI_FP = 4,
116 Tag_GNU_Power_ABI_Vector = 8,
117 Tag_GNU_Power_ABI_Struct_Return = 12,
118
119 // GNU attribute values for PowerPC float ABI, as combination of two parts
120 Val_GNU_Power_ABI_NoFloat = 0b00,
121 Val_GNU_Power_ABI_HardFloat_DP = 0b01,
122 Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
123 Val_GNU_Power_ABI_HardFloat_SP = 0b11,
124
125 Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
126 Val_GNU_Power_ABI_LDBL_64 = 0b1000,
127 Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
128 };
129
130 class PPCAsmPrinter : public AsmPrinter {
131 protected:
132 // For TLS on AIX, we need to be able to identify TOC entries of specific
133 // VariantKind so we can add the right relocations when we generate the
134 // entries. So each entry is represented by a pair of MCSymbol and
135 // VariantKind. For example, we need to be able to identify the following
136 // entry as a TLSGD entry so we can add the @m relocation:
137 // .tc .i[TC],i[TL]@m
138 // By default, VK_None is used for the VariantKind.
139 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
140 MCSymbol *>
141 TOC;
142 const PPCSubtarget *Subtarget = nullptr;
143 StackMaps SM;
144
145 public:
PPCAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)146 explicit PPCAsmPrinter(TargetMachine &TM,
147 std::unique_ptr<MCStreamer> Streamer)
148 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
149
getPassName() const150 StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
151
152 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym,
153 MCSymbolRefExpr::VariantKind Kind =
154 MCSymbolRefExpr::VariantKind::VK_None);
155
doInitialization(Module & M)156 bool doInitialization(Module &M) override {
157 if (!TOC.empty())
158 TOC.clear();
159 return AsmPrinter::doInitialization(M);
160 }
161
162 void emitInstruction(const MachineInstr *MI) override;
163
164 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
165 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
166 /// The \p MI would be INLINEASM ONLY.
167 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
168
169 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
170 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
171 const char *ExtraCode, raw_ostream &O) override;
172 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
173 const char *ExtraCode, raw_ostream &O) override;
174
175 void emitEndOfAsmFile(Module &M) override;
176
177 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
178 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
179 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
runOnMachineFunction(MachineFunction & MF)180 bool runOnMachineFunction(MachineFunction &MF) override {
181 Subtarget = &MF.getSubtarget<PPCSubtarget>();
182 bool Changed = AsmPrinter::runOnMachineFunction(MF);
183 emitXRayTable();
184 return Changed;
185 }
186 };
187
188 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
189 class PPCLinuxAsmPrinter : public PPCAsmPrinter {
190 public:
PPCLinuxAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)191 explicit PPCLinuxAsmPrinter(TargetMachine &TM,
192 std::unique_ptr<MCStreamer> Streamer)
193 : PPCAsmPrinter(TM, std::move(Streamer)) {}
194
getPassName() const195 StringRef getPassName() const override {
196 return "Linux PPC Assembly Printer";
197 }
198
199 void emitGNUAttributes(Module &M);
200
201 void emitStartOfAsmFile(Module &M) override;
202 void emitEndOfAsmFile(Module &) override;
203
204 void emitFunctionEntryLabel() override;
205
206 void emitFunctionBodyStart() override;
207 void emitFunctionBodyEnd() override;
208 void emitInstruction(const MachineInstr *MI) override;
209 };
210
211 class PPCAIXAsmPrinter : public PPCAsmPrinter {
212 private:
213 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
214 /// linkage for them in AIX.
215 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols;
216
217 /// A format indicator and unique trailing identifier to form part of the
218 /// sinit/sterm function names.
219 std::string FormatIndicatorAndUniqueModId;
220
221 // Record a list of GlobalAlias associated with a GlobalObject.
222 // This is used for AIX's extra-label-at-definition aliasing strategy.
223 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
224 GOAliasMap;
225
226 uint16_t getNumberOfVRSaved();
227 void emitTracebackTable();
228
229 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
230
231 void emitGlobalVariableHelper(const GlobalVariable *);
232
233 // Get the offset of an alias based on its AliaseeObject.
234 uint64_t getAliasOffset(const Constant *C);
235
236 public:
PPCAIXAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)237 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
238 : PPCAsmPrinter(TM, std::move(Streamer)) {
239 if (MAI->isLittleEndian())
240 report_fatal_error(
241 "cannot create AIX PPC Assembly Printer for a little-endian target");
242 }
243
getPassName() const244 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
245
246 bool doInitialization(Module &M) override;
247
248 void emitXXStructorList(const DataLayout &DL, const Constant *List,
249 bool IsCtor) override;
250
251 void SetupMachineFunction(MachineFunction &MF) override;
252
253 void emitGlobalVariable(const GlobalVariable *GV) override;
254
255 void emitFunctionDescriptor() override;
256
257 void emitFunctionEntryLabel() override;
258
259 void emitFunctionBodyEnd() override;
260
261 void emitPGORefs();
262
263 void emitEndOfAsmFile(Module &) override;
264
265 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
266
267 void emitInstruction(const MachineInstr *MI) override;
268
269 bool doFinalization(Module &M) override;
270
271 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
272 };
273
274 } // end anonymous namespace
275
PrintSymbolOperand(const MachineOperand & MO,raw_ostream & O)276 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
277 raw_ostream &O) {
278 // Computing the address of a global symbol, not calling it.
279 const GlobalValue *GV = MO.getGlobal();
280 getSymbol(GV)->print(O, MAI);
281 printOffset(MO.getOffset(), O);
282 }
283
printOperand(const MachineInstr * MI,unsigned OpNo,raw_ostream & O)284 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
285 raw_ostream &O) {
286 const DataLayout &DL = getDataLayout();
287 const MachineOperand &MO = MI->getOperand(OpNo);
288
289 switch (MO.getType()) {
290 case MachineOperand::MO_Register: {
291 // The MI is INLINEASM ONLY and UseVSXReg is always false.
292 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
293
294 // Linux assembler (Others?) does not take register mnemonics.
295 // FIXME - What about special registers used in mfspr/mtspr?
296 O << PPCRegisterInfo::stripRegisterPrefix(RegName);
297 return;
298 }
299 case MachineOperand::MO_Immediate:
300 O << MO.getImm();
301 return;
302
303 case MachineOperand::MO_MachineBasicBlock:
304 MO.getMBB()->getSymbol()->print(O, MAI);
305 return;
306 case MachineOperand::MO_ConstantPoolIndex:
307 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
308 << MO.getIndex();
309 return;
310 case MachineOperand::MO_BlockAddress:
311 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
312 return;
313 case MachineOperand::MO_GlobalAddress: {
314 PrintSymbolOperand(MO, O);
315 return;
316 }
317
318 default:
319 O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
320 return;
321 }
322 }
323
324 /// PrintAsmOperand - Print out an operand for an inline asm expression.
325 ///
PrintAsmOperand(const MachineInstr * MI,unsigned OpNo,const char * ExtraCode,raw_ostream & O)326 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
327 const char *ExtraCode, raw_ostream &O) {
328 // Does this asm operand have a single letter operand modifier?
329 if (ExtraCode && ExtraCode[0]) {
330 if (ExtraCode[1] != 0) return true; // Unknown modifier.
331
332 switch (ExtraCode[0]) {
333 default:
334 // See if this is a generic print operand
335 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
336 case 'L': // Write second word of DImode reference.
337 // Verify that this operand has two consecutive registers.
338 if (!MI->getOperand(OpNo).isReg() ||
339 OpNo+1 == MI->getNumOperands() ||
340 !MI->getOperand(OpNo+1).isReg())
341 return true;
342 ++OpNo; // Return the high-part.
343 break;
344 case 'I':
345 // Write 'i' if an integer constant, otherwise nothing. Used to print
346 // addi vs add, etc.
347 if (MI->getOperand(OpNo).isImm())
348 O << "i";
349 return false;
350 case 'x':
351 if(!MI->getOperand(OpNo).isReg())
352 return true;
353 // This operand uses VSX numbering.
354 // If the operand is a VMX register, convert it to a VSX register.
355 Register Reg = MI->getOperand(OpNo).getReg();
356 if (PPCInstrInfo::isVRRegister(Reg))
357 Reg = PPC::VSX32 + (Reg - PPC::V0);
358 else if (PPCInstrInfo::isVFRegister(Reg))
359 Reg = PPC::VSX32 + (Reg - PPC::VF0);
360 const char *RegName;
361 RegName = PPCInstPrinter::getRegisterName(Reg);
362 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
363 O << RegName;
364 return false;
365 }
366 }
367
368 printOperand(MI, OpNo, O);
369 return false;
370 }
371
372 // At the moment, all inline asm memory operands are a single register.
373 // In any case, the output of this routine should always be just one
374 // assembler operand.
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNo,const char * ExtraCode,raw_ostream & O)375 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
376 const char *ExtraCode,
377 raw_ostream &O) {
378 if (ExtraCode && ExtraCode[0]) {
379 if (ExtraCode[1] != 0) return true; // Unknown modifier.
380
381 switch (ExtraCode[0]) {
382 default: return true; // Unknown modifier.
383 case 'L': // A memory reference to the upper word of a double word op.
384 O << getDataLayout().getPointerSize() << "(";
385 printOperand(MI, OpNo, O);
386 O << ")";
387 return false;
388 case 'y': // A memory reference for an X-form instruction
389 O << "0, ";
390 printOperand(MI, OpNo, O);
391 return false;
392 case 'I':
393 // Write 'i' if an integer constant, otherwise nothing. Used to print
394 // addi vs add, etc.
395 if (MI->getOperand(OpNo).isImm())
396 O << "i";
397 return false;
398 case 'U': // Print 'u' for update form.
399 case 'X': // Print 'x' for indexed form.
400 // FIXME: Currently for PowerPC memory operands are always loaded
401 // into a register, so we never get an update or indexed form.
402 // This is bad even for offset forms, since even if we know we
403 // have a value in -16(r1), we will generate a load into r<n>
404 // and then load from 0(r<n>). Until that issue is fixed,
405 // tolerate 'U' and 'X' but don't output anything.
406 assert(MI->getOperand(OpNo).isReg());
407 return false;
408 }
409 }
410
411 assert(MI->getOperand(OpNo).isReg());
412 O << "0(";
413 printOperand(MI, OpNo, O);
414 O << ")";
415 return false;
416 }
417
418 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
419 /// exists for it. If not, create one. Then return a symbol that references
420 /// the TOC entry.
421 MCSymbol *
lookUpOrCreateTOCEntry(const MCSymbol * Sym,MCSymbolRefExpr::VariantKind Kind)422 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym,
423 MCSymbolRefExpr::VariantKind Kind) {
424 MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
425 if (!TOCEntry)
426 TOCEntry = createTempSymbol("C");
427 return TOCEntry;
428 }
429
emitEndOfAsmFile(Module & M)430 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) {
431 emitStackMaps(SM);
432 }
433
LowerSTACKMAP(StackMaps & SM,const MachineInstr & MI)434 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
435 unsigned NumNOPBytes = MI.getOperand(1).getImm();
436
437 auto &Ctx = OutStreamer->getContext();
438 MCSymbol *MILabel = Ctx.createTempSymbol();
439 OutStreamer->emitLabel(MILabel);
440
441 SM.recordStackMap(*MILabel, MI);
442 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
443
444 // Scan ahead to trim the shadow.
445 const MachineBasicBlock &MBB = *MI.getParent();
446 MachineBasicBlock::const_iterator MII(MI);
447 ++MII;
448 while (NumNOPBytes > 0) {
449 if (MII == MBB.end() || MII->isCall() ||
450 MII->getOpcode() == PPC::DBG_VALUE ||
451 MII->getOpcode() == TargetOpcode::PATCHPOINT ||
452 MII->getOpcode() == TargetOpcode::STACKMAP)
453 break;
454 ++MII;
455 NumNOPBytes -= 4;
456 }
457
458 // Emit nops.
459 for (unsigned i = 0; i < NumNOPBytes; i += 4)
460 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
461 }
462
463 // Lower a patchpoint of the form:
464 // [<def>], <id>, <numBytes>, <target>, <numArgs>
LowerPATCHPOINT(StackMaps & SM,const MachineInstr & MI)465 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
466 auto &Ctx = OutStreamer->getContext();
467 MCSymbol *MILabel = Ctx.createTempSymbol();
468 OutStreamer->emitLabel(MILabel);
469
470 SM.recordPatchPoint(*MILabel, MI);
471 PatchPointOpers Opers(&MI);
472
473 unsigned EncodedBytes = 0;
474 const MachineOperand &CalleeMO = Opers.getCallTarget();
475
476 if (CalleeMO.isImm()) {
477 int64_t CallTarget = CalleeMO.getImm();
478 if (CallTarget) {
479 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
480 "High 16 bits of call target should be zero.");
481 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
482 EncodedBytes = 0;
483 // Materialize the jump address:
484 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
485 .addReg(ScratchReg)
486 .addImm((CallTarget >> 32) & 0xFFFF));
487 ++EncodedBytes;
488 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
489 .addReg(ScratchReg)
490 .addReg(ScratchReg)
491 .addImm(32).addImm(16));
492 ++EncodedBytes;
493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
494 .addReg(ScratchReg)
495 .addReg(ScratchReg)
496 .addImm((CallTarget >> 16) & 0xFFFF));
497 ++EncodedBytes;
498 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
499 .addReg(ScratchReg)
500 .addReg(ScratchReg)
501 .addImm(CallTarget & 0xFFFF));
502
503 // Save the current TOC pointer before the remote call.
504 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
506 .addReg(PPC::X2)
507 .addImm(TOCSaveOffset)
508 .addReg(PPC::X1));
509 ++EncodedBytes;
510
511 // If we're on ELFv1, then we need to load the actual function pointer
512 // from the function descriptor.
513 if (!Subtarget->isELFv2ABI()) {
514 // Load the new TOC pointer and the function address, but not r11
515 // (needing this is rare, and loading it here would prevent passing it
516 // via a 'nest' parameter.
517 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
518 .addReg(PPC::X2)
519 .addImm(8)
520 .addReg(ScratchReg));
521 ++EncodedBytes;
522 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
523 .addReg(ScratchReg)
524 .addImm(0)
525 .addReg(ScratchReg));
526 ++EncodedBytes;
527 }
528
529 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
530 .addReg(ScratchReg));
531 ++EncodedBytes;
532 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
533 ++EncodedBytes;
534
535 // Restore the TOC pointer after the call.
536 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
537 .addReg(PPC::X2)
538 .addImm(TOCSaveOffset)
539 .addReg(PPC::X1));
540 ++EncodedBytes;
541 }
542 } else if (CalleeMO.isGlobal()) {
543 const GlobalValue *GValue = CalleeMO.getGlobal();
544 MCSymbol *MOSymbol = getSymbol(GValue);
545 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
546
547 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
548 .addExpr(SymVar));
549 EncodedBytes += 2;
550 }
551
552 // Each instruction is 4 bytes.
553 EncodedBytes *= 4;
554
555 // Emit padding.
556 unsigned NumBytes = Opers.getNumPatchBytes();
557 assert(NumBytes >= EncodedBytes &&
558 "Patchpoint can't request size less than the length of a call.");
559 assert((NumBytes - EncodedBytes) % 4 == 0 &&
560 "Invalid number of NOP bytes requested!");
561 for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
562 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
563 }
564
565 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will
566 /// create the csect and use the qual-name symbol instead of creating just the
567 /// external symbol.
createMCSymbolForTlsGetAddr(MCContext & Ctx)568 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) {
569 return Ctx
570 .getXCOFFSection(".__tls_get_addr", SectionKind::getText(),
571 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
572 ->getQualNameSymbol();
573 }
574
575 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
576 /// call to __tls_get_addr to the current output stream.
EmitTlsCall(const MachineInstr * MI,MCSymbolRefExpr::VariantKind VK)577 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
578 MCSymbolRefExpr::VariantKind VK) {
579 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
580 unsigned Opcode = PPC::BL8_NOP_TLS;
581
582 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
583 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
584 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
585 Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
586 Opcode = PPC::BL8_NOTOC_TLS;
587 }
588 const Module *M = MF->getFunction().getParent();
589
590 assert(MI->getOperand(0).isReg() &&
591 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
592 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
593 "GETtls[ld]ADDR[32] must define GPR3");
594 assert(MI->getOperand(1).isReg() &&
595 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
596 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
597 "GETtls[ld]ADDR[32] must read GPR3");
598
599 if (Subtarget->isAIXABI()) {
600 // On AIX, the variable offset should already be in R4 and the region handle
601 // should already be in R3.
602 // For TLSGD, which currently is the only supported access model, we only
603 // need to generate an absolute branch to .__tls_get_addr.
604 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
605 (void)VarOffsetReg;
606 assert(MI->getOperand(2).isReg() &&
607 MI->getOperand(2).getReg() == VarOffsetReg &&
608 "GETtls[ld]ADDR[32] must read GPR4");
609 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
610 const MCExpr *TlsRef = MCSymbolRefExpr::create(
611 TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
612 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
613 return;
614 }
615
616 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
617
618 if (Subtarget->is32BitELFABI() && isPositionIndependent())
619 Kind = MCSymbolRefExpr::VK_PLT;
620
621 const MCExpr *TlsRef =
622 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
623
624 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
625 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
626 M->getPICLevel() == PICLevel::BigPIC)
627 TlsRef = MCBinaryExpr::createAdd(
628 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
629 const MachineOperand &MO = MI->getOperand(2);
630 const GlobalValue *GValue = MO.getGlobal();
631 MCSymbol *MOSymbol = getSymbol(GValue);
632 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
633 EmitToStreamer(*OutStreamer,
634 MCInstBuilder(Subtarget->isPPC64() ? Opcode
635 : (unsigned)PPC::BL_TLS)
636 .addExpr(TlsRef)
637 .addExpr(SymVar));
638 }
639
640 /// Map a machine operand for a TOC pseudo-machine instruction to its
641 /// corresponding MCSymbol.
getMCSymbolForTOCPseudoMO(const MachineOperand & MO,AsmPrinter & AP)642 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
643 AsmPrinter &AP) {
644 switch (MO.getType()) {
645 case MachineOperand::MO_GlobalAddress:
646 return AP.getSymbol(MO.getGlobal());
647 case MachineOperand::MO_ConstantPoolIndex:
648 return AP.GetCPISymbol(MO.getIndex());
649 case MachineOperand::MO_JumpTableIndex:
650 return AP.GetJTISymbol(MO.getIndex());
651 case MachineOperand::MO_BlockAddress:
652 return AP.GetBlockAddressSymbol(MO.getBlockAddress());
653 default:
654 llvm_unreachable("Unexpected operand type to get symbol.");
655 }
656 }
657
658 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
659 /// the current output stream.
660 ///
emitInstruction(const MachineInstr * MI)661 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
662 PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
663 getSubtargetInfo().getFeatureBits());
664
665 MCInst TmpInst;
666 const bool IsPPC64 = Subtarget->isPPC64();
667 const bool IsAIX = Subtarget->isAIXABI();
668 const Module *M = MF->getFunction().getParent();
669 PICLevel::Level PL = M->getPICLevel();
670
671 #ifndef NDEBUG
672 // Validate that SPE and FPU are mutually exclusive in codegen
673 if (!MI->isInlineAsm()) {
674 for (const MachineOperand &MO: MI->operands()) {
675 if (MO.isReg()) {
676 Register Reg = MO.getReg();
677 if (Subtarget->hasSPE()) {
678 if (PPC::F4RCRegClass.contains(Reg) ||
679 PPC::F8RCRegClass.contains(Reg) ||
680 PPC::VFRCRegClass.contains(Reg) ||
681 PPC::VRRCRegClass.contains(Reg) ||
682 PPC::VSFRCRegClass.contains(Reg) ||
683 PPC::VSSRCRegClass.contains(Reg)
684 )
685 llvm_unreachable("SPE targets cannot have FPRegs!");
686 } else {
687 if (PPC::SPERCRegClass.contains(Reg))
688 llvm_unreachable("SPE register found in FPU-targeted code!");
689 }
690 }
691 }
692 }
693 #endif
694
695 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
696 ptrdiff_t OriginalOffset) {
697 // Apply an offset to the TOC-based expression such that the adjusted
698 // notional offset from the TOC base (to be encoded into the instruction's D
699 // or DS field) is the signed 16-bit truncation of the original notional
700 // offset from the TOC base.
701 // This is consistent with the treatment used both by XL C/C++ and
702 // by AIX ld -r.
703 ptrdiff_t Adjustment =
704 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
705 return MCBinaryExpr::createAdd(
706 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
707 };
708
709 auto getTOCEntryLoadingExprForXCOFF =
710 [IsPPC64, getTOCRelocAdjustedExprForXCOFF,
711 this](const MCSymbol *MOSymbol, const MCExpr *Expr,
712 MCSymbolRefExpr::VariantKind VK =
713 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
714 const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
715 const auto TOCEntryIter = TOC.find({MOSymbol, VK});
716 assert(TOCEntryIter != TOC.end() &&
717 "Could not find the TOC entry for this symbol.");
718 const ptrdiff_t EntryDistanceFromTOCBase =
719 (TOCEntryIter - TOC.begin()) * EntryByteSize;
720 constexpr int16_t PositiveTOCRange = INT16_MAX;
721
722 if (EntryDistanceFromTOCBase > PositiveTOCRange)
723 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
724
725 return Expr;
726 };
727 auto GetVKForMO = [&](const MachineOperand &MO) {
728 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for
729 // the variable offset and the other for the region handle). They are
730 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
731 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG)
732 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
733 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG)
734 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
735 return MCSymbolRefExpr::VariantKind::VK_None;
736 };
737
738 // Lower multi-instruction pseudo operations.
739 switch (MI->getOpcode()) {
740 default: break;
741 case TargetOpcode::DBG_VALUE:
742 llvm_unreachable("Should be handled target independently");
743 case TargetOpcode::STACKMAP:
744 return LowerSTACKMAP(SM, *MI);
745 case TargetOpcode::PATCHPOINT:
746 return LowerPATCHPOINT(SM, *MI);
747
748 case PPC::MoveGOTtoLR: {
749 // Transform %lr = MoveGOTtoLR
750 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
751 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
752 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
753 // blrl
754 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
755 MCSymbol *GOTSymbol =
756 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
757 const MCExpr *OffsExpr =
758 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
759 MCSymbolRefExpr::VK_PPC_LOCAL,
760 OutContext),
761 MCConstantExpr::create(4, OutContext),
762 OutContext);
763
764 // Emit the 'bl'.
765 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
766 return;
767 }
768 case PPC::MovePCtoLR:
769 case PPC::MovePCtoLR8: {
770 // Transform %lr = MovePCtoLR
771 // Into this, where the label is the PIC base:
772 // bl L1$pb
773 // L1$pb:
774 MCSymbol *PICBase = MF->getPICBaseSymbol();
775
776 // Emit the 'bl'.
777 EmitToStreamer(*OutStreamer,
778 MCInstBuilder(PPC::BL)
779 // FIXME: We would like an efficient form for this, so we
780 // don't have to do a lot of extra uniquing.
781 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
782
783 // Emit the label.
784 OutStreamer->emitLabel(PICBase);
785 return;
786 }
787 case PPC::UpdateGBR: {
788 // Transform %rd = UpdateGBR(%rt, %ri)
789 // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
790 // add %rd, %rt, %ri
791 // or into (if secure plt mode is on):
792 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
793 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
794 // Get the offset from the GOT Base Register to the GOT
795 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
796 if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
797 unsigned PICR = TmpInst.getOperand(0).getReg();
798 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
799 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
800 : ".LTOC");
801 const MCExpr *PB =
802 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
803
804 const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
805 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
806
807 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
808 EmitToStreamer(
809 *OutStreamer,
810 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
811
812 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
813 EmitToStreamer(
814 *OutStreamer,
815 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
816 return;
817 } else {
818 MCSymbol *PICOffset =
819 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
820 TmpInst.setOpcode(PPC::LWZ);
821 const MCExpr *Exp =
822 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
823 const MCExpr *PB =
824 MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
825 MCSymbolRefExpr::VK_None,
826 OutContext);
827 const MCOperand TR = TmpInst.getOperand(1);
828 const MCOperand PICR = TmpInst.getOperand(0);
829
830 // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
831 TmpInst.getOperand(1) =
832 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
833 TmpInst.getOperand(0) = TR;
834 TmpInst.getOperand(2) = PICR;
835 EmitToStreamer(*OutStreamer, TmpInst);
836
837 TmpInst.setOpcode(PPC::ADD4);
838 TmpInst.getOperand(0) = PICR;
839 TmpInst.getOperand(1) = TR;
840 TmpInst.getOperand(2) = PICR;
841 EmitToStreamer(*OutStreamer, TmpInst);
842 return;
843 }
844 }
845 case PPC::LWZtoc: {
846 // Transform %rN = LWZtoc @op1, %r2
847 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
848
849 // Change the opcode to LWZ.
850 TmpInst.setOpcode(PPC::LWZ);
851
852 const MachineOperand &MO = MI->getOperand(1);
853 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
854 "Invalid operand for LWZtoc.");
855
856 // Map the operand to its corresponding MCSymbol.
857 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
858
859 // Create a reference to the GOT entry for the symbol. The GOT entry will be
860 // synthesized later.
861 if (PL == PICLevel::SmallPIC && !IsAIX) {
862 const MCExpr *Exp =
863 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
864 OutContext);
865 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
866 EmitToStreamer(*OutStreamer, TmpInst);
867 return;
868 }
869
870 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
871
872 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
873 // storage allocated in the TOC which contains the address of
874 // 'MOSymbol'. Said TOC entry will be synthesized later.
875 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
876 const MCExpr *Exp =
877 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
878
879 // AIX uses the label directly as the lwz displacement operand for
880 // references into the toc section. The displacement value will be generated
881 // relative to the toc-base.
882 if (IsAIX) {
883 assert(
884 TM.getCodeModel() == CodeModel::Small &&
885 "This pseudo should only be selected for 32-bit small code model.");
886 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
887 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
888
889 // Print MO for better readability
890 if (isVerbose())
891 OutStreamer->getCommentOS() << MO << '\n';
892 EmitToStreamer(*OutStreamer, TmpInst);
893 return;
894 }
895
896 // Create an explicit subtract expression between the local symbol and
897 // '.LTOC' to manifest the toc-relative offset.
898 const MCExpr *PB = MCSymbolRefExpr::create(
899 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
900 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
901 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
902 EmitToStreamer(*OutStreamer, TmpInst);
903 return;
904 }
905 case PPC::ADDItoc:
906 case PPC::ADDItoc8: {
907 assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
908 "PseudoOp only valid for small code model AIX");
909
910 // Transform %rN = ADDItoc/8 @op1, %r2.
911 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
912
913 // Change the opcode to load address.
914 TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
915
916 const MachineOperand &MO = MI->getOperand(1);
917 assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
918
919 // Map the operand to its corresponding MCSymbol.
920 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
921
922 const MCExpr *Exp =
923 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
924
925 TmpInst.getOperand(1) = TmpInst.getOperand(2);
926 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
927 EmitToStreamer(*OutStreamer, TmpInst);
928 return;
929 }
930 case PPC::LDtocJTI:
931 case PPC::LDtocCPT:
932 case PPC::LDtocBA:
933 case PPC::LDtoc: {
934 // Transform %x3 = LDtoc @min1, %x2
935 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
936
937 // Change the opcode to LD.
938 TmpInst.setOpcode(PPC::LD);
939
940 const MachineOperand &MO = MI->getOperand(1);
941 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
942 "Invalid operand!");
943
944 // Map the operand to its corresponding MCSymbol.
945 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
946
947 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
948
949 // Map the machine operand to its corresponding MCSymbol, then map the
950 // global address operand to be a reference to the TOC entry we will
951 // synthesize later.
952 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
953
954 MCSymbolRefExpr::VariantKind VKExpr =
955 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
956 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
957 TmpInst.getOperand(1) = MCOperand::createExpr(
958 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
959
960 // Print MO for better readability
961 if (isVerbose() && IsAIX)
962 OutStreamer->getCommentOS() << MO << '\n';
963 EmitToStreamer(*OutStreamer, TmpInst);
964 return;
965 }
966 case PPC::ADDIStocHA: {
967 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) &&
968 "This pseudo should only be selected for 32-bit large code model on"
969 " AIX.");
970
971 // Transform %rd = ADDIStocHA %rA, @sym(%r2)
972 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
973
974 // Change the opcode to ADDIS.
975 TmpInst.setOpcode(PPC::ADDIS);
976
977 const MachineOperand &MO = MI->getOperand(2);
978 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
979 "Invalid operand for ADDIStocHA.");
980
981 // Map the machine operand to its corresponding MCSymbol.
982 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
983
984 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
985
986 // Always use TOC on AIX. Map the global address operand to be a reference
987 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
988 // reference the storage allocated in the TOC which contains the address of
989 // 'MOSymbol'.
990 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
991 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
992 MCSymbolRefExpr::VK_PPC_U,
993 OutContext);
994 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
995 EmitToStreamer(*OutStreamer, TmpInst);
996 return;
997 }
998 case PPC::LWZtocL: {
999 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large &&
1000 "This pseudo should only be selected for 32-bit large code model on"
1001 " AIX.");
1002
1003 // Transform %rd = LWZtocL @sym, %rs.
1004 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1005
1006 // Change the opcode to lwz.
1007 TmpInst.setOpcode(PPC::LWZ);
1008
1009 const MachineOperand &MO = MI->getOperand(1);
1010 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1011 "Invalid operand for LWZtocL.");
1012
1013 // Map the machine operand to its corresponding MCSymbol.
1014 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1015
1016 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1017
1018 // Always use TOC on AIX. Map the global address operand to be a reference
1019 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
1020 // reference the storage allocated in the TOC which contains the address of
1021 // 'MOSymbol'.
1022 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
1023 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
1024 MCSymbolRefExpr::VK_PPC_L,
1025 OutContext);
1026 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1027 EmitToStreamer(*OutStreamer, TmpInst);
1028 return;
1029 }
1030 case PPC::ADDIStocHA8: {
1031 // Transform %xd = ADDIStocHA8 %x2, @sym
1032 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1033
1034 // Change the opcode to ADDIS8. If the global address is the address of
1035 // an external symbol, is a jump table address, is a block address, or is a
1036 // constant pool index with large code model enabled, then generate a TOC
1037 // entry and reference that. Otherwise, reference the symbol directly.
1038 TmpInst.setOpcode(PPC::ADDIS8);
1039
1040 const MachineOperand &MO = MI->getOperand(2);
1041 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1042 "Invalid operand for ADDIStocHA8!");
1043
1044 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1045
1046 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1047
1048 const bool GlobalToc =
1049 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1050 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1051 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large))
1052 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1053
1054 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1055
1056 const MCExpr *Exp =
1057 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1058
1059 if (!MO.isJTI() && MO.getOffset())
1060 Exp = MCBinaryExpr::createAdd(Exp,
1061 MCConstantExpr::create(MO.getOffset(),
1062 OutContext),
1063 OutContext);
1064
1065 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1066 EmitToStreamer(*OutStreamer, TmpInst);
1067 return;
1068 }
1069 case PPC::LDtocL: {
1070 // Transform %xd = LDtocL @sym, %xs
1071 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1072
1073 // Change the opcode to LD. If the global address is the address of
1074 // an external symbol, is a jump table address, is a block address, or is
1075 // a constant pool index with large code model enabled, then generate a
1076 // TOC entry and reference that. Otherwise, reference the symbol directly.
1077 TmpInst.setOpcode(PPC::LD);
1078
1079 const MachineOperand &MO = MI->getOperand(1);
1080 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1081 MO.isBlockAddress()) &&
1082 "Invalid operand for LDtocL!");
1083
1084 LLVM_DEBUG(assert(
1085 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1086 "LDtocL used on symbol that could be accessed directly is "
1087 "invalid. Must match ADDIStocHA8."));
1088
1089 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1090
1091 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1092
1093 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large)
1094 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1095
1096 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1097 const MCExpr *Exp =
1098 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1099 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1100 EmitToStreamer(*OutStreamer, TmpInst);
1101 return;
1102 }
1103 case PPC::ADDItocL: {
1104 // Transform %xd = ADDItocL %xs, @sym
1105 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1106
1107 // Change the opcode to ADDI8. If the global address is external, then
1108 // generate a TOC entry and reference that. Otherwise, reference the
1109 // symbol directly.
1110 TmpInst.setOpcode(PPC::ADDI8);
1111
1112 const MachineOperand &MO = MI->getOperand(2);
1113 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL.");
1114
1115 LLVM_DEBUG(assert(
1116 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1117 "Interposable definitions must use indirect access."));
1118
1119 const MCExpr *Exp =
1120 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this),
1121 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext);
1122 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1123 EmitToStreamer(*OutStreamer, TmpInst);
1124 return;
1125 }
1126 case PPC::ADDISgotTprelHA: {
1127 // Transform: %xd = ADDISgotTprelHA %x2, @sym
1128 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1129 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1130 const MachineOperand &MO = MI->getOperand(2);
1131 const GlobalValue *GValue = MO.getGlobal();
1132 MCSymbol *MOSymbol = getSymbol(GValue);
1133 const MCExpr *SymGotTprel =
1134 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1135 OutContext);
1136 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1137 .addReg(MI->getOperand(0).getReg())
1138 .addReg(MI->getOperand(1).getReg())
1139 .addExpr(SymGotTprel));
1140 return;
1141 }
1142 case PPC::LDgotTprelL:
1143 case PPC::LDgotTprelL32: {
1144 // Transform %xd = LDgotTprelL @sym, %xs
1145 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1146
1147 // Change the opcode to LD.
1148 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1149 const MachineOperand &MO = MI->getOperand(1);
1150 const GlobalValue *GValue = MO.getGlobal();
1151 MCSymbol *MOSymbol = getSymbol(GValue);
1152 const MCExpr *Exp = MCSymbolRefExpr::create(
1153 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1154 : MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1155 OutContext);
1156 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1157 EmitToStreamer(*OutStreamer, TmpInst);
1158 return;
1159 }
1160
1161 case PPC::PPC32PICGOT: {
1162 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1163 MCSymbol *GOTRef = OutContext.createTempSymbol();
1164 MCSymbol *NextInstr = OutContext.createTempSymbol();
1165
1166 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1167 // FIXME: We would like an efficient form for this, so we don't have to do
1168 // a lot of extra uniquing.
1169 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1170 const MCExpr *OffsExpr =
1171 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1172 MCSymbolRefExpr::create(GOTRef, OutContext),
1173 OutContext);
1174 OutStreamer->emitLabel(GOTRef);
1175 OutStreamer->emitValue(OffsExpr, 4);
1176 OutStreamer->emitLabel(NextInstr);
1177 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1178 .addReg(MI->getOperand(0).getReg()));
1179 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1180 .addReg(MI->getOperand(1).getReg())
1181 .addImm(0)
1182 .addReg(MI->getOperand(0).getReg()));
1183 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1184 .addReg(MI->getOperand(0).getReg())
1185 .addReg(MI->getOperand(1).getReg())
1186 .addReg(MI->getOperand(0).getReg()));
1187 return;
1188 }
1189 case PPC::PPC32GOT: {
1190 MCSymbol *GOTSymbol =
1191 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1192 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1193 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1194 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1195 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1196 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1197 .addReg(MI->getOperand(0).getReg())
1198 .addExpr(SymGotTlsL));
1199 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1200 .addReg(MI->getOperand(0).getReg())
1201 .addReg(MI->getOperand(0).getReg())
1202 .addExpr(SymGotTlsHA));
1203 return;
1204 }
1205 case PPC::ADDIStlsgdHA: {
1206 // Transform: %xd = ADDIStlsgdHA %x2, @sym
1207 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1208 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1209 const MachineOperand &MO = MI->getOperand(2);
1210 const GlobalValue *GValue = MO.getGlobal();
1211 MCSymbol *MOSymbol = getSymbol(GValue);
1212 const MCExpr *SymGotTlsGD =
1213 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1214 OutContext);
1215 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1216 .addReg(MI->getOperand(0).getReg())
1217 .addReg(MI->getOperand(1).getReg())
1218 .addExpr(SymGotTlsGD));
1219 return;
1220 }
1221 case PPC::ADDItlsgdL:
1222 // Transform: %xd = ADDItlsgdL %xs, @sym
1223 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
1224 case PPC::ADDItlsgdL32: {
1225 // Transform: %rd = ADDItlsgdL32 %rs, @sym
1226 // Into: %rd = ADDI %rs, sym@got@tlsgd
1227 const MachineOperand &MO = MI->getOperand(2);
1228 const GlobalValue *GValue = MO.getGlobal();
1229 MCSymbol *MOSymbol = getSymbol(GValue);
1230 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1231 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1232 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1233 OutContext);
1234 EmitToStreamer(*OutStreamer,
1235 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1236 .addReg(MI->getOperand(0).getReg())
1237 .addReg(MI->getOperand(1).getReg())
1238 .addExpr(SymGotTlsGD));
1239 return;
1240 }
1241 case PPC::GETtlsADDR:
1242 // Transform: %x3 = GETtlsADDR %x3, @sym
1243 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1244 case PPC::GETtlsADDRPCREL:
1245 case PPC::GETtlsADDR32AIX:
1246 case PPC::GETtlsADDR64AIX:
1247 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1248 // Into: BLA .__tls_get_addr()
1249 // Unlike on Linux, there is no symbol or relocation needed for this call.
1250 case PPC::GETtlsADDR32: {
1251 // Transform: %r3 = GETtlsADDR32 %r3, @sym
1252 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1253 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1254 return;
1255 }
1256 case PPC::ADDIStlsldHA: {
1257 // Transform: %xd = ADDIStlsldHA %x2, @sym
1258 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
1259 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1260 const MachineOperand &MO = MI->getOperand(2);
1261 const GlobalValue *GValue = MO.getGlobal();
1262 MCSymbol *MOSymbol = getSymbol(GValue);
1263 const MCExpr *SymGotTlsLD =
1264 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1265 OutContext);
1266 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1267 .addReg(MI->getOperand(0).getReg())
1268 .addReg(MI->getOperand(1).getReg())
1269 .addExpr(SymGotTlsLD));
1270 return;
1271 }
1272 case PPC::ADDItlsldL:
1273 // Transform: %xd = ADDItlsldL %xs, @sym
1274 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l
1275 case PPC::ADDItlsldL32: {
1276 // Transform: %rd = ADDItlsldL32 %rs, @sym
1277 // Into: %rd = ADDI %rs, sym@got@tlsld
1278 const MachineOperand &MO = MI->getOperand(2);
1279 const GlobalValue *GValue = MO.getGlobal();
1280 MCSymbol *MOSymbol = getSymbol(GValue);
1281 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1282 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1283 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1284 OutContext);
1285 EmitToStreamer(*OutStreamer,
1286 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1287 .addReg(MI->getOperand(0).getReg())
1288 .addReg(MI->getOperand(1).getReg())
1289 .addExpr(SymGotTlsLD));
1290 return;
1291 }
1292 case PPC::GETtlsldADDR:
1293 // Transform: %x3 = GETtlsldADDR %x3, @sym
1294 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1295 case PPC::GETtlsldADDRPCREL:
1296 case PPC::GETtlsldADDR32: {
1297 // Transform: %r3 = GETtlsldADDR32 %r3, @sym
1298 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1299 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1300 return;
1301 }
1302 case PPC::ADDISdtprelHA:
1303 // Transform: %xd = ADDISdtprelHA %xs, @sym
1304 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha
1305 case PPC::ADDISdtprelHA32: {
1306 // Transform: %rd = ADDISdtprelHA32 %rs, @sym
1307 // Into: %rd = ADDIS %rs, sym@dtprel@ha
1308 const MachineOperand &MO = MI->getOperand(2);
1309 const GlobalValue *GValue = MO.getGlobal();
1310 MCSymbol *MOSymbol = getSymbol(GValue);
1311 const MCExpr *SymDtprel =
1312 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1313 OutContext);
1314 EmitToStreamer(
1315 *OutStreamer,
1316 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1317 .addReg(MI->getOperand(0).getReg())
1318 .addReg(MI->getOperand(1).getReg())
1319 .addExpr(SymDtprel));
1320 return;
1321 }
1322 case PPC::PADDIdtprel: {
1323 // Transform: %rd = PADDIdtprel %rs, @sym
1324 // Into: %rd = PADDI8 %rs, sym@dtprel
1325 const MachineOperand &MO = MI->getOperand(2);
1326 const GlobalValue *GValue = MO.getGlobal();
1327 MCSymbol *MOSymbol = getSymbol(GValue);
1328 const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1329 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1330 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1331 .addReg(MI->getOperand(0).getReg())
1332 .addReg(MI->getOperand(1).getReg())
1333 .addExpr(SymDtprel));
1334 return;
1335 }
1336
1337 case PPC::ADDIdtprelL:
1338 // Transform: %xd = ADDIdtprelL %xs, @sym
1339 // Into: %xd = ADDI8 %xs, sym@dtprel@l
1340 case PPC::ADDIdtprelL32: {
1341 // Transform: %rd = ADDIdtprelL32 %rs, @sym
1342 // Into: %rd = ADDI %rs, sym@dtprel@l
1343 const MachineOperand &MO = MI->getOperand(2);
1344 const GlobalValue *GValue = MO.getGlobal();
1345 MCSymbol *MOSymbol = getSymbol(GValue);
1346 const MCExpr *SymDtprel =
1347 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1348 OutContext);
1349 EmitToStreamer(*OutStreamer,
1350 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1351 .addReg(MI->getOperand(0).getReg())
1352 .addReg(MI->getOperand(1).getReg())
1353 .addExpr(SymDtprel));
1354 return;
1355 }
1356 case PPC::MFOCRF:
1357 case PPC::MFOCRF8:
1358 if (!Subtarget->hasMFOCRF()) {
1359 // Transform: %r3 = MFOCRF %cr7
1360 // Into: %r3 = MFCR ;; cr7
1361 unsigned NewOpcode =
1362 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1363 OutStreamer->AddComment(PPCInstPrinter::
1364 getRegisterName(MI->getOperand(1).getReg()));
1365 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1366 .addReg(MI->getOperand(0).getReg()));
1367 return;
1368 }
1369 break;
1370 case PPC::MTOCRF:
1371 case PPC::MTOCRF8:
1372 if (!Subtarget->hasMFOCRF()) {
1373 // Transform: %cr7 = MTOCRF %r3
1374 // Into: MTCRF mask, %r3 ;; cr7
1375 unsigned NewOpcode =
1376 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1377 unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1378 ->getEncodingValue(MI->getOperand(0).getReg());
1379 OutStreamer->AddComment(PPCInstPrinter::
1380 getRegisterName(MI->getOperand(0).getReg()));
1381 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1382 .addImm(Mask)
1383 .addReg(MI->getOperand(1).getReg()));
1384 return;
1385 }
1386 break;
1387 case PPC::LD:
1388 case PPC::STD:
1389 case PPC::LWA_32:
1390 case PPC::LWA: {
1391 // Verify alignment is legal, so we don't create relocations
1392 // that can't be supported.
1393 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1394 const MachineOperand &MO = MI->getOperand(OpNum);
1395 if (MO.isGlobal()) {
1396 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout();
1397 if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1398 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1399 }
1400 // Now process the instruction normally.
1401 break;
1402 }
1403 case PPC::PseudoEIEIO: {
1404 EmitToStreamer(
1405 *OutStreamer,
1406 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1407 EmitToStreamer(
1408 *OutStreamer,
1409 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1410 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1411 return;
1412 }
1413 }
1414
1415 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1416 EmitToStreamer(*OutStreamer, TmpInst);
1417 }
1418
emitGNUAttributes(Module & M)1419 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
1420 // Emit float ABI into GNU attribute
1421 Metadata *MD = M.getModuleFlag("float-abi");
1422 MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
1423 if (!FloatABI)
1424 return;
1425 StringRef flt = FloatABI->getString();
1426 // TODO: Support emitting soft-fp and hard double/single attributes.
1427 if (flt == "doubledouble")
1428 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1429 Val_GNU_Power_ABI_HardFloat_DP |
1430 Val_GNU_Power_ABI_LDBL_IBM128);
1431 else if (flt == "ieeequad")
1432 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1433 Val_GNU_Power_ABI_HardFloat_DP |
1434 Val_GNU_Power_ABI_LDBL_IEEE128);
1435 else if (flt == "ieeedouble")
1436 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1437 Val_GNU_Power_ABI_HardFloat_DP |
1438 Val_GNU_Power_ABI_LDBL_64);
1439 }
1440
emitInstruction(const MachineInstr * MI)1441 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1442 if (!Subtarget->isPPC64())
1443 return PPCAsmPrinter::emitInstruction(MI);
1444
1445 switch (MI->getOpcode()) {
1446 default:
1447 return PPCAsmPrinter::emitInstruction(MI);
1448 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1449 // .begin:
1450 // b .end # lis 0, FuncId[16..32]
1451 // nop # li 0, FuncId[0..15]
1452 // std 0, -8(1)
1453 // mflr 0
1454 // bl __xray_FunctionEntry
1455 // mtlr 0
1456 // .end:
1457 //
1458 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1459 // of instructions change.
1460 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1461 MCSymbol *EndOfSled = OutContext.createTempSymbol();
1462 OutStreamer->emitLabel(BeginOfSled);
1463 EmitToStreamer(*OutStreamer,
1464 MCInstBuilder(PPC::B).addExpr(
1465 MCSymbolRefExpr::create(EndOfSled, OutContext)));
1466 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1467 EmitToStreamer(
1468 *OutStreamer,
1469 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1470 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1471 EmitToStreamer(*OutStreamer,
1472 MCInstBuilder(PPC::BL8_NOP)
1473 .addExpr(MCSymbolRefExpr::create(
1474 OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1475 OutContext)));
1476 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1477 OutStreamer->emitLabel(EndOfSled);
1478 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1479 break;
1480 }
1481 case TargetOpcode::PATCHABLE_RET: {
1482 unsigned RetOpcode = MI->getOperand(0).getImm();
1483 MCInst RetInst;
1484 RetInst.setOpcode(RetOpcode);
1485 for (const auto &MO : llvm::drop_begin(MI->operands())) {
1486 MCOperand MCOp;
1487 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1488 RetInst.addOperand(MCOp);
1489 }
1490
1491 bool IsConditional;
1492 if (RetOpcode == PPC::BCCLR) {
1493 IsConditional = true;
1494 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1495 RetOpcode == PPC::TCRETURNai8) {
1496 break;
1497 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1498 IsConditional = false;
1499 } else {
1500 EmitToStreamer(*OutStreamer, RetInst);
1501 break;
1502 }
1503
1504 MCSymbol *FallthroughLabel;
1505 if (IsConditional) {
1506 // Before:
1507 // bgtlr cr0
1508 //
1509 // After:
1510 // ble cr0, .end
1511 // .p2align 3
1512 // .begin:
1513 // blr # lis 0, FuncId[16..32]
1514 // nop # li 0, FuncId[0..15]
1515 // std 0, -8(1)
1516 // mflr 0
1517 // bl __xray_FunctionExit
1518 // mtlr 0
1519 // blr
1520 // .end:
1521 //
1522 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1523 // of instructions change.
1524 FallthroughLabel = OutContext.createTempSymbol();
1525 EmitToStreamer(
1526 *OutStreamer,
1527 MCInstBuilder(PPC::BCC)
1528 .addImm(PPC::InvertPredicate(
1529 static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1530 .addReg(MI->getOperand(2).getReg())
1531 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1532 RetInst = MCInst();
1533 RetInst.setOpcode(PPC::BLR8);
1534 }
1535 // .p2align 3
1536 // .begin:
1537 // b(lr)? # lis 0, FuncId[16..32]
1538 // nop # li 0, FuncId[0..15]
1539 // std 0, -8(1)
1540 // mflr 0
1541 // bl __xray_FunctionExit
1542 // mtlr 0
1543 // b(lr)?
1544 //
1545 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1546 // of instructions change.
1547 OutStreamer->emitCodeAlignment(8, &getSubtargetInfo());
1548 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1549 OutStreamer->emitLabel(BeginOfSled);
1550 EmitToStreamer(*OutStreamer, RetInst);
1551 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1552 EmitToStreamer(
1553 *OutStreamer,
1554 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1555 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1556 EmitToStreamer(*OutStreamer,
1557 MCInstBuilder(PPC::BL8_NOP)
1558 .addExpr(MCSymbolRefExpr::create(
1559 OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1560 OutContext)));
1561 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1562 EmitToStreamer(*OutStreamer, RetInst);
1563 if (IsConditional)
1564 OutStreamer->emitLabel(FallthroughLabel);
1565 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1566 break;
1567 }
1568 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1569 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1570 case TargetOpcode::PATCHABLE_TAIL_CALL:
1571 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1572 // normal function exit from a tail exit.
1573 llvm_unreachable("Tail call is handled in the normal case. See comments "
1574 "around this assert.");
1575 }
1576 }
1577
emitStartOfAsmFile(Module & M)1578 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1579 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1580 PPCTargetStreamer *TS =
1581 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1582
1583 if (TS)
1584 TS->emitAbiVersion(2);
1585 }
1586
1587 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1588 !isPositionIndependent())
1589 return AsmPrinter::emitStartOfAsmFile(M);
1590
1591 if (M.getPICLevel() == PICLevel::SmallPIC)
1592 return AsmPrinter::emitStartOfAsmFile(M);
1593
1594 OutStreamer->switchSection(OutContext.getELFSection(
1595 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1596
1597 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1598 MCSymbol *CurrentPos = OutContext.createTempSymbol();
1599
1600 OutStreamer->emitLabel(CurrentPos);
1601
1602 // The GOT pointer points to the middle of the GOT, in order to reference the
1603 // entire 64kB range. 0x8000 is the midpoint.
1604 const MCExpr *tocExpr =
1605 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1606 MCConstantExpr::create(0x8000, OutContext),
1607 OutContext);
1608
1609 OutStreamer->emitAssignment(TOCSym, tocExpr);
1610
1611 OutStreamer->switchSection(getObjFileLowering().getTextSection());
1612 }
1613
emitFunctionEntryLabel()1614 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1615 // linux/ppc32 - Normal entry label.
1616 if (!Subtarget->isPPC64() &&
1617 (!isPositionIndependent() ||
1618 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1619 return AsmPrinter::emitFunctionEntryLabel();
1620
1621 if (!Subtarget->isPPC64()) {
1622 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1623 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1624 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1625 MCSymbol *PICBase = MF->getPICBaseSymbol();
1626 OutStreamer->emitLabel(RelocSymbol);
1627
1628 const MCExpr *OffsExpr =
1629 MCBinaryExpr::createSub(
1630 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1631 OutContext),
1632 MCSymbolRefExpr::create(PICBase, OutContext),
1633 OutContext);
1634 OutStreamer->emitValue(OffsExpr, 4);
1635 OutStreamer->emitLabel(CurrentFnSym);
1636 return;
1637 } else
1638 return AsmPrinter::emitFunctionEntryLabel();
1639 }
1640
1641 // ELFv2 ABI - Normal entry label.
1642 if (Subtarget->isELFv2ABI()) {
1643 // In the Large code model, we allow arbitrary displacements between
1644 // the text section and its associated TOC section. We place the
1645 // full 8-byte offset to the TOC in memory immediately preceding
1646 // the function global entry point.
1647 if (TM.getCodeModel() == CodeModel::Large
1648 && !MF->getRegInfo().use_empty(PPC::X2)) {
1649 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1650
1651 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1652 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
1653 const MCExpr *TOCDeltaExpr =
1654 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1655 MCSymbolRefExpr::create(GlobalEPSymbol,
1656 OutContext),
1657 OutContext);
1658
1659 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
1660 OutStreamer->emitValue(TOCDeltaExpr, 8);
1661 }
1662 return AsmPrinter::emitFunctionEntryLabel();
1663 }
1664
1665 // Emit an official procedure descriptor.
1666 MCSectionSubPair Current = OutStreamer->getCurrentSection();
1667 MCSectionELF *Section = OutStreamer->getContext().getELFSection(
1668 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1669 OutStreamer->switchSection(Section);
1670 OutStreamer->emitLabel(CurrentFnSym);
1671 OutStreamer->emitValueToAlignment(8);
1672 MCSymbol *Symbol1 = CurrentFnSymForSize;
1673 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
1674 // entry point.
1675 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
1676 8 /*size*/);
1677 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1678 // Generates a R_PPC64_TOC relocation for TOC base insertion.
1679 OutStreamer->emitValue(
1680 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
1681 8/*size*/);
1682 // Emit a null environment pointer.
1683 OutStreamer->emitIntValue(0, 8 /* size */);
1684 OutStreamer->switchSection(Current.first, Current.second);
1685 }
1686
emitEndOfAsmFile(Module & M)1687 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
1688 const DataLayout &DL = getDataLayout();
1689
1690 bool isPPC64 = DL.getPointerSizeInBits() == 64;
1691
1692 PPCTargetStreamer *TS =
1693 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1694
1695 emitGNUAttributes(M);
1696
1697 if (!TOC.empty()) {
1698 const char *Name = isPPC64 ? ".toc" : ".got2";
1699 MCSectionELF *Section = OutContext.getELFSection(
1700 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1701 OutStreamer->switchSection(Section);
1702 if (!isPPC64)
1703 OutStreamer->emitValueToAlignment(4);
1704
1705 for (const auto &TOCMapPair : TOC) {
1706 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
1707 MCSymbol *const TOCEntryLabel = TOCMapPair.second;
1708
1709 OutStreamer->emitLabel(TOCEntryLabel);
1710 if (isPPC64 && TS != nullptr)
1711 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
1712 else
1713 OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
1714 }
1715 }
1716
1717 PPCAsmPrinter::emitEndOfAsmFile(M);
1718 }
1719
1720 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
emitFunctionBodyStart()1721 void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
1722 // In the ELFv2 ABI, in functions that use the TOC register, we need to
1723 // provide two entry points. The ABI guarantees that when calling the
1724 // local entry point, r2 is set up by the caller to contain the TOC base
1725 // for this function, and when calling the global entry point, r12 is set
1726 // up by the caller to hold the address of the global entry point. We
1727 // thus emit a prefix sequence along the following lines:
1728 //
1729 // func:
1730 // .Lfunc_gepNN:
1731 // # global entry point
1732 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
1733 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
1734 // .Lfunc_lepNN:
1735 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1736 // # local entry point, followed by function body
1737 //
1738 // For the Large code model, we create
1739 //
1740 // .Lfunc_tocNN:
1741 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
1742 // func:
1743 // .Lfunc_gepNN:
1744 // # global entry point
1745 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
1746 // add r2,r2,r12
1747 // .Lfunc_lepNN:
1748 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1749 // # local entry point, followed by function body
1750 //
1751 // This ensures we have r2 set up correctly while executing the function
1752 // body, no matter which entry point is called.
1753 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1754 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
1755 !MF->getRegInfo().use_empty(PPC::R2);
1756 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
1757 UsesX2OrR2 && PPCFI->usesTOCBasePtr();
1758 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
1759 Subtarget->isELFv2ABI() && UsesX2OrR2;
1760
1761 // Only do all that if the function uses R2 as the TOC pointer
1762 // in the first place. We don't need the global entry point if the
1763 // function uses R2 as an allocatable register.
1764 if (NonPCrelGEPRequired || PCrelGEPRequired) {
1765 // Note: The logic here must be synchronized with the code in the
1766 // branch-selection pass which sets the offset of the first block in the
1767 // function. This matters because it affects the alignment.
1768 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
1769 OutStreamer->emitLabel(GlobalEntryLabel);
1770 const MCSymbolRefExpr *GlobalEntryLabelExp =
1771 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
1772
1773 if (TM.getCodeModel() != CodeModel::Large) {
1774 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1775 const MCExpr *TOCDeltaExpr =
1776 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1777 GlobalEntryLabelExp, OutContext);
1778
1779 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
1780 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1781 .addReg(PPC::X2)
1782 .addReg(PPC::X12)
1783 .addExpr(TOCDeltaHi));
1784
1785 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
1786 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
1787 .addReg(PPC::X2)
1788 .addReg(PPC::X2)
1789 .addExpr(TOCDeltaLo));
1790 } else {
1791 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
1792 const MCExpr *TOCOffsetDeltaExpr =
1793 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
1794 GlobalEntryLabelExp, OutContext);
1795
1796 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
1797 .addReg(PPC::X2)
1798 .addExpr(TOCOffsetDeltaExpr)
1799 .addReg(PPC::X12));
1800 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
1801 .addReg(PPC::X2)
1802 .addReg(PPC::X2)
1803 .addReg(PPC::X12));
1804 }
1805
1806 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
1807 OutStreamer->emitLabel(LocalEntryLabel);
1808 const MCSymbolRefExpr *LocalEntryLabelExp =
1809 MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
1810 const MCExpr *LocalOffsetExp =
1811 MCBinaryExpr::createSub(LocalEntryLabelExp,
1812 GlobalEntryLabelExp, OutContext);
1813
1814 PPCTargetStreamer *TS =
1815 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1816
1817 if (TS)
1818 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
1819 } else if (Subtarget->isUsingPCRelativeCalls()) {
1820 // When generating the entry point for a function we have a few scenarios
1821 // based on whether or not that function uses R2 and whether or not that
1822 // function makes calls (or is a leaf function).
1823 // 1) A leaf function that does not use R2 (or treats it as callee-saved
1824 // and preserves it). In this case st_other=0 and both
1825 // the local and global entry points for the function are the same.
1826 // No special entry point code is required.
1827 // 2) A function uses the TOC pointer R2. This function may or may not have
1828 // calls. In this case st_other=[2,6] and the global and local entry
1829 // points are different. Code to correctly setup the TOC pointer in R2
1830 // is put between the global and local entry points. This case is
1831 // covered by the if statatement above.
1832 // 3) A function does not use the TOC pointer R2 but does have calls.
1833 // In this case st_other=1 since we do not know whether or not any
1834 // of the callees clobber R2. This case is dealt with in this else if
1835 // block. Tail calls are considered calls and the st_other should also
1836 // be set to 1 in that case as well.
1837 // 4) The function does not use the TOC pointer but R2 is used inside
1838 // the function. In this case st_other=1 once again.
1839 // 5) This function uses inline asm. We mark R2 as reserved if the function
1840 // has inline asm as we have to assume that it may be used.
1841 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
1842 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
1843 PPCTargetStreamer *TS =
1844 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1845 if (TS)
1846 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
1847 MCConstantExpr::create(1, OutContext));
1848 }
1849 }
1850 }
1851
1852 /// EmitFunctionBodyEnd - Print the traceback table before the .size
1853 /// directive.
1854 ///
emitFunctionBodyEnd()1855 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
1856 // Only the 64-bit target requires a traceback table. For now,
1857 // we only emit the word of zeroes that GDB requires to find
1858 // the end of the function, and zeroes for the eight-byte
1859 // mandatory fields.
1860 // FIXME: We should fill in the eight-byte mandatory fields as described in
1861 // the PPC64 ELF ABI (this is a low-priority item because GDB does not
1862 // currently make use of these fields).
1863 if (Subtarget->isPPC64()) {
1864 OutStreamer->emitIntValue(0, 4/*size*/);
1865 OutStreamer->emitIntValue(0, 8/*size*/);
1866 }
1867 }
1868
emitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const1869 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
1870 MCSymbol *GVSym) const {
1871
1872 assert(MAI->hasVisibilityOnlyWithLinkage() &&
1873 "AIX's linkage directives take a visibility setting.");
1874
1875 MCSymbolAttr LinkageAttr = MCSA_Invalid;
1876 switch (GV->getLinkage()) {
1877 case GlobalValue::ExternalLinkage:
1878 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
1879 break;
1880 case GlobalValue::LinkOnceAnyLinkage:
1881 case GlobalValue::LinkOnceODRLinkage:
1882 case GlobalValue::WeakAnyLinkage:
1883 case GlobalValue::WeakODRLinkage:
1884 case GlobalValue::ExternalWeakLinkage:
1885 LinkageAttr = MCSA_Weak;
1886 break;
1887 case GlobalValue::AvailableExternallyLinkage:
1888 LinkageAttr = MCSA_Extern;
1889 break;
1890 case GlobalValue::PrivateLinkage:
1891 return;
1892 case GlobalValue::InternalLinkage:
1893 assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
1894 "InternalLinkage should not have other visibility setting.");
1895 LinkageAttr = MCSA_LGlobal;
1896 break;
1897 case GlobalValue::AppendingLinkage:
1898 llvm_unreachable("Should never emit this");
1899 case GlobalValue::CommonLinkage:
1900 llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
1901 }
1902
1903 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
1904
1905 MCSymbolAttr VisibilityAttr = MCSA_Invalid;
1906 if (!TM.getIgnoreXCOFFVisibility()) {
1907 if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
1908 report_fatal_error(
1909 "Cannot not be both dllexport and non-default visibility");
1910 switch (GV->getVisibility()) {
1911
1912 // TODO: "internal" Visibility needs to go here.
1913 case GlobalValue::DefaultVisibility:
1914 if (GV->hasDLLExportStorageClass())
1915 VisibilityAttr = MAI->getExportedVisibilityAttr();
1916 break;
1917 case GlobalValue::HiddenVisibility:
1918 VisibilityAttr = MAI->getHiddenVisibilityAttr();
1919 break;
1920 case GlobalValue::ProtectedVisibility:
1921 VisibilityAttr = MAI->getProtectedVisibilityAttr();
1922 break;
1923 }
1924 }
1925
1926 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
1927 VisibilityAttr);
1928 }
1929
SetupMachineFunction(MachineFunction & MF)1930 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1931 // Setup CurrentFnDescSym and its containing csect.
1932 MCSectionXCOFF *FnDescSec =
1933 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
1934 &MF.getFunction(), TM));
1935 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
1936
1937 CurrentFnDescSym = FnDescSec->getQualNameSymbol();
1938
1939 return AsmPrinter::SetupMachineFunction(MF);
1940 }
1941
getNumberOfVRSaved()1942 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
1943 // Calculate the number of VRs be saved.
1944 // Vector registers 20 through 31 are marked as reserved and cannot be used
1945 // in the default ABI.
1946 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
1947 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
1948 TM.getAIXExtendedAltivecABI()) {
1949 const MachineRegisterInfo &MRI = MF->getRegInfo();
1950 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
1951 if (MRI.isPhysRegModified(Reg))
1952 // Number of VRs saved.
1953 return PPC::V31 - Reg + 1;
1954 }
1955 return 0;
1956 }
1957
emitFunctionBodyEnd()1958 void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
1959
1960 if (!TM.getXCOFFTracebackTable())
1961 return;
1962
1963 emitTracebackTable();
1964
1965 // If ShouldEmitEHBlock returns true, then the eh info table
1966 // will be emitted via `AIXException::endFunction`. Otherwise, we
1967 // need to emit a dumy eh info table when VRs are saved. We could not
1968 // consolidate these two places into one because there is no easy way
1969 // to access register information in `AIXException` class.
1970 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
1971 (getNumberOfVRSaved() > 0)) {
1972 // Emit dummy EH Info Table.
1973 OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
1974 MCSymbol *EHInfoLabel =
1975 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
1976 OutStreamer->emitLabel(EHInfoLabel);
1977
1978 // Version number.
1979 OutStreamer->emitInt32(0);
1980
1981 const DataLayout &DL = MMI->getModule()->getDataLayout();
1982 const unsigned PointerSize = DL.getPointerSize();
1983 // Add necessary paddings in 64 bit mode.
1984 OutStreamer->emitValueToAlignment(PointerSize);
1985
1986 OutStreamer->emitIntValue(0, PointerSize);
1987 OutStreamer->emitIntValue(0, PointerSize);
1988 OutStreamer->switchSection(MF->getSection());
1989 }
1990 }
1991
emitTracebackTable()1992 void PPCAIXAsmPrinter::emitTracebackTable() {
1993
1994 // Create a symbol for the end of function.
1995 MCSymbol *FuncEnd = createTempSymbol(MF->getName());
1996 OutStreamer->emitLabel(FuncEnd);
1997
1998 OutStreamer->AddComment("Traceback table begin");
1999 // Begin with a fullword of zero.
2000 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
2001
2002 SmallString<128> CommentString;
2003 raw_svector_ostream CommentOS(CommentString);
2004
2005 auto EmitComment = [&]() {
2006 OutStreamer->AddComment(CommentOS.str());
2007 CommentString.clear();
2008 };
2009
2010 auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
2011 EmitComment();
2012 OutStreamer->emitIntValueInHexWithPadding(Value, Size);
2013 };
2014
2015 unsigned int Version = 0;
2016 CommentOS << "Version = " << Version;
2017 EmitCommentAndValue(Version, 1);
2018
2019 // There is a lack of information in the IR to assist with determining the
2020 // source language. AIX exception handling mechanism would only search for
2021 // personality routine and LSDA area when such language supports exception
2022 // handling. So to be conservatively correct and allow runtime to do its job,
2023 // we need to set it to C++ for now.
2024 TracebackTable::LanguageID LanguageIdentifier =
2025 TracebackTable::CPlusPlus; // C++
2026
2027 CommentOS << "Language = "
2028 << getNameForTracebackTableLanguageId(LanguageIdentifier);
2029 EmitCommentAndValue(LanguageIdentifier, 1);
2030
2031 // This is only populated for the third and fourth bytes.
2032 uint32_t FirstHalfOfMandatoryField = 0;
2033
2034 // Emit the 3rd byte of the mandatory field.
2035
2036 // We always set traceback offset bit to true.
2037 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
2038
2039 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2040 const MachineRegisterInfo &MRI = MF->getRegInfo();
2041
2042 // Check the function uses floating-point processor instructions or not
2043 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
2044 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2045 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
2046 break;
2047 }
2048 }
2049
2050 #define GENBOOLCOMMENT(Prefix, V, Field) \
2051 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
2052 << #Field
2053
2054 #define GENVALUECOMMENT(PrefixAndName, V, Field) \
2055 CommentOS << (PrefixAndName) << " = " \
2056 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
2057 (TracebackTable::Field##Shift))
2058
2059 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2060 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2061 EmitComment();
2062
2063 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2064 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2065 EmitComment();
2066
2067 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2068 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2069 EmitComment();
2070
2071 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2072 EmitComment();
2073 GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2074 IsFloatingPointOperationLogOrAbortEnabled);
2075 EmitComment();
2076
2077 OutStreamer->emitIntValueInHexWithPadding(
2078 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2079
2080 // Set the 4th byte of the mandatory field.
2081 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2082
2083 const PPCRegisterInfo *RegInfo =
2084 static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
2085 Register FrameReg = RegInfo->getFrameRegister(*MF);
2086 if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
2087 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2088
2089 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2090 if (!MustSaveCRs.empty())
2091 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2092
2093 if (FI->mustSaveLR())
2094 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2095
2096 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2097 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2098 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2099 EmitComment();
2100 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2101 OnConditionDirective);
2102 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2103 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2104 EmitComment();
2105 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2106 1);
2107
2108 // Set the 5th byte of mandatory field.
2109 uint32_t SecondHalfOfMandatoryField = 0;
2110
2111 // Always store back chain.
2112 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask;
2113
2114 uint32_t FPRSaved = 0;
2115 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2116 if (MRI.isPhysRegModified(Reg)) {
2117 FPRSaved = PPC::F31 - Reg + 1;
2118 break;
2119 }
2120 }
2121 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2122 TracebackTable::FPRSavedMask;
2123 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2124 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2125 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2126 EmitComment();
2127 OutStreamer->emitIntValueInHexWithPadding(
2128 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2129
2130 // Set the 6th byte of mandatory field.
2131
2132 // Check whether has Vector Instruction,We only treat instructions uses vector
2133 // register as vector instructions.
2134 bool HasVectorInst = false;
2135 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2136 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2137 // Has VMX instruction.
2138 HasVectorInst = true;
2139 break;
2140 }
2141
2142 if (FI->hasVectorParms() || HasVectorInst)
2143 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2144
2145 uint16_t NumOfVRSaved = getNumberOfVRSaved();
2146 bool ShouldEmitEHBlock =
2147 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2148
2149 if (ShouldEmitEHBlock)
2150 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2151
2152 uint32_t GPRSaved = 0;
2153
2154 // X13 is reserved under 64-bit environment.
2155 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2156 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2157
2158 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2159 if (MRI.isPhysRegModified(Reg)) {
2160 GPRSaved = GPREnd - Reg + 1;
2161 break;
2162 }
2163 }
2164
2165 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2166 TracebackTable::GPRSavedMask;
2167
2168 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2169 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2170 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2171 EmitComment();
2172 OutStreamer->emitIntValueInHexWithPadding(
2173 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2174
2175 // Set the 7th byte of mandatory field.
2176 uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2177 SecondHalfOfMandatoryField |=
2178 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2179 TracebackTable::NumberOfFixedParmsMask;
2180 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2181 NumberOfFixedParms);
2182 EmitComment();
2183 OutStreamer->emitIntValueInHexWithPadding(
2184 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2185
2186 // Set the 8th byte of mandatory field.
2187
2188 // Always set parameter on stack.
2189 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2190
2191 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2192 SecondHalfOfMandatoryField |=
2193 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2194 TracebackTable::NumberOfFloatingPointParmsMask;
2195
2196 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2197 NumberOfFloatingPointParms);
2198 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2199 EmitComment();
2200 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2201 1);
2202
2203 // Generate the optional fields of traceback table.
2204
2205 // Parameter type.
2206 if (NumberOfFixedParms || NumberOfFPParms) {
2207 uint32_t ParmsTypeValue = FI->getParmsType();
2208
2209 Expected<SmallString<32>> ParmsType =
2210 FI->hasVectorParms()
2211 ? XCOFF::parseParmsTypeWithVecInfo(
2212 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2213 FI->getVectorParmsNum())
2214 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2215 NumberOfFPParms);
2216
2217 assert(ParmsType && toString(ParmsType.takeError()).c_str());
2218 if (ParmsType) {
2219 CommentOS << "Parameter type = " << ParmsType.get();
2220 EmitComment();
2221 }
2222 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2223 sizeof(ParmsTypeValue));
2224 }
2225 // Traceback table offset.
2226 OutStreamer->AddComment("Function size");
2227 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2228 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2229 &(MF->getFunction()), TM);
2230 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2231 }
2232
2233 // Since we unset the Int_Handler.
2234 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2235 report_fatal_error("Hand_Mask not implement yet");
2236
2237 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2238 report_fatal_error("Ctl_Info not implement yet");
2239
2240 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2241 StringRef Name = MF->getName().substr(0, INT16_MAX);
2242 int16_t NameLength = Name.size();
2243 CommentOS << "Function name len = "
2244 << static_cast<unsigned int>(NameLength);
2245 EmitCommentAndValue(NameLength, 2);
2246 OutStreamer->AddComment("Function Name");
2247 OutStreamer->emitBytes(Name);
2248 }
2249
2250 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2251 uint8_t AllocReg = XCOFF::AllocRegNo;
2252 OutStreamer->AddComment("AllocaUsed");
2253 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2254 }
2255
2256 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2257 uint16_t VRData = 0;
2258 if (NumOfVRSaved) {
2259 // Number of VRs saved.
2260 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2261 TracebackTable::NumberOfVRSavedMask;
2262 // This bit is supposed to set only when the special register
2263 // VRSAVE is saved on stack.
2264 // However, IBM XL compiler sets the bit when any vector registers
2265 // are saved on the stack. We will follow XL's behavior on AIX
2266 // so that we don't get surprise behavior change for C code.
2267 VRData |= TracebackTable::IsVRSavedOnStackMask;
2268 }
2269
2270 // Set has_varargs.
2271 if (FI->getVarArgsFrameIndex())
2272 VRData |= TracebackTable::HasVarArgsMask;
2273
2274 // Vector parameters number.
2275 unsigned VectorParmsNum = FI->getVectorParmsNum();
2276 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2277 TracebackTable::NumberOfVectorParmsMask;
2278
2279 if (HasVectorInst)
2280 VRData |= TracebackTable::HasVMXInstructionMask;
2281
2282 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2283 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2284 GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2285 EmitComment();
2286 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2287
2288 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2289 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2290 EmitComment();
2291 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2292
2293 uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2294
2295 Expected<SmallString<32>> VecParmsType =
2296 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2297 assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2298 if (VecParmsType) {
2299 CommentOS << "Vector Parameter type = " << VecParmsType.get();
2300 EmitComment();
2301 }
2302 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2303 sizeof(VecParmTypeValue));
2304 // Padding 2 bytes.
2305 CommentOS << "Padding";
2306 EmitCommentAndValue(0, 2);
2307 }
2308
2309 uint8_t ExtensionTableFlag = 0;
2310 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2311 if (ShouldEmitEHBlock)
2312 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2313 if (EnableSSPCanaryBitInTB &&
2314 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2315 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2316
2317 CommentOS << "ExtensionTableFlag = "
2318 << getExtendedTBTableFlagString(ExtensionTableFlag);
2319 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2320 }
2321
2322 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2323 auto &Ctx = OutStreamer->getContext();
2324 MCSymbol *EHInfoSym =
2325 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2326 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym);
2327 const MCSymbol *TOCBaseSym =
2328 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2329 ->getQualNameSymbol();
2330 const MCExpr *Exp =
2331 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2332 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2333
2334 const DataLayout &DL = getDataLayout();
2335 OutStreamer->emitValueToAlignment(4);
2336 OutStreamer->AddComment("EHInfo Table");
2337 OutStreamer->emitValue(Exp, DL.getPointerSize());
2338 }
2339 #undef GENBOOLCOMMENT
2340 #undef GENVALUECOMMENT
2341 }
2342
isSpecialLLVMGlobalArrayToSkip(const GlobalVariable * GV)2343 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2344 return GV->hasAppendingLinkage() &&
2345 StringSwitch<bool>(GV->getName())
2346 // TODO: Linker could still eliminate the GV if we just skip
2347 // handling llvm.used array. Skipping them for now until we or the
2348 // AIX OS team come up with a good solution.
2349 .Case("llvm.used", true)
2350 // It's correct to just skip llvm.compiler.used array here.
2351 .Case("llvm.compiler.used", true)
2352 .Default(false);
2353 }
2354
isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable * GV)2355 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2356 return StringSwitch<bool>(GV->getName())
2357 .Cases("llvm.global_ctors", "llvm.global_dtors", true)
2358 .Default(false);
2359 }
2360
getAliasOffset(const Constant * C)2361 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
2362 if (auto *GA = dyn_cast<GlobalAlias>(C))
2363 return getAliasOffset(GA->getAliasee());
2364 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2365 const MCExpr *LowC = lowerConstant(CE);
2366 const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
2367 if (!CBE)
2368 return 0;
2369 if (CBE->getOpcode() != MCBinaryExpr::Add)
2370 report_fatal_error("Only adding an offset is supported now.");
2371 auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
2372 if (!RHS)
2373 report_fatal_error("Unable to get the offset of alias.");
2374 return RHS->getValue();
2375 }
2376 return 0;
2377 }
2378
emitGlobalVariable(const GlobalVariable * GV)2379 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2380 // Special LLVM global arrays have been handled at the initialization.
2381 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2382 return;
2383
2384 // If the Global Variable has the toc-data attribute, it needs to be emitted
2385 // when we emit the .toc section.
2386 if (GV->hasAttribute("toc-data")) {
2387 TOCDataGlobalVars.push_back(GV);
2388 return;
2389 }
2390
2391 emitGlobalVariableHelper(GV);
2392 }
2393
emitGlobalVariableHelper(const GlobalVariable * GV)2394 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2395 assert(!GV->getName().startswith("llvm.") &&
2396 "Unhandled intrinsic global variable.");
2397
2398 if (GV->hasComdat())
2399 report_fatal_error("COMDAT not yet supported by AIX.");
2400
2401 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2402
2403 if (GV->isDeclarationForLinker()) {
2404 emitLinkage(GV, GVSym);
2405 return;
2406 }
2407
2408 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2409 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2410 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2411 report_fatal_error("Encountered a global variable kind that is "
2412 "not supported yet.");
2413
2414 // Print GV in verbose mode
2415 if (isVerbose()) {
2416 if (GV->hasInitializer()) {
2417 GV->printAsOperand(OutStreamer->getCommentOS(),
2418 /*PrintType=*/false, GV->getParent());
2419 OutStreamer->getCommentOS() << '\n';
2420 }
2421 }
2422
2423 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2424 getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2425
2426 // Switch to the containing csect.
2427 OutStreamer->switchSection(Csect);
2428
2429 const DataLayout &DL = GV->getParent()->getDataLayout();
2430
2431 // Handle common and zero-initialized local symbols.
2432 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2433 GVKind.isThreadBSSLocal()) {
2434 Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
2435 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2436 GVSym->setStorageClass(
2437 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2438
2439 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal())
2440 OutStreamer->emitXCOFFLocalCommonSymbol(
2441 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2442 GVSym, Alignment.value());
2443 else
2444 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value());
2445 return;
2446 }
2447
2448 MCSymbol *EmittedInitSym = GVSym;
2449
2450 // Emit linkage for the global variable and its aliases.
2451 emitLinkage(GV, EmittedInitSym);
2452 for (const GlobalAlias *GA : GOAliasMap[GV])
2453 emitLinkage(GA, getSymbol(GA));
2454
2455 emitAlignment(getGVAlignment(GV, DL), GV);
2456
2457 // When -fdata-sections is enabled, every GlobalVariable will
2458 // be put into its own csect; therefore, label is not necessary here.
2459 if (!TM.getDataSections() || GV->hasSection())
2460 OutStreamer->emitLabel(EmittedInitSym);
2461
2462 // No alias to emit.
2463 if (!GOAliasMap[GV].size()) {
2464 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
2465 return;
2466 }
2467
2468 // Aliases with the same offset should be aligned. Record the list of aliases
2469 // associated with the offset.
2470 AliasMapTy AliasList;
2471 for (const GlobalAlias *GA : GOAliasMap[GV])
2472 AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
2473
2474 // Emit alias label and element value for global variable.
2475 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer(),
2476 &AliasList);
2477 }
2478
emitFunctionDescriptor()2479 void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2480 const DataLayout &DL = getDataLayout();
2481 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2482
2483 MCSectionSubPair Current = OutStreamer->getCurrentSection();
2484 // Emit function descriptor.
2485 OutStreamer->switchSection(
2486 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2487
2488 // Emit aliasing label for function descriptor csect.
2489 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2490 OutStreamer->emitLabel(getSymbol(Alias));
2491
2492 // Emit function entry point address.
2493 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2494 PointerSize);
2495 // Emit TOC base address.
2496 const MCSymbol *TOCBaseSym =
2497 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2498 ->getQualNameSymbol();
2499 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2500 PointerSize);
2501 // Emit a null environment pointer.
2502 OutStreamer->emitIntValue(0, PointerSize);
2503
2504 OutStreamer->switchSection(Current.first, Current.second);
2505 }
2506
emitFunctionEntryLabel()2507 void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2508 // It's not necessary to emit the label when we have individual
2509 // function in its own csect.
2510 if (!TM.getFunctionSections())
2511 PPCAsmPrinter::emitFunctionEntryLabel();
2512
2513 // Emit aliasing label for function entry point label.
2514 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2515 OutStreamer->emitLabel(
2516 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2517 }
2518
emitPGORefs()2519 void PPCAIXAsmPrinter::emitPGORefs() {
2520 if (OutContext.hasXCOFFSection(
2521 "__llvm_prf_cnts",
2522 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2523 MCSection *CntsSection = OutContext.getXCOFFSection(
2524 "__llvm_prf_cnts", SectionKind::getData(),
2525 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2526 /*MultiSymbolsAllowed*/ true);
2527
2528 OutStreamer->switchSection(CntsSection);
2529 if (OutContext.hasXCOFFSection(
2530 "__llvm_prf_data",
2531 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2532 OutStreamer->emitXCOFFRefDirective("__llvm_prf_data[RW]");
2533 if (OutContext.hasXCOFFSection(
2534 "__llvm_prf_names",
2535 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)))
2536 OutStreamer->emitXCOFFRefDirective("__llvm_prf_names[RO]");
2537 if (OutContext.hasXCOFFSection(
2538 "__llvm_prf_vnds",
2539 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2540 OutStreamer->emitXCOFFRefDirective("__llvm_prf_vnds[RW]");
2541 }
2542 }
2543
emitEndOfAsmFile(Module & M)2544 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2545 // If there are no functions and there are no toc-data definitions in this
2546 // module, we will never need to reference the TOC base.
2547 if (M.empty() && TOCDataGlobalVars.empty())
2548 return;
2549
2550 emitPGORefs();
2551
2552 // Switch to section to emit TOC base.
2553 OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
2554
2555 PPCTargetStreamer *TS =
2556 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2557
2558 for (auto &I : TOC) {
2559 MCSectionXCOFF *TCEntry;
2560 // Setup the csect for the current TC entry. If the variant kind is
2561 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
2562 // new symbol to prefix the name with a dot.
2563 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) {
2564 SmallString<128> Name;
2565 StringRef Prefix = ".";
2566 Name += Prefix;
2567 Name += I.first.first->getName();
2568 MCSymbol *S = OutContext.getOrCreateSymbol(Name);
2569 TCEntry = cast<MCSectionXCOFF>(
2570 getObjFileLowering().getSectionForTOCEntry(S, TM));
2571 } else {
2572 TCEntry = cast<MCSectionXCOFF>(
2573 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
2574 }
2575 OutStreamer->switchSection(TCEntry);
2576
2577 OutStreamer->emitLabel(I.second);
2578 if (TS != nullptr)
2579 TS->emitTCEntry(*I.first.first, I.first.second);
2580 }
2581
2582 for (const auto *GV : TOCDataGlobalVars)
2583 emitGlobalVariableHelper(GV);
2584 }
2585
doInitialization(Module & M)2586 bool PPCAIXAsmPrinter::doInitialization(Module &M) {
2587 const bool Result = PPCAsmPrinter::doInitialization(M);
2588
2589 auto setCsectAlignment = [this](const GlobalObject *GO) {
2590 // Declarations have 0 alignment which is set by default.
2591 if (GO->isDeclarationForLinker())
2592 return;
2593
2594 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
2595 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2596 getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
2597
2598 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout());
2599 if (GOAlign > Csect->getAlignment())
2600 Csect->setAlignment(GOAlign);
2601 };
2602
2603 // We need to know, up front, the alignment of csects for the assembly path,
2604 // because once a .csect directive gets emitted, we could not change the
2605 // alignment value on it.
2606 for (const auto &G : M.globals()) {
2607 if (isSpecialLLVMGlobalArrayToSkip(&G))
2608 continue;
2609
2610 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
2611 // Generate a format indicator and a unique module id to be a part of
2612 // the sinit and sterm function names.
2613 if (FormatIndicatorAndUniqueModId.empty()) {
2614 std::string UniqueModuleId = getUniqueModuleId(&M);
2615 if (UniqueModuleId != "")
2616 // TODO: Use source file full path to generate the unique module id
2617 // and add a format indicator as a part of function name in case we
2618 // will support more than one format.
2619 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
2620 else
2621 // Use the Pid and current time as the unique module id when we cannot
2622 // generate one based on a module's strong external symbols.
2623 // FIXME: Adjust the comment accordingly after we use source file full
2624 // path instead.
2625 FormatIndicatorAndUniqueModId =
2626 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) +
2627 "_" + llvm::itostr(time(nullptr));
2628 }
2629
2630 emitSpecialLLVMGlobal(&G);
2631 continue;
2632 }
2633
2634 setCsectAlignment(&G);
2635 }
2636
2637 for (const auto &F : M)
2638 setCsectAlignment(&F);
2639
2640 // Construct an aliasing list for each GlobalObject.
2641 for (const auto &Alias : M.aliases()) {
2642 const GlobalObject *Base = Alias.getAliaseeObject();
2643 if (!Base)
2644 report_fatal_error(
2645 "alias without a base object is not yet supported on AIX");
2646 GOAliasMap[Base].push_back(&Alias);
2647 }
2648
2649 return Result;
2650 }
2651
emitInstruction(const MachineInstr * MI)2652 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
2653 switch (MI->getOpcode()) {
2654 default:
2655 break;
2656 case PPC::GETtlsADDR64AIX:
2657 case PPC::GETtlsADDR32AIX: {
2658 // The reference to .__tls_get_addr is unknown to the assembler
2659 // so we need to emit an external symbol reference.
2660 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
2661 ExtSymSDNodeSymbols.insert(TlsGetAddr);
2662 break;
2663 }
2664 case PPC::BL8:
2665 case PPC::BL:
2666 case PPC::BL8_NOP:
2667 case PPC::BL_NOP: {
2668 const MachineOperand &MO = MI->getOperand(0);
2669 if (MO.isSymbol()) {
2670 MCSymbolXCOFF *S =
2671 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
2672 ExtSymSDNodeSymbols.insert(S);
2673 }
2674 } break;
2675 case PPC::BL_TLS:
2676 case PPC::BL8_TLS:
2677 case PPC::BL8_TLS_:
2678 case PPC::BL8_NOP_TLS:
2679 report_fatal_error("TLS call not yet implemented");
2680 case PPC::TAILB:
2681 case PPC::TAILB8:
2682 case PPC::TAILBA:
2683 case PPC::TAILBA8:
2684 case PPC::TAILBCTR:
2685 case PPC::TAILBCTR8:
2686 if (MI->getOperand(0).isSymbol())
2687 report_fatal_error("Tail call for extern symbol not yet supported.");
2688 break;
2689 case PPC::DST:
2690 case PPC::DST64:
2691 case PPC::DSTT:
2692 case PPC::DSTT64:
2693 case PPC::DSTST:
2694 case PPC::DSTST64:
2695 case PPC::DSTSTT:
2696 case PPC::DSTSTT64:
2697 EmitToStreamer(
2698 *OutStreamer,
2699 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
2700 return;
2701 }
2702 return PPCAsmPrinter::emitInstruction(MI);
2703 }
2704
doFinalization(Module & M)2705 bool PPCAIXAsmPrinter::doFinalization(Module &M) {
2706 // Do streamer related finalization for DWARF.
2707 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
2708 OutStreamer->doFinalizationAtSectionEnd(
2709 OutStreamer->getContext().getObjectFileInfo()->getTextSection());
2710
2711 for (MCSymbol *Sym : ExtSymSDNodeSymbols)
2712 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
2713 return PPCAsmPrinter::doFinalization(M);
2714 }
2715
mapToSinitPriority(int P)2716 static unsigned mapToSinitPriority(int P) {
2717 if (P < 0 || P > 65535)
2718 report_fatal_error("invalid init priority");
2719
2720 if (P <= 20)
2721 return P;
2722
2723 if (P < 81)
2724 return 20 + (P - 20) * 16;
2725
2726 if (P <= 1124)
2727 return 1004 + (P - 81);
2728
2729 if (P < 64512)
2730 return 2047 + (P - 1124) * 33878;
2731
2732 return 2147482625u + (P - 64512);
2733 }
2734
convertToSinitPriority(int Priority)2735 static std::string convertToSinitPriority(int Priority) {
2736 // This helper function converts clang init priority to values used in sinit
2737 // and sterm functions.
2738 //
2739 // The conversion strategies are:
2740 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
2741 // reserved priority range [0, 1023] by
2742 // - directly mapping the first 21 and the last 20 elements of the ranges
2743 // - linear interpolating the intermediate values with a step size of 16.
2744 //
2745 // We map the non reserved clang/gnu priority range of [101, 65535] into the
2746 // sinit/sterm priority range [1024, 2147483648] by:
2747 // - directly mapping the first and the last 1024 elements of the ranges
2748 // - linear interpolating the intermediate values with a step size of 33878.
2749 unsigned int P = mapToSinitPriority(Priority);
2750
2751 std::string PrioritySuffix;
2752 llvm::raw_string_ostream os(PrioritySuffix);
2753 os << llvm::format_hex_no_prefix(P, 8);
2754 os.flush();
2755 return PrioritySuffix;
2756 }
2757
emitXXStructorList(const DataLayout & DL,const Constant * List,bool IsCtor)2758 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
2759 const Constant *List, bool IsCtor) {
2760 SmallVector<Structor, 8> Structors;
2761 preprocessXXStructorList(DL, List, Structors);
2762 if (Structors.empty())
2763 return;
2764
2765 unsigned Index = 0;
2766 for (Structor &S : Structors) {
2767 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
2768 S.Func = CE->getOperand(0);
2769
2770 llvm::GlobalAlias::create(
2771 GlobalValue::ExternalLinkage,
2772 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
2773 llvm::Twine(convertToSinitPriority(S.Priority)) +
2774 llvm::Twine("_", FormatIndicatorAndUniqueModId) +
2775 llvm::Twine("_", llvm::utostr(Index++)),
2776 cast<Function>(S.Func));
2777 }
2778 }
2779
emitTTypeReference(const GlobalValue * GV,unsigned Encoding)2780 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
2781 unsigned Encoding) {
2782 if (GV) {
2783 MCSymbol *TypeInfoSym = TM.getSymbol(GV);
2784 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym);
2785 const MCSymbol *TOCBaseSym =
2786 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2787 ->getQualNameSymbol();
2788 auto &Ctx = OutStreamer->getContext();
2789 const MCExpr *Exp =
2790 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2791 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2792 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
2793 } else
2794 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
2795 }
2796
2797 // Return a pass that prints the PPC assembly code for a MachineFunction to the
2798 // given output stream.
2799 static AsmPrinter *
createPPCAsmPrinterPass(TargetMachine & tm,std::unique_ptr<MCStreamer> && Streamer)2800 createPPCAsmPrinterPass(TargetMachine &tm,
2801 std::unique_ptr<MCStreamer> &&Streamer) {
2802 if (tm.getTargetTriple().isOSAIX())
2803 return new PPCAIXAsmPrinter(tm, std::move(Streamer));
2804
2805 return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
2806 }
2807
2808 // Force static initialization.
LLVMInitializePowerPCAsmPrinter()2809 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
2810 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
2811 createPPCAsmPrinterPass);
2812 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
2813 createPPCAsmPrinterPass);
2814 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
2815 createPPCAsmPrinterPass);
2816 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
2817 createPPCAsmPrinterPass);
2818 }
2819