1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/Process.h" 66 #include "llvm/Support/TargetRegistry.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/ModuleUtils.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <memory> 74 #include <new> 75 76 using namespace llvm; 77 using namespace llvm::XCOFF; 78 79 #define DEBUG_TYPE "asmprinter" 80 81 // Specialize DenseMapInfo to allow 82 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 83 // This specialization is needed here because that type is used as keys in the 84 // map representing TOC entries. 85 namespace llvm { 86 template <> 87 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 88 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 89 90 static inline TOCKey getEmptyKey() { 91 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 92 } 93 static inline TOCKey getTombstoneKey() { 94 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 95 } 96 static unsigned getHashValue(const TOCKey &PairVal) { 97 return detail::combineHashValue( 98 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 99 DenseMapInfo<int>::getHashValue(PairVal.second)); 100 } 101 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 102 }; 103 } // end namespace llvm 104 105 namespace { 106 107 class PPCAsmPrinter : public AsmPrinter { 108 protected: 109 // For TLS on AIX, we need to be able to identify TOC entries of specific 110 // VariantKind so we can add the right relocations when we generate the 111 // entries. So each entry is represented by a pair of MCSymbol and 112 // VariantKind. For example, we need to be able to identify the following 113 // entry as a TLSGD entry so we can add the @m relocation: 114 // .tc .i[TC],i[TL]@m 115 // By default, VK_None is used for the VariantKind. 116 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 117 MCSymbol *> 118 TOC; 119 const PPCSubtarget *Subtarget = nullptr; 120 StackMaps SM; 121 122 public: 123 explicit PPCAsmPrinter(TargetMachine &TM, 124 std::unique_ptr<MCStreamer> Streamer) 125 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 126 127 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 128 129 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 130 MCSymbolRefExpr::VariantKind Kind = 131 MCSymbolRefExpr::VariantKind::VK_None); 132 133 bool doInitialization(Module &M) override { 134 if (!TOC.empty()) 135 TOC.clear(); 136 return AsmPrinter::doInitialization(M); 137 } 138 139 void emitInstruction(const MachineInstr *MI) override; 140 141 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 142 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 143 /// The \p MI would be INLINEASM ONLY. 144 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 145 146 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 147 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 148 const char *ExtraCode, raw_ostream &O) override; 149 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 150 const char *ExtraCode, raw_ostream &O) override; 151 152 void emitEndOfAsmFile(Module &M) override; 153 154 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 155 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 156 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 159 bool Changed = AsmPrinter::runOnMachineFunction(MF); 160 emitXRayTable(); 161 return Changed; 162 } 163 }; 164 165 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 166 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 167 public: 168 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 169 std::unique_ptr<MCStreamer> Streamer) 170 : PPCAsmPrinter(TM, std::move(Streamer)) {} 171 172 StringRef getPassName() const override { 173 return "Linux PPC Assembly Printer"; 174 } 175 176 void emitStartOfAsmFile(Module &M) override; 177 void emitEndOfAsmFile(Module &) override; 178 179 void emitFunctionEntryLabel() override; 180 181 void emitFunctionBodyStart() override; 182 void emitFunctionBodyEnd() override; 183 void emitInstruction(const MachineInstr *MI) override; 184 }; 185 186 class PPCAIXAsmPrinter : public PPCAsmPrinter { 187 private: 188 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 189 /// linkage for them in AIX. 190 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 191 192 /// A format indicator and unique trailing identifier to form part of the 193 /// sinit/sterm function names. 194 std::string FormatIndicatorAndUniqueModId; 195 196 // Record a list of GlobalAlias associated with a GlobalObject. 197 // This is used for AIX's extra-label-at-definition aliasing strategy. 198 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 199 GOAliasMap; 200 201 void emitTracebackTable(); 202 203 public: 204 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 205 : PPCAsmPrinter(TM, std::move(Streamer)) { 206 if (MAI->isLittleEndian()) 207 report_fatal_error( 208 "cannot create AIX PPC Assembly Printer for a little-endian target"); 209 } 210 211 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 212 213 bool doInitialization(Module &M) override; 214 215 void emitXXStructorList(const DataLayout &DL, const Constant *List, 216 bool IsCtor) override; 217 218 void SetupMachineFunction(MachineFunction &MF) override; 219 220 void emitGlobalVariable(const GlobalVariable *GV) override; 221 222 void emitFunctionDescriptor() override; 223 224 void emitFunctionEntryLabel() override; 225 226 void emitFunctionBodyEnd() override; 227 228 void emitEndOfAsmFile(Module &) override; 229 230 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 231 232 void emitInstruction(const MachineInstr *MI) override; 233 234 bool doFinalization(Module &M) override; 235 236 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 237 }; 238 239 } // end anonymous namespace 240 241 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 242 raw_ostream &O) { 243 // Computing the address of a global symbol, not calling it. 244 const GlobalValue *GV = MO.getGlobal(); 245 getSymbol(GV)->print(O, MAI); 246 printOffset(MO.getOffset(), O); 247 } 248 249 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 250 raw_ostream &O) { 251 const DataLayout &DL = getDataLayout(); 252 const MachineOperand &MO = MI->getOperand(OpNo); 253 254 switch (MO.getType()) { 255 case MachineOperand::MO_Register: { 256 // The MI is INLINEASM ONLY and UseVSXReg is always false. 257 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 258 259 // Linux assembler (Others?) does not take register mnemonics. 260 // FIXME - What about special registers used in mfspr/mtspr? 261 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 262 return; 263 } 264 case MachineOperand::MO_Immediate: 265 O << MO.getImm(); 266 return; 267 268 case MachineOperand::MO_MachineBasicBlock: 269 MO.getMBB()->getSymbol()->print(O, MAI); 270 return; 271 case MachineOperand::MO_ConstantPoolIndex: 272 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 273 << MO.getIndex(); 274 return; 275 case MachineOperand::MO_BlockAddress: 276 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 277 return; 278 case MachineOperand::MO_GlobalAddress: { 279 PrintSymbolOperand(MO, O); 280 return; 281 } 282 283 default: 284 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 285 return; 286 } 287 } 288 289 /// PrintAsmOperand - Print out an operand for an inline asm expression. 290 /// 291 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 292 const char *ExtraCode, raw_ostream &O) { 293 // Does this asm operand have a single letter operand modifier? 294 if (ExtraCode && ExtraCode[0]) { 295 if (ExtraCode[1] != 0) return true; // Unknown modifier. 296 297 switch (ExtraCode[0]) { 298 default: 299 // See if this is a generic print operand 300 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 301 case 'L': // Write second word of DImode reference. 302 // Verify that this operand has two consecutive registers. 303 if (!MI->getOperand(OpNo).isReg() || 304 OpNo+1 == MI->getNumOperands() || 305 !MI->getOperand(OpNo+1).isReg()) 306 return true; 307 ++OpNo; // Return the high-part. 308 break; 309 case 'I': 310 // Write 'i' if an integer constant, otherwise nothing. Used to print 311 // addi vs add, etc. 312 if (MI->getOperand(OpNo).isImm()) 313 O << "i"; 314 return false; 315 case 'x': 316 if(!MI->getOperand(OpNo).isReg()) 317 return true; 318 // This operand uses VSX numbering. 319 // If the operand is a VMX register, convert it to a VSX register. 320 Register Reg = MI->getOperand(OpNo).getReg(); 321 if (PPCInstrInfo::isVRRegister(Reg)) 322 Reg = PPC::VSX32 + (Reg - PPC::V0); 323 else if (PPCInstrInfo::isVFRegister(Reg)) 324 Reg = PPC::VSX32 + (Reg - PPC::VF0); 325 const char *RegName; 326 RegName = PPCInstPrinter::getRegisterName(Reg); 327 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 328 O << RegName; 329 return false; 330 } 331 } 332 333 printOperand(MI, OpNo, O); 334 return false; 335 } 336 337 // At the moment, all inline asm memory operands are a single register. 338 // In any case, the output of this routine should always be just one 339 // assembler operand. 340 341 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 342 const char *ExtraCode, 343 raw_ostream &O) { 344 if (ExtraCode && ExtraCode[0]) { 345 if (ExtraCode[1] != 0) return true; // Unknown modifier. 346 347 switch (ExtraCode[0]) { 348 default: return true; // Unknown modifier. 349 case 'L': // A memory reference to the upper word of a double word op. 350 O << getDataLayout().getPointerSize() << "("; 351 printOperand(MI, OpNo, O); 352 O << ")"; 353 return false; 354 case 'y': // A memory reference for an X-form instruction 355 O << "0, "; 356 printOperand(MI, OpNo, O); 357 return false; 358 case 'U': // Print 'u' for update form. 359 case 'X': // Print 'x' for indexed form. 360 // FIXME: Currently for PowerPC memory operands are always loaded 361 // into a register, so we never get an update or indexed form. 362 // This is bad even for offset forms, since even if we know we 363 // have a value in -16(r1), we will generate a load into r<n> 364 // and then load from 0(r<n>). Until that issue is fixed, 365 // tolerate 'U' and 'X' but don't output anything. 366 assert(MI->getOperand(OpNo).isReg()); 367 return false; 368 } 369 } 370 371 assert(MI->getOperand(OpNo).isReg()); 372 O << "0("; 373 printOperand(MI, OpNo, O); 374 O << ")"; 375 return false; 376 } 377 378 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 379 /// exists for it. If not, create one. Then return a symbol that references 380 /// the TOC entry. 381 MCSymbol * 382 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 383 MCSymbolRefExpr::VariantKind Kind) { 384 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 385 if (!TOCEntry) 386 TOCEntry = createTempSymbol("C"); 387 return TOCEntry; 388 } 389 390 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 391 emitStackMaps(SM); 392 } 393 394 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 395 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 396 397 auto &Ctx = OutStreamer->getContext(); 398 MCSymbol *MILabel = Ctx.createTempSymbol(); 399 OutStreamer->emitLabel(MILabel); 400 401 SM.recordStackMap(*MILabel, MI); 402 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 403 404 // Scan ahead to trim the shadow. 405 const MachineBasicBlock &MBB = *MI.getParent(); 406 MachineBasicBlock::const_iterator MII(MI); 407 ++MII; 408 while (NumNOPBytes > 0) { 409 if (MII == MBB.end() || MII->isCall() || 410 MII->getOpcode() == PPC::DBG_VALUE || 411 MII->getOpcode() == TargetOpcode::PATCHPOINT || 412 MII->getOpcode() == TargetOpcode::STACKMAP) 413 break; 414 ++MII; 415 NumNOPBytes -= 4; 416 } 417 418 // Emit nops. 419 for (unsigned i = 0; i < NumNOPBytes; i += 4) 420 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 421 } 422 423 // Lower a patchpoint of the form: 424 // [<def>], <id>, <numBytes>, <target>, <numArgs> 425 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 426 auto &Ctx = OutStreamer->getContext(); 427 MCSymbol *MILabel = Ctx.createTempSymbol(); 428 OutStreamer->emitLabel(MILabel); 429 430 SM.recordPatchPoint(*MILabel, MI); 431 PatchPointOpers Opers(&MI); 432 433 unsigned EncodedBytes = 0; 434 const MachineOperand &CalleeMO = Opers.getCallTarget(); 435 436 if (CalleeMO.isImm()) { 437 int64_t CallTarget = CalleeMO.getImm(); 438 if (CallTarget) { 439 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 440 "High 16 bits of call target should be zero."); 441 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 442 EncodedBytes = 0; 443 // Materialize the jump address: 444 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 445 .addReg(ScratchReg) 446 .addImm((CallTarget >> 32) & 0xFFFF)); 447 ++EncodedBytes; 448 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 449 .addReg(ScratchReg) 450 .addReg(ScratchReg) 451 .addImm(32).addImm(16)); 452 ++EncodedBytes; 453 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 454 .addReg(ScratchReg) 455 .addReg(ScratchReg) 456 .addImm((CallTarget >> 16) & 0xFFFF)); 457 ++EncodedBytes; 458 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 459 .addReg(ScratchReg) 460 .addReg(ScratchReg) 461 .addImm(CallTarget & 0xFFFF)); 462 463 // Save the current TOC pointer before the remote call. 464 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 465 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 466 .addReg(PPC::X2) 467 .addImm(TOCSaveOffset) 468 .addReg(PPC::X1)); 469 ++EncodedBytes; 470 471 // If we're on ELFv1, then we need to load the actual function pointer 472 // from the function descriptor. 473 if (!Subtarget->isELFv2ABI()) { 474 // Load the new TOC pointer and the function address, but not r11 475 // (needing this is rare, and loading it here would prevent passing it 476 // via a 'nest' parameter. 477 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 478 .addReg(PPC::X2) 479 .addImm(8) 480 .addReg(ScratchReg)); 481 ++EncodedBytes; 482 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 483 .addReg(ScratchReg) 484 .addImm(0) 485 .addReg(ScratchReg)); 486 ++EncodedBytes; 487 } 488 489 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 490 .addReg(ScratchReg)); 491 ++EncodedBytes; 492 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 493 ++EncodedBytes; 494 495 // Restore the TOC pointer after the call. 496 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 497 .addReg(PPC::X2) 498 .addImm(TOCSaveOffset) 499 .addReg(PPC::X1)); 500 ++EncodedBytes; 501 } 502 } else if (CalleeMO.isGlobal()) { 503 const GlobalValue *GValue = CalleeMO.getGlobal(); 504 MCSymbol *MOSymbol = getSymbol(GValue); 505 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 506 507 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 508 .addExpr(SymVar)); 509 EncodedBytes += 2; 510 } 511 512 // Each instruction is 4 bytes. 513 EncodedBytes *= 4; 514 515 // Emit padding. 516 unsigned NumBytes = Opers.getNumPatchBytes(); 517 assert(NumBytes >= EncodedBytes && 518 "Patchpoint can't request size less than the length of a call."); 519 assert((NumBytes - EncodedBytes) % 4 == 0 && 520 "Invalid number of NOP bytes requested!"); 521 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 522 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 523 } 524 525 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 526 /// call to __tls_get_addr to the current output stream. 527 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 528 MCSymbolRefExpr::VariantKind VK) { 529 StringRef Name = "__tls_get_addr"; 530 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 531 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 532 unsigned Opcode = PPC::BL8_NOP_TLS; 533 534 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 535 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 536 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 537 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 538 Opcode = PPC::BL8_NOTOC_TLS; 539 } 540 const Module *M = MF->getFunction().getParent(); 541 542 assert(MI->getOperand(0).isReg() && 543 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 544 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 545 "GETtls[ld]ADDR[32] must define GPR3"); 546 assert(MI->getOperand(1).isReg() && 547 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 548 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 549 "GETtls[ld]ADDR[32] must read GPR3"); 550 551 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 552 Kind = MCSymbolRefExpr::VK_PLT; 553 554 const MCExpr *TlsRef = 555 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 556 557 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 558 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 559 M->getPICLevel() == PICLevel::BigPIC) 560 TlsRef = MCBinaryExpr::createAdd( 561 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 562 const MachineOperand &MO = MI->getOperand(2); 563 const GlobalValue *GValue = MO.getGlobal(); 564 MCSymbol *MOSymbol = getSymbol(GValue); 565 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 566 EmitToStreamer(*OutStreamer, 567 MCInstBuilder(Subtarget->isPPC64() ? Opcode 568 : (unsigned)PPC::BL_TLS) 569 .addExpr(TlsRef) 570 .addExpr(SymVar)); 571 } 572 573 /// Map a machine operand for a TOC pseudo-machine instruction to its 574 /// corresponding MCSymbol. 575 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 576 AsmPrinter &AP) { 577 switch (MO.getType()) { 578 case MachineOperand::MO_GlobalAddress: 579 return AP.getSymbol(MO.getGlobal()); 580 case MachineOperand::MO_ConstantPoolIndex: 581 return AP.GetCPISymbol(MO.getIndex()); 582 case MachineOperand::MO_JumpTableIndex: 583 return AP.GetJTISymbol(MO.getIndex()); 584 case MachineOperand::MO_BlockAddress: 585 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 586 default: 587 llvm_unreachable("Unexpected operand type to get symbol."); 588 } 589 } 590 591 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 592 /// the current output stream. 593 /// 594 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 595 MCInst TmpInst; 596 const bool IsPPC64 = Subtarget->isPPC64(); 597 const bool IsAIX = Subtarget->isAIXABI(); 598 const Module *M = MF->getFunction().getParent(); 599 PICLevel::Level PL = M->getPICLevel(); 600 601 #ifndef NDEBUG 602 // Validate that SPE and FPU are mutually exclusive in codegen 603 if (!MI->isInlineAsm()) { 604 for (const MachineOperand &MO: MI->operands()) { 605 if (MO.isReg()) { 606 Register Reg = MO.getReg(); 607 if (Subtarget->hasSPE()) { 608 if (PPC::F4RCRegClass.contains(Reg) || 609 PPC::F8RCRegClass.contains(Reg) || 610 PPC::VFRCRegClass.contains(Reg) || 611 PPC::VRRCRegClass.contains(Reg) || 612 PPC::VSFRCRegClass.contains(Reg) || 613 PPC::VSSRCRegClass.contains(Reg) 614 ) 615 llvm_unreachable("SPE targets cannot have FPRegs!"); 616 } else { 617 if (PPC::SPERCRegClass.contains(Reg)) 618 llvm_unreachable("SPE register found in FPU-targeted code!"); 619 } 620 } 621 } 622 } 623 #endif 624 625 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 626 ptrdiff_t OriginalOffset) { 627 // Apply an offset to the TOC-based expression such that the adjusted 628 // notional offset from the TOC base (to be encoded into the instruction's D 629 // or DS field) is the signed 16-bit truncation of the original notional 630 // offset from the TOC base. 631 // This is consistent with the treatment used both by XL C/C++ and 632 // by AIX ld -r. 633 ptrdiff_t Adjustment = 634 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 635 return MCBinaryExpr::createAdd( 636 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 637 }; 638 639 auto getTOCEntryLoadingExprForXCOFF = 640 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 641 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 642 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 643 const auto TOCEntryIter = 644 TOC.find({MOSymbol, MCSymbolRefExpr::VariantKind::VK_None}); 645 assert(TOCEntryIter != TOC.end() && 646 "Could not find the TOC entry for this symbol."); 647 const ptrdiff_t EntryDistanceFromTOCBase = 648 (TOCEntryIter - TOC.begin()) * EntryByteSize; 649 constexpr int16_t PositiveTOCRange = INT16_MAX; 650 651 if (EntryDistanceFromTOCBase > PositiveTOCRange) 652 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 653 654 return Expr; 655 }; 656 657 // Lower multi-instruction pseudo operations. 658 switch (MI->getOpcode()) { 659 default: break; 660 case TargetOpcode::DBG_VALUE: 661 llvm_unreachable("Should be handled target independently"); 662 case TargetOpcode::STACKMAP: 663 return LowerSTACKMAP(SM, *MI); 664 case TargetOpcode::PATCHPOINT: 665 return LowerPATCHPOINT(SM, *MI); 666 667 case PPC::MoveGOTtoLR: { 668 // Transform %lr = MoveGOTtoLR 669 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 670 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 671 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 672 // blrl 673 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 674 MCSymbol *GOTSymbol = 675 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 676 const MCExpr *OffsExpr = 677 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 678 MCSymbolRefExpr::VK_PPC_LOCAL, 679 OutContext), 680 MCConstantExpr::create(4, OutContext), 681 OutContext); 682 683 // Emit the 'bl'. 684 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 685 return; 686 } 687 case PPC::MovePCtoLR: 688 case PPC::MovePCtoLR8: { 689 // Transform %lr = MovePCtoLR 690 // Into this, where the label is the PIC base: 691 // bl L1$pb 692 // L1$pb: 693 MCSymbol *PICBase = MF->getPICBaseSymbol(); 694 695 // Emit the 'bl'. 696 EmitToStreamer(*OutStreamer, 697 MCInstBuilder(PPC::BL) 698 // FIXME: We would like an efficient form for this, so we 699 // don't have to do a lot of extra uniquing. 700 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 701 702 // Emit the label. 703 OutStreamer->emitLabel(PICBase); 704 return; 705 } 706 case PPC::UpdateGBR: { 707 // Transform %rd = UpdateGBR(%rt, %ri) 708 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 709 // add %rd, %rt, %ri 710 // or into (if secure plt mode is on): 711 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 712 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 713 // Get the offset from the GOT Base Register to the GOT 714 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 715 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 716 unsigned PICR = TmpInst.getOperand(0).getReg(); 717 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 718 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 719 : ".LTOC"); 720 const MCExpr *PB = 721 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 722 723 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 724 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 725 726 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 727 EmitToStreamer( 728 *OutStreamer, 729 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 730 731 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 732 EmitToStreamer( 733 *OutStreamer, 734 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 735 return; 736 } else { 737 MCSymbol *PICOffset = 738 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 739 TmpInst.setOpcode(PPC::LWZ); 740 const MCExpr *Exp = 741 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 742 const MCExpr *PB = 743 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 744 MCSymbolRefExpr::VK_None, 745 OutContext); 746 const MCOperand TR = TmpInst.getOperand(1); 747 const MCOperand PICR = TmpInst.getOperand(0); 748 749 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 750 TmpInst.getOperand(1) = 751 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 752 TmpInst.getOperand(0) = TR; 753 TmpInst.getOperand(2) = PICR; 754 EmitToStreamer(*OutStreamer, TmpInst); 755 756 TmpInst.setOpcode(PPC::ADD4); 757 TmpInst.getOperand(0) = PICR; 758 TmpInst.getOperand(1) = TR; 759 TmpInst.getOperand(2) = PICR; 760 EmitToStreamer(*OutStreamer, TmpInst); 761 return; 762 } 763 } 764 case PPC::LWZtoc: { 765 // Transform %rN = LWZtoc @op1, %r2 766 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 767 768 // Change the opcode to LWZ. 769 TmpInst.setOpcode(PPC::LWZ); 770 771 const MachineOperand &MO = MI->getOperand(1); 772 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 773 "Invalid operand for LWZtoc."); 774 775 // Map the operand to its corresponding MCSymbol. 776 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 777 778 // Create a reference to the GOT entry for the symbol. The GOT entry will be 779 // synthesized later. 780 if (PL == PICLevel::SmallPIC && !IsAIX) { 781 const MCExpr *Exp = 782 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 783 OutContext); 784 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 785 EmitToStreamer(*OutStreamer, TmpInst); 786 return; 787 } 788 789 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 790 // storage allocated in the TOC which contains the address of 791 // 'MOSymbol'. Said TOC entry will be synthesized later. 792 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 793 const MCExpr *Exp = 794 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 795 796 // AIX uses the label directly as the lwz displacement operand for 797 // references into the toc section. The displacement value will be generated 798 // relative to the toc-base. 799 if (IsAIX) { 800 assert( 801 TM.getCodeModel() == CodeModel::Small && 802 "This pseudo should only be selected for 32-bit small code model."); 803 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 804 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 805 EmitToStreamer(*OutStreamer, TmpInst); 806 return; 807 } 808 809 // Create an explicit subtract expression between the local symbol and 810 // '.LTOC' to manifest the toc-relative offset. 811 const MCExpr *PB = MCSymbolRefExpr::create( 812 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 813 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 814 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 815 EmitToStreamer(*OutStreamer, TmpInst); 816 return; 817 } 818 case PPC::LDtocJTI: 819 case PPC::LDtocCPT: 820 case PPC::LDtocBA: 821 case PPC::LDtoc: { 822 // Transform %x3 = LDtoc @min1, %x2 823 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 824 825 // Change the opcode to LD. 826 TmpInst.setOpcode(PPC::LD); 827 828 const MachineOperand &MO = MI->getOperand(1); 829 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 830 "Invalid operand!"); 831 832 // Map the operand to its corresponding MCSymbol. 833 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 834 835 // Map the machine operand to its corresponding MCSymbol, then map the 836 // global address operand to be a reference to the TOC entry we will 837 // synthesize later. 838 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 839 840 const MCSymbolRefExpr::VariantKind VK = 841 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 842 const MCExpr *Exp = 843 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 844 TmpInst.getOperand(1) = MCOperand::createExpr( 845 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 846 EmitToStreamer(*OutStreamer, TmpInst); 847 return; 848 } 849 case PPC::ADDIStocHA: { 850 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 851 "This pseudo should only be selected for 32-bit large code model on" 852 " AIX."); 853 854 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 855 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 856 857 // Change the opcode to ADDIS. 858 TmpInst.setOpcode(PPC::ADDIS); 859 860 const MachineOperand &MO = MI->getOperand(2); 861 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 862 "Invalid operand for ADDIStocHA."); 863 864 // Map the machine operand to its corresponding MCSymbol. 865 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 866 867 // Always use TOC on AIX. Map the global address operand to be a reference 868 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 869 // reference the storage allocated in the TOC which contains the address of 870 // 'MOSymbol'. 871 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 872 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 873 MCSymbolRefExpr::VK_PPC_U, 874 OutContext); 875 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 876 EmitToStreamer(*OutStreamer, TmpInst); 877 return; 878 } 879 case PPC::LWZtocL: { 880 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 881 "This pseudo should only be selected for 32-bit large code model on" 882 " AIX."); 883 884 // Transform %rd = LWZtocL @sym, %rs. 885 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 886 887 // Change the opcode to lwz. 888 TmpInst.setOpcode(PPC::LWZ); 889 890 const MachineOperand &MO = MI->getOperand(1); 891 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 892 "Invalid operand for LWZtocL."); 893 894 // Map the machine operand to its corresponding MCSymbol. 895 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 896 897 // Always use TOC on AIX. Map the global address operand to be a reference 898 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 899 // reference the storage allocated in the TOC which contains the address of 900 // 'MOSymbol'. 901 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 902 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 903 MCSymbolRefExpr::VK_PPC_L, 904 OutContext); 905 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 906 EmitToStreamer(*OutStreamer, TmpInst); 907 return; 908 } 909 case PPC::ADDIStocHA8: { 910 // Transform %xd = ADDIStocHA8 %x2, @sym 911 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 912 913 // Change the opcode to ADDIS8. If the global address is the address of 914 // an external symbol, is a jump table address, is a block address, or is a 915 // constant pool index with large code model enabled, then generate a TOC 916 // entry and reference that. Otherwise, reference the symbol directly. 917 TmpInst.setOpcode(PPC::ADDIS8); 918 919 const MachineOperand &MO = MI->getOperand(2); 920 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 921 "Invalid operand for ADDIStocHA8!"); 922 923 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 924 925 const bool GlobalToc = 926 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 927 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 928 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 929 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 930 931 const MCSymbolRefExpr::VariantKind VK = 932 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 933 934 const MCExpr *Exp = 935 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 936 937 if (!MO.isJTI() && MO.getOffset()) 938 Exp = MCBinaryExpr::createAdd(Exp, 939 MCConstantExpr::create(MO.getOffset(), 940 OutContext), 941 OutContext); 942 943 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 944 EmitToStreamer(*OutStreamer, TmpInst); 945 return; 946 } 947 case PPC::LDtocL: { 948 // Transform %xd = LDtocL @sym, %xs 949 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 950 951 // Change the opcode to LD. If the global address is the address of 952 // an external symbol, is a jump table address, is a block address, or is 953 // a constant pool index with large code model enabled, then generate a 954 // TOC entry and reference that. Otherwise, reference the symbol directly. 955 TmpInst.setOpcode(PPC::LD); 956 957 const MachineOperand &MO = MI->getOperand(1); 958 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 959 MO.isBlockAddress()) && 960 "Invalid operand for LDtocL!"); 961 962 LLVM_DEBUG(assert( 963 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 964 "LDtocL used on symbol that could be accessed directly is " 965 "invalid. Must match ADDIStocHA8.")); 966 967 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 968 969 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 970 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 971 972 const MCSymbolRefExpr::VariantKind VK = 973 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 974 const MCExpr *Exp = 975 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 976 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 977 EmitToStreamer(*OutStreamer, TmpInst); 978 return; 979 } 980 case PPC::ADDItocL: { 981 // Transform %xd = ADDItocL %xs, @sym 982 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 983 984 // Change the opcode to ADDI8. If the global address is external, then 985 // generate a TOC entry and reference that. Otherwise, reference the 986 // symbol directly. 987 TmpInst.setOpcode(PPC::ADDI8); 988 989 const MachineOperand &MO = MI->getOperand(2); 990 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 991 992 LLVM_DEBUG(assert( 993 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 994 "Interposable definitions must use indirect access.")); 995 996 const MCExpr *Exp = 997 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 998 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 999 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1000 EmitToStreamer(*OutStreamer, TmpInst); 1001 return; 1002 } 1003 case PPC::ADDISgotTprelHA: { 1004 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1005 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1006 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1007 const MachineOperand &MO = MI->getOperand(2); 1008 const GlobalValue *GValue = MO.getGlobal(); 1009 MCSymbol *MOSymbol = getSymbol(GValue); 1010 const MCExpr *SymGotTprel = 1011 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1012 OutContext); 1013 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1014 .addReg(MI->getOperand(0).getReg()) 1015 .addReg(MI->getOperand(1).getReg()) 1016 .addExpr(SymGotTprel)); 1017 return; 1018 } 1019 case PPC::LDgotTprelL: 1020 case PPC::LDgotTprelL32: { 1021 // Transform %xd = LDgotTprelL @sym, %xs 1022 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1023 1024 // Change the opcode to LD. 1025 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1026 const MachineOperand &MO = MI->getOperand(1); 1027 const GlobalValue *GValue = MO.getGlobal(); 1028 MCSymbol *MOSymbol = getSymbol(GValue); 1029 const MCExpr *Exp = MCSymbolRefExpr::create( 1030 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1031 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1032 OutContext); 1033 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1034 EmitToStreamer(*OutStreamer, TmpInst); 1035 return; 1036 } 1037 1038 case PPC::PPC32PICGOT: { 1039 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1040 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1041 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1042 1043 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1044 // FIXME: We would like an efficient form for this, so we don't have to do 1045 // a lot of extra uniquing. 1046 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1047 const MCExpr *OffsExpr = 1048 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1049 MCSymbolRefExpr::create(GOTRef, OutContext), 1050 OutContext); 1051 OutStreamer->emitLabel(GOTRef); 1052 OutStreamer->emitValue(OffsExpr, 4); 1053 OutStreamer->emitLabel(NextInstr); 1054 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1055 .addReg(MI->getOperand(0).getReg())); 1056 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1057 .addReg(MI->getOperand(1).getReg()) 1058 .addImm(0) 1059 .addReg(MI->getOperand(0).getReg())); 1060 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1061 .addReg(MI->getOperand(0).getReg()) 1062 .addReg(MI->getOperand(1).getReg()) 1063 .addReg(MI->getOperand(0).getReg())); 1064 return; 1065 } 1066 case PPC::PPC32GOT: { 1067 MCSymbol *GOTSymbol = 1068 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1069 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1070 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1071 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1072 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1073 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1074 .addReg(MI->getOperand(0).getReg()) 1075 .addExpr(SymGotTlsL)); 1076 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1077 .addReg(MI->getOperand(0).getReg()) 1078 .addReg(MI->getOperand(0).getReg()) 1079 .addExpr(SymGotTlsHA)); 1080 return; 1081 } 1082 case PPC::ADDIStlsgdHA: { 1083 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1084 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1085 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1086 const MachineOperand &MO = MI->getOperand(2); 1087 const GlobalValue *GValue = MO.getGlobal(); 1088 MCSymbol *MOSymbol = getSymbol(GValue); 1089 const MCExpr *SymGotTlsGD = 1090 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1091 OutContext); 1092 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1093 .addReg(MI->getOperand(0).getReg()) 1094 .addReg(MI->getOperand(1).getReg()) 1095 .addExpr(SymGotTlsGD)); 1096 return; 1097 } 1098 case PPC::ADDItlsgdL: 1099 // Transform: %xd = ADDItlsgdL %xs, @sym 1100 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1101 case PPC::ADDItlsgdL32: { 1102 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1103 // Into: %rd = ADDI %rs, sym@got@tlsgd 1104 const MachineOperand &MO = MI->getOperand(2); 1105 const GlobalValue *GValue = MO.getGlobal(); 1106 MCSymbol *MOSymbol = getSymbol(GValue); 1107 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1108 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1109 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1110 OutContext); 1111 EmitToStreamer(*OutStreamer, 1112 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1113 .addReg(MI->getOperand(0).getReg()) 1114 .addReg(MI->getOperand(1).getReg()) 1115 .addExpr(SymGotTlsGD)); 1116 return; 1117 } 1118 case PPC::GETtlsADDR: 1119 // Transform: %x3 = GETtlsADDR %x3, @sym 1120 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1121 case PPC::GETtlsADDRPCREL: 1122 case PPC::GETtlsADDR32: { 1123 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1124 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1125 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1126 return; 1127 } 1128 case PPC::ADDIStlsldHA: { 1129 // Transform: %xd = ADDIStlsldHA %x2, @sym 1130 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1131 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1132 const MachineOperand &MO = MI->getOperand(2); 1133 const GlobalValue *GValue = MO.getGlobal(); 1134 MCSymbol *MOSymbol = getSymbol(GValue); 1135 const MCExpr *SymGotTlsLD = 1136 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1137 OutContext); 1138 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1139 .addReg(MI->getOperand(0).getReg()) 1140 .addReg(MI->getOperand(1).getReg()) 1141 .addExpr(SymGotTlsLD)); 1142 return; 1143 } 1144 case PPC::ADDItlsldL: 1145 // Transform: %xd = ADDItlsldL %xs, @sym 1146 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1147 case PPC::ADDItlsldL32: { 1148 // Transform: %rd = ADDItlsldL32 %rs, @sym 1149 // Into: %rd = ADDI %rs, sym@got@tlsld 1150 const MachineOperand &MO = MI->getOperand(2); 1151 const GlobalValue *GValue = MO.getGlobal(); 1152 MCSymbol *MOSymbol = getSymbol(GValue); 1153 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1154 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1155 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1156 OutContext); 1157 EmitToStreamer(*OutStreamer, 1158 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1159 .addReg(MI->getOperand(0).getReg()) 1160 .addReg(MI->getOperand(1).getReg()) 1161 .addExpr(SymGotTlsLD)); 1162 return; 1163 } 1164 case PPC::GETtlsldADDR: 1165 // Transform: %x3 = GETtlsldADDR %x3, @sym 1166 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1167 case PPC::GETtlsldADDRPCREL: 1168 case PPC::GETtlsldADDR32: { 1169 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1170 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1171 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1172 return; 1173 } 1174 case PPC::ADDISdtprelHA: 1175 // Transform: %xd = ADDISdtprelHA %xs, @sym 1176 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1177 case PPC::ADDISdtprelHA32: { 1178 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1179 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1180 const MachineOperand &MO = MI->getOperand(2); 1181 const GlobalValue *GValue = MO.getGlobal(); 1182 MCSymbol *MOSymbol = getSymbol(GValue); 1183 const MCExpr *SymDtprel = 1184 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1185 OutContext); 1186 EmitToStreamer( 1187 *OutStreamer, 1188 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1189 .addReg(MI->getOperand(0).getReg()) 1190 .addReg(MI->getOperand(1).getReg()) 1191 .addExpr(SymDtprel)); 1192 return; 1193 } 1194 case PPC::PADDIdtprel: { 1195 // Transform: %rd = PADDIdtprel %rs, @sym 1196 // Into: %rd = PADDI8 %rs, sym@dtprel 1197 const MachineOperand &MO = MI->getOperand(2); 1198 const GlobalValue *GValue = MO.getGlobal(); 1199 MCSymbol *MOSymbol = getSymbol(GValue); 1200 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1201 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1202 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1203 .addReg(MI->getOperand(0).getReg()) 1204 .addReg(MI->getOperand(1).getReg()) 1205 .addExpr(SymDtprel)); 1206 return; 1207 } 1208 1209 case PPC::ADDIdtprelL: 1210 // Transform: %xd = ADDIdtprelL %xs, @sym 1211 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1212 case PPC::ADDIdtprelL32: { 1213 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1214 // Into: %rd = ADDI %rs, sym@dtprel@l 1215 const MachineOperand &MO = MI->getOperand(2); 1216 const GlobalValue *GValue = MO.getGlobal(); 1217 MCSymbol *MOSymbol = getSymbol(GValue); 1218 const MCExpr *SymDtprel = 1219 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1220 OutContext); 1221 EmitToStreamer(*OutStreamer, 1222 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1223 .addReg(MI->getOperand(0).getReg()) 1224 .addReg(MI->getOperand(1).getReg()) 1225 .addExpr(SymDtprel)); 1226 return; 1227 } 1228 case PPC::MFOCRF: 1229 case PPC::MFOCRF8: 1230 if (!Subtarget->hasMFOCRF()) { 1231 // Transform: %r3 = MFOCRF %cr7 1232 // Into: %r3 = MFCR ;; cr7 1233 unsigned NewOpcode = 1234 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1235 OutStreamer->AddComment(PPCInstPrinter:: 1236 getRegisterName(MI->getOperand(1).getReg())); 1237 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1238 .addReg(MI->getOperand(0).getReg())); 1239 return; 1240 } 1241 break; 1242 case PPC::MTOCRF: 1243 case PPC::MTOCRF8: 1244 if (!Subtarget->hasMFOCRF()) { 1245 // Transform: %cr7 = MTOCRF %r3 1246 // Into: MTCRF mask, %r3 ;; cr7 1247 unsigned NewOpcode = 1248 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1249 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1250 ->getEncodingValue(MI->getOperand(0).getReg()); 1251 OutStreamer->AddComment(PPCInstPrinter:: 1252 getRegisterName(MI->getOperand(0).getReg())); 1253 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1254 .addImm(Mask) 1255 .addReg(MI->getOperand(1).getReg())); 1256 return; 1257 } 1258 break; 1259 case PPC::LD: 1260 case PPC::STD: 1261 case PPC::LWA_32: 1262 case PPC::LWA: { 1263 // Verify alignment is legal, so we don't create relocations 1264 // that can't be supported. 1265 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1266 const MachineOperand &MO = MI->getOperand(OpNum); 1267 if (MO.isGlobal()) { 1268 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1269 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1270 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1271 } 1272 // Now process the instruction normally. 1273 break; 1274 } 1275 } 1276 1277 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1278 EmitToStreamer(*OutStreamer, TmpInst); 1279 } 1280 1281 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1282 if (!Subtarget->isPPC64()) 1283 return PPCAsmPrinter::emitInstruction(MI); 1284 1285 switch (MI->getOpcode()) { 1286 default: 1287 return PPCAsmPrinter::emitInstruction(MI); 1288 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1289 // .begin: 1290 // b .end # lis 0, FuncId[16..32] 1291 // nop # li 0, FuncId[0..15] 1292 // std 0, -8(1) 1293 // mflr 0 1294 // bl __xray_FunctionEntry 1295 // mtlr 0 1296 // .end: 1297 // 1298 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1299 // of instructions change. 1300 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1301 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1302 OutStreamer->emitLabel(BeginOfSled); 1303 EmitToStreamer(*OutStreamer, 1304 MCInstBuilder(PPC::B).addExpr( 1305 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1306 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1307 EmitToStreamer( 1308 *OutStreamer, 1309 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1310 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1311 EmitToStreamer(*OutStreamer, 1312 MCInstBuilder(PPC::BL8_NOP) 1313 .addExpr(MCSymbolRefExpr::create( 1314 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1315 OutContext))); 1316 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1317 OutStreamer->emitLabel(EndOfSled); 1318 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1319 break; 1320 } 1321 case TargetOpcode::PATCHABLE_RET: { 1322 unsigned RetOpcode = MI->getOperand(0).getImm(); 1323 MCInst RetInst; 1324 RetInst.setOpcode(RetOpcode); 1325 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1326 MCOperand MCOp; 1327 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1328 RetInst.addOperand(MCOp); 1329 } 1330 1331 bool IsConditional; 1332 if (RetOpcode == PPC::BCCLR) { 1333 IsConditional = true; 1334 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1335 RetOpcode == PPC::TCRETURNai8) { 1336 break; 1337 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1338 IsConditional = false; 1339 } else { 1340 EmitToStreamer(*OutStreamer, RetInst); 1341 break; 1342 } 1343 1344 MCSymbol *FallthroughLabel; 1345 if (IsConditional) { 1346 // Before: 1347 // bgtlr cr0 1348 // 1349 // After: 1350 // ble cr0, .end 1351 // .p2align 3 1352 // .begin: 1353 // blr # lis 0, FuncId[16..32] 1354 // nop # li 0, FuncId[0..15] 1355 // std 0, -8(1) 1356 // mflr 0 1357 // bl __xray_FunctionExit 1358 // mtlr 0 1359 // blr 1360 // .end: 1361 // 1362 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1363 // of instructions change. 1364 FallthroughLabel = OutContext.createTempSymbol(); 1365 EmitToStreamer( 1366 *OutStreamer, 1367 MCInstBuilder(PPC::BCC) 1368 .addImm(PPC::InvertPredicate( 1369 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1370 .addReg(MI->getOperand(2).getReg()) 1371 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1372 RetInst = MCInst(); 1373 RetInst.setOpcode(PPC::BLR8); 1374 } 1375 // .p2align 3 1376 // .begin: 1377 // b(lr)? # lis 0, FuncId[16..32] 1378 // nop # li 0, FuncId[0..15] 1379 // std 0, -8(1) 1380 // mflr 0 1381 // bl __xray_FunctionExit 1382 // mtlr 0 1383 // b(lr)? 1384 // 1385 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1386 // of instructions change. 1387 OutStreamer->emitCodeAlignment(8); 1388 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1389 OutStreamer->emitLabel(BeginOfSled); 1390 EmitToStreamer(*OutStreamer, RetInst); 1391 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1392 EmitToStreamer( 1393 *OutStreamer, 1394 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1395 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1396 EmitToStreamer(*OutStreamer, 1397 MCInstBuilder(PPC::BL8_NOP) 1398 .addExpr(MCSymbolRefExpr::create( 1399 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1400 OutContext))); 1401 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1402 EmitToStreamer(*OutStreamer, RetInst); 1403 if (IsConditional) 1404 OutStreamer->emitLabel(FallthroughLabel); 1405 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1406 break; 1407 } 1408 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1409 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1410 case TargetOpcode::PATCHABLE_TAIL_CALL: 1411 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1412 // normal function exit from a tail exit. 1413 llvm_unreachable("Tail call is handled in the normal case. See comments " 1414 "around this assert."); 1415 } 1416 } 1417 1418 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1419 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1420 PPCTargetStreamer *TS = 1421 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1422 1423 if (TS) 1424 TS->emitAbiVersion(2); 1425 } 1426 1427 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1428 !isPositionIndependent()) 1429 return AsmPrinter::emitStartOfAsmFile(M); 1430 1431 if (M.getPICLevel() == PICLevel::SmallPIC) 1432 return AsmPrinter::emitStartOfAsmFile(M); 1433 1434 OutStreamer->SwitchSection(OutContext.getELFSection( 1435 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1436 1437 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1438 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1439 1440 OutStreamer->emitLabel(CurrentPos); 1441 1442 // The GOT pointer points to the middle of the GOT, in order to reference the 1443 // entire 64kB range. 0x8000 is the midpoint. 1444 const MCExpr *tocExpr = 1445 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1446 MCConstantExpr::create(0x8000, OutContext), 1447 OutContext); 1448 1449 OutStreamer->emitAssignment(TOCSym, tocExpr); 1450 1451 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1452 } 1453 1454 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1455 // linux/ppc32 - Normal entry label. 1456 if (!Subtarget->isPPC64() && 1457 (!isPositionIndependent() || 1458 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1459 return AsmPrinter::emitFunctionEntryLabel(); 1460 1461 if (!Subtarget->isPPC64()) { 1462 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1463 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1464 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1465 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1466 OutStreamer->emitLabel(RelocSymbol); 1467 1468 const MCExpr *OffsExpr = 1469 MCBinaryExpr::createSub( 1470 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1471 OutContext), 1472 MCSymbolRefExpr::create(PICBase, OutContext), 1473 OutContext); 1474 OutStreamer->emitValue(OffsExpr, 4); 1475 OutStreamer->emitLabel(CurrentFnSym); 1476 return; 1477 } else 1478 return AsmPrinter::emitFunctionEntryLabel(); 1479 } 1480 1481 // ELFv2 ABI - Normal entry label. 1482 if (Subtarget->isELFv2ABI()) { 1483 // In the Large code model, we allow arbitrary displacements between 1484 // the text section and its associated TOC section. We place the 1485 // full 8-byte offset to the TOC in memory immediately preceding 1486 // the function global entry point. 1487 if (TM.getCodeModel() == CodeModel::Large 1488 && !MF->getRegInfo().use_empty(PPC::X2)) { 1489 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1490 1491 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1492 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1493 const MCExpr *TOCDeltaExpr = 1494 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1495 MCSymbolRefExpr::create(GlobalEPSymbol, 1496 OutContext), 1497 OutContext); 1498 1499 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1500 OutStreamer->emitValue(TOCDeltaExpr, 8); 1501 } 1502 return AsmPrinter::emitFunctionEntryLabel(); 1503 } 1504 1505 // Emit an official procedure descriptor. 1506 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1507 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1508 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1509 OutStreamer->SwitchSection(Section); 1510 OutStreamer->emitLabel(CurrentFnSym); 1511 OutStreamer->emitValueToAlignment(8); 1512 MCSymbol *Symbol1 = CurrentFnSymForSize; 1513 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1514 // entry point. 1515 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1516 8 /*size*/); 1517 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1518 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1519 OutStreamer->emitValue( 1520 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1521 8/*size*/); 1522 // Emit a null environment pointer. 1523 OutStreamer->emitIntValue(0, 8 /* size */); 1524 OutStreamer->SwitchSection(Current.first, Current.second); 1525 } 1526 1527 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1528 const DataLayout &DL = getDataLayout(); 1529 1530 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1531 1532 PPCTargetStreamer *TS = 1533 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1534 1535 if (!TOC.empty()) { 1536 const char *Name = isPPC64 ? ".toc" : ".got2"; 1537 MCSectionELF *Section = OutContext.getELFSection( 1538 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1539 OutStreamer->SwitchSection(Section); 1540 if (!isPPC64) 1541 OutStreamer->emitValueToAlignment(4); 1542 1543 for (const auto &TOCMapPair : TOC) { 1544 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1545 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1546 1547 OutStreamer->emitLabel(TOCEntryLabel); 1548 if (isPPC64 && TS != nullptr) 1549 TS->emitTCEntry(*TOCEntryTarget); 1550 else 1551 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1552 } 1553 } 1554 1555 PPCAsmPrinter::emitEndOfAsmFile(M); 1556 } 1557 1558 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1559 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1560 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1561 // provide two entry points. The ABI guarantees that when calling the 1562 // local entry point, r2 is set up by the caller to contain the TOC base 1563 // for this function, and when calling the global entry point, r12 is set 1564 // up by the caller to hold the address of the global entry point. We 1565 // thus emit a prefix sequence along the following lines: 1566 // 1567 // func: 1568 // .Lfunc_gepNN: 1569 // # global entry point 1570 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1571 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1572 // .Lfunc_lepNN: 1573 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1574 // # local entry point, followed by function body 1575 // 1576 // For the Large code model, we create 1577 // 1578 // .Lfunc_tocNN: 1579 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1580 // func: 1581 // .Lfunc_gepNN: 1582 // # global entry point 1583 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1584 // add r2,r2,r12 1585 // .Lfunc_lepNN: 1586 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1587 // # local entry point, followed by function body 1588 // 1589 // This ensures we have r2 set up correctly while executing the function 1590 // body, no matter which entry point is called. 1591 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1592 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1593 !MF->getRegInfo().use_empty(PPC::R2); 1594 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1595 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1596 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1597 Subtarget->isELFv2ABI() && UsesX2OrR2; 1598 1599 // Only do all that if the function uses R2 as the TOC pointer 1600 // in the first place. We don't need the global entry point if the 1601 // function uses R2 as an allocatable register. 1602 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1603 // Note: The logic here must be synchronized with the code in the 1604 // branch-selection pass which sets the offset of the first block in the 1605 // function. This matters because it affects the alignment. 1606 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1607 OutStreamer->emitLabel(GlobalEntryLabel); 1608 const MCSymbolRefExpr *GlobalEntryLabelExp = 1609 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1610 1611 if (TM.getCodeModel() != CodeModel::Large) { 1612 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1613 const MCExpr *TOCDeltaExpr = 1614 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1615 GlobalEntryLabelExp, OutContext); 1616 1617 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1618 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1619 .addReg(PPC::X2) 1620 .addReg(PPC::X12) 1621 .addExpr(TOCDeltaHi)); 1622 1623 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1624 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1625 .addReg(PPC::X2) 1626 .addReg(PPC::X2) 1627 .addExpr(TOCDeltaLo)); 1628 } else { 1629 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1630 const MCExpr *TOCOffsetDeltaExpr = 1631 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1632 GlobalEntryLabelExp, OutContext); 1633 1634 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1635 .addReg(PPC::X2) 1636 .addExpr(TOCOffsetDeltaExpr) 1637 .addReg(PPC::X12)); 1638 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1639 .addReg(PPC::X2) 1640 .addReg(PPC::X2) 1641 .addReg(PPC::X12)); 1642 } 1643 1644 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1645 OutStreamer->emitLabel(LocalEntryLabel); 1646 const MCSymbolRefExpr *LocalEntryLabelExp = 1647 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1648 const MCExpr *LocalOffsetExp = 1649 MCBinaryExpr::createSub(LocalEntryLabelExp, 1650 GlobalEntryLabelExp, OutContext); 1651 1652 PPCTargetStreamer *TS = 1653 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1654 1655 if (TS) 1656 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1657 } else if (Subtarget->isUsingPCRelativeCalls()) { 1658 // When generating the entry point for a function we have a few scenarios 1659 // based on whether or not that function uses R2 and whether or not that 1660 // function makes calls (or is a leaf function). 1661 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1662 // and preserves it). In this case st_other=0 and both 1663 // the local and global entry points for the function are the same. 1664 // No special entry point code is required. 1665 // 2) A function uses the TOC pointer R2. This function may or may not have 1666 // calls. In this case st_other=[2,6] and the global and local entry 1667 // points are different. Code to correctly setup the TOC pointer in R2 1668 // is put between the global and local entry points. This case is 1669 // covered by the if statatement above. 1670 // 3) A function does not use the TOC pointer R2 but does have calls. 1671 // In this case st_other=1 since we do not know whether or not any 1672 // of the callees clobber R2. This case is dealt with in this else if 1673 // block. Tail calls are considered calls and the st_other should also 1674 // be set to 1 in that case as well. 1675 // 4) The function does not use the TOC pointer but R2 is used inside 1676 // the function. In this case st_other=1 once again. 1677 // 5) This function uses inline asm. We mark R2 as reserved if the function 1678 // has inline asm as we have to assume that it may be used. 1679 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1680 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1681 PPCTargetStreamer *TS = 1682 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1683 if (TS) 1684 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1685 MCConstantExpr::create(1, OutContext)); 1686 } 1687 } 1688 } 1689 1690 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1691 /// directive. 1692 /// 1693 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1694 // Only the 64-bit target requires a traceback table. For now, 1695 // we only emit the word of zeroes that GDB requires to find 1696 // the end of the function, and zeroes for the eight-byte 1697 // mandatory fields. 1698 // FIXME: We should fill in the eight-byte mandatory fields as described in 1699 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1700 // currently make use of these fields). 1701 if (Subtarget->isPPC64()) { 1702 OutStreamer->emitIntValue(0, 4/*size*/); 1703 OutStreamer->emitIntValue(0, 8/*size*/); 1704 } 1705 } 1706 1707 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1708 MCSymbol *GVSym) const { 1709 1710 assert(MAI->hasVisibilityOnlyWithLinkage() && 1711 "AIX's linkage directives take a visibility setting."); 1712 1713 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1714 switch (GV->getLinkage()) { 1715 case GlobalValue::ExternalLinkage: 1716 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1717 break; 1718 case GlobalValue::LinkOnceAnyLinkage: 1719 case GlobalValue::LinkOnceODRLinkage: 1720 case GlobalValue::WeakAnyLinkage: 1721 case GlobalValue::WeakODRLinkage: 1722 case GlobalValue::ExternalWeakLinkage: 1723 LinkageAttr = MCSA_Weak; 1724 break; 1725 case GlobalValue::AvailableExternallyLinkage: 1726 LinkageAttr = MCSA_Extern; 1727 break; 1728 case GlobalValue::PrivateLinkage: 1729 return; 1730 case GlobalValue::InternalLinkage: 1731 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1732 "InternalLinkage should not have other visibility setting."); 1733 LinkageAttr = MCSA_LGlobal; 1734 break; 1735 case GlobalValue::AppendingLinkage: 1736 llvm_unreachable("Should never emit this"); 1737 case GlobalValue::CommonLinkage: 1738 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1739 } 1740 1741 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1742 1743 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1744 if (!TM.getIgnoreXCOFFVisibility()) { 1745 switch (GV->getVisibility()) { 1746 1747 // TODO: "exported" and "internal" Visibility needs to go here. 1748 case GlobalValue::DefaultVisibility: 1749 break; 1750 case GlobalValue::HiddenVisibility: 1751 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1752 break; 1753 case GlobalValue::ProtectedVisibility: 1754 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1755 break; 1756 } 1757 } 1758 1759 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1760 VisibilityAttr); 1761 } 1762 1763 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1764 // Setup CurrentFnDescSym and its containing csect. 1765 MCSectionXCOFF *FnDescSec = 1766 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1767 &MF.getFunction(), TM)); 1768 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1769 1770 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1771 1772 return AsmPrinter::SetupMachineFunction(MF); 1773 } 1774 1775 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1776 1777 if (!TM.getXCOFFTracebackTable()) 1778 return; 1779 1780 emitTracebackTable(); 1781 } 1782 1783 void PPCAIXAsmPrinter::emitTracebackTable() { 1784 1785 // Create a symbol for the end of function. 1786 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1787 OutStreamer->emitLabel(FuncEnd); 1788 1789 OutStreamer->AddComment("Traceback table begin"); 1790 // Begin with a fullword of zero. 1791 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1792 1793 SmallString<128> CommentString; 1794 raw_svector_ostream CommentOS(CommentString); 1795 1796 auto EmitComment = [&]() { 1797 OutStreamer->AddComment(CommentOS.str()); 1798 CommentString.clear(); 1799 }; 1800 1801 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 1802 EmitComment(); 1803 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 1804 }; 1805 1806 unsigned int Version = 0; 1807 CommentOS << "Version = " << Version; 1808 EmitCommentAndValue(Version, 1); 1809 1810 // There is a lack of information in the IR to assist with determining the 1811 // source language. AIX exception handling mechanism would only search for 1812 // personality routine and LSDA area when such language supports exception 1813 // handling. So to be conservatively correct and allow runtime to do its job, 1814 // we need to set it to C++ for now. 1815 TracebackTable::LanguageID LanguageIdentifier = 1816 TracebackTable::CPlusPlus; // C++ 1817 1818 CommentOS << "Language = " 1819 << getNameForTracebackTableLanguageId(LanguageIdentifier); 1820 EmitCommentAndValue(LanguageIdentifier, 1); 1821 1822 // This is only populated for the third and fourth bytes. 1823 uint32_t FirstHalfOfMandatoryField = 0; 1824 1825 // Emit the 3rd byte of the mandatory field. 1826 1827 // We always set traceback offset bit to true. 1828 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 1829 1830 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1831 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1832 1833 // Check the function uses floating-point processor instructions or not 1834 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 1835 if (MRI.isPhysRegUsed(Reg)) { 1836 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 1837 break; 1838 } 1839 } 1840 1841 #define GENBOOLCOMMENT(Prefix, V, Field) \ 1842 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 1843 << #Field 1844 1845 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 1846 CommentOS << (PrefixAndName) << " = " \ 1847 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 1848 (TracebackTable::Field##Shift)) 1849 1850 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 1851 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 1852 EmitComment(); 1853 1854 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 1855 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 1856 EmitComment(); 1857 1858 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 1859 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 1860 EmitComment(); 1861 1862 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 1863 EmitComment(); 1864 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 1865 IsFloatingPointOperationLogOrAbortEnabled); 1866 EmitComment(); 1867 1868 OutStreamer->emitIntValueInHexWithPadding( 1869 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1870 1871 // Set the 4th byte of the mandatory field. 1872 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 1873 1874 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!"); 1875 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 1876 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 1877 1878 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1879 if (!MustSaveCRs.empty()) 1880 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 1881 1882 if (FI->mustSaveLR()) 1883 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 1884 1885 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 1886 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 1887 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 1888 EmitComment(); 1889 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 1890 OnConditionDirective); 1891 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 1892 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 1893 EmitComment(); 1894 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 1895 1); 1896 1897 // Set the 5th byte of mandatory field. 1898 uint32_t SecondHalfOfMandatoryField = 0; 1899 1900 // Always store back chain. 1901 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 1902 1903 uint32_t FPRSaved = 0; 1904 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 1905 if (MRI.isPhysRegModified(Reg)) { 1906 FPRSaved = PPC::F31 - Reg + 1; 1907 break; 1908 } 1909 } 1910 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 1911 TracebackTable::FPRSavedMask; 1912 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 1913 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 1914 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 1915 EmitComment(); 1916 OutStreamer->emitIntValueInHexWithPadding( 1917 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 1918 1919 // Set the 6th byte of mandatory field. 1920 bool ShouldEmitEHBlock = TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF); 1921 if (ShouldEmitEHBlock) 1922 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 1923 1924 uint32_t GPRSaved = 0; 1925 1926 // X13 is reserved under 64-bit environment. 1927 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 1928 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 1929 1930 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 1931 if (MRI.isPhysRegModified(Reg)) { 1932 GPRSaved = GPREnd - Reg + 1; 1933 break; 1934 } 1935 } 1936 1937 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 1938 TracebackTable::GPRSavedMask; 1939 1940 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasVectorInfo); 1941 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasExtensionTable); 1942 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 1943 EmitComment(); 1944 OutStreamer->emitIntValueInHexWithPadding( 1945 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 1946 1947 // Set the 7th byte of mandatory field. 1948 uint32_t NumberOfFixedPara = FI->getFixedParamNum(); 1949 SecondHalfOfMandatoryField |= 1950 (NumberOfFixedPara << TracebackTable::NumberOfFixedParmsShift) & 1951 TracebackTable::NumberOfFixedParmsMask; 1952 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 1953 NumberOfFixedParms); 1954 EmitComment(); 1955 OutStreamer->emitIntValueInHexWithPadding( 1956 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1957 1958 // Set the 8th byte of mandatory field. 1959 1960 // Always set parameter on stack. 1961 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 1962 1963 uint32_t NumberOfFPPara = FI->getFloatingPointParamNum(); 1964 SecondHalfOfMandatoryField |= 1965 (NumberOfFPPara << TracebackTable::NumberOfFloatingPointParmsShift) & 1966 TracebackTable::NumberOfFloatingPointParmsMask; 1967 1968 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 1969 NumberOfFloatingPointParms); 1970 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 1971 EmitComment(); 1972 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 1973 1); 1974 1975 // Generate the optional fields of traceback table. 1976 1977 // Parameter type. 1978 if (NumberOfFixedPara || NumberOfFPPara) { 1979 assert((SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) == 1980 0 && 1981 "VectorInfo has not been implemented."); 1982 uint32_t ParaType = FI->getParameterType(); 1983 CommentOS << "Parameter type = " 1984 << XCOFF::parseParmsType(ParaType, 1985 NumberOfFixedPara + NumberOfFPPara); 1986 EmitComment(); 1987 OutStreamer->emitIntValueInHexWithPadding(ParaType, sizeof(ParaType)); 1988 } 1989 1990 // Traceback table offset. 1991 OutStreamer->AddComment("Function size"); 1992 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 1993 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 1994 &(MF->getFunction()), TM); 1995 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 1996 } 1997 1998 // Since we unset the Int_Handler. 1999 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2000 report_fatal_error("Hand_Mask not implement yet"); 2001 2002 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2003 report_fatal_error("Ctl_Info not implement yet"); 2004 2005 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2006 StringRef Name = MF->getName().substr(0, INT16_MAX); 2007 int16_t NameLength = Name.size(); 2008 CommentOS << "Function name len = " 2009 << static_cast<unsigned int>(NameLength); 2010 EmitCommentAndValue(NameLength, 2); 2011 OutStreamer->AddComment("Function Name"); 2012 OutStreamer->emitBytes(Name); 2013 } 2014 2015 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2016 uint8_t AllocReg = XCOFF::AllocRegNo; 2017 OutStreamer->AddComment("AllocaUsed"); 2018 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2019 } 2020 2021 uint8_t ExtensionTableFlag = 0; 2022 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2023 if (ShouldEmitEHBlock) 2024 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2025 2026 CommentOS << "ExtensionTableFlag = " 2027 << getExtendedTBTableFlagString(ExtensionTableFlag); 2028 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2029 } 2030 2031 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2032 auto &Ctx = OutStreamer->getContext(); 2033 MCSymbol *EHInfoSym = 2034 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2035 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2036 const MCSymbol *TOCBaseSym = 2037 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2038 ->getQualNameSymbol(); 2039 const MCExpr *Exp = 2040 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2041 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2042 2043 const DataLayout &DL = getDataLayout(); 2044 OutStreamer->emitValueToAlignment(4); 2045 OutStreamer->AddComment("EHInfo Table"); 2046 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2047 } 2048 2049 #undef GENBOOLCOMMENT 2050 #undef GENVALUECOMMENT 2051 } 2052 2053 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2054 return GV->hasAppendingLinkage() && 2055 StringSwitch<bool>(GV->getName()) 2056 // TODO: Linker could still eliminate the GV if we just skip 2057 // handling llvm.used array. Skipping them for now until we or the 2058 // AIX OS team come up with a good solution. 2059 .Case("llvm.used", true) 2060 // It's correct to just skip llvm.compiler.used array here. 2061 .Case("llvm.compiler.used", true) 2062 .Default(false); 2063 } 2064 2065 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2066 return StringSwitch<bool>(GV->getName()) 2067 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2068 .Default(false); 2069 } 2070 2071 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2072 // Special LLVM global arrays have been handled at the initialization. 2073 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2074 return; 2075 2076 assert(!GV->getName().startswith("llvm.") && 2077 "Unhandled intrinsic global variable."); 2078 2079 if (GV->hasComdat()) 2080 report_fatal_error("COMDAT not yet supported by AIX."); 2081 2082 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2083 2084 if (GV->isDeclarationForLinker()) { 2085 emitLinkage(GV, GVSym); 2086 return; 2087 } 2088 2089 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2090 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() && 2091 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS. 2092 report_fatal_error("Encountered a global variable kind that is " 2093 "not supported yet."); 2094 2095 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2096 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2097 2098 // Switch to the containing csect. 2099 OutStreamer->SwitchSection(Csect); 2100 2101 const DataLayout &DL = GV->getParent()->getDataLayout(); 2102 2103 // Handle common and zero-initialized local symbols. 2104 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() || 2105 GVKind.isThreadBSSLocal()) { 2106 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2107 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 2108 GVSym->setStorageClass( 2109 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2110 2111 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) 2112 OutStreamer->emitXCOFFLocalCommonSymbol( 2113 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2114 GVSym, Alignment.value()); 2115 else 2116 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2117 return; 2118 } 2119 2120 MCSymbol *EmittedInitSym = GVSym; 2121 emitLinkage(GV, EmittedInitSym); 2122 emitAlignment(getGVAlignment(GV, DL), GV); 2123 2124 // When -fdata-sections is enabled, every GlobalVariable will 2125 // be put into its own csect; therefore, label is not necessary here. 2126 if (!TM.getDataSections() || GV->hasSection()) { 2127 OutStreamer->emitLabel(EmittedInitSym); 2128 } 2129 2130 // Emit aliasing label for global variable. 2131 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2132 OutStreamer->emitLabel(getSymbol(Alias)); 2133 }); 2134 2135 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2136 } 2137 2138 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2139 const DataLayout &DL = getDataLayout(); 2140 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2141 2142 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2143 // Emit function descriptor. 2144 OutStreamer->SwitchSection( 2145 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2146 2147 // Emit aliasing label for function descriptor csect. 2148 llvm::for_each(GOAliasMap[&MF->getFunction()], 2149 [this](const GlobalAlias *Alias) { 2150 OutStreamer->emitLabel(getSymbol(Alias)); 2151 }); 2152 2153 // Emit function entry point address. 2154 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2155 PointerSize); 2156 // Emit TOC base address. 2157 const MCSymbol *TOCBaseSym = 2158 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2159 ->getQualNameSymbol(); 2160 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2161 PointerSize); 2162 // Emit a null environment pointer. 2163 OutStreamer->emitIntValue(0, PointerSize); 2164 2165 OutStreamer->SwitchSection(Current.first, Current.second); 2166 } 2167 2168 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2169 // It's not necessary to emit the label when we have individual 2170 // function in its own csect. 2171 if (!TM.getFunctionSections()) 2172 PPCAsmPrinter::emitFunctionEntryLabel(); 2173 2174 // Emit aliasing label for function entry point label. 2175 llvm::for_each( 2176 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2177 OutStreamer->emitLabel( 2178 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2179 }); 2180 } 2181 2182 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2183 // If there are no functions in this module, we will never need to reference 2184 // the TOC base. 2185 if (M.empty()) 2186 return; 2187 2188 // Switch to section to emit TOC base. 2189 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2190 2191 PPCTargetStreamer *TS = 2192 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2193 2194 for (auto &I : TOC) { 2195 // Setup the csect for the current TC entry. 2196 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 2197 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2198 OutStreamer->SwitchSection(TCEntry); 2199 2200 OutStreamer->emitLabel(I.second); 2201 if (TS != nullptr) 2202 TS->emitTCEntry(*I.first.first); 2203 } 2204 } 2205 2206 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2207 const bool Result = PPCAsmPrinter::doInitialization(M); 2208 2209 auto setCsectAlignment = [this](const GlobalObject *GO) { 2210 // Declarations have 0 alignment which is set by default. 2211 if (GO->isDeclarationForLinker()) 2212 return; 2213 2214 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2215 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2216 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2217 2218 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2219 if (GOAlign > Csect->getAlignment()) 2220 Csect->setAlignment(GOAlign); 2221 }; 2222 2223 // We need to know, up front, the alignment of csects for the assembly path, 2224 // because once a .csect directive gets emitted, we could not change the 2225 // alignment value on it. 2226 for (const auto &G : M.globals()) { 2227 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2228 continue; 2229 2230 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2231 // Generate a format indicator and a unique module id to be a part of 2232 // the sinit and sterm function names. 2233 if (FormatIndicatorAndUniqueModId.empty()) { 2234 std::string UniqueModuleId = getUniqueModuleId(&M); 2235 if (UniqueModuleId != "") 2236 // TODO: Use source file full path to generate the unique module id 2237 // and add a format indicator as a part of function name in case we 2238 // will support more than one format. 2239 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2240 else 2241 // Use the Pid and current time as the unique module id when we cannot 2242 // generate one based on a module's strong external symbols. 2243 // FIXME: Adjust the comment accordingly after we use source file full 2244 // path instead. 2245 FormatIndicatorAndUniqueModId = 2246 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2247 "_" + llvm::itostr(time(nullptr)); 2248 } 2249 2250 emitSpecialLLVMGlobal(&G); 2251 continue; 2252 } 2253 2254 setCsectAlignment(&G); 2255 } 2256 2257 for (const auto &F : M) 2258 setCsectAlignment(&F); 2259 2260 // Construct an aliasing list for each GlobalObject. 2261 for (const auto &Alias : M.aliases()) { 2262 const GlobalObject *Base = Alias.getBaseObject(); 2263 if (!Base) 2264 report_fatal_error( 2265 "alias without a base object is not yet supported on AIX"); 2266 GOAliasMap[Base].push_back(&Alias); 2267 } 2268 2269 return Result; 2270 } 2271 2272 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2273 switch (MI->getOpcode()) { 2274 default: 2275 break; 2276 case PPC::BL8: 2277 case PPC::BL: 2278 case PPC::BL8_NOP: 2279 case PPC::BL_NOP: { 2280 const MachineOperand &MO = MI->getOperand(0); 2281 if (MO.isSymbol()) { 2282 MCSymbolXCOFF *S = 2283 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2284 ExtSymSDNodeSymbols.insert(S); 2285 } 2286 } break; 2287 case PPC::BL_TLS: 2288 case PPC::BL8_TLS: 2289 case PPC::BL8_TLS_: 2290 case PPC::BL8_NOP_TLS: 2291 report_fatal_error("TLS call not yet implemented"); 2292 case PPC::TAILB: 2293 case PPC::TAILB8: 2294 case PPC::TAILBA: 2295 case PPC::TAILBA8: 2296 case PPC::TAILBCTR: 2297 case PPC::TAILBCTR8: 2298 if (MI->getOperand(0).isSymbol()) 2299 report_fatal_error("Tail call for extern symbol not yet supported."); 2300 break; 2301 } 2302 return PPCAsmPrinter::emitInstruction(MI); 2303 } 2304 2305 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2306 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2307 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2308 return PPCAsmPrinter::doFinalization(M); 2309 } 2310 2311 static unsigned mapToSinitPriority(int P) { 2312 if (P < 0 || P > 65535) 2313 report_fatal_error("invalid init priority"); 2314 2315 if (P <= 20) 2316 return P; 2317 2318 if (P < 81) 2319 return 20 + (P - 20) * 16; 2320 2321 if (P <= 1124) 2322 return 1004 + (P - 81); 2323 2324 if (P < 64512) 2325 return 2047 + (P - 1124) * 33878; 2326 2327 return 2147482625u + (P - 64512); 2328 } 2329 2330 static std::string convertToSinitPriority(int Priority) { 2331 // This helper function converts clang init priority to values used in sinit 2332 // and sterm functions. 2333 // 2334 // The conversion strategies are: 2335 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2336 // reserved priority range [0, 1023] by 2337 // - directly mapping the first 21 and the last 20 elements of the ranges 2338 // - linear interpolating the intermediate values with a step size of 16. 2339 // 2340 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2341 // sinit/sterm priority range [1024, 2147483648] by: 2342 // - directly mapping the first and the last 1024 elements of the ranges 2343 // - linear interpolating the intermediate values with a step size of 33878. 2344 unsigned int P = mapToSinitPriority(Priority); 2345 2346 std::string PrioritySuffix; 2347 llvm::raw_string_ostream os(PrioritySuffix); 2348 os << llvm::format_hex_no_prefix(P, 8); 2349 os.flush(); 2350 return PrioritySuffix; 2351 } 2352 2353 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2354 const Constant *List, bool IsCtor) { 2355 SmallVector<Structor, 8> Structors; 2356 preprocessXXStructorList(DL, List, Structors); 2357 if (Structors.empty()) 2358 return; 2359 2360 unsigned Index = 0; 2361 for (Structor &S : Structors) { 2362 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2363 S.Func = CE->getOperand(0); 2364 2365 llvm::GlobalAlias::create( 2366 GlobalValue::ExternalLinkage, 2367 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2368 llvm::Twine(convertToSinitPriority(S.Priority)) + 2369 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2370 llvm::Twine("_", llvm::utostr(Index++)), 2371 cast<Function>(S.Func)); 2372 } 2373 } 2374 2375 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2376 unsigned Encoding) { 2377 if (GV) { 2378 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2379 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2380 const MCSymbol *TOCBaseSym = 2381 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2382 ->getQualNameSymbol(); 2383 auto &Ctx = OutStreamer->getContext(); 2384 const MCExpr *Exp = 2385 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2386 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2387 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2388 } else 2389 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2390 } 2391 2392 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2393 // given output stream. 2394 static AsmPrinter * 2395 createPPCAsmPrinterPass(TargetMachine &tm, 2396 std::unique_ptr<MCStreamer> &&Streamer) { 2397 if (tm.getTargetTriple().isOSAIX()) 2398 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2399 2400 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2401 } 2402 2403 // Force static initialization. 2404 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2405 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2406 createPPCAsmPrinterPass); 2407 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2408 createPPCAsmPrinterPass); 2409 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2410 createPPCAsmPrinterPass); 2411 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2412 createPPCAsmPrinterPass); 2413 } 2414