1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/BinaryFormat/MachO.h" 36 #include "llvm/CodeGen/AsmPrinter.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/MC/MCAsmInfo.h" 50 #include "llvm/MC/MCContext.h" 51 #include "llvm/MC/MCDirectives.h" 52 #include "llvm/MC/MCExpr.h" 53 #include "llvm/MC/MCInst.h" 54 #include "llvm/MC/MCInstBuilder.h" 55 #include "llvm/MC/MCSectionELF.h" 56 #include "llvm/MC/MCSectionMachO.h" 57 #include "llvm/MC/MCSectionXCOFF.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCSymbolELF.h" 61 #include "llvm/MC/MCSymbolXCOFF.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/Process.h" 68 #include "llvm/Support/TargetRegistry.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Transforms/Utils/ModuleUtils.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <new> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "asmprinter" 81 82 namespace { 83 84 class PPCAsmPrinter : public AsmPrinter { 85 protected: 86 MapVector<const MCSymbol *, MCSymbol *> TOC; 87 const PPCSubtarget *Subtarget = nullptr; 88 StackMaps SM; 89 90 public: 91 explicit PPCAsmPrinter(TargetMachine &TM, 92 std::unique_ptr<MCStreamer> Streamer) 93 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 94 95 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 96 97 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym); 98 99 bool doInitialization(Module &M) override { 100 if (!TOC.empty()) 101 TOC.clear(); 102 return AsmPrinter::doInitialization(M); 103 } 104 105 void emitInstruction(const MachineInstr *MI) override; 106 107 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 108 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 109 /// The \p MI would be INLINEASM ONLY. 110 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 111 112 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 113 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 114 const char *ExtraCode, raw_ostream &O) override; 115 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 116 const char *ExtraCode, raw_ostream &O) override; 117 118 void emitEndOfAsmFile(Module &M) override; 119 120 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 121 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 122 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 123 bool runOnMachineFunction(MachineFunction &MF) override { 124 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 125 bool Changed = AsmPrinter::runOnMachineFunction(MF); 126 emitXRayTable(); 127 return Changed; 128 } 129 }; 130 131 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 132 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 133 public: 134 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 135 std::unique_ptr<MCStreamer> Streamer) 136 : PPCAsmPrinter(TM, std::move(Streamer)) {} 137 138 StringRef getPassName() const override { 139 return "Linux PPC Assembly Printer"; 140 } 141 142 void emitStartOfAsmFile(Module &M) override; 143 void emitEndOfAsmFile(Module &) override; 144 145 void emitFunctionEntryLabel() override; 146 147 void emitFunctionBodyStart() override; 148 void emitFunctionBodyEnd() override; 149 void emitInstruction(const MachineInstr *MI) override; 150 }; 151 152 class PPCAIXAsmPrinter : public PPCAsmPrinter { 153 private: 154 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 155 /// linkage for them in AIX. 156 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 157 158 /// A format indicator and unique trailing identifier to form part of the 159 /// sinit/sterm function names. 160 std::string FormatIndicatorAndUniqueModId; 161 162 static void ValidateGV(const GlobalVariable *GV); 163 // Record a list of GlobalAlias associated with a GlobalObject. 164 // This is used for AIX's extra-label-at-definition aliasing strategy. 165 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 166 GOAliasMap; 167 168 public: 169 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 170 : PPCAsmPrinter(TM, std::move(Streamer)) { 171 if (MAI->isLittleEndian()) 172 report_fatal_error( 173 "cannot create AIX PPC Assembly Printer for a little-endian target"); 174 } 175 176 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 177 178 bool doInitialization(Module &M) override; 179 180 void emitXXStructorList(const DataLayout &DL, const Constant *List, 181 bool IsCtor) override; 182 183 void SetupMachineFunction(MachineFunction &MF) override; 184 185 void emitGlobalVariable(const GlobalVariable *GV) override; 186 187 void emitFunctionDescriptor() override; 188 189 void emitFunctionEntryLabel() override; 190 191 void emitEndOfAsmFile(Module &) override; 192 193 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 194 195 void emitInstruction(const MachineInstr *MI) override; 196 197 bool doFinalization(Module &M) override; 198 }; 199 200 } // end anonymous namespace 201 202 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 203 raw_ostream &O) { 204 // Computing the address of a global symbol, not calling it. 205 const GlobalValue *GV = MO.getGlobal(); 206 getSymbol(GV)->print(O, MAI); 207 printOffset(MO.getOffset(), O); 208 } 209 210 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 211 raw_ostream &O) { 212 const DataLayout &DL = getDataLayout(); 213 const MachineOperand &MO = MI->getOperand(OpNo); 214 215 switch (MO.getType()) { 216 case MachineOperand::MO_Register: { 217 // The MI is INLINEASM ONLY and UseVSXReg is always false. 218 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 219 220 // Linux assembler (Others?) does not take register mnemonics. 221 // FIXME - What about special registers used in mfspr/mtspr? 222 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 223 return; 224 } 225 case MachineOperand::MO_Immediate: 226 O << MO.getImm(); 227 return; 228 229 case MachineOperand::MO_MachineBasicBlock: 230 MO.getMBB()->getSymbol()->print(O, MAI); 231 return; 232 case MachineOperand::MO_ConstantPoolIndex: 233 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 234 << MO.getIndex(); 235 return; 236 case MachineOperand::MO_BlockAddress: 237 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 238 return; 239 case MachineOperand::MO_GlobalAddress: { 240 PrintSymbolOperand(MO, O); 241 return; 242 } 243 244 default: 245 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 246 return; 247 } 248 } 249 250 /// PrintAsmOperand - Print out an operand for an inline asm expression. 251 /// 252 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 253 const char *ExtraCode, raw_ostream &O) { 254 // Does this asm operand have a single letter operand modifier? 255 if (ExtraCode && ExtraCode[0]) { 256 if (ExtraCode[1] != 0) return true; // Unknown modifier. 257 258 switch (ExtraCode[0]) { 259 default: 260 // See if this is a generic print operand 261 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 262 case 'L': // Write second word of DImode reference. 263 // Verify that this operand has two consecutive registers. 264 if (!MI->getOperand(OpNo).isReg() || 265 OpNo+1 == MI->getNumOperands() || 266 !MI->getOperand(OpNo+1).isReg()) 267 return true; 268 ++OpNo; // Return the high-part. 269 break; 270 case 'I': 271 // Write 'i' if an integer constant, otherwise nothing. Used to print 272 // addi vs add, etc. 273 if (MI->getOperand(OpNo).isImm()) 274 O << "i"; 275 return false; 276 case 'x': 277 if(!MI->getOperand(OpNo).isReg()) 278 return true; 279 // This operand uses VSX numbering. 280 // If the operand is a VMX register, convert it to a VSX register. 281 Register Reg = MI->getOperand(OpNo).getReg(); 282 if (PPCInstrInfo::isVRRegister(Reg)) 283 Reg = PPC::VSX32 + (Reg - PPC::V0); 284 else if (PPCInstrInfo::isVFRegister(Reg)) 285 Reg = PPC::VSX32 + (Reg - PPC::VF0); 286 const char *RegName; 287 RegName = PPCInstPrinter::getRegisterName(Reg); 288 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 289 O << RegName; 290 return false; 291 } 292 } 293 294 printOperand(MI, OpNo, O); 295 return false; 296 } 297 298 // At the moment, all inline asm memory operands are a single register. 299 // In any case, the output of this routine should always be just one 300 // assembler operand. 301 302 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 303 const char *ExtraCode, 304 raw_ostream &O) { 305 if (ExtraCode && ExtraCode[0]) { 306 if (ExtraCode[1] != 0) return true; // Unknown modifier. 307 308 switch (ExtraCode[0]) { 309 default: return true; // Unknown modifier. 310 case 'L': // A memory reference to the upper word of a double word op. 311 O << getDataLayout().getPointerSize() << "("; 312 printOperand(MI, OpNo, O); 313 O << ")"; 314 return false; 315 case 'y': // A memory reference for an X-form instruction 316 O << "0, "; 317 printOperand(MI, OpNo, O); 318 return false; 319 case 'U': // Print 'u' for update form. 320 case 'X': // Print 'x' for indexed form. 321 // FIXME: Currently for PowerPC memory operands are always loaded 322 // into a register, so we never get an update or indexed form. 323 // This is bad even for offset forms, since even if we know we 324 // have a value in -16(r1), we will generate a load into r<n> 325 // and then load from 0(r<n>). Until that issue is fixed, 326 // tolerate 'U' and 'X' but don't output anything. 327 assert(MI->getOperand(OpNo).isReg()); 328 return false; 329 } 330 } 331 332 assert(MI->getOperand(OpNo).isReg()); 333 O << "0("; 334 printOperand(MI, OpNo, O); 335 O << ")"; 336 return false; 337 } 338 339 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 340 /// exists for it. If not, create one. Then return a symbol that references 341 /// the TOC entry. 342 MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym) { 343 MCSymbol *&TOCEntry = TOC[Sym]; 344 if (!TOCEntry) 345 TOCEntry = createTempSymbol("C"); 346 return TOCEntry; 347 } 348 349 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 350 emitStackMaps(SM); 351 } 352 353 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 354 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 355 356 auto &Ctx = OutStreamer->getContext(); 357 MCSymbol *MILabel = Ctx.createTempSymbol(); 358 OutStreamer->emitLabel(MILabel); 359 360 SM.recordStackMap(*MILabel, MI); 361 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 362 363 // Scan ahead to trim the shadow. 364 const MachineBasicBlock &MBB = *MI.getParent(); 365 MachineBasicBlock::const_iterator MII(MI); 366 ++MII; 367 while (NumNOPBytes > 0) { 368 if (MII == MBB.end() || MII->isCall() || 369 MII->getOpcode() == PPC::DBG_VALUE || 370 MII->getOpcode() == TargetOpcode::PATCHPOINT || 371 MII->getOpcode() == TargetOpcode::STACKMAP) 372 break; 373 ++MII; 374 NumNOPBytes -= 4; 375 } 376 377 // Emit nops. 378 for (unsigned i = 0; i < NumNOPBytes; i += 4) 379 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 380 } 381 382 // Lower a patchpoint of the form: 383 // [<def>], <id>, <numBytes>, <target>, <numArgs> 384 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 385 auto &Ctx = OutStreamer->getContext(); 386 MCSymbol *MILabel = Ctx.createTempSymbol(); 387 OutStreamer->emitLabel(MILabel); 388 389 SM.recordPatchPoint(*MILabel, MI); 390 PatchPointOpers Opers(&MI); 391 392 unsigned EncodedBytes = 0; 393 const MachineOperand &CalleeMO = Opers.getCallTarget(); 394 395 if (CalleeMO.isImm()) { 396 int64_t CallTarget = CalleeMO.getImm(); 397 if (CallTarget) { 398 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 399 "High 16 bits of call target should be zero."); 400 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 401 EncodedBytes = 0; 402 // Materialize the jump address: 403 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 404 .addReg(ScratchReg) 405 .addImm((CallTarget >> 32) & 0xFFFF)); 406 ++EncodedBytes; 407 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 408 .addReg(ScratchReg) 409 .addReg(ScratchReg) 410 .addImm(32).addImm(16)); 411 ++EncodedBytes; 412 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 413 .addReg(ScratchReg) 414 .addReg(ScratchReg) 415 .addImm((CallTarget >> 16) & 0xFFFF)); 416 ++EncodedBytes; 417 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 418 .addReg(ScratchReg) 419 .addReg(ScratchReg) 420 .addImm(CallTarget & 0xFFFF)); 421 422 // Save the current TOC pointer before the remote call. 423 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 424 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 425 .addReg(PPC::X2) 426 .addImm(TOCSaveOffset) 427 .addReg(PPC::X1)); 428 ++EncodedBytes; 429 430 // If we're on ELFv1, then we need to load the actual function pointer 431 // from the function descriptor. 432 if (!Subtarget->isELFv2ABI()) { 433 // Load the new TOC pointer and the function address, but not r11 434 // (needing this is rare, and loading it here would prevent passing it 435 // via a 'nest' parameter. 436 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 437 .addReg(PPC::X2) 438 .addImm(8) 439 .addReg(ScratchReg)); 440 ++EncodedBytes; 441 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 442 .addReg(ScratchReg) 443 .addImm(0) 444 .addReg(ScratchReg)); 445 ++EncodedBytes; 446 } 447 448 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 449 .addReg(ScratchReg)); 450 ++EncodedBytes; 451 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 452 ++EncodedBytes; 453 454 // Restore the TOC pointer after the call. 455 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 456 .addReg(PPC::X2) 457 .addImm(TOCSaveOffset) 458 .addReg(PPC::X1)); 459 ++EncodedBytes; 460 } 461 } else if (CalleeMO.isGlobal()) { 462 const GlobalValue *GValue = CalleeMO.getGlobal(); 463 MCSymbol *MOSymbol = getSymbol(GValue); 464 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 465 466 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 467 .addExpr(SymVar)); 468 EncodedBytes += 2; 469 } 470 471 // Each instruction is 4 bytes. 472 EncodedBytes *= 4; 473 474 // Emit padding. 475 unsigned NumBytes = Opers.getNumPatchBytes(); 476 assert(NumBytes >= EncodedBytes && 477 "Patchpoint can't request size less than the length of a call."); 478 assert((NumBytes - EncodedBytes) % 4 == 0 && 479 "Invalid number of NOP bytes requested!"); 480 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 482 } 483 484 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 485 /// call to __tls_get_addr to the current output stream. 486 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 487 MCSymbolRefExpr::VariantKind VK) { 488 StringRef Name = "__tls_get_addr"; 489 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 490 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 491 unsigned Opcode = PPC::BL8_NOP_TLS; 492 493 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 494 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG) { 495 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 496 Opcode = PPC::BL8_NOTOC_TLS; 497 } 498 const Module *M = MF->getFunction().getParent(); 499 500 assert(MI->getOperand(0).isReg() && 501 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 502 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 503 "GETtls[ld]ADDR[32] must define GPR3"); 504 assert(MI->getOperand(1).isReg() && 505 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 506 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 507 "GETtls[ld]ADDR[32] must read GPR3"); 508 509 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 510 Kind = MCSymbolRefExpr::VK_PLT; 511 512 const MCExpr *TlsRef = 513 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 514 515 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 516 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 517 M->getPICLevel() == PICLevel::BigPIC) 518 TlsRef = MCBinaryExpr::createAdd( 519 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 520 const MachineOperand &MO = MI->getOperand(2); 521 const GlobalValue *GValue = MO.getGlobal(); 522 MCSymbol *MOSymbol = getSymbol(GValue); 523 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 524 EmitToStreamer(*OutStreamer, 525 MCInstBuilder(Subtarget->isPPC64() ? Opcode 526 : (unsigned)PPC::BL_TLS) 527 .addExpr(TlsRef) 528 .addExpr(SymVar)); 529 } 530 531 /// Map a machine operand for a TOC pseudo-machine instruction to its 532 /// corresponding MCSymbol. 533 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 534 AsmPrinter &AP) { 535 switch (MO.getType()) { 536 case MachineOperand::MO_GlobalAddress: 537 return AP.getSymbol(MO.getGlobal()); 538 case MachineOperand::MO_ConstantPoolIndex: 539 return AP.GetCPISymbol(MO.getIndex()); 540 case MachineOperand::MO_JumpTableIndex: 541 return AP.GetJTISymbol(MO.getIndex()); 542 case MachineOperand::MO_BlockAddress: 543 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 544 default: 545 llvm_unreachable("Unexpected operand type to get symbol."); 546 } 547 } 548 549 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 550 /// the current output stream. 551 /// 552 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 553 MCInst TmpInst; 554 const bool IsPPC64 = Subtarget->isPPC64(); 555 const bool IsAIX = Subtarget->isAIXABI(); 556 const Module *M = MF->getFunction().getParent(); 557 PICLevel::Level PL = M->getPICLevel(); 558 559 #ifndef NDEBUG 560 // Validate that SPE and FPU are mutually exclusive in codegen 561 if (!MI->isInlineAsm()) { 562 for (const MachineOperand &MO: MI->operands()) { 563 if (MO.isReg()) { 564 Register Reg = MO.getReg(); 565 if (Subtarget->hasSPE()) { 566 if (PPC::F4RCRegClass.contains(Reg) || 567 PPC::F8RCRegClass.contains(Reg) || 568 PPC::VFRCRegClass.contains(Reg) || 569 PPC::VRRCRegClass.contains(Reg) || 570 PPC::VSFRCRegClass.contains(Reg) || 571 PPC::VSSRCRegClass.contains(Reg) 572 ) 573 llvm_unreachable("SPE targets cannot have FPRegs!"); 574 } else { 575 if (PPC::SPERCRegClass.contains(Reg)) 576 llvm_unreachable("SPE register found in FPU-targeted code!"); 577 } 578 } 579 } 580 } 581 #endif 582 583 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 584 ptrdiff_t OriginalOffset) { 585 // Apply an offset to the TOC-based expression such that the adjusted 586 // notional offset from the TOC base (to be encoded into the instruction's D 587 // or DS field) is the signed 16-bit truncation of the original notional 588 // offset from the TOC base. 589 // This is consistent with the treatment used both by XL C/C++ and 590 // by AIX ld -r. 591 ptrdiff_t Adjustment = 592 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 593 return MCBinaryExpr::createAdd( 594 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 595 }; 596 597 auto getTOCEntryLoadingExprForXCOFF = 598 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 599 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 600 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 601 const auto TOCEntryIter = TOC.find(MOSymbol); 602 assert(TOCEntryIter != TOC.end() && 603 "Could not find the TOC entry for this symbol."); 604 const ptrdiff_t EntryDistanceFromTOCBase = 605 (TOCEntryIter - TOC.begin()) * EntryByteSize; 606 constexpr int16_t PositiveTOCRange = INT16_MAX; 607 608 if (EntryDistanceFromTOCBase > PositiveTOCRange) 609 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 610 611 return Expr; 612 }; 613 614 // Lower multi-instruction pseudo operations. 615 switch (MI->getOpcode()) { 616 default: break; 617 case TargetOpcode::DBG_VALUE: 618 llvm_unreachable("Should be handled target independently"); 619 case TargetOpcode::STACKMAP: 620 return LowerSTACKMAP(SM, *MI); 621 case TargetOpcode::PATCHPOINT: 622 return LowerPATCHPOINT(SM, *MI); 623 624 case PPC::MoveGOTtoLR: { 625 // Transform %lr = MoveGOTtoLR 626 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 627 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 628 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 629 // blrl 630 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 631 MCSymbol *GOTSymbol = 632 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 633 const MCExpr *OffsExpr = 634 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 635 MCSymbolRefExpr::VK_PPC_LOCAL, 636 OutContext), 637 MCConstantExpr::create(4, OutContext), 638 OutContext); 639 640 // Emit the 'bl'. 641 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 642 return; 643 } 644 case PPC::MovePCtoLR: 645 case PPC::MovePCtoLR8: { 646 // Transform %lr = MovePCtoLR 647 // Into this, where the label is the PIC base: 648 // bl L1$pb 649 // L1$pb: 650 MCSymbol *PICBase = MF->getPICBaseSymbol(); 651 652 // Emit the 'bl'. 653 EmitToStreamer(*OutStreamer, 654 MCInstBuilder(PPC::BL) 655 // FIXME: We would like an efficient form for this, so we 656 // don't have to do a lot of extra uniquing. 657 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 658 659 // Emit the label. 660 OutStreamer->emitLabel(PICBase); 661 return; 662 } 663 case PPC::UpdateGBR: { 664 // Transform %rd = UpdateGBR(%rt, %ri) 665 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 666 // add %rd, %rt, %ri 667 // or into (if secure plt mode is on): 668 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 669 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 670 // Get the offset from the GOT Base Register to the GOT 671 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 672 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 673 unsigned PICR = TmpInst.getOperand(0).getReg(); 674 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 675 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 676 : ".LTOC"); 677 const MCExpr *PB = 678 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 679 680 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 681 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 682 683 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 684 EmitToStreamer( 685 *OutStreamer, 686 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 687 688 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 689 EmitToStreamer( 690 *OutStreamer, 691 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 692 return; 693 } else { 694 MCSymbol *PICOffset = 695 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 696 TmpInst.setOpcode(PPC::LWZ); 697 const MCExpr *Exp = 698 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 699 const MCExpr *PB = 700 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 701 MCSymbolRefExpr::VK_None, 702 OutContext); 703 const MCOperand TR = TmpInst.getOperand(1); 704 const MCOperand PICR = TmpInst.getOperand(0); 705 706 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 707 TmpInst.getOperand(1) = 708 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 709 TmpInst.getOperand(0) = TR; 710 TmpInst.getOperand(2) = PICR; 711 EmitToStreamer(*OutStreamer, TmpInst); 712 713 TmpInst.setOpcode(PPC::ADD4); 714 TmpInst.getOperand(0) = PICR; 715 TmpInst.getOperand(1) = TR; 716 TmpInst.getOperand(2) = PICR; 717 EmitToStreamer(*OutStreamer, TmpInst); 718 return; 719 } 720 } 721 case PPC::LWZtoc: { 722 // Transform %rN = LWZtoc @op1, %r2 723 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 724 725 // Change the opcode to LWZ. 726 TmpInst.setOpcode(PPC::LWZ); 727 728 const MachineOperand &MO = MI->getOperand(1); 729 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 730 "Invalid operand for LWZtoc."); 731 732 // Map the operand to its corresponding MCSymbol. 733 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 734 735 // Create a reference to the GOT entry for the symbol. The GOT entry will be 736 // synthesized later. 737 if (PL == PICLevel::SmallPIC && !IsAIX) { 738 const MCExpr *Exp = 739 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 740 OutContext); 741 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 742 EmitToStreamer(*OutStreamer, TmpInst); 743 return; 744 } 745 746 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 747 // storage allocated in the TOC which contains the address of 748 // 'MOSymbol'. Said TOC entry will be synthesized later. 749 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 750 const MCExpr *Exp = 751 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 752 753 // AIX uses the label directly as the lwz displacement operand for 754 // references into the toc section. The displacement value will be generated 755 // relative to the toc-base. 756 if (IsAIX) { 757 assert( 758 TM.getCodeModel() == CodeModel::Small && 759 "This pseudo should only be selected for 32-bit small code model."); 760 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 761 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 762 EmitToStreamer(*OutStreamer, TmpInst); 763 return; 764 } 765 766 // Create an explicit subtract expression between the local symbol and 767 // '.LTOC' to manifest the toc-relative offset. 768 const MCExpr *PB = MCSymbolRefExpr::create( 769 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 770 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 771 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 772 EmitToStreamer(*OutStreamer, TmpInst); 773 return; 774 } 775 case PPC::LDtocJTI: 776 case PPC::LDtocCPT: 777 case PPC::LDtocBA: 778 case PPC::LDtoc: { 779 // Transform %x3 = LDtoc @min1, %x2 780 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 781 782 // Change the opcode to LD. 783 TmpInst.setOpcode(PPC::LD); 784 785 const MachineOperand &MO = MI->getOperand(1); 786 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 787 "Invalid operand!"); 788 789 // Map the operand to its corresponding MCSymbol. 790 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 791 792 // Map the machine operand to its corresponding MCSymbol, then map the 793 // global address operand to be a reference to the TOC entry we will 794 // synthesize later. 795 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 796 797 const MCSymbolRefExpr::VariantKind VK = 798 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 799 const MCExpr *Exp = 800 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 801 TmpInst.getOperand(1) = MCOperand::createExpr( 802 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 803 EmitToStreamer(*OutStreamer, TmpInst); 804 return; 805 } 806 case PPC::ADDIStocHA: { 807 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 808 "This pseudo should only be selected for 32-bit large code model on" 809 " AIX."); 810 811 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 812 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 813 814 // Change the opcode to ADDIS. 815 TmpInst.setOpcode(PPC::ADDIS); 816 817 const MachineOperand &MO = MI->getOperand(2); 818 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 819 "Invalid operand for ADDIStocHA."); 820 821 // Map the machine operand to its corresponding MCSymbol. 822 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 823 824 // Always use TOC on AIX. Map the global address operand to be a reference 825 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 826 // reference the storage allocated in the TOC which contains the address of 827 // 'MOSymbol'. 828 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 829 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 830 MCSymbolRefExpr::VK_PPC_U, 831 OutContext); 832 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 833 EmitToStreamer(*OutStreamer, TmpInst); 834 return; 835 } 836 case PPC::LWZtocL: { 837 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 838 "This pseudo should only be selected for 32-bit large code model on" 839 " AIX."); 840 841 // Transform %rd = LWZtocL @sym, %rs. 842 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 843 844 // Change the opcode to lwz. 845 TmpInst.setOpcode(PPC::LWZ); 846 847 const MachineOperand &MO = MI->getOperand(1); 848 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 849 "Invalid operand for LWZtocL."); 850 851 // Map the machine operand to its corresponding MCSymbol. 852 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 853 854 // Always use TOC on AIX. Map the global address operand to be a reference 855 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 856 // reference the storage allocated in the TOC which contains the address of 857 // 'MOSymbol'. 858 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 859 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 860 MCSymbolRefExpr::VK_PPC_L, 861 OutContext); 862 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 863 EmitToStreamer(*OutStreamer, TmpInst); 864 return; 865 } 866 case PPC::ADDIStocHA8: { 867 // Transform %xd = ADDIStocHA8 %x2, @sym 868 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 869 870 // Change the opcode to ADDIS8. If the global address is the address of 871 // an external symbol, is a jump table address, is a block address, or is a 872 // constant pool index with large code model enabled, then generate a TOC 873 // entry and reference that. Otherwise, reference the symbol directly. 874 TmpInst.setOpcode(PPC::ADDIS8); 875 876 const MachineOperand &MO = MI->getOperand(2); 877 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 878 "Invalid operand for ADDIStocHA8!"); 879 880 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 881 882 const bool GlobalToc = 883 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 884 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 885 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 886 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 887 888 const MCSymbolRefExpr::VariantKind VK = 889 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 890 891 const MCExpr *Exp = 892 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 893 894 if (!MO.isJTI() && MO.getOffset()) 895 Exp = MCBinaryExpr::createAdd(Exp, 896 MCConstantExpr::create(MO.getOffset(), 897 OutContext), 898 OutContext); 899 900 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 901 EmitToStreamer(*OutStreamer, TmpInst); 902 return; 903 } 904 case PPC::LDtocL: { 905 // Transform %xd = LDtocL @sym, %xs 906 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 907 908 // Change the opcode to LD. If the global address is the address of 909 // an external symbol, is a jump table address, is a block address, or is 910 // a constant pool index with large code model enabled, then generate a 911 // TOC entry and reference that. Otherwise, reference the symbol directly. 912 TmpInst.setOpcode(PPC::LD); 913 914 const MachineOperand &MO = MI->getOperand(1); 915 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 916 MO.isBlockAddress()) && 917 "Invalid operand for LDtocL!"); 918 919 LLVM_DEBUG(assert( 920 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 921 "LDtocL used on symbol that could be accessed directly is " 922 "invalid. Must match ADDIStocHA8.")); 923 924 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 925 926 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 927 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 928 929 const MCSymbolRefExpr::VariantKind VK = 930 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 931 const MCExpr *Exp = 932 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 933 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 934 EmitToStreamer(*OutStreamer, TmpInst); 935 return; 936 } 937 case PPC::ADDItocL: { 938 // Transform %xd = ADDItocL %xs, @sym 939 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 940 941 // Change the opcode to ADDI8. If the global address is external, then 942 // generate a TOC entry and reference that. Otherwise, reference the 943 // symbol directly. 944 TmpInst.setOpcode(PPC::ADDI8); 945 946 const MachineOperand &MO = MI->getOperand(2); 947 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 948 949 LLVM_DEBUG(assert( 950 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 951 "Interposable definitions must use indirect access.")); 952 953 const MCExpr *Exp = 954 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 955 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 956 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 957 EmitToStreamer(*OutStreamer, TmpInst); 958 return; 959 } 960 case PPC::ADDISgotTprelHA: { 961 // Transform: %xd = ADDISgotTprelHA %x2, @sym 962 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 963 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 964 const MachineOperand &MO = MI->getOperand(2); 965 const GlobalValue *GValue = MO.getGlobal(); 966 MCSymbol *MOSymbol = getSymbol(GValue); 967 const MCExpr *SymGotTprel = 968 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 969 OutContext); 970 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 971 .addReg(MI->getOperand(0).getReg()) 972 .addReg(MI->getOperand(1).getReg()) 973 .addExpr(SymGotTprel)); 974 return; 975 } 976 case PPC::LDgotTprelL: 977 case PPC::LDgotTprelL32: { 978 // Transform %xd = LDgotTprelL @sym, %xs 979 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 980 981 // Change the opcode to LD. 982 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 983 const MachineOperand &MO = MI->getOperand(1); 984 const GlobalValue *GValue = MO.getGlobal(); 985 MCSymbol *MOSymbol = getSymbol(GValue); 986 const MCExpr *Exp = MCSymbolRefExpr::create( 987 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 988 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 989 OutContext); 990 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 991 EmitToStreamer(*OutStreamer, TmpInst); 992 return; 993 } 994 995 case PPC::PPC32PICGOT: { 996 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 997 MCSymbol *GOTRef = OutContext.createTempSymbol(); 998 MCSymbol *NextInstr = OutContext.createTempSymbol(); 999 1000 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1001 // FIXME: We would like an efficient form for this, so we don't have to do 1002 // a lot of extra uniquing. 1003 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1004 const MCExpr *OffsExpr = 1005 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1006 MCSymbolRefExpr::create(GOTRef, OutContext), 1007 OutContext); 1008 OutStreamer->emitLabel(GOTRef); 1009 OutStreamer->emitValue(OffsExpr, 4); 1010 OutStreamer->emitLabel(NextInstr); 1011 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1012 .addReg(MI->getOperand(0).getReg())); 1013 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1014 .addReg(MI->getOperand(1).getReg()) 1015 .addImm(0) 1016 .addReg(MI->getOperand(0).getReg())); 1017 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1018 .addReg(MI->getOperand(0).getReg()) 1019 .addReg(MI->getOperand(1).getReg()) 1020 .addReg(MI->getOperand(0).getReg())); 1021 return; 1022 } 1023 case PPC::PPC32GOT: { 1024 MCSymbol *GOTSymbol = 1025 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1026 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1027 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1028 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1029 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1030 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1031 .addReg(MI->getOperand(0).getReg()) 1032 .addExpr(SymGotTlsL)); 1033 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1034 .addReg(MI->getOperand(0).getReg()) 1035 .addReg(MI->getOperand(0).getReg()) 1036 .addExpr(SymGotTlsHA)); 1037 return; 1038 } 1039 case PPC::ADDIStlsgdHA: { 1040 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1041 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1042 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1043 const MachineOperand &MO = MI->getOperand(2); 1044 const GlobalValue *GValue = MO.getGlobal(); 1045 MCSymbol *MOSymbol = getSymbol(GValue); 1046 const MCExpr *SymGotTlsGD = 1047 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1048 OutContext); 1049 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1050 .addReg(MI->getOperand(0).getReg()) 1051 .addReg(MI->getOperand(1).getReg()) 1052 .addExpr(SymGotTlsGD)); 1053 return; 1054 } 1055 case PPC::ADDItlsgdL: 1056 // Transform: %xd = ADDItlsgdL %xs, @sym 1057 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1058 case PPC::ADDItlsgdL32: { 1059 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1060 // Into: %rd = ADDI %rs, sym@got@tlsgd 1061 const MachineOperand &MO = MI->getOperand(2); 1062 const GlobalValue *GValue = MO.getGlobal(); 1063 MCSymbol *MOSymbol = getSymbol(GValue); 1064 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1065 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1066 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1067 OutContext); 1068 EmitToStreamer(*OutStreamer, 1069 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1070 .addReg(MI->getOperand(0).getReg()) 1071 .addReg(MI->getOperand(1).getReg()) 1072 .addExpr(SymGotTlsGD)); 1073 return; 1074 } 1075 case PPC::GETtlsADDR: 1076 // Transform: %x3 = GETtlsADDR %x3, @sym 1077 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1078 case PPC::GETtlsADDR32: { 1079 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1080 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1081 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1082 return; 1083 } 1084 case PPC::ADDIStlsldHA: { 1085 // Transform: %xd = ADDIStlsldHA %x2, @sym 1086 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1087 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1088 const MachineOperand &MO = MI->getOperand(2); 1089 const GlobalValue *GValue = MO.getGlobal(); 1090 MCSymbol *MOSymbol = getSymbol(GValue); 1091 const MCExpr *SymGotTlsLD = 1092 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1093 OutContext); 1094 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1095 .addReg(MI->getOperand(0).getReg()) 1096 .addReg(MI->getOperand(1).getReg()) 1097 .addExpr(SymGotTlsLD)); 1098 return; 1099 } 1100 case PPC::ADDItlsldL: 1101 // Transform: %xd = ADDItlsldL %xs, @sym 1102 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1103 case PPC::ADDItlsldL32: { 1104 // Transform: %rd = ADDItlsldL32 %rs, @sym 1105 // Into: %rd = ADDI %rs, sym@got@tlsld 1106 const MachineOperand &MO = MI->getOperand(2); 1107 const GlobalValue *GValue = MO.getGlobal(); 1108 MCSymbol *MOSymbol = getSymbol(GValue); 1109 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1110 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1111 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1112 OutContext); 1113 EmitToStreamer(*OutStreamer, 1114 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1115 .addReg(MI->getOperand(0).getReg()) 1116 .addReg(MI->getOperand(1).getReg()) 1117 .addExpr(SymGotTlsLD)); 1118 return; 1119 } 1120 case PPC::GETtlsldADDR: 1121 // Transform: %x3 = GETtlsldADDR %x3, @sym 1122 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1123 case PPC::GETtlsldADDR32: { 1124 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1125 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1126 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1127 return; 1128 } 1129 case PPC::ADDISdtprelHA: 1130 // Transform: %xd = ADDISdtprelHA %xs, @sym 1131 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1132 case PPC::ADDISdtprelHA32: { 1133 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1134 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1135 const MachineOperand &MO = MI->getOperand(2); 1136 const GlobalValue *GValue = MO.getGlobal(); 1137 MCSymbol *MOSymbol = getSymbol(GValue); 1138 const MCExpr *SymDtprel = 1139 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1140 OutContext); 1141 EmitToStreamer( 1142 *OutStreamer, 1143 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1144 .addReg(MI->getOperand(0).getReg()) 1145 .addReg(MI->getOperand(1).getReg()) 1146 .addExpr(SymDtprel)); 1147 return; 1148 } 1149 case PPC::ADDIdtprelL: 1150 // Transform: %xd = ADDIdtprelL %xs, @sym 1151 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1152 case PPC::ADDIdtprelL32: { 1153 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1154 // Into: %rd = ADDI %rs, sym@dtprel@l 1155 const MachineOperand &MO = MI->getOperand(2); 1156 const GlobalValue *GValue = MO.getGlobal(); 1157 MCSymbol *MOSymbol = getSymbol(GValue); 1158 const MCExpr *SymDtprel = 1159 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1160 OutContext); 1161 EmitToStreamer(*OutStreamer, 1162 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1163 .addReg(MI->getOperand(0).getReg()) 1164 .addReg(MI->getOperand(1).getReg()) 1165 .addExpr(SymDtprel)); 1166 return; 1167 } 1168 case PPC::MFOCRF: 1169 case PPC::MFOCRF8: 1170 if (!Subtarget->hasMFOCRF()) { 1171 // Transform: %r3 = MFOCRF %cr7 1172 // Into: %r3 = MFCR ;; cr7 1173 unsigned NewOpcode = 1174 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1175 OutStreamer->AddComment(PPCInstPrinter:: 1176 getRegisterName(MI->getOperand(1).getReg())); 1177 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1178 .addReg(MI->getOperand(0).getReg())); 1179 return; 1180 } 1181 break; 1182 case PPC::MTOCRF: 1183 case PPC::MTOCRF8: 1184 if (!Subtarget->hasMFOCRF()) { 1185 // Transform: %cr7 = MTOCRF %r3 1186 // Into: MTCRF mask, %r3 ;; cr7 1187 unsigned NewOpcode = 1188 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1189 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1190 ->getEncodingValue(MI->getOperand(0).getReg()); 1191 OutStreamer->AddComment(PPCInstPrinter:: 1192 getRegisterName(MI->getOperand(0).getReg())); 1193 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1194 .addImm(Mask) 1195 .addReg(MI->getOperand(1).getReg())); 1196 return; 1197 } 1198 break; 1199 case PPC::LD: 1200 case PPC::STD: 1201 case PPC::LWA_32: 1202 case PPC::LWA: { 1203 // Verify alignment is legal, so we don't create relocations 1204 // that can't be supported. 1205 // FIXME: This test is currently disabled for Darwin. The test 1206 // suite shows a handful of test cases that fail this check for 1207 // Darwin. Those need to be investigated before this sanity test 1208 // can be enabled for those subtargets. 1209 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1210 const MachineOperand &MO = MI->getOperand(OpNum); 1211 if (MO.isGlobal()) { 1212 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1213 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1214 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1215 } 1216 // Now process the instruction normally. 1217 break; 1218 } 1219 } 1220 1221 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1222 EmitToStreamer(*OutStreamer, TmpInst); 1223 } 1224 1225 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1226 if (!Subtarget->isPPC64()) 1227 return PPCAsmPrinter::emitInstruction(MI); 1228 1229 switch (MI->getOpcode()) { 1230 default: 1231 return PPCAsmPrinter::emitInstruction(MI); 1232 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1233 // .begin: 1234 // b .end # lis 0, FuncId[16..32] 1235 // nop # li 0, FuncId[0..15] 1236 // std 0, -8(1) 1237 // mflr 0 1238 // bl __xray_FunctionEntry 1239 // mtlr 0 1240 // .end: 1241 // 1242 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1243 // of instructions change. 1244 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1245 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1246 OutStreamer->emitLabel(BeginOfSled); 1247 EmitToStreamer(*OutStreamer, 1248 MCInstBuilder(PPC::B).addExpr( 1249 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1250 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1251 EmitToStreamer( 1252 *OutStreamer, 1253 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1254 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1255 EmitToStreamer(*OutStreamer, 1256 MCInstBuilder(PPC::BL8_NOP) 1257 .addExpr(MCSymbolRefExpr::create( 1258 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1259 OutContext))); 1260 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1261 OutStreamer->emitLabel(EndOfSled); 1262 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1263 break; 1264 } 1265 case TargetOpcode::PATCHABLE_RET: { 1266 unsigned RetOpcode = MI->getOperand(0).getImm(); 1267 MCInst RetInst; 1268 RetInst.setOpcode(RetOpcode); 1269 for (const auto &MO : 1270 make_range(std::next(MI->operands_begin()), MI->operands_end())) { 1271 MCOperand MCOp; 1272 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1273 RetInst.addOperand(MCOp); 1274 } 1275 1276 bool IsConditional; 1277 if (RetOpcode == PPC::BCCLR) { 1278 IsConditional = true; 1279 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1280 RetOpcode == PPC::TCRETURNai8) { 1281 break; 1282 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1283 IsConditional = false; 1284 } else { 1285 EmitToStreamer(*OutStreamer, RetInst); 1286 break; 1287 } 1288 1289 MCSymbol *FallthroughLabel; 1290 if (IsConditional) { 1291 // Before: 1292 // bgtlr cr0 1293 // 1294 // After: 1295 // ble cr0, .end 1296 // .p2align 3 1297 // .begin: 1298 // blr # lis 0, FuncId[16..32] 1299 // nop # li 0, FuncId[0..15] 1300 // std 0, -8(1) 1301 // mflr 0 1302 // bl __xray_FunctionExit 1303 // mtlr 0 1304 // blr 1305 // .end: 1306 // 1307 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1308 // of instructions change. 1309 FallthroughLabel = OutContext.createTempSymbol(); 1310 EmitToStreamer( 1311 *OutStreamer, 1312 MCInstBuilder(PPC::BCC) 1313 .addImm(PPC::InvertPredicate( 1314 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1315 .addReg(MI->getOperand(2).getReg()) 1316 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1317 RetInst = MCInst(); 1318 RetInst.setOpcode(PPC::BLR8); 1319 } 1320 // .p2align 3 1321 // .begin: 1322 // b(lr)? # lis 0, FuncId[16..32] 1323 // nop # li 0, FuncId[0..15] 1324 // std 0, -8(1) 1325 // mflr 0 1326 // bl __xray_FunctionExit 1327 // mtlr 0 1328 // b(lr)? 1329 // 1330 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1331 // of instructions change. 1332 OutStreamer->emitCodeAlignment(8); 1333 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1334 OutStreamer->emitLabel(BeginOfSled); 1335 EmitToStreamer(*OutStreamer, RetInst); 1336 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1337 EmitToStreamer( 1338 *OutStreamer, 1339 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1340 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1341 EmitToStreamer(*OutStreamer, 1342 MCInstBuilder(PPC::BL8_NOP) 1343 .addExpr(MCSymbolRefExpr::create( 1344 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1345 OutContext))); 1346 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1347 EmitToStreamer(*OutStreamer, RetInst); 1348 if (IsConditional) 1349 OutStreamer->emitLabel(FallthroughLabel); 1350 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1351 break; 1352 } 1353 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1354 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1355 case TargetOpcode::PATCHABLE_TAIL_CALL: 1356 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1357 // normal function exit from a tail exit. 1358 llvm_unreachable("Tail call is handled in the normal case. See comments " 1359 "around this assert."); 1360 } 1361 } 1362 1363 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1364 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1365 PPCTargetStreamer *TS = 1366 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1367 1368 if (TS) 1369 TS->emitAbiVersion(2); 1370 } 1371 1372 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1373 !isPositionIndependent()) 1374 return AsmPrinter::emitStartOfAsmFile(M); 1375 1376 if (M.getPICLevel() == PICLevel::SmallPIC) 1377 return AsmPrinter::emitStartOfAsmFile(M); 1378 1379 OutStreamer->SwitchSection(OutContext.getELFSection( 1380 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1381 1382 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1383 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1384 1385 OutStreamer->emitLabel(CurrentPos); 1386 1387 // The GOT pointer points to the middle of the GOT, in order to reference the 1388 // entire 64kB range. 0x8000 is the midpoint. 1389 const MCExpr *tocExpr = 1390 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1391 MCConstantExpr::create(0x8000, OutContext), 1392 OutContext); 1393 1394 OutStreamer->emitAssignment(TOCSym, tocExpr); 1395 1396 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1397 } 1398 1399 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1400 // linux/ppc32 - Normal entry label. 1401 if (!Subtarget->isPPC64() && 1402 (!isPositionIndependent() || 1403 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1404 return AsmPrinter::emitFunctionEntryLabel(); 1405 1406 if (!Subtarget->isPPC64()) { 1407 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1408 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1409 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1410 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1411 OutStreamer->emitLabel(RelocSymbol); 1412 1413 const MCExpr *OffsExpr = 1414 MCBinaryExpr::createSub( 1415 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1416 OutContext), 1417 MCSymbolRefExpr::create(PICBase, OutContext), 1418 OutContext); 1419 OutStreamer->emitValue(OffsExpr, 4); 1420 OutStreamer->emitLabel(CurrentFnSym); 1421 return; 1422 } else 1423 return AsmPrinter::emitFunctionEntryLabel(); 1424 } 1425 1426 // ELFv2 ABI - Normal entry label. 1427 if (Subtarget->isELFv2ABI()) { 1428 // In the Large code model, we allow arbitrary displacements between 1429 // the text section and its associated TOC section. We place the 1430 // full 8-byte offset to the TOC in memory immediately preceding 1431 // the function global entry point. 1432 if (TM.getCodeModel() == CodeModel::Large 1433 && !MF->getRegInfo().use_empty(PPC::X2)) { 1434 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1435 1436 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1437 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1438 const MCExpr *TOCDeltaExpr = 1439 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1440 MCSymbolRefExpr::create(GlobalEPSymbol, 1441 OutContext), 1442 OutContext); 1443 1444 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1445 OutStreamer->emitValue(TOCDeltaExpr, 8); 1446 } 1447 return AsmPrinter::emitFunctionEntryLabel(); 1448 } 1449 1450 // Emit an official procedure descriptor. 1451 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1452 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1453 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1454 OutStreamer->SwitchSection(Section); 1455 OutStreamer->emitLabel(CurrentFnSym); 1456 OutStreamer->emitValueToAlignment(8); 1457 MCSymbol *Symbol1 = CurrentFnSymForSize; 1458 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1459 // entry point. 1460 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1461 8 /*size*/); 1462 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1463 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1464 OutStreamer->emitValue( 1465 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1466 8/*size*/); 1467 // Emit a null environment pointer. 1468 OutStreamer->emitIntValue(0, 8 /* size */); 1469 OutStreamer->SwitchSection(Current.first, Current.second); 1470 } 1471 1472 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1473 const DataLayout &DL = getDataLayout(); 1474 1475 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1476 1477 PPCTargetStreamer *TS = 1478 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1479 1480 if (!TOC.empty()) { 1481 const char *Name = isPPC64 ? ".toc" : ".got2"; 1482 MCSectionELF *Section = OutContext.getELFSection( 1483 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1484 OutStreamer->SwitchSection(Section); 1485 if (!isPPC64) 1486 OutStreamer->emitValueToAlignment(4); 1487 1488 for (const auto &TOCMapPair : TOC) { 1489 const MCSymbol *const TOCEntryTarget = TOCMapPair.first; 1490 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1491 1492 OutStreamer->emitLabel(TOCEntryLabel); 1493 if (isPPC64 && TS != nullptr) 1494 TS->emitTCEntry(*TOCEntryTarget); 1495 else 1496 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1497 } 1498 } 1499 1500 PPCAsmPrinter::emitEndOfAsmFile(M); 1501 } 1502 1503 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1504 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1505 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1506 // provide two entry points. The ABI guarantees that when calling the 1507 // local entry point, r2 is set up by the caller to contain the TOC base 1508 // for this function, and when calling the global entry point, r12 is set 1509 // up by the caller to hold the address of the global entry point. We 1510 // thus emit a prefix sequence along the following lines: 1511 // 1512 // func: 1513 // .Lfunc_gepNN: 1514 // # global entry point 1515 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1516 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1517 // .Lfunc_lepNN: 1518 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1519 // # local entry point, followed by function body 1520 // 1521 // For the Large code model, we create 1522 // 1523 // .Lfunc_tocNN: 1524 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1525 // func: 1526 // .Lfunc_gepNN: 1527 // # global entry point 1528 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1529 // add r2,r2,r12 1530 // .Lfunc_lepNN: 1531 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1532 // # local entry point, followed by function body 1533 // 1534 // This ensures we have r2 set up correctly while executing the function 1535 // body, no matter which entry point is called. 1536 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1537 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1538 !MF->getRegInfo().use_empty(PPC::R2); 1539 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1540 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1541 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1542 Subtarget->isELFv2ABI() && UsesX2OrR2; 1543 1544 // Only do all that if the function uses R2 as the TOC pointer 1545 // in the first place. We don't need the global entry point if the 1546 // function uses R2 as an allocatable register. 1547 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1548 // Note: The logic here must be synchronized with the code in the 1549 // branch-selection pass which sets the offset of the first block in the 1550 // function. This matters because it affects the alignment. 1551 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1552 OutStreamer->emitLabel(GlobalEntryLabel); 1553 const MCSymbolRefExpr *GlobalEntryLabelExp = 1554 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1555 1556 if (TM.getCodeModel() != CodeModel::Large) { 1557 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1558 const MCExpr *TOCDeltaExpr = 1559 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1560 GlobalEntryLabelExp, OutContext); 1561 1562 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1563 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1564 .addReg(PPC::X2) 1565 .addReg(PPC::X12) 1566 .addExpr(TOCDeltaHi)); 1567 1568 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1569 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1570 .addReg(PPC::X2) 1571 .addReg(PPC::X2) 1572 .addExpr(TOCDeltaLo)); 1573 } else { 1574 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1575 const MCExpr *TOCOffsetDeltaExpr = 1576 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1577 GlobalEntryLabelExp, OutContext); 1578 1579 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1580 .addReg(PPC::X2) 1581 .addExpr(TOCOffsetDeltaExpr) 1582 .addReg(PPC::X12)); 1583 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1584 .addReg(PPC::X2) 1585 .addReg(PPC::X2) 1586 .addReg(PPC::X12)); 1587 } 1588 1589 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1590 OutStreamer->emitLabel(LocalEntryLabel); 1591 const MCSymbolRefExpr *LocalEntryLabelExp = 1592 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1593 const MCExpr *LocalOffsetExp = 1594 MCBinaryExpr::createSub(LocalEntryLabelExp, 1595 GlobalEntryLabelExp, OutContext); 1596 1597 PPCTargetStreamer *TS = 1598 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1599 1600 if (TS) 1601 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1602 } else if (Subtarget->isUsingPCRelativeCalls()) { 1603 // When generating the entry point for a function we have a few scenarios 1604 // based on whether or not that function uses R2 and whether or not that 1605 // function makes calls (or is a leaf function). 1606 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1607 // and preserves it). In this case st_other=0 and both 1608 // the local and global entry points for the function are the same. 1609 // No special entry point code is required. 1610 // 2) A function uses the TOC pointer R2. This function may or may not have 1611 // calls. In this case st_other=[2,6] and the global and local entry 1612 // points are different. Code to correctly setup the TOC pointer in R2 1613 // is put between the global and local entry points. This case is 1614 // covered by the if statatement above. 1615 // 3) A function does not use the TOC pointer R2 but does have calls. 1616 // In this case st_other=1 since we do not know whether or not any 1617 // of the callees clobber R2. This case is dealt with in this else if 1618 // block. Tail calls are considered calls and the st_other should also 1619 // be set to 1 in that case as well. 1620 // 4) The function does not use the TOC pointer but R2 is used inside 1621 // the function. In this case st_other=1 once again. 1622 // 5) This function uses inline asm. We mark R2 as reserved if the function 1623 // has inline asm as we have to assume that it may be used. 1624 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1625 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1626 PPCTargetStreamer *TS = 1627 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1628 if (TS) 1629 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1630 MCConstantExpr::create(1, OutContext)); 1631 } 1632 } 1633 } 1634 1635 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1636 /// directive. 1637 /// 1638 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1639 // Only the 64-bit target requires a traceback table. For now, 1640 // we only emit the word of zeroes that GDB requires to find 1641 // the end of the function, and zeroes for the eight-byte 1642 // mandatory fields. 1643 // FIXME: We should fill in the eight-byte mandatory fields as described in 1644 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1645 // currently make use of these fields). 1646 if (Subtarget->isPPC64()) { 1647 OutStreamer->emitIntValue(0, 4/*size*/); 1648 OutStreamer->emitIntValue(0, 8/*size*/); 1649 } 1650 } 1651 1652 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1653 MCSymbol *GVSym) const { 1654 1655 assert(MAI->hasVisibilityOnlyWithLinkage() && 1656 "AIX's linkage directives take a visibility setting."); 1657 1658 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1659 switch (GV->getLinkage()) { 1660 case GlobalValue::ExternalLinkage: 1661 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1662 break; 1663 case GlobalValue::LinkOnceAnyLinkage: 1664 case GlobalValue::LinkOnceODRLinkage: 1665 case GlobalValue::WeakAnyLinkage: 1666 case GlobalValue::WeakODRLinkage: 1667 case GlobalValue::ExternalWeakLinkage: 1668 LinkageAttr = MCSA_Weak; 1669 break; 1670 case GlobalValue::AvailableExternallyLinkage: 1671 LinkageAttr = MCSA_Extern; 1672 break; 1673 case GlobalValue::PrivateLinkage: 1674 return; 1675 case GlobalValue::InternalLinkage: 1676 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1677 "InternalLinkage should not have other visibility setting."); 1678 LinkageAttr = MCSA_LGlobal; 1679 break; 1680 case GlobalValue::AppendingLinkage: 1681 llvm_unreachable("Should never emit this"); 1682 case GlobalValue::CommonLinkage: 1683 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1684 } 1685 1686 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1687 1688 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1689 switch (GV->getVisibility()) { 1690 1691 // TODO: "exported" and "internal" Visibility needs to go here. 1692 case GlobalValue::DefaultVisibility: 1693 break; 1694 case GlobalValue::HiddenVisibility: 1695 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1696 break; 1697 case GlobalValue::ProtectedVisibility: 1698 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1699 break; 1700 } 1701 1702 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1703 VisibilityAttr); 1704 } 1705 1706 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1707 // Setup CurrentFnDescSym and its containing csect. 1708 MCSectionXCOFF *FnDescSec = 1709 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1710 &MF.getFunction(), TM)); 1711 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1712 1713 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1714 1715 return AsmPrinter::SetupMachineFunction(MF); 1716 } 1717 1718 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 1719 // Early error checking limiting what is supported. 1720 if (GV->isThreadLocal()) 1721 report_fatal_error("Thread local not yet supported on AIX."); 1722 1723 if (GV->hasSection()) 1724 report_fatal_error("Custom section for Data not yet supported."); 1725 1726 if (GV->hasComdat()) 1727 report_fatal_error("COMDAT not yet supported by AIX."); 1728 } 1729 1730 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 1731 return GV->hasAppendingLinkage() && 1732 StringSwitch<bool>(GV->getName()) 1733 // TODO: Linker could still eliminate the GV if we just skip 1734 // handling llvm.used array. Skipping them for now until we or the 1735 // AIX OS team come up with a good solution. 1736 .Case("llvm.used", true) 1737 // It's correct to just skip llvm.compiler.used array here. 1738 .Case("llvm.compiler.used", true) 1739 .Default(false); 1740 } 1741 1742 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 1743 return StringSwitch<bool>(GV->getName()) 1744 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 1745 .Default(false); 1746 } 1747 1748 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 1749 // Special LLVM global arrays have been handled at the initialization. 1750 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 1751 return; 1752 1753 assert(!GV->getName().startswith("llvm.") && 1754 "Unhandled intrinsic global variable."); 1755 ValidateGV(GV); 1756 1757 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 1758 1759 if (GV->isDeclarationForLinker()) { 1760 emitLinkage(GV, GVSym); 1761 return; 1762 } 1763 1764 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 1765 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 1766 report_fatal_error("Encountered a global variable kind that is " 1767 "not supported yet."); 1768 1769 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1770 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 1771 1772 // Switch to the containing csect. 1773 OutStreamer->SwitchSection(Csect); 1774 1775 const DataLayout &DL = GV->getParent()->getDataLayout(); 1776 1777 // Handle common symbols. 1778 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 1779 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 1780 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 1781 GVSym->setStorageClass( 1782 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 1783 1784 if (GVKind.isBSSLocal()) 1785 OutStreamer->emitXCOFFLocalCommonSymbol( 1786 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 1787 GVSym, Alignment.value()); 1788 else 1789 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 1790 return; 1791 } 1792 1793 MCSymbol *EmittedInitSym = GVSym; 1794 emitLinkage(GV, EmittedInitSym); 1795 emitAlignment(getGVAlignment(GV, DL), GV); 1796 OutStreamer->emitLabel(EmittedInitSym); 1797 // Emit aliasing label for global variable. 1798 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 1799 OutStreamer->emitLabel(getSymbol(Alias)); 1800 }); 1801 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 1802 } 1803 1804 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 1805 const DataLayout &DL = getDataLayout(); 1806 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 1807 1808 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1809 // Emit function descriptor. 1810 OutStreamer->SwitchSection( 1811 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 1812 1813 // Emit aliasing label for function descriptor csect. 1814 llvm::for_each(GOAliasMap[&MF->getFunction()], 1815 [this](const GlobalAlias *Alias) { 1816 OutStreamer->emitLabel(getSymbol(Alias)); 1817 }); 1818 1819 // Emit function entry point address. 1820 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 1821 PointerSize); 1822 // Emit TOC base address. 1823 const MCSymbol *TOCBaseSym = 1824 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 1825 ->getQualNameSymbol(); 1826 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 1827 PointerSize); 1828 // Emit a null environment pointer. 1829 OutStreamer->emitIntValue(0, PointerSize); 1830 1831 OutStreamer->SwitchSection(Current.first, Current.second); 1832 } 1833 1834 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 1835 // It's not necessary to emit the label when we have individual 1836 // function in its own csect. 1837 if (!TM.getFunctionSections()) 1838 PPCAsmPrinter::emitFunctionEntryLabel(); 1839 1840 // Emit aliasing label for function entry point label. 1841 llvm::for_each( 1842 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 1843 OutStreamer->emitLabel( 1844 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 1845 }); 1846 } 1847 1848 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 1849 // If there are no functions in this module, we will never need to reference 1850 // the TOC base. 1851 if (M.empty()) 1852 return; 1853 1854 // Switch to section to emit TOC base. 1855 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 1856 1857 PPCTargetStreamer *TS = 1858 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1859 1860 for (auto &I : TOC) { 1861 // Setup the csect for the current TC entry. 1862 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 1863 getObjFileLowering().getSectionForTOCEntry(I.first, TM)); 1864 OutStreamer->SwitchSection(TCEntry); 1865 1866 OutStreamer->emitLabel(I.second); 1867 if (TS != nullptr) 1868 TS->emitTCEntry(*I.first); 1869 } 1870 } 1871 1872 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 1873 const bool Result = PPCAsmPrinter::doInitialization(M); 1874 1875 auto setCsectAlignment = [this](const GlobalObject *GO) { 1876 // Declarations have 0 alignment which is set by default. 1877 if (GO->isDeclarationForLinker()) 1878 return; 1879 1880 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 1881 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 1882 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 1883 1884 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 1885 if (GOAlign > Csect->getAlignment()) 1886 Csect->setAlignment(GOAlign); 1887 }; 1888 1889 // We need to know, up front, the alignment of csects for the assembly path, 1890 // because once a .csect directive gets emitted, we could not change the 1891 // alignment value on it. 1892 for (const auto &G : M.globals()) { 1893 if (isSpecialLLVMGlobalArrayToSkip(&G)) 1894 continue; 1895 1896 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 1897 // Generate a format indicator and a unique module id to be a part of 1898 // the sinit and sterm function names. 1899 if (FormatIndicatorAndUniqueModId.empty()) { 1900 std::string UniqueModuleId = getUniqueModuleId(&M); 1901 if (UniqueModuleId.compare("") != 0) 1902 // TODO: Use source file full path to generate the unique module id 1903 // and add a format indicator as a part of function name in case we 1904 // will support more than one format. 1905 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 1906 else 1907 // Use the Pid and current time as the unique module id when we cannot 1908 // generate one based on a module's strong external symbols. 1909 // FIXME: Adjust the comment accordingly after we use source file full 1910 // path instead. 1911 FormatIndicatorAndUniqueModId = 1912 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 1913 "_" + llvm::itostr(time(nullptr)); 1914 } 1915 1916 emitSpecialLLVMGlobal(&G); 1917 continue; 1918 } 1919 1920 setCsectAlignment(&G); 1921 } 1922 1923 for (const auto &F : M) 1924 setCsectAlignment(&F); 1925 1926 // Construct an aliasing list for each GlobalObject. 1927 for (const auto &Alias : M.aliases()) { 1928 const GlobalObject *Base = Alias.getBaseObject(); 1929 if (!Base) 1930 report_fatal_error( 1931 "alias without a base object is not yet supported on AIX"); 1932 GOAliasMap[Base].push_back(&Alias); 1933 } 1934 1935 return Result; 1936 } 1937 1938 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 1939 switch (MI->getOpcode()) { 1940 default: 1941 break; 1942 case PPC::BL8: 1943 case PPC::BL: 1944 case PPC::BL8_NOP: 1945 case PPC::BL_NOP: { 1946 const MachineOperand &MO = MI->getOperand(0); 1947 if (MO.isSymbol()) { 1948 MCSymbolXCOFF *S = 1949 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 1950 ExtSymSDNodeSymbols.insert(S); 1951 } 1952 } break; 1953 case PPC::BL_TLS: 1954 case PPC::BL8_TLS: 1955 case PPC::BL8_TLS_: 1956 case PPC::BL8_NOP_TLS: 1957 report_fatal_error("TLS call not yet implemented"); 1958 case PPC::TAILB: 1959 case PPC::TAILB8: 1960 case PPC::TAILBA: 1961 case PPC::TAILBA8: 1962 case PPC::TAILBCTR: 1963 case PPC::TAILBCTR8: 1964 if (MI->getOperand(0).isSymbol()) 1965 report_fatal_error("Tail call for extern symbol not yet supported."); 1966 break; 1967 } 1968 return PPCAsmPrinter::emitInstruction(MI); 1969 } 1970 1971 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 1972 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 1973 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 1974 return PPCAsmPrinter::doFinalization(M); 1975 } 1976 1977 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 1978 const Constant *List, bool IsCtor) { 1979 SmallVector<Structor, 8> Structors; 1980 preprocessXXStructorList(DL, List, Structors); 1981 if (Structors.empty()) 1982 return; 1983 1984 unsigned Index = 0; 1985 for (Structor &S : Structors) { 1986 if (S.Priority != 65535) 1987 report_fatal_error( 1988 "prioritized sinit and sterm functions are not yet supported on AIX"); 1989 1990 llvm::GlobalAlias::create( 1991 GlobalValue::ExternalLinkage, 1992 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 1993 llvm::Twine("80000000_", FormatIndicatorAndUniqueModId) + 1994 llvm::Twine("_", llvm::utostr(Index++)), 1995 cast<Function>(S.Func)); 1996 } 1997 } 1998 1999 /// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code 2000 /// for a MachineFunction to the given output stream, in a format that the 2001 /// Darwin assembler can deal with. 2002 /// 2003 static AsmPrinter * 2004 createPPCAsmPrinterPass(TargetMachine &tm, 2005 std::unique_ptr<MCStreamer> &&Streamer) { 2006 if (tm.getTargetTriple().isOSAIX()) 2007 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2008 2009 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2010 } 2011 2012 // Force static initialization. 2013 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2014 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2015 createPPCAsmPrinterPass); 2016 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2017 createPPCAsmPrinterPass); 2018 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2019 createPPCAsmPrinterPass); 2020 } 2021