1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/MC/MCAsmInfo.h" 50 #include "llvm/MC/MCContext.h" 51 #include "llvm/MC/MCDirectives.h" 52 #include "llvm/MC/MCExpr.h" 53 #include "llvm/MC/MCInst.h" 54 #include "llvm/MC/MCInstBuilder.h" 55 #include "llvm/MC/MCSectionELF.h" 56 #include "llvm/MC/MCSectionXCOFF.h" 57 #include "llvm/MC/MCStreamer.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/MCSymbolELF.h" 60 #include "llvm/MC/MCSymbolXCOFF.h" 61 #include "llvm/MC/SectionKind.h" 62 #include "llvm/MC/TargetRegistry.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/Process.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Transforms/Utils/ModuleUtils.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <new> 77 78 using namespace llvm; 79 using namespace llvm::XCOFF; 80 81 #define DEBUG_TYPE "asmprinter" 82 83 static cl::opt<bool> EnableSSPCanaryBitInTB( 84 "aix-ssp-tb-bit", cl::init(false), 85 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden); 86 87 // Specialize DenseMapInfo to allow 88 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 89 // This specialization is needed here because that type is used as keys in the 90 // map representing TOC entries. 91 namespace llvm { 92 template <> 93 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 94 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 95 96 static inline TOCKey getEmptyKey() { 97 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 98 } 99 static inline TOCKey getTombstoneKey() { 100 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 101 } 102 static unsigned getHashValue(const TOCKey &PairVal) { 103 return detail::combineHashValue( 104 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 105 DenseMapInfo<int>::getHashValue(PairVal.second)); 106 } 107 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 108 }; 109 } // end namespace llvm 110 111 namespace { 112 113 enum { 114 // GNU attribute tags for PowerPC ABI 115 Tag_GNU_Power_ABI_FP = 4, 116 Tag_GNU_Power_ABI_Vector = 8, 117 Tag_GNU_Power_ABI_Struct_Return = 12, 118 119 // GNU attribute values for PowerPC float ABI, as combination of two parts 120 Val_GNU_Power_ABI_NoFloat = 0b00, 121 Val_GNU_Power_ABI_HardFloat_DP = 0b01, 122 Val_GNU_Power_ABI_SoftFloat_DP = 0b10, 123 Val_GNU_Power_ABI_HardFloat_SP = 0b11, 124 125 Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100, 126 Val_GNU_Power_ABI_LDBL_64 = 0b1000, 127 Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100, 128 }; 129 130 class PPCAsmPrinter : public AsmPrinter { 131 protected: 132 // For TLS on AIX, we need to be able to identify TOC entries of specific 133 // VariantKind so we can add the right relocations when we generate the 134 // entries. So each entry is represented by a pair of MCSymbol and 135 // VariantKind. For example, we need to be able to identify the following 136 // entry as a TLSGD entry so we can add the @m relocation: 137 // .tc .i[TC],i[TL]@m 138 // By default, VK_None is used for the VariantKind. 139 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 140 MCSymbol *> 141 TOC; 142 const PPCSubtarget *Subtarget = nullptr; 143 StackMaps SM; 144 145 public: 146 explicit PPCAsmPrinter(TargetMachine &TM, 147 std::unique_ptr<MCStreamer> Streamer) 148 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 149 150 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 151 152 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 153 MCSymbolRefExpr::VariantKind Kind = 154 MCSymbolRefExpr::VariantKind::VK_None); 155 156 bool doInitialization(Module &M) override { 157 if (!TOC.empty()) 158 TOC.clear(); 159 return AsmPrinter::doInitialization(M); 160 } 161 162 void emitInstruction(const MachineInstr *MI) override; 163 164 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 165 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 166 /// The \p MI would be INLINEASM ONLY. 167 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 168 169 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 170 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 171 const char *ExtraCode, raw_ostream &O) override; 172 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 173 const char *ExtraCode, raw_ostream &O) override; 174 175 void emitEndOfAsmFile(Module &M) override; 176 177 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 178 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 179 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 180 bool runOnMachineFunction(MachineFunction &MF) override { 181 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 182 bool Changed = AsmPrinter::runOnMachineFunction(MF); 183 emitXRayTable(); 184 return Changed; 185 } 186 }; 187 188 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 189 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 190 public: 191 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 192 std::unique_ptr<MCStreamer> Streamer) 193 : PPCAsmPrinter(TM, std::move(Streamer)) {} 194 195 StringRef getPassName() const override { 196 return "Linux PPC Assembly Printer"; 197 } 198 199 void emitGNUAttributes(Module &M); 200 201 void emitStartOfAsmFile(Module &M) override; 202 void emitEndOfAsmFile(Module &) override; 203 204 void emitFunctionEntryLabel() override; 205 206 void emitFunctionBodyStart() override; 207 void emitFunctionBodyEnd() override; 208 void emitInstruction(const MachineInstr *MI) override; 209 }; 210 211 class PPCAIXAsmPrinter : public PPCAsmPrinter { 212 private: 213 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 214 /// linkage for them in AIX. 215 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 216 217 /// A format indicator and unique trailing identifier to form part of the 218 /// sinit/sterm function names. 219 std::string FormatIndicatorAndUniqueModId; 220 221 // Record a list of GlobalAlias associated with a GlobalObject. 222 // This is used for AIX's extra-label-at-definition aliasing strategy. 223 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 224 GOAliasMap; 225 226 uint16_t getNumberOfVRSaved(); 227 void emitTracebackTable(); 228 229 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars; 230 231 void emitGlobalVariableHelper(const GlobalVariable *); 232 233 // Get the offset of an alias based on its AliaseeObject. 234 uint64_t getAliasOffset(const Constant *C); 235 236 public: 237 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 238 : PPCAsmPrinter(TM, std::move(Streamer)) { 239 if (MAI->isLittleEndian()) 240 report_fatal_error( 241 "cannot create AIX PPC Assembly Printer for a little-endian target"); 242 } 243 244 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 245 246 bool doInitialization(Module &M) override; 247 248 void emitXXStructorList(const DataLayout &DL, const Constant *List, 249 bool IsCtor) override; 250 251 void SetupMachineFunction(MachineFunction &MF) override; 252 253 void emitGlobalVariable(const GlobalVariable *GV) override; 254 255 void emitFunctionDescriptor() override; 256 257 void emitFunctionEntryLabel() override; 258 259 void emitFunctionBodyEnd() override; 260 261 void emitPGORefs(); 262 263 void emitEndOfAsmFile(Module &) override; 264 265 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 266 267 void emitInstruction(const MachineInstr *MI) override; 268 269 bool doFinalization(Module &M) override; 270 271 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 272 }; 273 274 } // end anonymous namespace 275 276 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 277 raw_ostream &O) { 278 // Computing the address of a global symbol, not calling it. 279 const GlobalValue *GV = MO.getGlobal(); 280 getSymbol(GV)->print(O, MAI); 281 printOffset(MO.getOffset(), O); 282 } 283 284 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 285 raw_ostream &O) { 286 const DataLayout &DL = getDataLayout(); 287 const MachineOperand &MO = MI->getOperand(OpNo); 288 289 switch (MO.getType()) { 290 case MachineOperand::MO_Register: { 291 // The MI is INLINEASM ONLY and UseVSXReg is always false. 292 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 293 294 // Linux assembler (Others?) does not take register mnemonics. 295 // FIXME - What about special registers used in mfspr/mtspr? 296 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 297 return; 298 } 299 case MachineOperand::MO_Immediate: 300 O << MO.getImm(); 301 return; 302 303 case MachineOperand::MO_MachineBasicBlock: 304 MO.getMBB()->getSymbol()->print(O, MAI); 305 return; 306 case MachineOperand::MO_ConstantPoolIndex: 307 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 308 << MO.getIndex(); 309 return; 310 case MachineOperand::MO_BlockAddress: 311 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 312 return; 313 case MachineOperand::MO_GlobalAddress: { 314 PrintSymbolOperand(MO, O); 315 return; 316 } 317 318 default: 319 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 320 return; 321 } 322 } 323 324 /// PrintAsmOperand - Print out an operand for an inline asm expression. 325 /// 326 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 327 const char *ExtraCode, raw_ostream &O) { 328 // Does this asm operand have a single letter operand modifier? 329 if (ExtraCode && ExtraCode[0]) { 330 if (ExtraCode[1] != 0) return true; // Unknown modifier. 331 332 switch (ExtraCode[0]) { 333 default: 334 // See if this is a generic print operand 335 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 336 case 'L': // Write second word of DImode reference. 337 // Verify that this operand has two consecutive registers. 338 if (!MI->getOperand(OpNo).isReg() || 339 OpNo+1 == MI->getNumOperands() || 340 !MI->getOperand(OpNo+1).isReg()) 341 return true; 342 ++OpNo; // Return the high-part. 343 break; 344 case 'I': 345 // Write 'i' if an integer constant, otherwise nothing. Used to print 346 // addi vs add, etc. 347 if (MI->getOperand(OpNo).isImm()) 348 O << "i"; 349 return false; 350 case 'x': 351 if(!MI->getOperand(OpNo).isReg()) 352 return true; 353 // This operand uses VSX numbering. 354 // If the operand is a VMX register, convert it to a VSX register. 355 Register Reg = MI->getOperand(OpNo).getReg(); 356 if (PPCInstrInfo::isVRRegister(Reg)) 357 Reg = PPC::VSX32 + (Reg - PPC::V0); 358 else if (PPCInstrInfo::isVFRegister(Reg)) 359 Reg = PPC::VSX32 + (Reg - PPC::VF0); 360 const char *RegName; 361 RegName = PPCInstPrinter::getRegisterName(Reg); 362 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 363 O << RegName; 364 return false; 365 } 366 } 367 368 printOperand(MI, OpNo, O); 369 return false; 370 } 371 372 // At the moment, all inline asm memory operands are a single register. 373 // In any case, the output of this routine should always be just one 374 // assembler operand. 375 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 376 const char *ExtraCode, 377 raw_ostream &O) { 378 if (ExtraCode && ExtraCode[0]) { 379 if (ExtraCode[1] != 0) return true; // Unknown modifier. 380 381 switch (ExtraCode[0]) { 382 default: return true; // Unknown modifier. 383 case 'L': // A memory reference to the upper word of a double word op. 384 O << getDataLayout().getPointerSize() << "("; 385 printOperand(MI, OpNo, O); 386 O << ")"; 387 return false; 388 case 'y': // A memory reference for an X-form instruction 389 O << "0, "; 390 printOperand(MI, OpNo, O); 391 return false; 392 case 'I': 393 // Write 'i' if an integer constant, otherwise nothing. Used to print 394 // addi vs add, etc. 395 if (MI->getOperand(OpNo).isImm()) 396 O << "i"; 397 return false; 398 case 'U': // Print 'u' for update form. 399 case 'X': // Print 'x' for indexed form. 400 // FIXME: Currently for PowerPC memory operands are always loaded 401 // into a register, so we never get an update or indexed form. 402 // This is bad even for offset forms, since even if we know we 403 // have a value in -16(r1), we will generate a load into r<n> 404 // and then load from 0(r<n>). Until that issue is fixed, 405 // tolerate 'U' and 'X' but don't output anything. 406 assert(MI->getOperand(OpNo).isReg()); 407 return false; 408 } 409 } 410 411 assert(MI->getOperand(OpNo).isReg()); 412 O << "0("; 413 printOperand(MI, OpNo, O); 414 O << ")"; 415 return false; 416 } 417 418 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 419 /// exists for it. If not, create one. Then return a symbol that references 420 /// the TOC entry. 421 MCSymbol * 422 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 423 MCSymbolRefExpr::VariantKind Kind) { 424 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 425 if (!TOCEntry) 426 TOCEntry = createTempSymbol("C"); 427 return TOCEntry; 428 } 429 430 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 431 emitStackMaps(SM); 432 } 433 434 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 435 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 436 437 auto &Ctx = OutStreamer->getContext(); 438 MCSymbol *MILabel = Ctx.createTempSymbol(); 439 OutStreamer->emitLabel(MILabel); 440 441 SM.recordStackMap(*MILabel, MI); 442 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 443 444 // Scan ahead to trim the shadow. 445 const MachineBasicBlock &MBB = *MI.getParent(); 446 MachineBasicBlock::const_iterator MII(MI); 447 ++MII; 448 while (NumNOPBytes > 0) { 449 if (MII == MBB.end() || MII->isCall() || 450 MII->getOpcode() == PPC::DBG_VALUE || 451 MII->getOpcode() == TargetOpcode::PATCHPOINT || 452 MII->getOpcode() == TargetOpcode::STACKMAP) 453 break; 454 ++MII; 455 NumNOPBytes -= 4; 456 } 457 458 // Emit nops. 459 for (unsigned i = 0; i < NumNOPBytes; i += 4) 460 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 461 } 462 463 // Lower a patchpoint of the form: 464 // [<def>], <id>, <numBytes>, <target>, <numArgs> 465 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 466 auto &Ctx = OutStreamer->getContext(); 467 MCSymbol *MILabel = Ctx.createTempSymbol(); 468 OutStreamer->emitLabel(MILabel); 469 470 SM.recordPatchPoint(*MILabel, MI); 471 PatchPointOpers Opers(&MI); 472 473 unsigned EncodedBytes = 0; 474 const MachineOperand &CalleeMO = Opers.getCallTarget(); 475 476 if (CalleeMO.isImm()) { 477 int64_t CallTarget = CalleeMO.getImm(); 478 if (CallTarget) { 479 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 480 "High 16 bits of call target should be zero."); 481 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 482 EncodedBytes = 0; 483 // Materialize the jump address: 484 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 485 .addReg(ScratchReg) 486 .addImm((CallTarget >> 32) & 0xFFFF)); 487 ++EncodedBytes; 488 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 489 .addReg(ScratchReg) 490 .addReg(ScratchReg) 491 .addImm(32).addImm(16)); 492 ++EncodedBytes; 493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 494 .addReg(ScratchReg) 495 .addReg(ScratchReg) 496 .addImm((CallTarget >> 16) & 0xFFFF)); 497 ++EncodedBytes; 498 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 499 .addReg(ScratchReg) 500 .addReg(ScratchReg) 501 .addImm(CallTarget & 0xFFFF)); 502 503 // Save the current TOC pointer before the remote call. 504 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 506 .addReg(PPC::X2) 507 .addImm(TOCSaveOffset) 508 .addReg(PPC::X1)); 509 ++EncodedBytes; 510 511 // If we're on ELFv1, then we need to load the actual function pointer 512 // from the function descriptor. 513 if (!Subtarget->isELFv2ABI()) { 514 // Load the new TOC pointer and the function address, but not r11 515 // (needing this is rare, and loading it here would prevent passing it 516 // via a 'nest' parameter. 517 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 518 .addReg(PPC::X2) 519 .addImm(8) 520 .addReg(ScratchReg)); 521 ++EncodedBytes; 522 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 523 .addReg(ScratchReg) 524 .addImm(0) 525 .addReg(ScratchReg)); 526 ++EncodedBytes; 527 } 528 529 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 530 .addReg(ScratchReg)); 531 ++EncodedBytes; 532 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 533 ++EncodedBytes; 534 535 // Restore the TOC pointer after the call. 536 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 537 .addReg(PPC::X2) 538 .addImm(TOCSaveOffset) 539 .addReg(PPC::X1)); 540 ++EncodedBytes; 541 } 542 } else if (CalleeMO.isGlobal()) { 543 const GlobalValue *GValue = CalleeMO.getGlobal(); 544 MCSymbol *MOSymbol = getSymbol(GValue); 545 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 546 547 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 548 .addExpr(SymVar)); 549 EncodedBytes += 2; 550 } 551 552 // Each instruction is 4 bytes. 553 EncodedBytes *= 4; 554 555 // Emit padding. 556 unsigned NumBytes = Opers.getNumPatchBytes(); 557 assert(NumBytes >= EncodedBytes && 558 "Patchpoint can't request size less than the length of a call."); 559 assert((NumBytes - EncodedBytes) % 4 == 0 && 560 "Invalid number of NOP bytes requested!"); 561 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 562 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 563 } 564 565 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will 566 /// create the csect and use the qual-name symbol instead of creating just the 567 /// external symbol. 568 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) { 569 return Ctx 570 .getXCOFFSection(".__tls_get_addr", SectionKind::getText(), 571 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)) 572 ->getQualNameSymbol(); 573 } 574 575 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 576 /// call to __tls_get_addr to the current output stream. 577 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 578 MCSymbolRefExpr::VariantKind VK) { 579 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 580 unsigned Opcode = PPC::BL8_NOP_TLS; 581 582 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 583 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 584 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 585 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 586 Opcode = PPC::BL8_NOTOC_TLS; 587 } 588 const Module *M = MF->getFunction().getParent(); 589 590 assert(MI->getOperand(0).isReg() && 591 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 592 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 593 "GETtls[ld]ADDR[32] must define GPR3"); 594 assert(MI->getOperand(1).isReg() && 595 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 596 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 597 "GETtls[ld]ADDR[32] must read GPR3"); 598 599 if (Subtarget->isAIXABI()) { 600 // On AIX, the variable offset should already be in R4 and the region handle 601 // should already be in R3. 602 // For TLSGD, which currently is the only supported access model, we only 603 // need to generate an absolute branch to .__tls_get_addr. 604 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4; 605 (void)VarOffsetReg; 606 assert(MI->getOperand(2).isReg() && 607 MI->getOperand(2).getReg() == VarOffsetReg && 608 "GETtls[ld]ADDR[32] must read GPR4"); 609 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 610 const MCExpr *TlsRef = MCSymbolRefExpr::create( 611 TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext); 612 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef)); 613 return; 614 } 615 616 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr"); 617 618 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 619 Kind = MCSymbolRefExpr::VK_PLT; 620 621 const MCExpr *TlsRef = 622 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 623 624 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 625 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 626 M->getPICLevel() == PICLevel::BigPIC) 627 TlsRef = MCBinaryExpr::createAdd( 628 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 629 const MachineOperand &MO = MI->getOperand(2); 630 const GlobalValue *GValue = MO.getGlobal(); 631 MCSymbol *MOSymbol = getSymbol(GValue); 632 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 633 EmitToStreamer(*OutStreamer, 634 MCInstBuilder(Subtarget->isPPC64() ? Opcode 635 : (unsigned)PPC::BL_TLS) 636 .addExpr(TlsRef) 637 .addExpr(SymVar)); 638 } 639 640 /// Map a machine operand for a TOC pseudo-machine instruction to its 641 /// corresponding MCSymbol. 642 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 643 AsmPrinter &AP) { 644 switch (MO.getType()) { 645 case MachineOperand::MO_GlobalAddress: 646 return AP.getSymbol(MO.getGlobal()); 647 case MachineOperand::MO_ConstantPoolIndex: 648 return AP.GetCPISymbol(MO.getIndex()); 649 case MachineOperand::MO_JumpTableIndex: 650 return AP.GetJTISymbol(MO.getIndex()); 651 case MachineOperand::MO_BlockAddress: 652 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 653 default: 654 llvm_unreachable("Unexpected operand type to get symbol."); 655 } 656 } 657 658 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 659 /// the current output stream. 660 /// 661 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 662 MCInst TmpInst; 663 const bool IsPPC64 = Subtarget->isPPC64(); 664 const bool IsAIX = Subtarget->isAIXABI(); 665 const Module *M = MF->getFunction().getParent(); 666 PICLevel::Level PL = M->getPICLevel(); 667 668 #ifndef NDEBUG 669 // Validate that SPE and FPU are mutually exclusive in codegen 670 if (!MI->isInlineAsm()) { 671 for (const MachineOperand &MO: MI->operands()) { 672 if (MO.isReg()) { 673 Register Reg = MO.getReg(); 674 if (Subtarget->hasSPE()) { 675 if (PPC::F4RCRegClass.contains(Reg) || 676 PPC::F8RCRegClass.contains(Reg) || 677 PPC::VFRCRegClass.contains(Reg) || 678 PPC::VRRCRegClass.contains(Reg) || 679 PPC::VSFRCRegClass.contains(Reg) || 680 PPC::VSSRCRegClass.contains(Reg) 681 ) 682 llvm_unreachable("SPE targets cannot have FPRegs!"); 683 } else { 684 if (PPC::SPERCRegClass.contains(Reg)) 685 llvm_unreachable("SPE register found in FPU-targeted code!"); 686 } 687 } 688 } 689 } 690 #endif 691 692 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 693 ptrdiff_t OriginalOffset) { 694 // Apply an offset to the TOC-based expression such that the adjusted 695 // notional offset from the TOC base (to be encoded into the instruction's D 696 // or DS field) is the signed 16-bit truncation of the original notional 697 // offset from the TOC base. 698 // This is consistent with the treatment used both by XL C/C++ and 699 // by AIX ld -r. 700 ptrdiff_t Adjustment = 701 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 702 return MCBinaryExpr::createAdd( 703 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 704 }; 705 706 auto getTOCEntryLoadingExprForXCOFF = 707 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 708 this](const MCSymbol *MOSymbol, const MCExpr *Expr, 709 MCSymbolRefExpr::VariantKind VK = 710 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * { 711 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 712 const auto TOCEntryIter = TOC.find({MOSymbol, VK}); 713 assert(TOCEntryIter != TOC.end() && 714 "Could not find the TOC entry for this symbol."); 715 const ptrdiff_t EntryDistanceFromTOCBase = 716 (TOCEntryIter - TOC.begin()) * EntryByteSize; 717 constexpr int16_t PositiveTOCRange = INT16_MAX; 718 719 if (EntryDistanceFromTOCBase > PositiveTOCRange) 720 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 721 722 return Expr; 723 }; 724 auto GetVKForMO = [&](const MachineOperand &MO) { 725 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for 726 // the variable offset and the other for the region handle). They are 727 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG. 728 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG) 729 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM; 730 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG) 731 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD; 732 return MCSymbolRefExpr::VariantKind::VK_None; 733 }; 734 735 // Lower multi-instruction pseudo operations. 736 switch (MI->getOpcode()) { 737 default: break; 738 case TargetOpcode::DBG_VALUE: 739 llvm_unreachable("Should be handled target independently"); 740 case TargetOpcode::STACKMAP: 741 return LowerSTACKMAP(SM, *MI); 742 case TargetOpcode::PATCHPOINT: 743 return LowerPATCHPOINT(SM, *MI); 744 745 case PPC::MoveGOTtoLR: { 746 // Transform %lr = MoveGOTtoLR 747 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 748 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 749 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 750 // blrl 751 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 752 MCSymbol *GOTSymbol = 753 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 754 const MCExpr *OffsExpr = 755 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 756 MCSymbolRefExpr::VK_PPC_LOCAL, 757 OutContext), 758 MCConstantExpr::create(4, OutContext), 759 OutContext); 760 761 // Emit the 'bl'. 762 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 763 return; 764 } 765 case PPC::MovePCtoLR: 766 case PPC::MovePCtoLR8: { 767 // Transform %lr = MovePCtoLR 768 // Into this, where the label is the PIC base: 769 // bl L1$pb 770 // L1$pb: 771 MCSymbol *PICBase = MF->getPICBaseSymbol(); 772 773 // Emit the 'bl'. 774 EmitToStreamer(*OutStreamer, 775 MCInstBuilder(PPC::BL) 776 // FIXME: We would like an efficient form for this, so we 777 // don't have to do a lot of extra uniquing. 778 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 779 780 // Emit the label. 781 OutStreamer->emitLabel(PICBase); 782 return; 783 } 784 case PPC::UpdateGBR: { 785 // Transform %rd = UpdateGBR(%rt, %ri) 786 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 787 // add %rd, %rt, %ri 788 // or into (if secure plt mode is on): 789 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 790 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 791 // Get the offset from the GOT Base Register to the GOT 792 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 793 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 794 unsigned PICR = TmpInst.getOperand(0).getReg(); 795 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 796 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 797 : ".LTOC"); 798 const MCExpr *PB = 799 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 800 801 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 802 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 803 804 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 805 EmitToStreamer( 806 *OutStreamer, 807 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 808 809 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 810 EmitToStreamer( 811 *OutStreamer, 812 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 813 return; 814 } else { 815 MCSymbol *PICOffset = 816 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 817 TmpInst.setOpcode(PPC::LWZ); 818 const MCExpr *Exp = 819 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 820 const MCExpr *PB = 821 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 822 MCSymbolRefExpr::VK_None, 823 OutContext); 824 const MCOperand TR = TmpInst.getOperand(1); 825 const MCOperand PICR = TmpInst.getOperand(0); 826 827 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 828 TmpInst.getOperand(1) = 829 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 830 TmpInst.getOperand(0) = TR; 831 TmpInst.getOperand(2) = PICR; 832 EmitToStreamer(*OutStreamer, TmpInst); 833 834 TmpInst.setOpcode(PPC::ADD4); 835 TmpInst.getOperand(0) = PICR; 836 TmpInst.getOperand(1) = TR; 837 TmpInst.getOperand(2) = PICR; 838 EmitToStreamer(*OutStreamer, TmpInst); 839 return; 840 } 841 } 842 case PPC::LWZtoc: { 843 // Transform %rN = LWZtoc @op1, %r2 844 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 845 846 // Change the opcode to LWZ. 847 TmpInst.setOpcode(PPC::LWZ); 848 849 const MachineOperand &MO = MI->getOperand(1); 850 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 851 "Invalid operand for LWZtoc."); 852 853 // Map the operand to its corresponding MCSymbol. 854 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 855 856 // Create a reference to the GOT entry for the symbol. The GOT entry will be 857 // synthesized later. 858 if (PL == PICLevel::SmallPIC && !IsAIX) { 859 const MCExpr *Exp = 860 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 861 OutContext); 862 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 863 EmitToStreamer(*OutStreamer, TmpInst); 864 return; 865 } 866 867 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 868 869 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 870 // storage allocated in the TOC which contains the address of 871 // 'MOSymbol'. Said TOC entry will be synthesized later. 872 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 873 const MCExpr *Exp = 874 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 875 876 // AIX uses the label directly as the lwz displacement operand for 877 // references into the toc section. The displacement value will be generated 878 // relative to the toc-base. 879 if (IsAIX) { 880 assert( 881 TM.getCodeModel() == CodeModel::Small && 882 "This pseudo should only be selected for 32-bit small code model."); 883 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK); 884 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 885 886 // Print MO for better readability 887 if (isVerbose()) 888 OutStreamer->getCommentOS() << MO << '\n'; 889 EmitToStreamer(*OutStreamer, TmpInst); 890 return; 891 } 892 893 // Create an explicit subtract expression between the local symbol and 894 // '.LTOC' to manifest the toc-relative offset. 895 const MCExpr *PB = MCSymbolRefExpr::create( 896 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 897 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 898 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 899 EmitToStreamer(*OutStreamer, TmpInst); 900 return; 901 } 902 case PPC::ADDItoc: 903 case PPC::ADDItoc8: { 904 assert(IsAIX && TM.getCodeModel() == CodeModel::Small && 905 "PseudoOp only valid for small code model AIX"); 906 907 // Transform %rN = ADDItoc/8 @op1, %r2. 908 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 909 910 // Change the opcode to load address. 911 TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8)); 912 913 const MachineOperand &MO = MI->getOperand(1); 914 assert(MO.isGlobal() && "Invalid operand for ADDItoc[8]."); 915 916 // Map the operand to its corresponding MCSymbol. 917 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 918 919 const MCExpr *Exp = 920 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext); 921 922 TmpInst.getOperand(1) = TmpInst.getOperand(2); 923 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 924 EmitToStreamer(*OutStreamer, TmpInst); 925 return; 926 } 927 case PPC::LDtocJTI: 928 case PPC::LDtocCPT: 929 case PPC::LDtocBA: 930 case PPC::LDtoc: { 931 // Transform %x3 = LDtoc @min1, %x2 932 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 933 934 // Change the opcode to LD. 935 TmpInst.setOpcode(PPC::LD); 936 937 const MachineOperand &MO = MI->getOperand(1); 938 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 939 "Invalid operand!"); 940 941 // Map the operand to its corresponding MCSymbol. 942 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 943 944 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 945 946 // Map the machine operand to its corresponding MCSymbol, then map the 947 // global address operand to be a reference to the TOC entry we will 948 // synthesize later. 949 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 950 951 MCSymbolRefExpr::VariantKind VKExpr = 952 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 953 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext); 954 TmpInst.getOperand(1) = MCOperand::createExpr( 955 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp); 956 957 // Print MO for better readability 958 if (isVerbose() && IsAIX) 959 OutStreamer->getCommentOS() << MO << '\n'; 960 EmitToStreamer(*OutStreamer, TmpInst); 961 return; 962 } 963 case PPC::ADDIStocHA: { 964 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 965 "This pseudo should only be selected for 32-bit large code model on" 966 " AIX."); 967 968 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 969 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 970 971 // Change the opcode to ADDIS. 972 TmpInst.setOpcode(PPC::ADDIS); 973 974 const MachineOperand &MO = MI->getOperand(2); 975 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 976 "Invalid operand for ADDIStocHA."); 977 978 // Map the machine operand to its corresponding MCSymbol. 979 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 980 981 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 982 983 // Always use TOC on AIX. Map the global address operand to be a reference 984 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 985 // reference the storage allocated in the TOC which contains the address of 986 // 'MOSymbol'. 987 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 988 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 989 MCSymbolRefExpr::VK_PPC_U, 990 OutContext); 991 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 992 EmitToStreamer(*OutStreamer, TmpInst); 993 return; 994 } 995 case PPC::LWZtocL: { 996 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 997 "This pseudo should only be selected for 32-bit large code model on" 998 " AIX."); 999 1000 // Transform %rd = LWZtocL @sym, %rs. 1001 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1002 1003 // Change the opcode to lwz. 1004 TmpInst.setOpcode(PPC::LWZ); 1005 1006 const MachineOperand &MO = MI->getOperand(1); 1007 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1008 "Invalid operand for LWZtocL."); 1009 1010 // Map the machine operand to its corresponding MCSymbol. 1011 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1012 1013 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1014 1015 // Always use TOC on AIX. Map the global address operand to be a reference 1016 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 1017 // reference the storage allocated in the TOC which contains the address of 1018 // 'MOSymbol'. 1019 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 1020 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 1021 MCSymbolRefExpr::VK_PPC_L, 1022 OutContext); 1023 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1024 EmitToStreamer(*OutStreamer, TmpInst); 1025 return; 1026 } 1027 case PPC::ADDIStocHA8: { 1028 // Transform %xd = ADDIStocHA8 %x2, @sym 1029 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1030 1031 // Change the opcode to ADDIS8. If the global address is the address of 1032 // an external symbol, is a jump table address, is a block address, or is a 1033 // constant pool index with large code model enabled, then generate a TOC 1034 // entry and reference that. Otherwise, reference the symbol directly. 1035 TmpInst.setOpcode(PPC::ADDIS8); 1036 1037 const MachineOperand &MO = MI->getOperand(2); 1038 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1039 "Invalid operand for ADDIStocHA8!"); 1040 1041 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1042 1043 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1044 1045 const bool GlobalToc = 1046 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 1047 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 1048 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 1049 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1050 1051 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 1052 1053 const MCExpr *Exp = 1054 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1055 1056 if (!MO.isJTI() && MO.getOffset()) 1057 Exp = MCBinaryExpr::createAdd(Exp, 1058 MCConstantExpr::create(MO.getOffset(), 1059 OutContext), 1060 OutContext); 1061 1062 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1063 EmitToStreamer(*OutStreamer, TmpInst); 1064 return; 1065 } 1066 case PPC::LDtocL: { 1067 // Transform %xd = LDtocL @sym, %xs 1068 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1069 1070 // Change the opcode to LD. If the global address is the address of 1071 // an external symbol, is a jump table address, is a block address, or is 1072 // a constant pool index with large code model enabled, then generate a 1073 // TOC entry and reference that. Otherwise, reference the symbol directly. 1074 TmpInst.setOpcode(PPC::LD); 1075 1076 const MachineOperand &MO = MI->getOperand(1); 1077 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 1078 MO.isBlockAddress()) && 1079 "Invalid operand for LDtocL!"); 1080 1081 LLVM_DEBUG(assert( 1082 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1083 "LDtocL used on symbol that could be accessed directly is " 1084 "invalid. Must match ADDIStocHA8.")); 1085 1086 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1087 1088 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1089 1090 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 1091 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1092 1093 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 1094 const MCExpr *Exp = 1095 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1096 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1097 EmitToStreamer(*OutStreamer, TmpInst); 1098 return; 1099 } 1100 case PPC::ADDItocL: { 1101 // Transform %xd = ADDItocL %xs, @sym 1102 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1103 1104 // Change the opcode to ADDI8. If the global address is external, then 1105 // generate a TOC entry and reference that. Otherwise, reference the 1106 // symbol directly. 1107 TmpInst.setOpcode(PPC::ADDI8); 1108 1109 const MachineOperand &MO = MI->getOperand(2); 1110 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 1111 1112 LLVM_DEBUG(assert( 1113 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1114 "Interposable definitions must use indirect access.")); 1115 1116 const MCExpr *Exp = 1117 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 1118 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1119 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1120 EmitToStreamer(*OutStreamer, TmpInst); 1121 return; 1122 } 1123 case PPC::ADDISgotTprelHA: { 1124 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1125 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1126 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1127 const MachineOperand &MO = MI->getOperand(2); 1128 const GlobalValue *GValue = MO.getGlobal(); 1129 MCSymbol *MOSymbol = getSymbol(GValue); 1130 const MCExpr *SymGotTprel = 1131 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1132 OutContext); 1133 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1134 .addReg(MI->getOperand(0).getReg()) 1135 .addReg(MI->getOperand(1).getReg()) 1136 .addExpr(SymGotTprel)); 1137 return; 1138 } 1139 case PPC::LDgotTprelL: 1140 case PPC::LDgotTprelL32: { 1141 // Transform %xd = LDgotTprelL @sym, %xs 1142 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1143 1144 // Change the opcode to LD. 1145 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1146 const MachineOperand &MO = MI->getOperand(1); 1147 const GlobalValue *GValue = MO.getGlobal(); 1148 MCSymbol *MOSymbol = getSymbol(GValue); 1149 const MCExpr *Exp = MCSymbolRefExpr::create( 1150 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1151 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1152 OutContext); 1153 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1154 EmitToStreamer(*OutStreamer, TmpInst); 1155 return; 1156 } 1157 1158 case PPC::PPC32PICGOT: { 1159 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1160 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1161 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1162 1163 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1164 // FIXME: We would like an efficient form for this, so we don't have to do 1165 // a lot of extra uniquing. 1166 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1167 const MCExpr *OffsExpr = 1168 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1169 MCSymbolRefExpr::create(GOTRef, OutContext), 1170 OutContext); 1171 OutStreamer->emitLabel(GOTRef); 1172 OutStreamer->emitValue(OffsExpr, 4); 1173 OutStreamer->emitLabel(NextInstr); 1174 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1175 .addReg(MI->getOperand(0).getReg())); 1176 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1177 .addReg(MI->getOperand(1).getReg()) 1178 .addImm(0) 1179 .addReg(MI->getOperand(0).getReg())); 1180 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1181 .addReg(MI->getOperand(0).getReg()) 1182 .addReg(MI->getOperand(1).getReg()) 1183 .addReg(MI->getOperand(0).getReg())); 1184 return; 1185 } 1186 case PPC::PPC32GOT: { 1187 MCSymbol *GOTSymbol = 1188 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1189 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1190 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1191 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1192 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1193 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1194 .addReg(MI->getOperand(0).getReg()) 1195 .addExpr(SymGotTlsL)); 1196 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1197 .addReg(MI->getOperand(0).getReg()) 1198 .addReg(MI->getOperand(0).getReg()) 1199 .addExpr(SymGotTlsHA)); 1200 return; 1201 } 1202 case PPC::ADDIStlsgdHA: { 1203 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1204 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1205 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1206 const MachineOperand &MO = MI->getOperand(2); 1207 const GlobalValue *GValue = MO.getGlobal(); 1208 MCSymbol *MOSymbol = getSymbol(GValue); 1209 const MCExpr *SymGotTlsGD = 1210 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1211 OutContext); 1212 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1213 .addReg(MI->getOperand(0).getReg()) 1214 .addReg(MI->getOperand(1).getReg()) 1215 .addExpr(SymGotTlsGD)); 1216 return; 1217 } 1218 case PPC::ADDItlsgdL: 1219 // Transform: %xd = ADDItlsgdL %xs, @sym 1220 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1221 case PPC::ADDItlsgdL32: { 1222 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1223 // Into: %rd = ADDI %rs, sym@got@tlsgd 1224 const MachineOperand &MO = MI->getOperand(2); 1225 const GlobalValue *GValue = MO.getGlobal(); 1226 MCSymbol *MOSymbol = getSymbol(GValue); 1227 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1228 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1229 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1230 OutContext); 1231 EmitToStreamer(*OutStreamer, 1232 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1233 .addReg(MI->getOperand(0).getReg()) 1234 .addReg(MI->getOperand(1).getReg()) 1235 .addExpr(SymGotTlsGD)); 1236 return; 1237 } 1238 case PPC::GETtlsADDR: 1239 // Transform: %x3 = GETtlsADDR %x3, @sym 1240 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1241 case PPC::GETtlsADDRPCREL: 1242 case PPC::GETtlsADDR32AIX: 1243 case PPC::GETtlsADDR64AIX: 1244 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64). 1245 // Into: BLA .__tls_get_addr() 1246 // Unlike on Linux, there is no symbol or relocation needed for this call. 1247 case PPC::GETtlsADDR32: { 1248 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1249 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1250 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1251 return; 1252 } 1253 case PPC::ADDIStlsldHA: { 1254 // Transform: %xd = ADDIStlsldHA %x2, @sym 1255 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1256 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1257 const MachineOperand &MO = MI->getOperand(2); 1258 const GlobalValue *GValue = MO.getGlobal(); 1259 MCSymbol *MOSymbol = getSymbol(GValue); 1260 const MCExpr *SymGotTlsLD = 1261 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1262 OutContext); 1263 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1264 .addReg(MI->getOperand(0).getReg()) 1265 .addReg(MI->getOperand(1).getReg()) 1266 .addExpr(SymGotTlsLD)); 1267 return; 1268 } 1269 case PPC::ADDItlsldL: 1270 // Transform: %xd = ADDItlsldL %xs, @sym 1271 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1272 case PPC::ADDItlsldL32: { 1273 // Transform: %rd = ADDItlsldL32 %rs, @sym 1274 // Into: %rd = ADDI %rs, sym@got@tlsld 1275 const MachineOperand &MO = MI->getOperand(2); 1276 const GlobalValue *GValue = MO.getGlobal(); 1277 MCSymbol *MOSymbol = getSymbol(GValue); 1278 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1279 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1280 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1281 OutContext); 1282 EmitToStreamer(*OutStreamer, 1283 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1284 .addReg(MI->getOperand(0).getReg()) 1285 .addReg(MI->getOperand(1).getReg()) 1286 .addExpr(SymGotTlsLD)); 1287 return; 1288 } 1289 case PPC::GETtlsldADDR: 1290 // Transform: %x3 = GETtlsldADDR %x3, @sym 1291 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1292 case PPC::GETtlsldADDRPCREL: 1293 case PPC::GETtlsldADDR32: { 1294 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1295 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1296 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1297 return; 1298 } 1299 case PPC::ADDISdtprelHA: 1300 // Transform: %xd = ADDISdtprelHA %xs, @sym 1301 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1302 case PPC::ADDISdtprelHA32: { 1303 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1304 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1305 const MachineOperand &MO = MI->getOperand(2); 1306 const GlobalValue *GValue = MO.getGlobal(); 1307 MCSymbol *MOSymbol = getSymbol(GValue); 1308 const MCExpr *SymDtprel = 1309 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1310 OutContext); 1311 EmitToStreamer( 1312 *OutStreamer, 1313 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1314 .addReg(MI->getOperand(0).getReg()) 1315 .addReg(MI->getOperand(1).getReg()) 1316 .addExpr(SymDtprel)); 1317 return; 1318 } 1319 case PPC::PADDIdtprel: { 1320 // Transform: %rd = PADDIdtprel %rs, @sym 1321 // Into: %rd = PADDI8 %rs, sym@dtprel 1322 const MachineOperand &MO = MI->getOperand(2); 1323 const GlobalValue *GValue = MO.getGlobal(); 1324 MCSymbol *MOSymbol = getSymbol(GValue); 1325 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1326 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1327 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1328 .addReg(MI->getOperand(0).getReg()) 1329 .addReg(MI->getOperand(1).getReg()) 1330 .addExpr(SymDtprel)); 1331 return; 1332 } 1333 1334 case PPC::ADDIdtprelL: 1335 // Transform: %xd = ADDIdtprelL %xs, @sym 1336 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1337 case PPC::ADDIdtprelL32: { 1338 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1339 // Into: %rd = ADDI %rs, sym@dtprel@l 1340 const MachineOperand &MO = MI->getOperand(2); 1341 const GlobalValue *GValue = MO.getGlobal(); 1342 MCSymbol *MOSymbol = getSymbol(GValue); 1343 const MCExpr *SymDtprel = 1344 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1345 OutContext); 1346 EmitToStreamer(*OutStreamer, 1347 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1348 .addReg(MI->getOperand(0).getReg()) 1349 .addReg(MI->getOperand(1).getReg()) 1350 .addExpr(SymDtprel)); 1351 return; 1352 } 1353 case PPC::MFOCRF: 1354 case PPC::MFOCRF8: 1355 if (!Subtarget->hasMFOCRF()) { 1356 // Transform: %r3 = MFOCRF %cr7 1357 // Into: %r3 = MFCR ;; cr7 1358 unsigned NewOpcode = 1359 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1360 OutStreamer->AddComment(PPCInstPrinter:: 1361 getRegisterName(MI->getOperand(1).getReg())); 1362 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1363 .addReg(MI->getOperand(0).getReg())); 1364 return; 1365 } 1366 break; 1367 case PPC::MTOCRF: 1368 case PPC::MTOCRF8: 1369 if (!Subtarget->hasMFOCRF()) { 1370 // Transform: %cr7 = MTOCRF %r3 1371 // Into: MTCRF mask, %r3 ;; cr7 1372 unsigned NewOpcode = 1373 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1374 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1375 ->getEncodingValue(MI->getOperand(0).getReg()); 1376 OutStreamer->AddComment(PPCInstPrinter:: 1377 getRegisterName(MI->getOperand(0).getReg())); 1378 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1379 .addImm(Mask) 1380 .addReg(MI->getOperand(1).getReg())); 1381 return; 1382 } 1383 break; 1384 case PPC::LD: 1385 case PPC::STD: 1386 case PPC::LWA_32: 1387 case PPC::LWA: { 1388 // Verify alignment is legal, so we don't create relocations 1389 // that can't be supported. 1390 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1391 const MachineOperand &MO = MI->getOperand(OpNum); 1392 if (MO.isGlobal()) { 1393 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1394 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1395 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1396 } 1397 // Now process the instruction normally. 1398 break; 1399 } 1400 case PPC::PseudoEIEIO: { 1401 EmitToStreamer( 1402 *OutStreamer, 1403 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1404 EmitToStreamer( 1405 *OutStreamer, 1406 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1407 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO)); 1408 return; 1409 } 1410 } 1411 1412 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1413 EmitToStreamer(*OutStreamer, TmpInst); 1414 } 1415 1416 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) { 1417 // Emit float ABI into GNU attribute 1418 Metadata *MD = M.getModuleFlag("float-abi"); 1419 MDString *FloatABI = dyn_cast_or_null<MDString>(MD); 1420 if (!FloatABI) 1421 return; 1422 StringRef flt = FloatABI->getString(); 1423 // TODO: Support emitting soft-fp and hard double/single attributes. 1424 if (flt == "doubledouble") 1425 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1426 Val_GNU_Power_ABI_HardFloat_DP | 1427 Val_GNU_Power_ABI_LDBL_IBM128); 1428 else if (flt == "ieeequad") 1429 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1430 Val_GNU_Power_ABI_HardFloat_DP | 1431 Val_GNU_Power_ABI_LDBL_IEEE128); 1432 else if (flt == "ieeedouble") 1433 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP, 1434 Val_GNU_Power_ABI_HardFloat_DP | 1435 Val_GNU_Power_ABI_LDBL_64); 1436 } 1437 1438 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1439 if (!Subtarget->isPPC64()) 1440 return PPCAsmPrinter::emitInstruction(MI); 1441 1442 switch (MI->getOpcode()) { 1443 default: 1444 return PPCAsmPrinter::emitInstruction(MI); 1445 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1446 // .begin: 1447 // b .end # lis 0, FuncId[16..32] 1448 // nop # li 0, FuncId[0..15] 1449 // std 0, -8(1) 1450 // mflr 0 1451 // bl __xray_FunctionEntry 1452 // mtlr 0 1453 // .end: 1454 // 1455 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1456 // of instructions change. 1457 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1458 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1459 OutStreamer->emitLabel(BeginOfSled); 1460 EmitToStreamer(*OutStreamer, 1461 MCInstBuilder(PPC::B).addExpr( 1462 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1463 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1464 EmitToStreamer( 1465 *OutStreamer, 1466 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1467 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1468 EmitToStreamer(*OutStreamer, 1469 MCInstBuilder(PPC::BL8_NOP) 1470 .addExpr(MCSymbolRefExpr::create( 1471 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1472 OutContext))); 1473 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1474 OutStreamer->emitLabel(EndOfSled); 1475 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1476 break; 1477 } 1478 case TargetOpcode::PATCHABLE_RET: { 1479 unsigned RetOpcode = MI->getOperand(0).getImm(); 1480 MCInst RetInst; 1481 RetInst.setOpcode(RetOpcode); 1482 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1483 MCOperand MCOp; 1484 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1485 RetInst.addOperand(MCOp); 1486 } 1487 1488 bool IsConditional; 1489 if (RetOpcode == PPC::BCCLR) { 1490 IsConditional = true; 1491 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1492 RetOpcode == PPC::TCRETURNai8) { 1493 break; 1494 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1495 IsConditional = false; 1496 } else { 1497 EmitToStreamer(*OutStreamer, RetInst); 1498 break; 1499 } 1500 1501 MCSymbol *FallthroughLabel; 1502 if (IsConditional) { 1503 // Before: 1504 // bgtlr cr0 1505 // 1506 // After: 1507 // ble cr0, .end 1508 // .p2align 3 1509 // .begin: 1510 // blr # lis 0, FuncId[16..32] 1511 // nop # li 0, FuncId[0..15] 1512 // std 0, -8(1) 1513 // mflr 0 1514 // bl __xray_FunctionExit 1515 // mtlr 0 1516 // blr 1517 // .end: 1518 // 1519 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1520 // of instructions change. 1521 FallthroughLabel = OutContext.createTempSymbol(); 1522 EmitToStreamer( 1523 *OutStreamer, 1524 MCInstBuilder(PPC::BCC) 1525 .addImm(PPC::InvertPredicate( 1526 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1527 .addReg(MI->getOperand(2).getReg()) 1528 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1529 RetInst = MCInst(); 1530 RetInst.setOpcode(PPC::BLR8); 1531 } 1532 // .p2align 3 1533 // .begin: 1534 // b(lr)? # lis 0, FuncId[16..32] 1535 // nop # li 0, FuncId[0..15] 1536 // std 0, -8(1) 1537 // mflr 0 1538 // bl __xray_FunctionExit 1539 // mtlr 0 1540 // b(lr)? 1541 // 1542 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1543 // of instructions change. 1544 OutStreamer->emitCodeAlignment(8, &getSubtargetInfo()); 1545 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1546 OutStreamer->emitLabel(BeginOfSled); 1547 EmitToStreamer(*OutStreamer, RetInst); 1548 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1549 EmitToStreamer( 1550 *OutStreamer, 1551 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1552 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1553 EmitToStreamer(*OutStreamer, 1554 MCInstBuilder(PPC::BL8_NOP) 1555 .addExpr(MCSymbolRefExpr::create( 1556 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1557 OutContext))); 1558 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1559 EmitToStreamer(*OutStreamer, RetInst); 1560 if (IsConditional) 1561 OutStreamer->emitLabel(FallthroughLabel); 1562 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1563 break; 1564 } 1565 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1566 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1567 case TargetOpcode::PATCHABLE_TAIL_CALL: 1568 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1569 // normal function exit from a tail exit. 1570 llvm_unreachable("Tail call is handled in the normal case. See comments " 1571 "around this assert."); 1572 } 1573 } 1574 1575 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1576 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1577 PPCTargetStreamer *TS = 1578 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1579 1580 if (TS) 1581 TS->emitAbiVersion(2); 1582 } 1583 1584 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1585 !isPositionIndependent()) 1586 return AsmPrinter::emitStartOfAsmFile(M); 1587 1588 if (M.getPICLevel() == PICLevel::SmallPIC) 1589 return AsmPrinter::emitStartOfAsmFile(M); 1590 1591 OutStreamer->switchSection(OutContext.getELFSection( 1592 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1593 1594 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1595 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1596 1597 OutStreamer->emitLabel(CurrentPos); 1598 1599 // The GOT pointer points to the middle of the GOT, in order to reference the 1600 // entire 64kB range. 0x8000 is the midpoint. 1601 const MCExpr *tocExpr = 1602 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1603 MCConstantExpr::create(0x8000, OutContext), 1604 OutContext); 1605 1606 OutStreamer->emitAssignment(TOCSym, tocExpr); 1607 1608 OutStreamer->switchSection(getObjFileLowering().getTextSection()); 1609 } 1610 1611 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1612 // linux/ppc32 - Normal entry label. 1613 if (!Subtarget->isPPC64() && 1614 (!isPositionIndependent() || 1615 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1616 return AsmPrinter::emitFunctionEntryLabel(); 1617 1618 if (!Subtarget->isPPC64()) { 1619 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1620 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1621 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1622 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1623 OutStreamer->emitLabel(RelocSymbol); 1624 1625 const MCExpr *OffsExpr = 1626 MCBinaryExpr::createSub( 1627 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1628 OutContext), 1629 MCSymbolRefExpr::create(PICBase, OutContext), 1630 OutContext); 1631 OutStreamer->emitValue(OffsExpr, 4); 1632 OutStreamer->emitLabel(CurrentFnSym); 1633 return; 1634 } else 1635 return AsmPrinter::emitFunctionEntryLabel(); 1636 } 1637 1638 // ELFv2 ABI - Normal entry label. 1639 if (Subtarget->isELFv2ABI()) { 1640 // In the Large code model, we allow arbitrary displacements between 1641 // the text section and its associated TOC section. We place the 1642 // full 8-byte offset to the TOC in memory immediately preceding 1643 // the function global entry point. 1644 if (TM.getCodeModel() == CodeModel::Large 1645 && !MF->getRegInfo().use_empty(PPC::X2)) { 1646 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1647 1648 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1649 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1650 const MCExpr *TOCDeltaExpr = 1651 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1652 MCSymbolRefExpr::create(GlobalEPSymbol, 1653 OutContext), 1654 OutContext); 1655 1656 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1657 OutStreamer->emitValue(TOCDeltaExpr, 8); 1658 } 1659 return AsmPrinter::emitFunctionEntryLabel(); 1660 } 1661 1662 // Emit an official procedure descriptor. 1663 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1664 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1665 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1666 OutStreamer->switchSection(Section); 1667 OutStreamer->emitLabel(CurrentFnSym); 1668 OutStreamer->emitValueToAlignment(8); 1669 MCSymbol *Symbol1 = CurrentFnSymForSize; 1670 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1671 // entry point. 1672 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1673 8 /*size*/); 1674 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1675 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1676 OutStreamer->emitValue( 1677 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1678 8/*size*/); 1679 // Emit a null environment pointer. 1680 OutStreamer->emitIntValue(0, 8 /* size */); 1681 OutStreamer->switchSection(Current.first, Current.second); 1682 } 1683 1684 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1685 const DataLayout &DL = getDataLayout(); 1686 1687 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1688 1689 PPCTargetStreamer *TS = 1690 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1691 1692 emitGNUAttributes(M); 1693 1694 if (!TOC.empty()) { 1695 const char *Name = isPPC64 ? ".toc" : ".got2"; 1696 MCSectionELF *Section = OutContext.getELFSection( 1697 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1698 OutStreamer->switchSection(Section); 1699 if (!isPPC64) 1700 OutStreamer->emitValueToAlignment(4); 1701 1702 for (const auto &TOCMapPair : TOC) { 1703 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1704 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1705 1706 OutStreamer->emitLabel(TOCEntryLabel); 1707 if (isPPC64 && TS != nullptr) 1708 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second); 1709 else 1710 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1711 } 1712 } 1713 1714 PPCAsmPrinter::emitEndOfAsmFile(M); 1715 } 1716 1717 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1718 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1719 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1720 // provide two entry points. The ABI guarantees that when calling the 1721 // local entry point, r2 is set up by the caller to contain the TOC base 1722 // for this function, and when calling the global entry point, r12 is set 1723 // up by the caller to hold the address of the global entry point. We 1724 // thus emit a prefix sequence along the following lines: 1725 // 1726 // func: 1727 // .Lfunc_gepNN: 1728 // # global entry point 1729 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1730 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1731 // .Lfunc_lepNN: 1732 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1733 // # local entry point, followed by function body 1734 // 1735 // For the Large code model, we create 1736 // 1737 // .Lfunc_tocNN: 1738 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1739 // func: 1740 // .Lfunc_gepNN: 1741 // # global entry point 1742 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1743 // add r2,r2,r12 1744 // .Lfunc_lepNN: 1745 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1746 // # local entry point, followed by function body 1747 // 1748 // This ensures we have r2 set up correctly while executing the function 1749 // body, no matter which entry point is called. 1750 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1751 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1752 !MF->getRegInfo().use_empty(PPC::R2); 1753 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1754 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1755 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1756 Subtarget->isELFv2ABI() && UsesX2OrR2; 1757 1758 // Only do all that if the function uses R2 as the TOC pointer 1759 // in the first place. We don't need the global entry point if the 1760 // function uses R2 as an allocatable register. 1761 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1762 // Note: The logic here must be synchronized with the code in the 1763 // branch-selection pass which sets the offset of the first block in the 1764 // function. This matters because it affects the alignment. 1765 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1766 OutStreamer->emitLabel(GlobalEntryLabel); 1767 const MCSymbolRefExpr *GlobalEntryLabelExp = 1768 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1769 1770 if (TM.getCodeModel() != CodeModel::Large) { 1771 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1772 const MCExpr *TOCDeltaExpr = 1773 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1774 GlobalEntryLabelExp, OutContext); 1775 1776 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1777 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1778 .addReg(PPC::X2) 1779 .addReg(PPC::X12) 1780 .addExpr(TOCDeltaHi)); 1781 1782 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1783 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1784 .addReg(PPC::X2) 1785 .addReg(PPC::X2) 1786 .addExpr(TOCDeltaLo)); 1787 } else { 1788 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1789 const MCExpr *TOCOffsetDeltaExpr = 1790 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1791 GlobalEntryLabelExp, OutContext); 1792 1793 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1794 .addReg(PPC::X2) 1795 .addExpr(TOCOffsetDeltaExpr) 1796 .addReg(PPC::X12)); 1797 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1798 .addReg(PPC::X2) 1799 .addReg(PPC::X2) 1800 .addReg(PPC::X12)); 1801 } 1802 1803 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1804 OutStreamer->emitLabel(LocalEntryLabel); 1805 const MCSymbolRefExpr *LocalEntryLabelExp = 1806 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1807 const MCExpr *LocalOffsetExp = 1808 MCBinaryExpr::createSub(LocalEntryLabelExp, 1809 GlobalEntryLabelExp, OutContext); 1810 1811 PPCTargetStreamer *TS = 1812 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1813 1814 if (TS) 1815 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1816 } else if (Subtarget->isUsingPCRelativeCalls()) { 1817 // When generating the entry point for a function we have a few scenarios 1818 // based on whether or not that function uses R2 and whether or not that 1819 // function makes calls (or is a leaf function). 1820 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1821 // and preserves it). In this case st_other=0 and both 1822 // the local and global entry points for the function are the same. 1823 // No special entry point code is required. 1824 // 2) A function uses the TOC pointer R2. This function may or may not have 1825 // calls. In this case st_other=[2,6] and the global and local entry 1826 // points are different. Code to correctly setup the TOC pointer in R2 1827 // is put between the global and local entry points. This case is 1828 // covered by the if statatement above. 1829 // 3) A function does not use the TOC pointer R2 but does have calls. 1830 // In this case st_other=1 since we do not know whether or not any 1831 // of the callees clobber R2. This case is dealt with in this else if 1832 // block. Tail calls are considered calls and the st_other should also 1833 // be set to 1 in that case as well. 1834 // 4) The function does not use the TOC pointer but R2 is used inside 1835 // the function. In this case st_other=1 once again. 1836 // 5) This function uses inline asm. We mark R2 as reserved if the function 1837 // has inline asm as we have to assume that it may be used. 1838 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1839 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1840 PPCTargetStreamer *TS = 1841 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1842 if (TS) 1843 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1844 MCConstantExpr::create(1, OutContext)); 1845 } 1846 } 1847 } 1848 1849 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1850 /// directive. 1851 /// 1852 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1853 // Only the 64-bit target requires a traceback table. For now, 1854 // we only emit the word of zeroes that GDB requires to find 1855 // the end of the function, and zeroes for the eight-byte 1856 // mandatory fields. 1857 // FIXME: We should fill in the eight-byte mandatory fields as described in 1858 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1859 // currently make use of these fields). 1860 if (Subtarget->isPPC64()) { 1861 OutStreamer->emitIntValue(0, 4/*size*/); 1862 OutStreamer->emitIntValue(0, 8/*size*/); 1863 } 1864 } 1865 1866 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1867 MCSymbol *GVSym) const { 1868 1869 assert(MAI->hasVisibilityOnlyWithLinkage() && 1870 "AIX's linkage directives take a visibility setting."); 1871 1872 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1873 switch (GV->getLinkage()) { 1874 case GlobalValue::ExternalLinkage: 1875 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1876 break; 1877 case GlobalValue::LinkOnceAnyLinkage: 1878 case GlobalValue::LinkOnceODRLinkage: 1879 case GlobalValue::WeakAnyLinkage: 1880 case GlobalValue::WeakODRLinkage: 1881 case GlobalValue::ExternalWeakLinkage: 1882 LinkageAttr = MCSA_Weak; 1883 break; 1884 case GlobalValue::AvailableExternallyLinkage: 1885 LinkageAttr = MCSA_Extern; 1886 break; 1887 case GlobalValue::PrivateLinkage: 1888 return; 1889 case GlobalValue::InternalLinkage: 1890 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1891 "InternalLinkage should not have other visibility setting."); 1892 LinkageAttr = MCSA_LGlobal; 1893 break; 1894 case GlobalValue::AppendingLinkage: 1895 llvm_unreachable("Should never emit this"); 1896 case GlobalValue::CommonLinkage: 1897 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1898 } 1899 1900 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1901 1902 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1903 if (!TM.getIgnoreXCOFFVisibility()) { 1904 if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility()) 1905 report_fatal_error( 1906 "Cannot not be both dllexport and non-default visibility"); 1907 switch (GV->getVisibility()) { 1908 1909 // TODO: "internal" Visibility needs to go here. 1910 case GlobalValue::DefaultVisibility: 1911 if (GV->hasDLLExportStorageClass()) 1912 VisibilityAttr = MAI->getExportedVisibilityAttr(); 1913 break; 1914 case GlobalValue::HiddenVisibility: 1915 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1916 break; 1917 case GlobalValue::ProtectedVisibility: 1918 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1919 break; 1920 } 1921 } 1922 1923 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1924 VisibilityAttr); 1925 } 1926 1927 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1928 // Setup CurrentFnDescSym and its containing csect. 1929 MCSectionXCOFF *FnDescSec = 1930 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1931 &MF.getFunction(), TM)); 1932 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1933 1934 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1935 1936 return AsmPrinter::SetupMachineFunction(MF); 1937 } 1938 1939 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() { 1940 // Calculate the number of VRs be saved. 1941 // Vector registers 20 through 31 are marked as reserved and cannot be used 1942 // in the default ABI. 1943 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 1944 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 1945 TM.getAIXExtendedAltivecABI()) { 1946 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1947 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg) 1948 if (MRI.isPhysRegModified(Reg)) 1949 // Number of VRs saved. 1950 return PPC::V31 - Reg + 1; 1951 } 1952 return 0; 1953 } 1954 1955 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1956 1957 if (!TM.getXCOFFTracebackTable()) 1958 return; 1959 1960 emitTracebackTable(); 1961 1962 // If ShouldEmitEHBlock returns true, then the eh info table 1963 // will be emitted via `AIXException::endFunction`. Otherwise, we 1964 // need to emit a dumy eh info table when VRs are saved. We could not 1965 // consolidate these two places into one because there is no easy way 1966 // to access register information in `AIXException` class. 1967 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) && 1968 (getNumberOfVRSaved() > 0)) { 1969 // Emit dummy EH Info Table. 1970 OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection()); 1971 MCSymbol *EHInfoLabel = 1972 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 1973 OutStreamer->emitLabel(EHInfoLabel); 1974 1975 // Version number. 1976 OutStreamer->emitInt32(0); 1977 1978 const DataLayout &DL = MMI->getModule()->getDataLayout(); 1979 const unsigned PointerSize = DL.getPointerSize(); 1980 // Add necessary paddings in 64 bit mode. 1981 OutStreamer->emitValueToAlignment(PointerSize); 1982 1983 OutStreamer->emitIntValue(0, PointerSize); 1984 OutStreamer->emitIntValue(0, PointerSize); 1985 OutStreamer->switchSection(MF->getSection()); 1986 } 1987 } 1988 1989 void PPCAIXAsmPrinter::emitTracebackTable() { 1990 1991 // Create a symbol for the end of function. 1992 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1993 OutStreamer->emitLabel(FuncEnd); 1994 1995 OutStreamer->AddComment("Traceback table begin"); 1996 // Begin with a fullword of zero. 1997 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1998 1999 SmallString<128> CommentString; 2000 raw_svector_ostream CommentOS(CommentString); 2001 2002 auto EmitComment = [&]() { 2003 OutStreamer->AddComment(CommentOS.str()); 2004 CommentString.clear(); 2005 }; 2006 2007 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 2008 EmitComment(); 2009 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 2010 }; 2011 2012 unsigned int Version = 0; 2013 CommentOS << "Version = " << Version; 2014 EmitCommentAndValue(Version, 1); 2015 2016 // There is a lack of information in the IR to assist with determining the 2017 // source language. AIX exception handling mechanism would only search for 2018 // personality routine and LSDA area when such language supports exception 2019 // handling. So to be conservatively correct and allow runtime to do its job, 2020 // we need to set it to C++ for now. 2021 TracebackTable::LanguageID LanguageIdentifier = 2022 TracebackTable::CPlusPlus; // C++ 2023 2024 CommentOS << "Language = " 2025 << getNameForTracebackTableLanguageId(LanguageIdentifier); 2026 EmitCommentAndValue(LanguageIdentifier, 1); 2027 2028 // This is only populated for the third and fourth bytes. 2029 uint32_t FirstHalfOfMandatoryField = 0; 2030 2031 // Emit the 3rd byte of the mandatory field. 2032 2033 // We always set traceback offset bit to true. 2034 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 2035 2036 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2037 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2038 2039 // Check the function uses floating-point processor instructions or not 2040 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 2041 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2042 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 2043 break; 2044 } 2045 } 2046 2047 #define GENBOOLCOMMENT(Prefix, V, Field) \ 2048 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 2049 << #Field 2050 2051 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 2052 CommentOS << (PrefixAndName) << " = " \ 2053 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 2054 (TracebackTable::Field##Shift)) 2055 2056 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 2057 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 2058 EmitComment(); 2059 2060 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 2061 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 2062 EmitComment(); 2063 2064 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 2065 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 2066 EmitComment(); 2067 2068 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 2069 EmitComment(); 2070 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 2071 IsFloatingPointOperationLogOrAbortEnabled); 2072 EmitComment(); 2073 2074 OutStreamer->emitIntValueInHexWithPadding( 2075 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2076 2077 // Set the 4th byte of the mandatory field. 2078 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 2079 2080 const PPCRegisterInfo *RegInfo = 2081 static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo()); 2082 Register FrameReg = RegInfo->getFrameRegister(*MF); 2083 if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 2084 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 2085 2086 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 2087 if (!MustSaveCRs.empty()) 2088 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 2089 2090 if (FI->mustSaveLR()) 2091 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 2092 2093 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 2094 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 2095 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 2096 EmitComment(); 2097 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 2098 OnConditionDirective); 2099 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 2100 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 2101 EmitComment(); 2102 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 2103 1); 2104 2105 // Set the 5th byte of mandatory field. 2106 uint32_t SecondHalfOfMandatoryField = 0; 2107 2108 // Always store back chain. 2109 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 2110 2111 uint32_t FPRSaved = 0; 2112 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 2113 if (MRI.isPhysRegModified(Reg)) { 2114 FPRSaved = PPC::F31 - Reg + 1; 2115 break; 2116 } 2117 } 2118 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 2119 TracebackTable::FPRSavedMask; 2120 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 2121 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 2122 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 2123 EmitComment(); 2124 OutStreamer->emitIntValueInHexWithPadding( 2125 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 2126 2127 // Set the 6th byte of mandatory field. 2128 2129 // Check whether has Vector Instruction,We only treat instructions uses vector 2130 // register as vector instructions. 2131 bool HasVectorInst = false; 2132 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg) 2133 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2134 // Has VMX instruction. 2135 HasVectorInst = true; 2136 break; 2137 } 2138 2139 if (FI->hasVectorParms() || HasVectorInst) 2140 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask; 2141 2142 uint16_t NumOfVRSaved = getNumberOfVRSaved(); 2143 bool ShouldEmitEHBlock = 2144 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0; 2145 2146 if (ShouldEmitEHBlock) 2147 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 2148 2149 uint32_t GPRSaved = 0; 2150 2151 // X13 is reserved under 64-bit environment. 2152 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 2153 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 2154 2155 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 2156 if (MRI.isPhysRegModified(Reg)) { 2157 GPRSaved = GPREnd - Reg + 1; 2158 break; 2159 } 2160 } 2161 2162 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 2163 TracebackTable::GPRSavedMask; 2164 2165 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable); 2166 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo); 2167 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 2168 EmitComment(); 2169 OutStreamer->emitIntValueInHexWithPadding( 2170 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 2171 2172 // Set the 7th byte of mandatory field. 2173 uint32_t NumberOfFixedParms = FI->getFixedParmsNum(); 2174 SecondHalfOfMandatoryField |= 2175 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) & 2176 TracebackTable::NumberOfFixedParmsMask; 2177 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 2178 NumberOfFixedParms); 2179 EmitComment(); 2180 OutStreamer->emitIntValueInHexWithPadding( 2181 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2182 2183 // Set the 8th byte of mandatory field. 2184 2185 // Always set parameter on stack. 2186 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 2187 2188 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum(); 2189 SecondHalfOfMandatoryField |= 2190 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) & 2191 TracebackTable::NumberOfFloatingPointParmsMask; 2192 2193 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 2194 NumberOfFloatingPointParms); 2195 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 2196 EmitComment(); 2197 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 2198 1); 2199 2200 // Generate the optional fields of traceback table. 2201 2202 // Parameter type. 2203 if (NumberOfFixedParms || NumberOfFPParms) { 2204 uint32_t ParmsTypeValue = FI->getParmsType(); 2205 2206 Expected<SmallString<32>> ParmsType = 2207 FI->hasVectorParms() 2208 ? XCOFF::parseParmsTypeWithVecInfo( 2209 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms, 2210 FI->getVectorParmsNum()) 2211 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms, 2212 NumberOfFPParms); 2213 2214 assert(ParmsType && toString(ParmsType.takeError()).c_str()); 2215 if (ParmsType) { 2216 CommentOS << "Parameter type = " << ParmsType.get(); 2217 EmitComment(); 2218 } 2219 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue, 2220 sizeof(ParmsTypeValue)); 2221 } 2222 // Traceback table offset. 2223 OutStreamer->AddComment("Function size"); 2224 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 2225 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 2226 &(MF->getFunction()), TM); 2227 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 2228 } 2229 2230 // Since we unset the Int_Handler. 2231 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2232 report_fatal_error("Hand_Mask not implement yet"); 2233 2234 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2235 report_fatal_error("Ctl_Info not implement yet"); 2236 2237 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2238 StringRef Name = MF->getName().substr(0, INT16_MAX); 2239 int16_t NameLength = Name.size(); 2240 CommentOS << "Function name len = " 2241 << static_cast<unsigned int>(NameLength); 2242 EmitCommentAndValue(NameLength, 2); 2243 OutStreamer->AddComment("Function Name"); 2244 OutStreamer->emitBytes(Name); 2245 } 2246 2247 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2248 uint8_t AllocReg = XCOFF::AllocRegNo; 2249 OutStreamer->AddComment("AllocaUsed"); 2250 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2251 } 2252 2253 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) { 2254 uint16_t VRData = 0; 2255 if (NumOfVRSaved) { 2256 // Number of VRs saved. 2257 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) & 2258 TracebackTable::NumberOfVRSavedMask; 2259 // This bit is supposed to set only when the special register 2260 // VRSAVE is saved on stack. 2261 // However, IBM XL compiler sets the bit when any vector registers 2262 // are saved on the stack. We will follow XL's behavior on AIX 2263 // so that we don't get surprise behavior change for C code. 2264 VRData |= TracebackTable::IsVRSavedOnStackMask; 2265 } 2266 2267 // Set has_varargs. 2268 if (FI->getVarArgsFrameIndex()) 2269 VRData |= TracebackTable::HasVarArgsMask; 2270 2271 // Vector parameters number. 2272 unsigned VectorParmsNum = FI->getVectorParmsNum(); 2273 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) & 2274 TracebackTable::NumberOfVectorParmsMask; 2275 2276 if (HasVectorInst) 2277 VRData |= TracebackTable::HasVMXInstructionMask; 2278 2279 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved); 2280 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack); 2281 GENBOOLCOMMENT(", ", VRData, HasVarArgs); 2282 EmitComment(); 2283 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1); 2284 2285 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms); 2286 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction); 2287 EmitComment(); 2288 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1); 2289 2290 uint32_t VecParmTypeValue = FI->getVecExtParmsType(); 2291 2292 Expected<SmallString<32>> VecParmsType = 2293 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum); 2294 assert(VecParmsType && toString(VecParmsType.takeError()).c_str()); 2295 if (VecParmsType) { 2296 CommentOS << "Vector Parameter type = " << VecParmsType.get(); 2297 EmitComment(); 2298 } 2299 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue, 2300 sizeof(VecParmTypeValue)); 2301 // Padding 2 bytes. 2302 CommentOS << "Padding"; 2303 EmitCommentAndValue(0, 2); 2304 } 2305 2306 uint8_t ExtensionTableFlag = 0; 2307 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2308 if (ShouldEmitEHBlock) 2309 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2310 if (EnableSSPCanaryBitInTB && 2311 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF)) 2312 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY; 2313 2314 CommentOS << "ExtensionTableFlag = " 2315 << getExtendedTBTableFlagString(ExtensionTableFlag); 2316 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2317 } 2318 2319 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2320 auto &Ctx = OutStreamer->getContext(); 2321 MCSymbol *EHInfoSym = 2322 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2323 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2324 const MCSymbol *TOCBaseSym = 2325 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2326 ->getQualNameSymbol(); 2327 const MCExpr *Exp = 2328 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2329 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2330 2331 const DataLayout &DL = getDataLayout(); 2332 OutStreamer->emitValueToAlignment(4); 2333 OutStreamer->AddComment("EHInfo Table"); 2334 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2335 } 2336 #undef GENBOOLCOMMENT 2337 #undef GENVALUECOMMENT 2338 } 2339 2340 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2341 return GV->hasAppendingLinkage() && 2342 StringSwitch<bool>(GV->getName()) 2343 // TODO: Linker could still eliminate the GV if we just skip 2344 // handling llvm.used array. Skipping them for now until we or the 2345 // AIX OS team come up with a good solution. 2346 .Case("llvm.used", true) 2347 // It's correct to just skip llvm.compiler.used array here. 2348 .Case("llvm.compiler.used", true) 2349 .Default(false); 2350 } 2351 2352 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2353 return StringSwitch<bool>(GV->getName()) 2354 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2355 .Default(false); 2356 } 2357 2358 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) { 2359 if (auto *GA = dyn_cast<GlobalAlias>(C)) 2360 return getAliasOffset(GA->getAliasee()); 2361 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2362 const MCExpr *LowC = lowerConstant(CE); 2363 const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC); 2364 if (!CBE) 2365 return 0; 2366 if (CBE->getOpcode() != MCBinaryExpr::Add) 2367 report_fatal_error("Only adding an offset is supported now."); 2368 auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS()); 2369 if (!RHS) 2370 report_fatal_error("Unable to get the offset of alias."); 2371 return RHS->getValue(); 2372 } 2373 return 0; 2374 } 2375 2376 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2377 // Special LLVM global arrays have been handled at the initialization. 2378 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2379 return; 2380 2381 // If the Global Variable has the toc-data attribute, it needs to be emitted 2382 // when we emit the .toc section. 2383 if (GV->hasAttribute("toc-data")) { 2384 TOCDataGlobalVars.push_back(GV); 2385 return; 2386 } 2387 2388 emitGlobalVariableHelper(GV); 2389 } 2390 2391 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) { 2392 assert(!GV->getName().startswith("llvm.") && 2393 "Unhandled intrinsic global variable."); 2394 2395 if (GV->hasComdat()) 2396 report_fatal_error("COMDAT not yet supported by AIX."); 2397 2398 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2399 2400 if (GV->isDeclarationForLinker()) { 2401 emitLinkage(GV, GVSym); 2402 return; 2403 } 2404 2405 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2406 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() && 2407 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS. 2408 report_fatal_error("Encountered a global variable kind that is " 2409 "not supported yet."); 2410 2411 // Print GV in verbose mode 2412 if (isVerbose()) { 2413 if (GV->hasInitializer()) { 2414 GV->printAsOperand(OutStreamer->getCommentOS(), 2415 /*PrintType=*/false, GV->getParent()); 2416 OutStreamer->getCommentOS() << '\n'; 2417 } 2418 } 2419 2420 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2421 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2422 2423 // Switch to the containing csect. 2424 OutStreamer->switchSection(Csect); 2425 2426 const DataLayout &DL = GV->getParent()->getDataLayout(); 2427 2428 // Handle common and zero-initialized local symbols. 2429 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() || 2430 GVKind.isThreadBSSLocal()) { 2431 Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV)); 2432 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 2433 GVSym->setStorageClass( 2434 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2435 2436 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) 2437 OutStreamer->emitXCOFFLocalCommonSymbol( 2438 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2439 GVSym, Alignment.value()); 2440 else 2441 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2442 return; 2443 } 2444 2445 MCSymbol *EmittedInitSym = GVSym; 2446 2447 // Emit linkage for the global variable and its aliases. 2448 emitLinkage(GV, EmittedInitSym); 2449 for (const GlobalAlias *GA : GOAliasMap[GV]) 2450 emitLinkage(GA, getSymbol(GA)); 2451 2452 emitAlignment(getGVAlignment(GV, DL), GV); 2453 2454 // When -fdata-sections is enabled, every GlobalVariable will 2455 // be put into its own csect; therefore, label is not necessary here. 2456 if (!TM.getDataSections() || GV->hasSection()) 2457 OutStreamer->emitLabel(EmittedInitSym); 2458 2459 // No alias to emit. 2460 if (!GOAliasMap[GV].size()) { 2461 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2462 return; 2463 } 2464 2465 // Aliases with the same offset should be aligned. Record the list of aliases 2466 // associated with the offset. 2467 AliasMapTy AliasList; 2468 for (const GlobalAlias *GA : GOAliasMap[GV]) 2469 AliasList[getAliasOffset(GA->getAliasee())].push_back(GA); 2470 2471 // Emit alias label and element value for global variable. 2472 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer(), 2473 &AliasList); 2474 } 2475 2476 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2477 const DataLayout &DL = getDataLayout(); 2478 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2479 2480 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2481 // Emit function descriptor. 2482 OutStreamer->switchSection( 2483 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2484 2485 // Emit aliasing label for function descriptor csect. 2486 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()]) 2487 OutStreamer->emitLabel(getSymbol(Alias)); 2488 2489 // Emit function entry point address. 2490 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2491 PointerSize); 2492 // Emit TOC base address. 2493 const MCSymbol *TOCBaseSym = 2494 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2495 ->getQualNameSymbol(); 2496 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2497 PointerSize); 2498 // Emit a null environment pointer. 2499 OutStreamer->emitIntValue(0, PointerSize); 2500 2501 OutStreamer->switchSection(Current.first, Current.second); 2502 } 2503 2504 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2505 // It's not necessary to emit the label when we have individual 2506 // function in its own csect. 2507 if (!TM.getFunctionSections()) 2508 PPCAsmPrinter::emitFunctionEntryLabel(); 2509 2510 // Emit aliasing label for function entry point label. 2511 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()]) 2512 OutStreamer->emitLabel( 2513 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2514 } 2515 2516 void PPCAIXAsmPrinter::emitPGORefs() { 2517 if (OutContext.hasXCOFFSection( 2518 "__llvm_prf_cnts", 2519 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) { 2520 MCSection *CntsSection = OutContext.getXCOFFSection( 2521 "__llvm_prf_cnts", SectionKind::getData(), 2522 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD), 2523 /*MultiSymbolsAllowed*/ true); 2524 2525 OutStreamer->switchSection(CntsSection); 2526 if (OutContext.hasXCOFFSection( 2527 "__llvm_prf_data", 2528 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) 2529 OutStreamer->emitXCOFFRefDirective("__llvm_prf_data[RW]"); 2530 if (OutContext.hasXCOFFSection( 2531 "__llvm_prf_names", 2532 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) 2533 OutStreamer->emitXCOFFRefDirective("__llvm_prf_names[RO]"); 2534 if (OutContext.hasXCOFFSection( 2535 "__llvm_prf_vnds", 2536 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) 2537 OutStreamer->emitXCOFFRefDirective("__llvm_prf_vnds[RW]"); 2538 } 2539 } 2540 2541 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2542 // If there are no functions and there are no toc-data definitions in this 2543 // module, we will never need to reference the TOC base. 2544 if (M.empty() && TOCDataGlobalVars.empty()) 2545 return; 2546 2547 emitPGORefs(); 2548 2549 // Switch to section to emit TOC base. 2550 OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection()); 2551 2552 PPCTargetStreamer *TS = 2553 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2554 2555 for (auto &I : TOC) { 2556 MCSectionXCOFF *TCEntry; 2557 // Setup the csect for the current TC entry. If the variant kind is 2558 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a 2559 // new symbol to prefix the name with a dot. 2560 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) { 2561 SmallString<128> Name; 2562 StringRef Prefix = "."; 2563 Name += Prefix; 2564 Name += I.first.first->getName(); 2565 MCSymbol *S = OutContext.getOrCreateSymbol(Name); 2566 TCEntry = cast<MCSectionXCOFF>( 2567 getObjFileLowering().getSectionForTOCEntry(S, TM)); 2568 } else { 2569 TCEntry = cast<MCSectionXCOFF>( 2570 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2571 } 2572 OutStreamer->switchSection(TCEntry); 2573 2574 OutStreamer->emitLabel(I.second); 2575 if (TS != nullptr) 2576 TS->emitTCEntry(*I.first.first, I.first.second); 2577 } 2578 2579 for (const auto *GV : TOCDataGlobalVars) 2580 emitGlobalVariableHelper(GV); 2581 } 2582 2583 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2584 const bool Result = PPCAsmPrinter::doInitialization(M); 2585 2586 auto setCsectAlignment = [this](const GlobalObject *GO) { 2587 // Declarations have 0 alignment which is set by default. 2588 if (GO->isDeclarationForLinker()) 2589 return; 2590 2591 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2592 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2593 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2594 2595 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2596 if (GOAlign > Csect->getAlignment()) 2597 Csect->setAlignment(GOAlign); 2598 }; 2599 2600 // We need to know, up front, the alignment of csects for the assembly path, 2601 // because once a .csect directive gets emitted, we could not change the 2602 // alignment value on it. 2603 for (const auto &G : M.globals()) { 2604 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2605 continue; 2606 2607 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2608 // Generate a format indicator and a unique module id to be a part of 2609 // the sinit and sterm function names. 2610 if (FormatIndicatorAndUniqueModId.empty()) { 2611 std::string UniqueModuleId = getUniqueModuleId(&M); 2612 if (UniqueModuleId != "") 2613 // TODO: Use source file full path to generate the unique module id 2614 // and add a format indicator as a part of function name in case we 2615 // will support more than one format. 2616 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2617 else 2618 // Use the Pid and current time as the unique module id when we cannot 2619 // generate one based on a module's strong external symbols. 2620 // FIXME: Adjust the comment accordingly after we use source file full 2621 // path instead. 2622 FormatIndicatorAndUniqueModId = 2623 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2624 "_" + llvm::itostr(time(nullptr)); 2625 } 2626 2627 emitSpecialLLVMGlobal(&G); 2628 continue; 2629 } 2630 2631 setCsectAlignment(&G); 2632 } 2633 2634 for (const auto &F : M) 2635 setCsectAlignment(&F); 2636 2637 // Construct an aliasing list for each GlobalObject. 2638 for (const auto &Alias : M.aliases()) { 2639 const GlobalObject *Base = Alias.getAliaseeObject(); 2640 if (!Base) 2641 report_fatal_error( 2642 "alias without a base object is not yet supported on AIX"); 2643 GOAliasMap[Base].push_back(&Alias); 2644 } 2645 2646 return Result; 2647 } 2648 2649 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2650 switch (MI->getOpcode()) { 2651 default: 2652 break; 2653 case PPC::GETtlsADDR64AIX: 2654 case PPC::GETtlsADDR32AIX: { 2655 // The reference to .__tls_get_addr is unknown to the assembler 2656 // so we need to emit an external symbol reference. 2657 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 2658 ExtSymSDNodeSymbols.insert(TlsGetAddr); 2659 break; 2660 } 2661 case PPC::BL8: 2662 case PPC::BL: 2663 case PPC::BL8_NOP: 2664 case PPC::BL_NOP: { 2665 const MachineOperand &MO = MI->getOperand(0); 2666 if (MO.isSymbol()) { 2667 MCSymbolXCOFF *S = 2668 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2669 ExtSymSDNodeSymbols.insert(S); 2670 } 2671 } break; 2672 case PPC::BL_TLS: 2673 case PPC::BL8_TLS: 2674 case PPC::BL8_TLS_: 2675 case PPC::BL8_NOP_TLS: 2676 report_fatal_error("TLS call not yet implemented"); 2677 case PPC::TAILB: 2678 case PPC::TAILB8: 2679 case PPC::TAILBA: 2680 case PPC::TAILBA8: 2681 case PPC::TAILBCTR: 2682 case PPC::TAILBCTR8: 2683 if (MI->getOperand(0).isSymbol()) 2684 report_fatal_error("Tail call for extern symbol not yet supported."); 2685 break; 2686 case PPC::DST: 2687 case PPC::DST64: 2688 case PPC::DSTT: 2689 case PPC::DSTT64: 2690 case PPC::DSTST: 2691 case PPC::DSTST64: 2692 case PPC::DSTSTT: 2693 case PPC::DSTSTT64: 2694 EmitToStreamer( 2695 *OutStreamer, 2696 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0)); 2697 return; 2698 } 2699 return PPCAsmPrinter::emitInstruction(MI); 2700 } 2701 2702 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2703 // Do streamer related finalization for DWARF. 2704 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo()) 2705 OutStreamer->doFinalizationAtSectionEnd( 2706 OutStreamer->getContext().getObjectFileInfo()->getTextSection()); 2707 2708 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2709 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2710 return PPCAsmPrinter::doFinalization(M); 2711 } 2712 2713 static unsigned mapToSinitPriority(int P) { 2714 if (P < 0 || P > 65535) 2715 report_fatal_error("invalid init priority"); 2716 2717 if (P <= 20) 2718 return P; 2719 2720 if (P < 81) 2721 return 20 + (P - 20) * 16; 2722 2723 if (P <= 1124) 2724 return 1004 + (P - 81); 2725 2726 if (P < 64512) 2727 return 2047 + (P - 1124) * 33878; 2728 2729 return 2147482625u + (P - 64512); 2730 } 2731 2732 static std::string convertToSinitPriority(int Priority) { 2733 // This helper function converts clang init priority to values used in sinit 2734 // and sterm functions. 2735 // 2736 // The conversion strategies are: 2737 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2738 // reserved priority range [0, 1023] by 2739 // - directly mapping the first 21 and the last 20 elements of the ranges 2740 // - linear interpolating the intermediate values with a step size of 16. 2741 // 2742 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2743 // sinit/sterm priority range [1024, 2147483648] by: 2744 // - directly mapping the first and the last 1024 elements of the ranges 2745 // - linear interpolating the intermediate values with a step size of 33878. 2746 unsigned int P = mapToSinitPriority(Priority); 2747 2748 std::string PrioritySuffix; 2749 llvm::raw_string_ostream os(PrioritySuffix); 2750 os << llvm::format_hex_no_prefix(P, 8); 2751 os.flush(); 2752 return PrioritySuffix; 2753 } 2754 2755 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2756 const Constant *List, bool IsCtor) { 2757 SmallVector<Structor, 8> Structors; 2758 preprocessXXStructorList(DL, List, Structors); 2759 if (Structors.empty()) 2760 return; 2761 2762 unsigned Index = 0; 2763 for (Structor &S : Structors) { 2764 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2765 S.Func = CE->getOperand(0); 2766 2767 llvm::GlobalAlias::create( 2768 GlobalValue::ExternalLinkage, 2769 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2770 llvm::Twine(convertToSinitPriority(S.Priority)) + 2771 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2772 llvm::Twine("_", llvm::utostr(Index++)), 2773 cast<Function>(S.Func)); 2774 } 2775 } 2776 2777 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2778 unsigned Encoding) { 2779 if (GV) { 2780 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2781 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2782 const MCSymbol *TOCBaseSym = 2783 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2784 ->getQualNameSymbol(); 2785 auto &Ctx = OutStreamer->getContext(); 2786 const MCExpr *Exp = 2787 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2788 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2789 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2790 } else 2791 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2792 } 2793 2794 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2795 // given output stream. 2796 static AsmPrinter * 2797 createPPCAsmPrinterPass(TargetMachine &tm, 2798 std::unique_ptr<MCStreamer> &&Streamer) { 2799 if (tm.getTargetTriple().isOSAIX()) 2800 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2801 2802 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2803 } 2804 2805 // Force static initialization. 2806 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2807 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2808 createPPCAsmPrinterPass); 2809 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2810 createPPCAsmPrinterPass); 2811 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2812 createPPCAsmPrinterPass); 2813 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2814 createPPCAsmPrinterPass); 2815 } 2816