1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/BinaryFormat/MachO.h" 36 #include "llvm/CodeGen/AsmPrinter.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/MC/MCAsmInfo.h" 50 #include "llvm/MC/MCContext.h" 51 #include "llvm/MC/MCDirectives.h" 52 #include "llvm/MC/MCExpr.h" 53 #include "llvm/MC/MCInst.h" 54 #include "llvm/MC/MCInstBuilder.h" 55 #include "llvm/MC/MCSectionELF.h" 56 #include "llvm/MC/MCSectionMachO.h" 57 #include "llvm/MC/MCSectionXCOFF.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCSymbolELF.h" 61 #include "llvm/MC/MCSymbolXCOFF.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/Process.h" 68 #include "llvm/Support/TargetRegistry.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Transforms/Utils/ModuleUtils.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <new> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "asmprinter" 81 82 namespace { 83 84 class PPCAsmPrinter : public AsmPrinter { 85 protected: 86 MapVector<const MCSymbol *, MCSymbol *> TOC; 87 const PPCSubtarget *Subtarget = nullptr; 88 StackMaps SM; 89 90 public: 91 explicit PPCAsmPrinter(TargetMachine &TM, 92 std::unique_ptr<MCStreamer> Streamer) 93 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 94 95 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 96 97 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym); 98 99 bool doInitialization(Module &M) override { 100 if (!TOC.empty()) 101 TOC.clear(); 102 return AsmPrinter::doInitialization(M); 103 } 104 105 void emitInstruction(const MachineInstr *MI) override; 106 107 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 108 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 109 /// The \p MI would be INLINEASM ONLY. 110 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 111 112 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 113 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 114 const char *ExtraCode, raw_ostream &O) override; 115 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 116 const char *ExtraCode, raw_ostream &O) override; 117 118 void emitEndOfAsmFile(Module &M) override; 119 120 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 121 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 122 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 123 bool runOnMachineFunction(MachineFunction &MF) override { 124 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 125 bool Changed = AsmPrinter::runOnMachineFunction(MF); 126 emitXRayTable(); 127 return Changed; 128 } 129 }; 130 131 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 132 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 133 public: 134 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 135 std::unique_ptr<MCStreamer> Streamer) 136 : PPCAsmPrinter(TM, std::move(Streamer)) {} 137 138 StringRef getPassName() const override { 139 return "Linux PPC Assembly Printer"; 140 } 141 142 void emitStartOfAsmFile(Module &M) override; 143 void emitEndOfAsmFile(Module &) override; 144 145 void emitFunctionEntryLabel() override; 146 147 void emitFunctionBodyStart() override; 148 void emitFunctionBodyEnd() override; 149 void emitInstruction(const MachineInstr *MI) override; 150 }; 151 152 class PPCAIXAsmPrinter : public PPCAsmPrinter { 153 private: 154 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 155 /// linkage for them in AIX. 156 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 157 158 /// A format indicator and unique trailing identifier to form part of the 159 /// sinit/sterm function names. 160 std::string FormatIndicatorAndUniqueModId; 161 162 static void ValidateGV(const GlobalVariable *GV); 163 // Record a list of GlobalAlias associated with a GlobalObject. 164 // This is used for AIX's extra-label-at-definition aliasing strategy. 165 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 166 GOAliasMap; 167 168 public: 169 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 170 : PPCAsmPrinter(TM, std::move(Streamer)) { 171 if (MAI->isLittleEndian()) 172 report_fatal_error( 173 "cannot create AIX PPC Assembly Printer for a little-endian target"); 174 } 175 176 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 177 178 bool doInitialization(Module &M) override; 179 180 void emitXXStructorList(const DataLayout &DL, const Constant *List, 181 bool IsCtor) override; 182 183 void SetupMachineFunction(MachineFunction &MF) override; 184 185 void emitGlobalVariable(const GlobalVariable *GV) override; 186 187 void emitFunctionDescriptor() override; 188 189 void emitFunctionEntryLabel() override; 190 191 void emitEndOfAsmFile(Module &) override; 192 193 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 194 195 void emitInstruction(const MachineInstr *MI) override; 196 197 bool doFinalization(Module &M) override; 198 }; 199 200 } // end anonymous namespace 201 202 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 203 raw_ostream &O) { 204 // Computing the address of a global symbol, not calling it. 205 const GlobalValue *GV = MO.getGlobal(); 206 getSymbol(GV)->print(O, MAI); 207 printOffset(MO.getOffset(), O); 208 } 209 210 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 211 raw_ostream &O) { 212 const DataLayout &DL = getDataLayout(); 213 const MachineOperand &MO = MI->getOperand(OpNo); 214 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: { 217 // The MI is INLINEASM ONLY and UseVSXReg is always false. 218 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 219 220 // Linux assembler (Others?) does not take register mnemonics. 221 // FIXME - What about special registers used in mfspr/mtspr? 222 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 223 return; 224 } 225 case MachineOperand::MO_Immediate: 226 O << MO.getImm(); 227 return; 228 229 case MachineOperand::MO_MachineBasicBlock: 230 MO.getMBB()->getSymbol()->print(O, MAI); 231 return; 232 case MachineOperand::MO_ConstantPoolIndex: 233 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 234 << MO.getIndex(); 235 return; 236 case MachineOperand::MO_BlockAddress: 237 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 238 return; 239 case MachineOperand::MO_GlobalAddress: { 240 PrintSymbolOperand(MO, O); 241 return; 242 } 243 244 default: 245 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 246 return; 247 } 248 } 249 250 /// PrintAsmOperand - Print out an operand for an inline asm expression. 251 /// 252 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 253 const char *ExtraCode, raw_ostream &O) { 254 // Does this asm operand have a single letter operand modifier? 255 if (ExtraCode && ExtraCode[0]) { 256 if (ExtraCode[1] != 0) return true; // Unknown modifier. 257 258 switch (ExtraCode[0]) { 259 default: 260 // See if this is a generic print operand 261 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 262 case 'L': // Write second word of DImode reference. 263 // Verify that this operand has two consecutive registers. 264 if (!MI->getOperand(OpNo).isReg() || 265 OpNo+1 == MI->getNumOperands() || 266 !MI->getOperand(OpNo+1).isReg()) 267 return true; 268 ++OpNo; // Return the high-part. 269 break; 270 case 'I': 271 // Write 'i' if an integer constant, otherwise nothing. Used to print 272 // addi vs add, etc. 273 if (MI->getOperand(OpNo).isImm()) 274 O << "i"; 275 return false; 276 case 'x': 277 if(!MI->getOperand(OpNo).isReg()) 278 return true; 279 // This operand uses VSX numbering. 280 // If the operand is a VMX register, convert it to a VSX register. 281 Register Reg = MI->getOperand(OpNo).getReg(); 282 if (PPCInstrInfo::isVRRegister(Reg)) 283 Reg = PPC::VSX32 + (Reg - PPC::V0); 284 else if (PPCInstrInfo::isVFRegister(Reg)) 285 Reg = PPC::VSX32 + (Reg - PPC::VF0); 286 const char *RegName; 287 RegName = PPCInstPrinter::getRegisterName(Reg); 288 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 289 O << RegName; 290 return false; 291 } 292 } 293 294 printOperand(MI, OpNo, O); 295 return false; 296 } 297 298 // At the moment, all inline asm memory operands are a single register. 299 // In any case, the output of this routine should always be just one 300 // assembler operand. 301 302 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 303 const char *ExtraCode, 304 raw_ostream &O) { 305 if (ExtraCode && ExtraCode[0]) { 306 if (ExtraCode[1] != 0) return true; // Unknown modifier. 307 308 switch (ExtraCode[0]) { 309 default: return true; // Unknown modifier. 310 case 'L': // A memory reference to the upper word of a double word op. 311 O << getDataLayout().getPointerSize() << "("; 312 printOperand(MI, OpNo, O); 313 O << ")"; 314 return false; 315 case 'y': // A memory reference for an X-form instruction 316 O << "0, "; 317 printOperand(MI, OpNo, O); 318 return false; 319 case 'U': // Print 'u' for update form. 320 case 'X': // Print 'x' for indexed form. 321 // FIXME: Currently for PowerPC memory operands are always loaded 322 // into a register, so we never get an update or indexed form. 323 // This is bad even for offset forms, since even if we know we 324 // have a value in -16(r1), we will generate a load into r<n> 325 // and then load from 0(r<n>). Until that issue is fixed, 326 // tolerate 'U' and 'X' but don't output anything. 327 assert(MI->getOperand(OpNo).isReg()); 328 return false; 329 } 330 } 331 332 assert(MI->getOperand(OpNo).isReg()); 333 O << "0("; 334 printOperand(MI, OpNo, O); 335 O << ")"; 336 return false; 337 } 338 339 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 340 /// exists for it. If not, create one. Then return a symbol that references 341 /// the TOC entry. 342 MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym) { 343 MCSymbol *&TOCEntry = TOC[Sym]; 344 if (!TOCEntry) 345 TOCEntry = createTempSymbol("C"); 346 return TOCEntry; 347 } 348 349 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 350 emitStackMaps(SM); 351 } 352 353 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 354 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 355 356 auto &Ctx = OutStreamer->getContext(); 357 MCSymbol *MILabel = Ctx.createTempSymbol(); 358 OutStreamer->emitLabel(MILabel); 359 360 SM.recordStackMap(*MILabel, MI); 361 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 362 363 // Scan ahead to trim the shadow. 364 const MachineBasicBlock &MBB = *MI.getParent(); 365 MachineBasicBlock::const_iterator MII(MI); 366 ++MII; 367 while (NumNOPBytes > 0) { 368 if (MII == MBB.end() || MII->isCall() || 369 MII->getOpcode() == PPC::DBG_VALUE || 370 MII->getOpcode() == TargetOpcode::PATCHPOINT || 371 MII->getOpcode() == TargetOpcode::STACKMAP) 372 break; 373 ++MII; 374 NumNOPBytes -= 4; 375 } 376 377 // Emit nops. 378 for (unsigned i = 0; i < NumNOPBytes; i += 4) 379 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 380 } 381 382 // Lower a patchpoint of the form: 383 // [<def>], <id>, <numBytes>, <target>, <numArgs> 384 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 385 auto &Ctx = OutStreamer->getContext(); 386 MCSymbol *MILabel = Ctx.createTempSymbol(); 387 OutStreamer->emitLabel(MILabel); 388 389 SM.recordPatchPoint(*MILabel, MI); 390 PatchPointOpers Opers(&MI); 391 392 unsigned EncodedBytes = 0; 393 const MachineOperand &CalleeMO = Opers.getCallTarget(); 394 395 if (CalleeMO.isImm()) { 396 int64_t CallTarget = CalleeMO.getImm(); 397 if (CallTarget) { 398 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 399 "High 16 bits of call target should be zero."); 400 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 401 EncodedBytes = 0; 402 // Materialize the jump address: 403 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 404 .addReg(ScratchReg) 405 .addImm((CallTarget >> 32) & 0xFFFF)); 406 ++EncodedBytes; 407 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 408 .addReg(ScratchReg) 409 .addReg(ScratchReg) 410 .addImm(32).addImm(16)); 411 ++EncodedBytes; 412 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 413 .addReg(ScratchReg) 414 .addReg(ScratchReg) 415 .addImm((CallTarget >> 16) & 0xFFFF)); 416 ++EncodedBytes; 417 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 418 .addReg(ScratchReg) 419 .addReg(ScratchReg) 420 .addImm(CallTarget & 0xFFFF)); 421 422 // Save the current TOC pointer before the remote call. 423 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 424 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 425 .addReg(PPC::X2) 426 .addImm(TOCSaveOffset) 427 .addReg(PPC::X1)); 428 ++EncodedBytes; 429 430 // If we're on ELFv1, then we need to load the actual function pointer 431 // from the function descriptor. 432 if (!Subtarget->isELFv2ABI()) { 433 // Load the new TOC pointer and the function address, but not r11 434 // (needing this is rare, and loading it here would prevent passing it 435 // via a 'nest' parameter. 436 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 437 .addReg(PPC::X2) 438 .addImm(8) 439 .addReg(ScratchReg)); 440 ++EncodedBytes; 441 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 442 .addReg(ScratchReg) 443 .addImm(0) 444 .addReg(ScratchReg)); 445 ++EncodedBytes; 446 } 447 448 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 449 .addReg(ScratchReg)); 450 ++EncodedBytes; 451 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 452 ++EncodedBytes; 453 454 // Restore the TOC pointer after the call. 455 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 456 .addReg(PPC::X2) 457 .addImm(TOCSaveOffset) 458 .addReg(PPC::X1)); 459 ++EncodedBytes; 460 } 461 } else if (CalleeMO.isGlobal()) { 462 const GlobalValue *GValue = CalleeMO.getGlobal(); 463 MCSymbol *MOSymbol = getSymbol(GValue); 464 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 465 466 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 467 .addExpr(SymVar)); 468 EncodedBytes += 2; 469 } 470 471 // Each instruction is 4 bytes. 472 EncodedBytes *= 4; 473 474 // Emit padding. 475 unsigned NumBytes = Opers.getNumPatchBytes(); 476 assert(NumBytes >= EncodedBytes && 477 "Patchpoint can't request size less than the length of a call."); 478 assert((NumBytes - EncodedBytes) % 4 == 0 && 479 "Invalid number of NOP bytes requested!"); 480 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 482 } 483 484 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 485 /// call to __tls_get_addr to the current output stream. 486 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 487 MCSymbolRefExpr::VariantKind VK) { 488 StringRef Name = "__tls_get_addr"; 489 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 490 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 491 unsigned Opcode = PPC::BL8_NOP_TLS; 492 493 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 494 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 495 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 496 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 497 Opcode = PPC::BL8_NOTOC_TLS; 498 } 499 const Module *M = MF->getFunction().getParent(); 500 501 assert(MI->getOperand(0).isReg() && 502 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 503 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 504 "GETtls[ld]ADDR[32] must define GPR3"); 505 assert(MI->getOperand(1).isReg() && 506 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 507 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 508 "GETtls[ld]ADDR[32] must read GPR3"); 509 510 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 511 Kind = MCSymbolRefExpr::VK_PLT; 512 513 const MCExpr *TlsRef = 514 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 515 516 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 517 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 518 M->getPICLevel() == PICLevel::BigPIC) 519 TlsRef = MCBinaryExpr::createAdd( 520 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 521 const MachineOperand &MO = MI->getOperand(2); 522 const GlobalValue *GValue = MO.getGlobal(); 523 MCSymbol *MOSymbol = getSymbol(GValue); 524 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 525 EmitToStreamer(*OutStreamer, 526 MCInstBuilder(Subtarget->isPPC64() ? Opcode 527 : (unsigned)PPC::BL_TLS) 528 .addExpr(TlsRef) 529 .addExpr(SymVar)); 530 } 531 532 /// Map a machine operand for a TOC pseudo-machine instruction to its 533 /// corresponding MCSymbol. 534 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 535 AsmPrinter &AP) { 536 switch (MO.getType()) { 537 case MachineOperand::MO_GlobalAddress: 538 return AP.getSymbol(MO.getGlobal()); 539 case MachineOperand::MO_ConstantPoolIndex: 540 return AP.GetCPISymbol(MO.getIndex()); 541 case MachineOperand::MO_JumpTableIndex: 542 return AP.GetJTISymbol(MO.getIndex()); 543 case MachineOperand::MO_BlockAddress: 544 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 545 default: 546 llvm_unreachable("Unexpected operand type to get symbol."); 547 } 548 } 549 550 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 551 /// the current output stream. 552 /// 553 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 554 MCInst TmpInst; 555 const bool IsPPC64 = Subtarget->isPPC64(); 556 const bool IsAIX = Subtarget->isAIXABI(); 557 const Module *M = MF->getFunction().getParent(); 558 PICLevel::Level PL = M->getPICLevel(); 559 560 #ifndef NDEBUG 561 // Validate that SPE and FPU are mutually exclusive in codegen 562 if (!MI->isInlineAsm()) { 563 for (const MachineOperand &MO: MI->operands()) { 564 if (MO.isReg()) { 565 Register Reg = MO.getReg(); 566 if (Subtarget->hasSPE()) { 567 if (PPC::F4RCRegClass.contains(Reg) || 568 PPC::F8RCRegClass.contains(Reg) || 569 PPC::VFRCRegClass.contains(Reg) || 570 PPC::VRRCRegClass.contains(Reg) || 571 PPC::VSFRCRegClass.contains(Reg) || 572 PPC::VSSRCRegClass.contains(Reg) 573 ) 574 llvm_unreachable("SPE targets cannot have FPRegs!"); 575 } else { 576 if (PPC::SPERCRegClass.contains(Reg)) 577 llvm_unreachable("SPE register found in FPU-targeted code!"); 578 } 579 } 580 } 581 } 582 #endif 583 584 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 585 ptrdiff_t OriginalOffset) { 586 // Apply an offset to the TOC-based expression such that the adjusted 587 // notional offset from the TOC base (to be encoded into the instruction's D 588 // or DS field) is the signed 16-bit truncation of the original notional 589 // offset from the TOC base. 590 // This is consistent with the treatment used both by XL C/C++ and 591 // by AIX ld -r. 592 ptrdiff_t Adjustment = 593 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 594 return MCBinaryExpr::createAdd( 595 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 596 }; 597 598 auto getTOCEntryLoadingExprForXCOFF = 599 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 600 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 601 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 602 const auto TOCEntryIter = TOC.find(MOSymbol); 603 assert(TOCEntryIter != TOC.end() && 604 "Could not find the TOC entry for this symbol."); 605 const ptrdiff_t EntryDistanceFromTOCBase = 606 (TOCEntryIter - TOC.begin()) * EntryByteSize; 607 constexpr int16_t PositiveTOCRange = INT16_MAX; 608 609 if (EntryDistanceFromTOCBase > PositiveTOCRange) 610 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 611 612 return Expr; 613 }; 614 615 // Lower multi-instruction pseudo operations. 616 switch (MI->getOpcode()) { 617 default: break; 618 case TargetOpcode::DBG_VALUE: 619 llvm_unreachable("Should be handled target independently"); 620 case TargetOpcode::STACKMAP: 621 return LowerSTACKMAP(SM, *MI); 622 case TargetOpcode::PATCHPOINT: 623 return LowerPATCHPOINT(SM, *MI); 624 625 case PPC::MoveGOTtoLR: { 626 // Transform %lr = MoveGOTtoLR 627 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 628 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 629 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 630 // blrl 631 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 632 MCSymbol *GOTSymbol = 633 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 634 const MCExpr *OffsExpr = 635 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 636 MCSymbolRefExpr::VK_PPC_LOCAL, 637 OutContext), 638 MCConstantExpr::create(4, OutContext), 639 OutContext); 640 641 // Emit the 'bl'. 642 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 643 return; 644 } 645 case PPC::MovePCtoLR: 646 case PPC::MovePCtoLR8: { 647 // Transform %lr = MovePCtoLR 648 // Into this, where the label is the PIC base: 649 // bl L1$pb 650 // L1$pb: 651 MCSymbol *PICBase = MF->getPICBaseSymbol(); 652 653 // Emit the 'bl'. 654 EmitToStreamer(*OutStreamer, 655 MCInstBuilder(PPC::BL) 656 // FIXME: We would like an efficient form for this, so we 657 // don't have to do a lot of extra uniquing. 658 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 659 660 // Emit the label. 661 OutStreamer->emitLabel(PICBase); 662 return; 663 } 664 case PPC::UpdateGBR: { 665 // Transform %rd = UpdateGBR(%rt, %ri) 666 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 667 // add %rd, %rt, %ri 668 // or into (if secure plt mode is on): 669 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 670 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 671 // Get the offset from the GOT Base Register to the GOT 672 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 673 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 674 unsigned PICR = TmpInst.getOperand(0).getReg(); 675 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 676 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 677 : ".LTOC"); 678 const MCExpr *PB = 679 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 680 681 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 682 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 683 684 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 685 EmitToStreamer( 686 *OutStreamer, 687 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 688 689 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 690 EmitToStreamer( 691 *OutStreamer, 692 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 693 return; 694 } else { 695 MCSymbol *PICOffset = 696 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 697 TmpInst.setOpcode(PPC::LWZ); 698 const MCExpr *Exp = 699 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 700 const MCExpr *PB = 701 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 702 MCSymbolRefExpr::VK_None, 703 OutContext); 704 const MCOperand TR = TmpInst.getOperand(1); 705 const MCOperand PICR = TmpInst.getOperand(0); 706 707 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 708 TmpInst.getOperand(1) = 709 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 710 TmpInst.getOperand(0) = TR; 711 TmpInst.getOperand(2) = PICR; 712 EmitToStreamer(*OutStreamer, TmpInst); 713 714 TmpInst.setOpcode(PPC::ADD4); 715 TmpInst.getOperand(0) = PICR; 716 TmpInst.getOperand(1) = TR; 717 TmpInst.getOperand(2) = PICR; 718 EmitToStreamer(*OutStreamer, TmpInst); 719 return; 720 } 721 } 722 case PPC::LWZtoc: { 723 // Transform %rN = LWZtoc @op1, %r2 724 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 725 726 // Change the opcode to LWZ. 727 TmpInst.setOpcode(PPC::LWZ); 728 729 const MachineOperand &MO = MI->getOperand(1); 730 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 731 "Invalid operand for LWZtoc."); 732 733 // Map the operand to its corresponding MCSymbol. 734 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 735 736 // Create a reference to the GOT entry for the symbol. The GOT entry will be 737 // synthesized later. 738 if (PL == PICLevel::SmallPIC && !IsAIX) { 739 const MCExpr *Exp = 740 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 741 OutContext); 742 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 743 EmitToStreamer(*OutStreamer, TmpInst); 744 return; 745 } 746 747 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 748 // storage allocated in the TOC which contains the address of 749 // 'MOSymbol'. Said TOC entry will be synthesized later. 750 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 751 const MCExpr *Exp = 752 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 753 754 // AIX uses the label directly as the lwz displacement operand for 755 // references into the toc section. The displacement value will be generated 756 // relative to the toc-base. 757 if (IsAIX) { 758 assert( 759 TM.getCodeModel() == CodeModel::Small && 760 "This pseudo should only be selected for 32-bit small code model."); 761 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 762 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 763 EmitToStreamer(*OutStreamer, TmpInst); 764 return; 765 } 766 767 // Create an explicit subtract expression between the local symbol and 768 // '.LTOC' to manifest the toc-relative offset. 769 const MCExpr *PB = MCSymbolRefExpr::create( 770 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 771 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 772 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 773 EmitToStreamer(*OutStreamer, TmpInst); 774 return; 775 } 776 case PPC::LDtocJTI: 777 case PPC::LDtocCPT: 778 case PPC::LDtocBA: 779 case PPC::LDtoc: { 780 // Transform %x3 = LDtoc @min1, %x2 781 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 782 783 // Change the opcode to LD. 784 TmpInst.setOpcode(PPC::LD); 785 786 const MachineOperand &MO = MI->getOperand(1); 787 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 788 "Invalid operand!"); 789 790 // Map the operand to its corresponding MCSymbol. 791 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 792 793 // Map the machine operand to its corresponding MCSymbol, then map the 794 // global address operand to be a reference to the TOC entry we will 795 // synthesize later. 796 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 797 798 const MCSymbolRefExpr::VariantKind VK = 799 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 800 const MCExpr *Exp = 801 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 802 TmpInst.getOperand(1) = MCOperand::createExpr( 803 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 804 EmitToStreamer(*OutStreamer, TmpInst); 805 return; 806 } 807 case PPC::ADDIStocHA: { 808 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 809 "This pseudo should only be selected for 32-bit large code model on" 810 " AIX."); 811 812 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 813 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 814 815 // Change the opcode to ADDIS. 816 TmpInst.setOpcode(PPC::ADDIS); 817 818 const MachineOperand &MO = MI->getOperand(2); 819 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 820 "Invalid operand for ADDIStocHA."); 821 822 // Map the machine operand to its corresponding MCSymbol. 823 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 824 825 // Always use TOC on AIX. Map the global address operand to be a reference 826 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 827 // reference the storage allocated in the TOC which contains the address of 828 // 'MOSymbol'. 829 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 830 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 831 MCSymbolRefExpr::VK_PPC_U, 832 OutContext); 833 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 834 EmitToStreamer(*OutStreamer, TmpInst); 835 return; 836 } 837 case PPC::LWZtocL: { 838 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 839 "This pseudo should only be selected for 32-bit large code model on" 840 " AIX."); 841 842 // Transform %rd = LWZtocL @sym, %rs. 843 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 844 845 // Change the opcode to lwz. 846 TmpInst.setOpcode(PPC::LWZ); 847 848 const MachineOperand &MO = MI->getOperand(1); 849 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 850 "Invalid operand for LWZtocL."); 851 852 // Map the machine operand to its corresponding MCSymbol. 853 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 854 855 // Always use TOC on AIX. Map the global address operand to be a reference 856 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 857 // reference the storage allocated in the TOC which contains the address of 858 // 'MOSymbol'. 859 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 860 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 861 MCSymbolRefExpr::VK_PPC_L, 862 OutContext); 863 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 864 EmitToStreamer(*OutStreamer, TmpInst); 865 return; 866 } 867 case PPC::ADDIStocHA8: { 868 // Transform %xd = ADDIStocHA8 %x2, @sym 869 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 870 871 // Change the opcode to ADDIS8. If the global address is the address of 872 // an external symbol, is a jump table address, is a block address, or is a 873 // constant pool index with large code model enabled, then generate a TOC 874 // entry and reference that. Otherwise, reference the symbol directly. 875 TmpInst.setOpcode(PPC::ADDIS8); 876 877 const MachineOperand &MO = MI->getOperand(2); 878 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 879 "Invalid operand for ADDIStocHA8!"); 880 881 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 882 883 const bool GlobalToc = 884 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 885 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 886 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 887 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 888 889 const MCSymbolRefExpr::VariantKind VK = 890 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 891 892 const MCExpr *Exp = 893 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 894 895 if (!MO.isJTI() && MO.getOffset()) 896 Exp = MCBinaryExpr::createAdd(Exp, 897 MCConstantExpr::create(MO.getOffset(), 898 OutContext), 899 OutContext); 900 901 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 902 EmitToStreamer(*OutStreamer, TmpInst); 903 return; 904 } 905 case PPC::LDtocL: { 906 // Transform %xd = LDtocL @sym, %xs 907 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 908 909 // Change the opcode to LD. If the global address is the address of 910 // an external symbol, is a jump table address, is a block address, or is 911 // a constant pool index with large code model enabled, then generate a 912 // TOC entry and reference that. Otherwise, reference the symbol directly. 913 TmpInst.setOpcode(PPC::LD); 914 915 const MachineOperand &MO = MI->getOperand(1); 916 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 917 MO.isBlockAddress()) && 918 "Invalid operand for LDtocL!"); 919 920 LLVM_DEBUG(assert( 921 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 922 "LDtocL used on symbol that could be accessed directly is " 923 "invalid. Must match ADDIStocHA8.")); 924 925 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 926 927 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 928 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 929 930 const MCSymbolRefExpr::VariantKind VK = 931 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 932 const MCExpr *Exp = 933 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 934 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 935 EmitToStreamer(*OutStreamer, TmpInst); 936 return; 937 } 938 case PPC::ADDItocL: { 939 // Transform %xd = ADDItocL %xs, @sym 940 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 941 942 // Change the opcode to ADDI8. If the global address is external, then 943 // generate a TOC entry and reference that. Otherwise, reference the 944 // symbol directly. 945 TmpInst.setOpcode(PPC::ADDI8); 946 947 const MachineOperand &MO = MI->getOperand(2); 948 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 949 950 LLVM_DEBUG(assert( 951 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 952 "Interposable definitions must use indirect access.")); 953 954 const MCExpr *Exp = 955 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 956 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 957 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 958 EmitToStreamer(*OutStreamer, TmpInst); 959 return; 960 } 961 case PPC::ADDISgotTprelHA: { 962 // Transform: %xd = ADDISgotTprelHA %x2, @sym 963 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 964 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 965 const MachineOperand &MO = MI->getOperand(2); 966 const GlobalValue *GValue = MO.getGlobal(); 967 MCSymbol *MOSymbol = getSymbol(GValue); 968 const MCExpr *SymGotTprel = 969 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 970 OutContext); 971 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 972 .addReg(MI->getOperand(0).getReg()) 973 .addReg(MI->getOperand(1).getReg()) 974 .addExpr(SymGotTprel)); 975 return; 976 } 977 case PPC::LDgotTprelL: 978 case PPC::LDgotTprelL32: { 979 // Transform %xd = LDgotTprelL @sym, %xs 980 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 981 982 // Change the opcode to LD. 983 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 984 const MachineOperand &MO = MI->getOperand(1); 985 const GlobalValue *GValue = MO.getGlobal(); 986 MCSymbol *MOSymbol = getSymbol(GValue); 987 const MCExpr *Exp = MCSymbolRefExpr::create( 988 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 989 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 990 OutContext); 991 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 992 EmitToStreamer(*OutStreamer, TmpInst); 993 return; 994 } 995 996 case PPC::PPC32PICGOT: { 997 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 998 MCSymbol *GOTRef = OutContext.createTempSymbol(); 999 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1000 1001 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1002 // FIXME: We would like an efficient form for this, so we don't have to do 1003 // a lot of extra uniquing. 1004 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1005 const MCExpr *OffsExpr = 1006 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1007 MCSymbolRefExpr::create(GOTRef, OutContext), 1008 OutContext); 1009 OutStreamer->emitLabel(GOTRef); 1010 OutStreamer->emitValue(OffsExpr, 4); 1011 OutStreamer->emitLabel(NextInstr); 1012 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1013 .addReg(MI->getOperand(0).getReg())); 1014 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1015 .addReg(MI->getOperand(1).getReg()) 1016 .addImm(0) 1017 .addReg(MI->getOperand(0).getReg())); 1018 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1019 .addReg(MI->getOperand(0).getReg()) 1020 .addReg(MI->getOperand(1).getReg()) 1021 .addReg(MI->getOperand(0).getReg())); 1022 return; 1023 } 1024 case PPC::PPC32GOT: { 1025 MCSymbol *GOTSymbol = 1026 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1027 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1028 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1029 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1030 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1031 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1032 .addReg(MI->getOperand(0).getReg()) 1033 .addExpr(SymGotTlsL)); 1034 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1035 .addReg(MI->getOperand(0).getReg()) 1036 .addReg(MI->getOperand(0).getReg()) 1037 .addExpr(SymGotTlsHA)); 1038 return; 1039 } 1040 case PPC::ADDIStlsgdHA: { 1041 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1042 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1043 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1044 const MachineOperand &MO = MI->getOperand(2); 1045 const GlobalValue *GValue = MO.getGlobal(); 1046 MCSymbol *MOSymbol = getSymbol(GValue); 1047 const MCExpr *SymGotTlsGD = 1048 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1049 OutContext); 1050 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1051 .addReg(MI->getOperand(0).getReg()) 1052 .addReg(MI->getOperand(1).getReg()) 1053 .addExpr(SymGotTlsGD)); 1054 return; 1055 } 1056 case PPC::ADDItlsgdL: 1057 // Transform: %xd = ADDItlsgdL %xs, @sym 1058 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1059 case PPC::ADDItlsgdL32: { 1060 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1061 // Into: %rd = ADDI %rs, sym@got@tlsgd 1062 const MachineOperand &MO = MI->getOperand(2); 1063 const GlobalValue *GValue = MO.getGlobal(); 1064 MCSymbol *MOSymbol = getSymbol(GValue); 1065 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1066 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1067 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1068 OutContext); 1069 EmitToStreamer(*OutStreamer, 1070 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1071 .addReg(MI->getOperand(0).getReg()) 1072 .addReg(MI->getOperand(1).getReg()) 1073 .addExpr(SymGotTlsGD)); 1074 return; 1075 } 1076 case PPC::GETtlsADDR: 1077 // Transform: %x3 = GETtlsADDR %x3, @sym 1078 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1079 case PPC::GETtlsADDR32: { 1080 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1081 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1082 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1083 return; 1084 } 1085 case PPC::ADDIStlsldHA: { 1086 // Transform: %xd = ADDIStlsldHA %x2, @sym 1087 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1088 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1089 const MachineOperand &MO = MI->getOperand(2); 1090 const GlobalValue *GValue = MO.getGlobal(); 1091 MCSymbol *MOSymbol = getSymbol(GValue); 1092 const MCExpr *SymGotTlsLD = 1093 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1094 OutContext); 1095 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1096 .addReg(MI->getOperand(0).getReg()) 1097 .addReg(MI->getOperand(1).getReg()) 1098 .addExpr(SymGotTlsLD)); 1099 return; 1100 } 1101 case PPC::ADDItlsldL: 1102 // Transform: %xd = ADDItlsldL %xs, @sym 1103 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1104 case PPC::ADDItlsldL32: { 1105 // Transform: %rd = ADDItlsldL32 %rs, @sym 1106 // Into: %rd = ADDI %rs, sym@got@tlsld 1107 const MachineOperand &MO = MI->getOperand(2); 1108 const GlobalValue *GValue = MO.getGlobal(); 1109 MCSymbol *MOSymbol = getSymbol(GValue); 1110 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1111 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1112 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1113 OutContext); 1114 EmitToStreamer(*OutStreamer, 1115 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1116 .addReg(MI->getOperand(0).getReg()) 1117 .addReg(MI->getOperand(1).getReg()) 1118 .addExpr(SymGotTlsLD)); 1119 return; 1120 } 1121 case PPC::GETtlsldADDR: 1122 // Transform: %x3 = GETtlsldADDR %x3, @sym 1123 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1124 case PPC::GETtlsldADDR32: { 1125 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1126 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1127 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1128 return; 1129 } 1130 case PPC::ADDISdtprelHA: 1131 // Transform: %xd = ADDISdtprelHA %xs, @sym 1132 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1133 case PPC::ADDISdtprelHA32: { 1134 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1135 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1136 const MachineOperand &MO = MI->getOperand(2); 1137 const GlobalValue *GValue = MO.getGlobal(); 1138 MCSymbol *MOSymbol = getSymbol(GValue); 1139 const MCExpr *SymDtprel = 1140 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1141 OutContext); 1142 EmitToStreamer( 1143 *OutStreamer, 1144 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1145 .addReg(MI->getOperand(0).getReg()) 1146 .addReg(MI->getOperand(1).getReg()) 1147 .addExpr(SymDtprel)); 1148 return; 1149 } 1150 case PPC::PADDIdtprel: { 1151 // Transform: %rd = PADDIdtprel %rs, @sym 1152 // Into: %rd = PADDI8 %rs, sym@dtprel 1153 const MachineOperand &MO = MI->getOperand(2); 1154 const GlobalValue *GValue = MO.getGlobal(); 1155 MCSymbol *MOSymbol = getSymbol(GValue); 1156 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1157 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1158 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1159 .addReg(MI->getOperand(0).getReg()) 1160 .addReg(MI->getOperand(1).getReg()) 1161 .addExpr(SymDtprel)); 1162 return; 1163 } 1164 1165 case PPC::ADDIdtprelL: 1166 // Transform: %xd = ADDIdtprelL %xs, @sym 1167 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1168 case PPC::ADDIdtprelL32: { 1169 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1170 // Into: %rd = ADDI %rs, sym@dtprel@l 1171 const MachineOperand &MO = MI->getOperand(2); 1172 const GlobalValue *GValue = MO.getGlobal(); 1173 MCSymbol *MOSymbol = getSymbol(GValue); 1174 const MCExpr *SymDtprel = 1175 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1176 OutContext); 1177 EmitToStreamer(*OutStreamer, 1178 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1179 .addReg(MI->getOperand(0).getReg()) 1180 .addReg(MI->getOperand(1).getReg()) 1181 .addExpr(SymDtprel)); 1182 return; 1183 } 1184 case PPC::MFOCRF: 1185 case PPC::MFOCRF8: 1186 if (!Subtarget->hasMFOCRF()) { 1187 // Transform: %r3 = MFOCRF %cr7 1188 // Into: %r3 = MFCR ;; cr7 1189 unsigned NewOpcode = 1190 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1191 OutStreamer->AddComment(PPCInstPrinter:: 1192 getRegisterName(MI->getOperand(1).getReg())); 1193 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1194 .addReg(MI->getOperand(0).getReg())); 1195 return; 1196 } 1197 break; 1198 case PPC::MTOCRF: 1199 case PPC::MTOCRF8: 1200 if (!Subtarget->hasMFOCRF()) { 1201 // Transform: %cr7 = MTOCRF %r3 1202 // Into: MTCRF mask, %r3 ;; cr7 1203 unsigned NewOpcode = 1204 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1205 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1206 ->getEncodingValue(MI->getOperand(0).getReg()); 1207 OutStreamer->AddComment(PPCInstPrinter:: 1208 getRegisterName(MI->getOperand(0).getReg())); 1209 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1210 .addImm(Mask) 1211 .addReg(MI->getOperand(1).getReg())); 1212 return; 1213 } 1214 break; 1215 case PPC::LD: 1216 case PPC::STD: 1217 case PPC::LWA_32: 1218 case PPC::LWA: { 1219 // Verify alignment is legal, so we don't create relocations 1220 // that can't be supported. 1221 // FIXME: This test is currently disabled for Darwin. The test 1222 // suite shows a handful of test cases that fail this check for 1223 // Darwin. Those need to be investigated before this sanity test 1224 // can be enabled for those subtargets. 1225 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1226 const MachineOperand &MO = MI->getOperand(OpNum); 1227 if (MO.isGlobal()) { 1228 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1229 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1230 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1231 } 1232 // Now process the instruction normally. 1233 break; 1234 } 1235 } 1236 1237 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1238 EmitToStreamer(*OutStreamer, TmpInst); 1239 } 1240 1241 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1242 if (!Subtarget->isPPC64()) 1243 return PPCAsmPrinter::emitInstruction(MI); 1244 1245 switch (MI->getOpcode()) { 1246 default: 1247 return PPCAsmPrinter::emitInstruction(MI); 1248 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1249 // .begin: 1250 // b .end # lis 0, FuncId[16..32] 1251 // nop # li 0, FuncId[0..15] 1252 // std 0, -8(1) 1253 // mflr 0 1254 // bl __xray_FunctionEntry 1255 // mtlr 0 1256 // .end: 1257 // 1258 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1259 // of instructions change. 1260 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1261 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1262 OutStreamer->emitLabel(BeginOfSled); 1263 EmitToStreamer(*OutStreamer, 1264 MCInstBuilder(PPC::B).addExpr( 1265 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1266 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1267 EmitToStreamer( 1268 *OutStreamer, 1269 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1270 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1271 EmitToStreamer(*OutStreamer, 1272 MCInstBuilder(PPC::BL8_NOP) 1273 .addExpr(MCSymbolRefExpr::create( 1274 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1275 OutContext))); 1276 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1277 OutStreamer->emitLabel(EndOfSled); 1278 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1279 break; 1280 } 1281 case TargetOpcode::PATCHABLE_RET: { 1282 unsigned RetOpcode = MI->getOperand(0).getImm(); 1283 MCInst RetInst; 1284 RetInst.setOpcode(RetOpcode); 1285 for (const auto &MO : 1286 make_range(std::next(MI->operands_begin()), MI->operands_end())) { 1287 MCOperand MCOp; 1288 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1289 RetInst.addOperand(MCOp); 1290 } 1291 1292 bool IsConditional; 1293 if (RetOpcode == PPC::BCCLR) { 1294 IsConditional = true; 1295 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1296 RetOpcode == PPC::TCRETURNai8) { 1297 break; 1298 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1299 IsConditional = false; 1300 } else { 1301 EmitToStreamer(*OutStreamer, RetInst); 1302 break; 1303 } 1304 1305 MCSymbol *FallthroughLabel; 1306 if (IsConditional) { 1307 // Before: 1308 // bgtlr cr0 1309 // 1310 // After: 1311 // ble cr0, .end 1312 // .p2align 3 1313 // .begin: 1314 // blr # lis 0, FuncId[16..32] 1315 // nop # li 0, FuncId[0..15] 1316 // std 0, -8(1) 1317 // mflr 0 1318 // bl __xray_FunctionExit 1319 // mtlr 0 1320 // blr 1321 // .end: 1322 // 1323 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1324 // of instructions change. 1325 FallthroughLabel = OutContext.createTempSymbol(); 1326 EmitToStreamer( 1327 *OutStreamer, 1328 MCInstBuilder(PPC::BCC) 1329 .addImm(PPC::InvertPredicate( 1330 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1331 .addReg(MI->getOperand(2).getReg()) 1332 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1333 RetInst = MCInst(); 1334 RetInst.setOpcode(PPC::BLR8); 1335 } 1336 // .p2align 3 1337 // .begin: 1338 // b(lr)? # lis 0, FuncId[16..32] 1339 // nop # li 0, FuncId[0..15] 1340 // std 0, -8(1) 1341 // mflr 0 1342 // bl __xray_FunctionExit 1343 // mtlr 0 1344 // b(lr)? 1345 // 1346 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1347 // of instructions change. 1348 OutStreamer->emitCodeAlignment(8); 1349 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1350 OutStreamer->emitLabel(BeginOfSled); 1351 EmitToStreamer(*OutStreamer, RetInst); 1352 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1353 EmitToStreamer( 1354 *OutStreamer, 1355 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1356 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1357 EmitToStreamer(*OutStreamer, 1358 MCInstBuilder(PPC::BL8_NOP) 1359 .addExpr(MCSymbolRefExpr::create( 1360 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1361 OutContext))); 1362 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1363 EmitToStreamer(*OutStreamer, RetInst); 1364 if (IsConditional) 1365 OutStreamer->emitLabel(FallthroughLabel); 1366 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1367 break; 1368 } 1369 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1370 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1371 case TargetOpcode::PATCHABLE_TAIL_CALL: 1372 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1373 // normal function exit from a tail exit. 1374 llvm_unreachable("Tail call is handled in the normal case. See comments " 1375 "around this assert."); 1376 } 1377 } 1378 1379 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1380 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1381 PPCTargetStreamer *TS = 1382 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1383 1384 if (TS) 1385 TS->emitAbiVersion(2); 1386 } 1387 1388 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1389 !isPositionIndependent()) 1390 return AsmPrinter::emitStartOfAsmFile(M); 1391 1392 if (M.getPICLevel() == PICLevel::SmallPIC) 1393 return AsmPrinter::emitStartOfAsmFile(M); 1394 1395 OutStreamer->SwitchSection(OutContext.getELFSection( 1396 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1397 1398 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1399 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1400 1401 OutStreamer->emitLabel(CurrentPos); 1402 1403 // The GOT pointer points to the middle of the GOT, in order to reference the 1404 // entire 64kB range. 0x8000 is the midpoint. 1405 const MCExpr *tocExpr = 1406 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1407 MCConstantExpr::create(0x8000, OutContext), 1408 OutContext); 1409 1410 OutStreamer->emitAssignment(TOCSym, tocExpr); 1411 1412 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1413 } 1414 1415 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1416 // linux/ppc32 - Normal entry label. 1417 if (!Subtarget->isPPC64() && 1418 (!isPositionIndependent() || 1419 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1420 return AsmPrinter::emitFunctionEntryLabel(); 1421 1422 if (!Subtarget->isPPC64()) { 1423 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1424 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1425 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1426 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1427 OutStreamer->emitLabel(RelocSymbol); 1428 1429 const MCExpr *OffsExpr = 1430 MCBinaryExpr::createSub( 1431 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1432 OutContext), 1433 MCSymbolRefExpr::create(PICBase, OutContext), 1434 OutContext); 1435 OutStreamer->emitValue(OffsExpr, 4); 1436 OutStreamer->emitLabel(CurrentFnSym); 1437 return; 1438 } else 1439 return AsmPrinter::emitFunctionEntryLabel(); 1440 } 1441 1442 // ELFv2 ABI - Normal entry label. 1443 if (Subtarget->isELFv2ABI()) { 1444 // In the Large code model, we allow arbitrary displacements between 1445 // the text section and its associated TOC section. We place the 1446 // full 8-byte offset to the TOC in memory immediately preceding 1447 // the function global entry point. 1448 if (TM.getCodeModel() == CodeModel::Large 1449 && !MF->getRegInfo().use_empty(PPC::X2)) { 1450 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1451 1452 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1453 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1454 const MCExpr *TOCDeltaExpr = 1455 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1456 MCSymbolRefExpr::create(GlobalEPSymbol, 1457 OutContext), 1458 OutContext); 1459 1460 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1461 OutStreamer->emitValue(TOCDeltaExpr, 8); 1462 } 1463 return AsmPrinter::emitFunctionEntryLabel(); 1464 } 1465 1466 // Emit an official procedure descriptor. 1467 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1468 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1469 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1470 OutStreamer->SwitchSection(Section); 1471 OutStreamer->emitLabel(CurrentFnSym); 1472 OutStreamer->emitValueToAlignment(8); 1473 MCSymbol *Symbol1 = CurrentFnSymForSize; 1474 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1475 // entry point. 1476 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1477 8 /*size*/); 1478 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1479 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1480 OutStreamer->emitValue( 1481 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1482 8/*size*/); 1483 // Emit a null environment pointer. 1484 OutStreamer->emitIntValue(0, 8 /* size */); 1485 OutStreamer->SwitchSection(Current.first, Current.second); 1486 } 1487 1488 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1489 const DataLayout &DL = getDataLayout(); 1490 1491 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1492 1493 PPCTargetStreamer *TS = 1494 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1495 1496 if (!TOC.empty()) { 1497 const char *Name = isPPC64 ? ".toc" : ".got2"; 1498 MCSectionELF *Section = OutContext.getELFSection( 1499 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1500 OutStreamer->SwitchSection(Section); 1501 if (!isPPC64) 1502 OutStreamer->emitValueToAlignment(4); 1503 1504 for (const auto &TOCMapPair : TOC) { 1505 const MCSymbol *const TOCEntryTarget = TOCMapPair.first; 1506 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1507 1508 OutStreamer->emitLabel(TOCEntryLabel); 1509 if (isPPC64 && TS != nullptr) 1510 TS->emitTCEntry(*TOCEntryTarget); 1511 else 1512 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1513 } 1514 } 1515 1516 PPCAsmPrinter::emitEndOfAsmFile(M); 1517 } 1518 1519 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1520 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1521 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1522 // provide two entry points. The ABI guarantees that when calling the 1523 // local entry point, r2 is set up by the caller to contain the TOC base 1524 // for this function, and when calling the global entry point, r12 is set 1525 // up by the caller to hold the address of the global entry point. We 1526 // thus emit a prefix sequence along the following lines: 1527 // 1528 // func: 1529 // .Lfunc_gepNN: 1530 // # global entry point 1531 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1532 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1533 // .Lfunc_lepNN: 1534 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1535 // # local entry point, followed by function body 1536 // 1537 // For the Large code model, we create 1538 // 1539 // .Lfunc_tocNN: 1540 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1541 // func: 1542 // .Lfunc_gepNN: 1543 // # global entry point 1544 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1545 // add r2,r2,r12 1546 // .Lfunc_lepNN: 1547 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1548 // # local entry point, followed by function body 1549 // 1550 // This ensures we have r2 set up correctly while executing the function 1551 // body, no matter which entry point is called. 1552 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1553 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1554 !MF->getRegInfo().use_empty(PPC::R2); 1555 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1556 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1557 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1558 Subtarget->isELFv2ABI() && UsesX2OrR2; 1559 1560 // Only do all that if the function uses R2 as the TOC pointer 1561 // in the first place. We don't need the global entry point if the 1562 // function uses R2 as an allocatable register. 1563 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1564 // Note: The logic here must be synchronized with the code in the 1565 // branch-selection pass which sets the offset of the first block in the 1566 // function. This matters because it affects the alignment. 1567 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1568 OutStreamer->emitLabel(GlobalEntryLabel); 1569 const MCSymbolRefExpr *GlobalEntryLabelExp = 1570 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1571 1572 if (TM.getCodeModel() != CodeModel::Large) { 1573 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1574 const MCExpr *TOCDeltaExpr = 1575 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1576 GlobalEntryLabelExp, OutContext); 1577 1578 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1579 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1580 .addReg(PPC::X2) 1581 .addReg(PPC::X12) 1582 .addExpr(TOCDeltaHi)); 1583 1584 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1585 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1586 .addReg(PPC::X2) 1587 .addReg(PPC::X2) 1588 .addExpr(TOCDeltaLo)); 1589 } else { 1590 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1591 const MCExpr *TOCOffsetDeltaExpr = 1592 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1593 GlobalEntryLabelExp, OutContext); 1594 1595 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1596 .addReg(PPC::X2) 1597 .addExpr(TOCOffsetDeltaExpr) 1598 .addReg(PPC::X12)); 1599 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1600 .addReg(PPC::X2) 1601 .addReg(PPC::X2) 1602 .addReg(PPC::X12)); 1603 } 1604 1605 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1606 OutStreamer->emitLabel(LocalEntryLabel); 1607 const MCSymbolRefExpr *LocalEntryLabelExp = 1608 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1609 const MCExpr *LocalOffsetExp = 1610 MCBinaryExpr::createSub(LocalEntryLabelExp, 1611 GlobalEntryLabelExp, OutContext); 1612 1613 PPCTargetStreamer *TS = 1614 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1615 1616 if (TS) 1617 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1618 } else if (Subtarget->isUsingPCRelativeCalls()) { 1619 // When generating the entry point for a function we have a few scenarios 1620 // based on whether or not that function uses R2 and whether or not that 1621 // function makes calls (or is a leaf function). 1622 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1623 // and preserves it). In this case st_other=0 and both 1624 // the local and global entry points for the function are the same. 1625 // No special entry point code is required. 1626 // 2) A function uses the TOC pointer R2. This function may or may not have 1627 // calls. In this case st_other=[2,6] and the global and local entry 1628 // points are different. Code to correctly setup the TOC pointer in R2 1629 // is put between the global and local entry points. This case is 1630 // covered by the if statatement above. 1631 // 3) A function does not use the TOC pointer R2 but does have calls. 1632 // In this case st_other=1 since we do not know whether or not any 1633 // of the callees clobber R2. This case is dealt with in this else if 1634 // block. Tail calls are considered calls and the st_other should also 1635 // be set to 1 in that case as well. 1636 // 4) The function does not use the TOC pointer but R2 is used inside 1637 // the function. In this case st_other=1 once again. 1638 // 5) This function uses inline asm. We mark R2 as reserved if the function 1639 // has inline asm as we have to assume that it may be used. 1640 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1641 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1642 PPCTargetStreamer *TS = 1643 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1644 if (TS) 1645 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1646 MCConstantExpr::create(1, OutContext)); 1647 } 1648 } 1649 } 1650 1651 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1652 /// directive. 1653 /// 1654 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1655 // Only the 64-bit target requires a traceback table. For now, 1656 // we only emit the word of zeroes that GDB requires to find 1657 // the end of the function, and zeroes for the eight-byte 1658 // mandatory fields. 1659 // FIXME: We should fill in the eight-byte mandatory fields as described in 1660 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1661 // currently make use of these fields). 1662 if (Subtarget->isPPC64()) { 1663 OutStreamer->emitIntValue(0, 4/*size*/); 1664 OutStreamer->emitIntValue(0, 8/*size*/); 1665 } 1666 } 1667 1668 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1669 MCSymbol *GVSym) const { 1670 1671 assert(MAI->hasVisibilityOnlyWithLinkage() && 1672 "AIX's linkage directives take a visibility setting."); 1673 1674 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1675 switch (GV->getLinkage()) { 1676 case GlobalValue::ExternalLinkage: 1677 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1678 break; 1679 case GlobalValue::LinkOnceAnyLinkage: 1680 case GlobalValue::LinkOnceODRLinkage: 1681 case GlobalValue::WeakAnyLinkage: 1682 case GlobalValue::WeakODRLinkage: 1683 case GlobalValue::ExternalWeakLinkage: 1684 LinkageAttr = MCSA_Weak; 1685 break; 1686 case GlobalValue::AvailableExternallyLinkage: 1687 LinkageAttr = MCSA_Extern; 1688 break; 1689 case GlobalValue::PrivateLinkage: 1690 return; 1691 case GlobalValue::InternalLinkage: 1692 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1693 "InternalLinkage should not have other visibility setting."); 1694 LinkageAttr = MCSA_LGlobal; 1695 break; 1696 case GlobalValue::AppendingLinkage: 1697 llvm_unreachable("Should never emit this"); 1698 case GlobalValue::CommonLinkage: 1699 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1700 } 1701 1702 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1703 1704 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1705 if (!TM.getIgnoreXCOFFVisibility()) { 1706 switch (GV->getVisibility()) { 1707 1708 // TODO: "exported" and "internal" Visibility needs to go here. 1709 case GlobalValue::DefaultVisibility: 1710 break; 1711 case GlobalValue::HiddenVisibility: 1712 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1713 break; 1714 case GlobalValue::ProtectedVisibility: 1715 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1716 break; 1717 } 1718 } 1719 1720 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1721 VisibilityAttr); 1722 } 1723 1724 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1725 // Setup CurrentFnDescSym and its containing csect. 1726 MCSectionXCOFF *FnDescSec = 1727 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1728 &MF.getFunction(), TM)); 1729 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1730 1731 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1732 1733 return AsmPrinter::SetupMachineFunction(MF); 1734 } 1735 1736 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 1737 // Early error checking limiting what is supported. 1738 if (GV->isThreadLocal()) 1739 report_fatal_error("Thread local not yet supported on AIX."); 1740 1741 if (GV->hasComdat()) 1742 report_fatal_error("COMDAT not yet supported by AIX."); 1743 } 1744 1745 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 1746 return GV->hasAppendingLinkage() && 1747 StringSwitch<bool>(GV->getName()) 1748 // TODO: Linker could still eliminate the GV if we just skip 1749 // handling llvm.used array. Skipping them for now until we or the 1750 // AIX OS team come up with a good solution. 1751 .Case("llvm.used", true) 1752 // It's correct to just skip llvm.compiler.used array here. 1753 .Case("llvm.compiler.used", true) 1754 .Default(false); 1755 } 1756 1757 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 1758 return StringSwitch<bool>(GV->getName()) 1759 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 1760 .Default(false); 1761 } 1762 1763 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 1764 // Special LLVM global arrays have been handled at the initialization. 1765 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 1766 return; 1767 1768 assert(!GV->getName().startswith("llvm.") && 1769 "Unhandled intrinsic global variable."); 1770 ValidateGV(GV); 1771 1772 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 1773 1774 if (GV->isDeclarationForLinker()) { 1775 emitLinkage(GV, GVSym); 1776 return; 1777 } 1778 1779 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 1780 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 1781 report_fatal_error("Encountered a global variable kind that is " 1782 "not supported yet."); 1783 1784 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1785 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 1786 1787 // Switch to the containing csect. 1788 OutStreamer->SwitchSection(Csect); 1789 1790 const DataLayout &DL = GV->getParent()->getDataLayout(); 1791 1792 // Handle common symbols. 1793 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 1794 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 1795 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 1796 GVSym->setStorageClass( 1797 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 1798 1799 if (GVKind.isBSSLocal()) 1800 OutStreamer->emitXCOFFLocalCommonSymbol( 1801 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 1802 GVSym, Alignment.value()); 1803 else 1804 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 1805 return; 1806 } 1807 1808 MCSymbol *EmittedInitSym = GVSym; 1809 emitLinkage(GV, EmittedInitSym); 1810 emitAlignment(getGVAlignment(GV, DL), GV); 1811 1812 // When -fdata-sections is enabled, every GlobalVariable will 1813 // be put into its own csect; therefore, label is not necessary here. 1814 if (!TM.getDataSections() || GV->hasSection()) { 1815 OutStreamer->emitLabel(EmittedInitSym); 1816 } 1817 1818 // Emit aliasing label for global variable. 1819 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 1820 OutStreamer->emitLabel(getSymbol(Alias)); 1821 }); 1822 1823 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 1824 } 1825 1826 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 1827 const DataLayout &DL = getDataLayout(); 1828 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 1829 1830 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1831 // Emit function descriptor. 1832 OutStreamer->SwitchSection( 1833 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 1834 1835 // Emit aliasing label for function descriptor csect. 1836 llvm::for_each(GOAliasMap[&MF->getFunction()], 1837 [this](const GlobalAlias *Alias) { 1838 OutStreamer->emitLabel(getSymbol(Alias)); 1839 }); 1840 1841 // Emit function entry point address. 1842 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 1843 PointerSize); 1844 // Emit TOC base address. 1845 const MCSymbol *TOCBaseSym = 1846 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 1847 ->getQualNameSymbol(); 1848 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 1849 PointerSize); 1850 // Emit a null environment pointer. 1851 OutStreamer->emitIntValue(0, PointerSize); 1852 1853 OutStreamer->SwitchSection(Current.first, Current.second); 1854 } 1855 1856 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 1857 // It's not necessary to emit the label when we have individual 1858 // function in its own csect. 1859 if (!TM.getFunctionSections()) 1860 PPCAsmPrinter::emitFunctionEntryLabel(); 1861 1862 // Emit aliasing label for function entry point label. 1863 llvm::for_each( 1864 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 1865 OutStreamer->emitLabel( 1866 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 1867 }); 1868 } 1869 1870 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 1871 // If there are no functions in this module, we will never need to reference 1872 // the TOC base. 1873 if (M.empty()) 1874 return; 1875 1876 // Switch to section to emit TOC base. 1877 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 1878 1879 PPCTargetStreamer *TS = 1880 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1881 1882 for (auto &I : TOC) { 1883 // Setup the csect for the current TC entry. 1884 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 1885 getObjFileLowering().getSectionForTOCEntry(I.first, TM)); 1886 OutStreamer->SwitchSection(TCEntry); 1887 1888 OutStreamer->emitLabel(I.second); 1889 if (TS != nullptr) 1890 TS->emitTCEntry(*I.first); 1891 } 1892 } 1893 1894 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 1895 const bool Result = PPCAsmPrinter::doInitialization(M); 1896 1897 auto setCsectAlignment = [this](const GlobalObject *GO) { 1898 // Declarations have 0 alignment which is set by default. 1899 if (GO->isDeclarationForLinker()) 1900 return; 1901 1902 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 1903 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1904 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 1905 1906 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 1907 if (GOAlign > Csect->getAlignment()) 1908 Csect->setAlignment(GOAlign); 1909 }; 1910 1911 // We need to know, up front, the alignment of csects for the assembly path, 1912 // because once a .csect directive gets emitted, we could not change the 1913 // alignment value on it. 1914 for (const auto &G : M.globals()) { 1915 if (isSpecialLLVMGlobalArrayToSkip(&G)) 1916 continue; 1917 1918 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 1919 // Generate a format indicator and a unique module id to be a part of 1920 // the sinit and sterm function names. 1921 if (FormatIndicatorAndUniqueModId.empty()) { 1922 std::string UniqueModuleId = getUniqueModuleId(&M); 1923 if (UniqueModuleId.compare("") != 0) 1924 // TODO: Use source file full path to generate the unique module id 1925 // and add a format indicator as a part of function name in case we 1926 // will support more than one format. 1927 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 1928 else 1929 // Use the Pid and current time as the unique module id when we cannot 1930 // generate one based on a module's strong external symbols. 1931 // FIXME: Adjust the comment accordingly after we use source file full 1932 // path instead. 1933 FormatIndicatorAndUniqueModId = 1934 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 1935 "_" + llvm::itostr(time(nullptr)); 1936 } 1937 1938 emitSpecialLLVMGlobal(&G); 1939 continue; 1940 } 1941 1942 setCsectAlignment(&G); 1943 } 1944 1945 for (const auto &F : M) 1946 setCsectAlignment(&F); 1947 1948 // Construct an aliasing list for each GlobalObject. 1949 for (const auto &Alias : M.aliases()) { 1950 const GlobalObject *Base = Alias.getBaseObject(); 1951 if (!Base) 1952 report_fatal_error( 1953 "alias without a base object is not yet supported on AIX"); 1954 GOAliasMap[Base].push_back(&Alias); 1955 } 1956 1957 return Result; 1958 } 1959 1960 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 1961 switch (MI->getOpcode()) { 1962 default: 1963 break; 1964 case PPC::BL8: 1965 case PPC::BL: 1966 case PPC::BL8_NOP: 1967 case PPC::BL_NOP: { 1968 const MachineOperand &MO = MI->getOperand(0); 1969 if (MO.isSymbol()) { 1970 MCSymbolXCOFF *S = 1971 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 1972 ExtSymSDNodeSymbols.insert(S); 1973 } 1974 } break; 1975 case PPC::BL_TLS: 1976 case PPC::BL8_TLS: 1977 case PPC::BL8_TLS_: 1978 case PPC::BL8_NOP_TLS: 1979 report_fatal_error("TLS call not yet implemented"); 1980 case PPC::TAILB: 1981 case PPC::TAILB8: 1982 case PPC::TAILBA: 1983 case PPC::TAILBA8: 1984 case PPC::TAILBCTR: 1985 case PPC::TAILBCTR8: 1986 if (MI->getOperand(0).isSymbol()) 1987 report_fatal_error("Tail call for extern symbol not yet supported."); 1988 break; 1989 } 1990 return PPCAsmPrinter::emitInstruction(MI); 1991 } 1992 1993 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 1994 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 1995 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 1996 return PPCAsmPrinter::doFinalization(M); 1997 } 1998 1999 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2000 const Constant *List, bool IsCtor) { 2001 SmallVector<Structor, 8> Structors; 2002 preprocessXXStructorList(DL, List, Structors); 2003 if (Structors.empty()) 2004 return; 2005 2006 unsigned Index = 0; 2007 for (Structor &S : Structors) { 2008 if (S.Priority != 65535) 2009 report_fatal_error( 2010 "prioritized sinit and sterm functions are not yet supported on AIX"); 2011 2012 llvm::GlobalAlias::create( 2013 GlobalValue::ExternalLinkage, 2014 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2015 llvm::Twine("80000000_", FormatIndicatorAndUniqueModId) + 2016 llvm::Twine("_", llvm::utostr(Index++)), 2017 cast<Function>(S.Func)); 2018 } 2019 } 2020 2021 /// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code 2022 /// for a MachineFunction to the given output stream, in a format that the 2023 /// Darwin assembler can deal with. 2024 /// 2025 static AsmPrinter * 2026 createPPCAsmPrinterPass(TargetMachine &tm, 2027 std::unique_ptr<MCStreamer> &&Streamer) { 2028 if (tm.getTargetTriple().isOSAIX()) 2029 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2030 2031 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2032 } 2033 2034 // Force static initialization. 2035 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2036 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2037 createPPCAsmPrinterPass); 2038 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2039 createPPCAsmPrinterPass); 2040 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2041 createPPCAsmPrinterPass); 2042 } 2043