1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/Process.h" 66 #include "llvm/Support/TargetRegistry.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/ModuleUtils.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <memory> 74 #include <new> 75 76 using namespace llvm; 77 using namespace llvm::XCOFF; 78 79 #define DEBUG_TYPE "asmprinter" 80 81 // Specialize DenseMapInfo to allow 82 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 83 // This specialization is needed here because that type is used as keys in the 84 // map representing TOC entries. 85 namespace llvm { 86 template <> 87 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 88 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 89 90 static inline TOCKey getEmptyKey() { 91 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 92 } 93 static inline TOCKey getTombstoneKey() { 94 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 95 } 96 static unsigned getHashValue(const TOCKey &PairVal) { 97 return detail::combineHashValue( 98 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 99 DenseMapInfo<int>::getHashValue(PairVal.second)); 100 } 101 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 102 }; 103 } // end namespace llvm 104 105 namespace { 106 107 class PPCAsmPrinter : public AsmPrinter { 108 protected: 109 // For TLS on AIX, we need to be able to identify TOC entries of specific 110 // VariantKind so we can add the right relocations when we generate the 111 // entries. So each entry is represented by a pair of MCSymbol and 112 // VariantKind. For example, we need to be able to identify the following 113 // entry as a TLSGD entry so we can add the @m relocation: 114 // .tc .i[TC],i[TL]@m 115 // By default, VK_None is used for the VariantKind. 116 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 117 MCSymbol *> 118 TOC; 119 const PPCSubtarget *Subtarget = nullptr; 120 StackMaps SM; 121 122 public: 123 explicit PPCAsmPrinter(TargetMachine &TM, 124 std::unique_ptr<MCStreamer> Streamer) 125 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 126 127 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 128 129 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 130 MCSymbolRefExpr::VariantKind Kind = 131 MCSymbolRefExpr::VariantKind::VK_None); 132 133 bool doInitialization(Module &M) override { 134 if (!TOC.empty()) 135 TOC.clear(); 136 return AsmPrinter::doInitialization(M); 137 } 138 139 void emitInstruction(const MachineInstr *MI) override; 140 141 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 142 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 143 /// The \p MI would be INLINEASM ONLY. 144 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 145 146 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 147 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 148 const char *ExtraCode, raw_ostream &O) override; 149 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 150 const char *ExtraCode, raw_ostream &O) override; 151 152 void emitEndOfAsmFile(Module &M) override; 153 154 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 155 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 156 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 159 bool Changed = AsmPrinter::runOnMachineFunction(MF); 160 emitXRayTable(); 161 return Changed; 162 } 163 }; 164 165 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 166 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 167 public: 168 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 169 std::unique_ptr<MCStreamer> Streamer) 170 : PPCAsmPrinter(TM, std::move(Streamer)) {} 171 172 StringRef getPassName() const override { 173 return "Linux PPC Assembly Printer"; 174 } 175 176 void emitStartOfAsmFile(Module &M) override; 177 void emitEndOfAsmFile(Module &) override; 178 179 void emitFunctionEntryLabel() override; 180 181 void emitFunctionBodyStart() override; 182 void emitFunctionBodyEnd() override; 183 void emitInstruction(const MachineInstr *MI) override; 184 }; 185 186 class PPCAIXAsmPrinter : public PPCAsmPrinter { 187 private: 188 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 189 /// linkage for them in AIX. 190 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 191 192 /// A format indicator and unique trailing identifier to form part of the 193 /// sinit/sterm function names. 194 std::string FormatIndicatorAndUniqueModId; 195 196 static void ValidateGV(const GlobalVariable *GV); 197 // Record a list of GlobalAlias associated with a GlobalObject. 198 // This is used for AIX's extra-label-at-definition aliasing strategy. 199 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 200 GOAliasMap; 201 202 void emitTracebackTable(); 203 204 public: 205 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 206 : PPCAsmPrinter(TM, std::move(Streamer)) { 207 if (MAI->isLittleEndian()) 208 report_fatal_error( 209 "cannot create AIX PPC Assembly Printer for a little-endian target"); 210 } 211 212 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 213 214 bool doInitialization(Module &M) override; 215 216 void emitXXStructorList(const DataLayout &DL, const Constant *List, 217 bool IsCtor) override; 218 219 void SetupMachineFunction(MachineFunction &MF) override; 220 221 void emitGlobalVariable(const GlobalVariable *GV) override; 222 223 void emitFunctionDescriptor() override; 224 225 void emitFunctionEntryLabel() override; 226 227 void emitFunctionBodyEnd() override; 228 229 void emitEndOfAsmFile(Module &) override; 230 231 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 232 233 void emitInstruction(const MachineInstr *MI) override; 234 235 bool doFinalization(Module &M) override; 236 237 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 238 }; 239 240 } // end anonymous namespace 241 242 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 243 raw_ostream &O) { 244 // Computing the address of a global symbol, not calling it. 245 const GlobalValue *GV = MO.getGlobal(); 246 getSymbol(GV)->print(O, MAI); 247 printOffset(MO.getOffset(), O); 248 } 249 250 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 251 raw_ostream &O) { 252 const DataLayout &DL = getDataLayout(); 253 const MachineOperand &MO = MI->getOperand(OpNo); 254 255 switch (MO.getType()) { 256 case MachineOperand::MO_Register: { 257 // The MI is INLINEASM ONLY and UseVSXReg is always false. 258 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 259 260 // Linux assembler (Others?) does not take register mnemonics. 261 // FIXME - What about special registers used in mfspr/mtspr? 262 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 263 return; 264 } 265 case MachineOperand::MO_Immediate: 266 O << MO.getImm(); 267 return; 268 269 case MachineOperand::MO_MachineBasicBlock: 270 MO.getMBB()->getSymbol()->print(O, MAI); 271 return; 272 case MachineOperand::MO_ConstantPoolIndex: 273 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 274 << MO.getIndex(); 275 return; 276 case MachineOperand::MO_BlockAddress: 277 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 278 return; 279 case MachineOperand::MO_GlobalAddress: { 280 PrintSymbolOperand(MO, O); 281 return; 282 } 283 284 default: 285 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 286 return; 287 } 288 } 289 290 /// PrintAsmOperand - Print out an operand for an inline asm expression. 291 /// 292 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 293 const char *ExtraCode, raw_ostream &O) { 294 // Does this asm operand have a single letter operand modifier? 295 if (ExtraCode && ExtraCode[0]) { 296 if (ExtraCode[1] != 0) return true; // Unknown modifier. 297 298 switch (ExtraCode[0]) { 299 default: 300 // See if this is a generic print operand 301 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 302 case 'L': // Write second word of DImode reference. 303 // Verify that this operand has two consecutive registers. 304 if (!MI->getOperand(OpNo).isReg() || 305 OpNo+1 == MI->getNumOperands() || 306 !MI->getOperand(OpNo+1).isReg()) 307 return true; 308 ++OpNo; // Return the high-part. 309 break; 310 case 'I': 311 // Write 'i' if an integer constant, otherwise nothing. Used to print 312 // addi vs add, etc. 313 if (MI->getOperand(OpNo).isImm()) 314 O << "i"; 315 return false; 316 case 'x': 317 if(!MI->getOperand(OpNo).isReg()) 318 return true; 319 // This operand uses VSX numbering. 320 // If the operand is a VMX register, convert it to a VSX register. 321 Register Reg = MI->getOperand(OpNo).getReg(); 322 if (PPCInstrInfo::isVRRegister(Reg)) 323 Reg = PPC::VSX32 + (Reg - PPC::V0); 324 else if (PPCInstrInfo::isVFRegister(Reg)) 325 Reg = PPC::VSX32 + (Reg - PPC::VF0); 326 const char *RegName; 327 RegName = PPCInstPrinter::getRegisterName(Reg); 328 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 329 O << RegName; 330 return false; 331 } 332 } 333 334 printOperand(MI, OpNo, O); 335 return false; 336 } 337 338 // At the moment, all inline asm memory operands are a single register. 339 // In any case, the output of this routine should always be just one 340 // assembler operand. 341 342 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 343 const char *ExtraCode, 344 raw_ostream &O) { 345 if (ExtraCode && ExtraCode[0]) { 346 if (ExtraCode[1] != 0) return true; // Unknown modifier. 347 348 switch (ExtraCode[0]) { 349 default: return true; // Unknown modifier. 350 case 'L': // A memory reference to the upper word of a double word op. 351 O << getDataLayout().getPointerSize() << "("; 352 printOperand(MI, OpNo, O); 353 O << ")"; 354 return false; 355 case 'y': // A memory reference for an X-form instruction 356 O << "0, "; 357 printOperand(MI, OpNo, O); 358 return false; 359 case 'U': // Print 'u' for update form. 360 case 'X': // Print 'x' for indexed form. 361 // FIXME: Currently for PowerPC memory operands are always loaded 362 // into a register, so we never get an update or indexed form. 363 // This is bad even for offset forms, since even if we know we 364 // have a value in -16(r1), we will generate a load into r<n> 365 // and then load from 0(r<n>). Until that issue is fixed, 366 // tolerate 'U' and 'X' but don't output anything. 367 assert(MI->getOperand(OpNo).isReg()); 368 return false; 369 } 370 } 371 372 assert(MI->getOperand(OpNo).isReg()); 373 O << "0("; 374 printOperand(MI, OpNo, O); 375 O << ")"; 376 return false; 377 } 378 379 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 380 /// exists for it. If not, create one. Then return a symbol that references 381 /// the TOC entry. 382 MCSymbol * 383 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 384 MCSymbolRefExpr::VariantKind Kind) { 385 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 386 if (!TOCEntry) 387 TOCEntry = createTempSymbol("C"); 388 return TOCEntry; 389 } 390 391 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 392 emitStackMaps(SM); 393 } 394 395 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 396 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 397 398 auto &Ctx = OutStreamer->getContext(); 399 MCSymbol *MILabel = Ctx.createTempSymbol(); 400 OutStreamer->emitLabel(MILabel); 401 402 SM.recordStackMap(*MILabel, MI); 403 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 404 405 // Scan ahead to trim the shadow. 406 const MachineBasicBlock &MBB = *MI.getParent(); 407 MachineBasicBlock::const_iterator MII(MI); 408 ++MII; 409 while (NumNOPBytes > 0) { 410 if (MII == MBB.end() || MII->isCall() || 411 MII->getOpcode() == PPC::DBG_VALUE || 412 MII->getOpcode() == TargetOpcode::PATCHPOINT || 413 MII->getOpcode() == TargetOpcode::STACKMAP) 414 break; 415 ++MII; 416 NumNOPBytes -= 4; 417 } 418 419 // Emit nops. 420 for (unsigned i = 0; i < NumNOPBytes; i += 4) 421 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 422 } 423 424 // Lower a patchpoint of the form: 425 // [<def>], <id>, <numBytes>, <target>, <numArgs> 426 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 427 auto &Ctx = OutStreamer->getContext(); 428 MCSymbol *MILabel = Ctx.createTempSymbol(); 429 OutStreamer->emitLabel(MILabel); 430 431 SM.recordPatchPoint(*MILabel, MI); 432 PatchPointOpers Opers(&MI); 433 434 unsigned EncodedBytes = 0; 435 const MachineOperand &CalleeMO = Opers.getCallTarget(); 436 437 if (CalleeMO.isImm()) { 438 int64_t CallTarget = CalleeMO.getImm(); 439 if (CallTarget) { 440 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 441 "High 16 bits of call target should be zero."); 442 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 443 EncodedBytes = 0; 444 // Materialize the jump address: 445 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 446 .addReg(ScratchReg) 447 .addImm((CallTarget >> 32) & 0xFFFF)); 448 ++EncodedBytes; 449 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 450 .addReg(ScratchReg) 451 .addReg(ScratchReg) 452 .addImm(32).addImm(16)); 453 ++EncodedBytes; 454 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 455 .addReg(ScratchReg) 456 .addReg(ScratchReg) 457 .addImm((CallTarget >> 16) & 0xFFFF)); 458 ++EncodedBytes; 459 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 460 .addReg(ScratchReg) 461 .addReg(ScratchReg) 462 .addImm(CallTarget & 0xFFFF)); 463 464 // Save the current TOC pointer before the remote call. 465 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 466 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 467 .addReg(PPC::X2) 468 .addImm(TOCSaveOffset) 469 .addReg(PPC::X1)); 470 ++EncodedBytes; 471 472 // If we're on ELFv1, then we need to load the actual function pointer 473 // from the function descriptor. 474 if (!Subtarget->isELFv2ABI()) { 475 // Load the new TOC pointer and the function address, but not r11 476 // (needing this is rare, and loading it here would prevent passing it 477 // via a 'nest' parameter. 478 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 479 .addReg(PPC::X2) 480 .addImm(8) 481 .addReg(ScratchReg)); 482 ++EncodedBytes; 483 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 484 .addReg(ScratchReg) 485 .addImm(0) 486 .addReg(ScratchReg)); 487 ++EncodedBytes; 488 } 489 490 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 491 .addReg(ScratchReg)); 492 ++EncodedBytes; 493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 494 ++EncodedBytes; 495 496 // Restore the TOC pointer after the call. 497 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 498 .addReg(PPC::X2) 499 .addImm(TOCSaveOffset) 500 .addReg(PPC::X1)); 501 ++EncodedBytes; 502 } 503 } else if (CalleeMO.isGlobal()) { 504 const GlobalValue *GValue = CalleeMO.getGlobal(); 505 MCSymbol *MOSymbol = getSymbol(GValue); 506 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 507 508 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 509 .addExpr(SymVar)); 510 EncodedBytes += 2; 511 } 512 513 // Each instruction is 4 bytes. 514 EncodedBytes *= 4; 515 516 // Emit padding. 517 unsigned NumBytes = Opers.getNumPatchBytes(); 518 assert(NumBytes >= EncodedBytes && 519 "Patchpoint can't request size less than the length of a call."); 520 assert((NumBytes - EncodedBytes) % 4 == 0 && 521 "Invalid number of NOP bytes requested!"); 522 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 523 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 524 } 525 526 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 527 /// call to __tls_get_addr to the current output stream. 528 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 529 MCSymbolRefExpr::VariantKind VK) { 530 StringRef Name = "__tls_get_addr"; 531 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 532 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 533 unsigned Opcode = PPC::BL8_NOP_TLS; 534 535 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 536 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 537 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 538 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 539 Opcode = PPC::BL8_NOTOC_TLS; 540 } 541 const Module *M = MF->getFunction().getParent(); 542 543 assert(MI->getOperand(0).isReg() && 544 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 545 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 546 "GETtls[ld]ADDR[32] must define GPR3"); 547 assert(MI->getOperand(1).isReg() && 548 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 549 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 550 "GETtls[ld]ADDR[32] must read GPR3"); 551 552 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 553 Kind = MCSymbolRefExpr::VK_PLT; 554 555 const MCExpr *TlsRef = 556 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 557 558 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 559 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 560 M->getPICLevel() == PICLevel::BigPIC) 561 TlsRef = MCBinaryExpr::createAdd( 562 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 563 const MachineOperand &MO = MI->getOperand(2); 564 const GlobalValue *GValue = MO.getGlobal(); 565 MCSymbol *MOSymbol = getSymbol(GValue); 566 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 567 EmitToStreamer(*OutStreamer, 568 MCInstBuilder(Subtarget->isPPC64() ? Opcode 569 : (unsigned)PPC::BL_TLS) 570 .addExpr(TlsRef) 571 .addExpr(SymVar)); 572 } 573 574 /// Map a machine operand for a TOC pseudo-machine instruction to its 575 /// corresponding MCSymbol. 576 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 577 AsmPrinter &AP) { 578 switch (MO.getType()) { 579 case MachineOperand::MO_GlobalAddress: 580 return AP.getSymbol(MO.getGlobal()); 581 case MachineOperand::MO_ConstantPoolIndex: 582 return AP.GetCPISymbol(MO.getIndex()); 583 case MachineOperand::MO_JumpTableIndex: 584 return AP.GetJTISymbol(MO.getIndex()); 585 case MachineOperand::MO_BlockAddress: 586 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 587 default: 588 llvm_unreachable("Unexpected operand type to get symbol."); 589 } 590 } 591 592 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 593 /// the current output stream. 594 /// 595 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 596 MCInst TmpInst; 597 const bool IsPPC64 = Subtarget->isPPC64(); 598 const bool IsAIX = Subtarget->isAIXABI(); 599 const Module *M = MF->getFunction().getParent(); 600 PICLevel::Level PL = M->getPICLevel(); 601 602 #ifndef NDEBUG 603 // Validate that SPE and FPU are mutually exclusive in codegen 604 if (!MI->isInlineAsm()) { 605 for (const MachineOperand &MO: MI->operands()) { 606 if (MO.isReg()) { 607 Register Reg = MO.getReg(); 608 if (Subtarget->hasSPE()) { 609 if (PPC::F4RCRegClass.contains(Reg) || 610 PPC::F8RCRegClass.contains(Reg) || 611 PPC::VFRCRegClass.contains(Reg) || 612 PPC::VRRCRegClass.contains(Reg) || 613 PPC::VSFRCRegClass.contains(Reg) || 614 PPC::VSSRCRegClass.contains(Reg) 615 ) 616 llvm_unreachable("SPE targets cannot have FPRegs!"); 617 } else { 618 if (PPC::SPERCRegClass.contains(Reg)) 619 llvm_unreachable("SPE register found in FPU-targeted code!"); 620 } 621 } 622 } 623 } 624 #endif 625 626 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 627 ptrdiff_t OriginalOffset) { 628 // Apply an offset to the TOC-based expression such that the adjusted 629 // notional offset from the TOC base (to be encoded into the instruction's D 630 // or DS field) is the signed 16-bit truncation of the original notional 631 // offset from the TOC base. 632 // This is consistent with the treatment used both by XL C/C++ and 633 // by AIX ld -r. 634 ptrdiff_t Adjustment = 635 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 636 return MCBinaryExpr::createAdd( 637 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 638 }; 639 640 auto getTOCEntryLoadingExprForXCOFF = 641 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 642 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 643 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 644 const auto TOCEntryIter = 645 TOC.find({MOSymbol, MCSymbolRefExpr::VariantKind::VK_None}); 646 assert(TOCEntryIter != TOC.end() && 647 "Could not find the TOC entry for this symbol."); 648 const ptrdiff_t EntryDistanceFromTOCBase = 649 (TOCEntryIter - TOC.begin()) * EntryByteSize; 650 constexpr int16_t PositiveTOCRange = INT16_MAX; 651 652 if (EntryDistanceFromTOCBase > PositiveTOCRange) 653 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 654 655 return Expr; 656 }; 657 658 // Lower multi-instruction pseudo operations. 659 switch (MI->getOpcode()) { 660 default: break; 661 case TargetOpcode::DBG_VALUE: 662 llvm_unreachable("Should be handled target independently"); 663 case TargetOpcode::STACKMAP: 664 return LowerSTACKMAP(SM, *MI); 665 case TargetOpcode::PATCHPOINT: 666 return LowerPATCHPOINT(SM, *MI); 667 668 case PPC::MoveGOTtoLR: { 669 // Transform %lr = MoveGOTtoLR 670 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 671 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 672 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 673 // blrl 674 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 675 MCSymbol *GOTSymbol = 676 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 677 const MCExpr *OffsExpr = 678 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 679 MCSymbolRefExpr::VK_PPC_LOCAL, 680 OutContext), 681 MCConstantExpr::create(4, OutContext), 682 OutContext); 683 684 // Emit the 'bl'. 685 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 686 return; 687 } 688 case PPC::MovePCtoLR: 689 case PPC::MovePCtoLR8: { 690 // Transform %lr = MovePCtoLR 691 // Into this, where the label is the PIC base: 692 // bl L1$pb 693 // L1$pb: 694 MCSymbol *PICBase = MF->getPICBaseSymbol(); 695 696 // Emit the 'bl'. 697 EmitToStreamer(*OutStreamer, 698 MCInstBuilder(PPC::BL) 699 // FIXME: We would like an efficient form for this, so we 700 // don't have to do a lot of extra uniquing. 701 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 702 703 // Emit the label. 704 OutStreamer->emitLabel(PICBase); 705 return; 706 } 707 case PPC::UpdateGBR: { 708 // Transform %rd = UpdateGBR(%rt, %ri) 709 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 710 // add %rd, %rt, %ri 711 // or into (if secure plt mode is on): 712 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 713 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 714 // Get the offset from the GOT Base Register to the GOT 715 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 716 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 717 unsigned PICR = TmpInst.getOperand(0).getReg(); 718 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 719 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 720 : ".LTOC"); 721 const MCExpr *PB = 722 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 723 724 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 725 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 726 727 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 728 EmitToStreamer( 729 *OutStreamer, 730 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 731 732 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 733 EmitToStreamer( 734 *OutStreamer, 735 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 736 return; 737 } else { 738 MCSymbol *PICOffset = 739 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 740 TmpInst.setOpcode(PPC::LWZ); 741 const MCExpr *Exp = 742 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 743 const MCExpr *PB = 744 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 745 MCSymbolRefExpr::VK_None, 746 OutContext); 747 const MCOperand TR = TmpInst.getOperand(1); 748 const MCOperand PICR = TmpInst.getOperand(0); 749 750 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 751 TmpInst.getOperand(1) = 752 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 753 TmpInst.getOperand(0) = TR; 754 TmpInst.getOperand(2) = PICR; 755 EmitToStreamer(*OutStreamer, TmpInst); 756 757 TmpInst.setOpcode(PPC::ADD4); 758 TmpInst.getOperand(0) = PICR; 759 TmpInst.getOperand(1) = TR; 760 TmpInst.getOperand(2) = PICR; 761 EmitToStreamer(*OutStreamer, TmpInst); 762 return; 763 } 764 } 765 case PPC::LWZtoc: { 766 // Transform %rN = LWZtoc @op1, %r2 767 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 768 769 // Change the opcode to LWZ. 770 TmpInst.setOpcode(PPC::LWZ); 771 772 const MachineOperand &MO = MI->getOperand(1); 773 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 774 "Invalid operand for LWZtoc."); 775 776 // Map the operand to its corresponding MCSymbol. 777 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 778 779 // Create a reference to the GOT entry for the symbol. The GOT entry will be 780 // synthesized later. 781 if (PL == PICLevel::SmallPIC && !IsAIX) { 782 const MCExpr *Exp = 783 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 784 OutContext); 785 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 786 EmitToStreamer(*OutStreamer, TmpInst); 787 return; 788 } 789 790 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 791 // storage allocated in the TOC which contains the address of 792 // 'MOSymbol'. Said TOC entry will be synthesized later. 793 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 794 const MCExpr *Exp = 795 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 796 797 // AIX uses the label directly as the lwz displacement operand for 798 // references into the toc section. The displacement value will be generated 799 // relative to the toc-base. 800 if (IsAIX) { 801 assert( 802 TM.getCodeModel() == CodeModel::Small && 803 "This pseudo should only be selected for 32-bit small code model."); 804 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 805 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 806 EmitToStreamer(*OutStreamer, TmpInst); 807 return; 808 } 809 810 // Create an explicit subtract expression between the local symbol and 811 // '.LTOC' to manifest the toc-relative offset. 812 const MCExpr *PB = MCSymbolRefExpr::create( 813 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 814 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 815 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 816 EmitToStreamer(*OutStreamer, TmpInst); 817 return; 818 } 819 case PPC::LDtocJTI: 820 case PPC::LDtocCPT: 821 case PPC::LDtocBA: 822 case PPC::LDtoc: { 823 // Transform %x3 = LDtoc @min1, %x2 824 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 825 826 // Change the opcode to LD. 827 TmpInst.setOpcode(PPC::LD); 828 829 const MachineOperand &MO = MI->getOperand(1); 830 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 831 "Invalid operand!"); 832 833 // Map the operand to its corresponding MCSymbol. 834 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 835 836 // Map the machine operand to its corresponding MCSymbol, then map the 837 // global address operand to be a reference to the TOC entry we will 838 // synthesize later. 839 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 840 841 const MCSymbolRefExpr::VariantKind VK = 842 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 843 const MCExpr *Exp = 844 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 845 TmpInst.getOperand(1) = MCOperand::createExpr( 846 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 847 EmitToStreamer(*OutStreamer, TmpInst); 848 return; 849 } 850 case PPC::ADDIStocHA: { 851 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 852 "This pseudo should only be selected for 32-bit large code model on" 853 " AIX."); 854 855 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 856 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 857 858 // Change the opcode to ADDIS. 859 TmpInst.setOpcode(PPC::ADDIS); 860 861 const MachineOperand &MO = MI->getOperand(2); 862 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 863 "Invalid operand for ADDIStocHA."); 864 865 // Map the machine operand to its corresponding MCSymbol. 866 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 867 868 // Always use TOC on AIX. Map the global address operand to be a reference 869 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 870 // reference the storage allocated in the TOC which contains the address of 871 // 'MOSymbol'. 872 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 873 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 874 MCSymbolRefExpr::VK_PPC_U, 875 OutContext); 876 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 877 EmitToStreamer(*OutStreamer, TmpInst); 878 return; 879 } 880 case PPC::LWZtocL: { 881 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 882 "This pseudo should only be selected for 32-bit large code model on" 883 " AIX."); 884 885 // Transform %rd = LWZtocL @sym, %rs. 886 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 887 888 // Change the opcode to lwz. 889 TmpInst.setOpcode(PPC::LWZ); 890 891 const MachineOperand &MO = MI->getOperand(1); 892 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 893 "Invalid operand for LWZtocL."); 894 895 // Map the machine operand to its corresponding MCSymbol. 896 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 897 898 // Always use TOC on AIX. Map the global address operand to be a reference 899 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 900 // reference the storage allocated in the TOC which contains the address of 901 // 'MOSymbol'. 902 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 903 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 904 MCSymbolRefExpr::VK_PPC_L, 905 OutContext); 906 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 907 EmitToStreamer(*OutStreamer, TmpInst); 908 return; 909 } 910 case PPC::ADDIStocHA8: { 911 // Transform %xd = ADDIStocHA8 %x2, @sym 912 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 913 914 // Change the opcode to ADDIS8. If the global address is the address of 915 // an external symbol, is a jump table address, is a block address, or is a 916 // constant pool index with large code model enabled, then generate a TOC 917 // entry and reference that. Otherwise, reference the symbol directly. 918 TmpInst.setOpcode(PPC::ADDIS8); 919 920 const MachineOperand &MO = MI->getOperand(2); 921 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 922 "Invalid operand for ADDIStocHA8!"); 923 924 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 925 926 const bool GlobalToc = 927 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 928 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 929 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 930 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 931 932 const MCSymbolRefExpr::VariantKind VK = 933 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 934 935 const MCExpr *Exp = 936 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 937 938 if (!MO.isJTI() && MO.getOffset()) 939 Exp = MCBinaryExpr::createAdd(Exp, 940 MCConstantExpr::create(MO.getOffset(), 941 OutContext), 942 OutContext); 943 944 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 945 EmitToStreamer(*OutStreamer, TmpInst); 946 return; 947 } 948 case PPC::LDtocL: { 949 // Transform %xd = LDtocL @sym, %xs 950 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 951 952 // Change the opcode to LD. If the global address is the address of 953 // an external symbol, is a jump table address, is a block address, or is 954 // a constant pool index with large code model enabled, then generate a 955 // TOC entry and reference that. Otherwise, reference the symbol directly. 956 TmpInst.setOpcode(PPC::LD); 957 958 const MachineOperand &MO = MI->getOperand(1); 959 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 960 MO.isBlockAddress()) && 961 "Invalid operand for LDtocL!"); 962 963 LLVM_DEBUG(assert( 964 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 965 "LDtocL used on symbol that could be accessed directly is " 966 "invalid. Must match ADDIStocHA8.")); 967 968 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 969 970 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 971 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 972 973 const MCSymbolRefExpr::VariantKind VK = 974 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 975 const MCExpr *Exp = 976 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 977 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 978 EmitToStreamer(*OutStreamer, TmpInst); 979 return; 980 } 981 case PPC::ADDItocL: { 982 // Transform %xd = ADDItocL %xs, @sym 983 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 984 985 // Change the opcode to ADDI8. If the global address is external, then 986 // generate a TOC entry and reference that. Otherwise, reference the 987 // symbol directly. 988 TmpInst.setOpcode(PPC::ADDI8); 989 990 const MachineOperand &MO = MI->getOperand(2); 991 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 992 993 LLVM_DEBUG(assert( 994 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 995 "Interposable definitions must use indirect access.")); 996 997 const MCExpr *Exp = 998 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 999 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1000 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1001 EmitToStreamer(*OutStreamer, TmpInst); 1002 return; 1003 } 1004 case PPC::ADDISgotTprelHA: { 1005 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1006 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1007 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1008 const MachineOperand &MO = MI->getOperand(2); 1009 const GlobalValue *GValue = MO.getGlobal(); 1010 MCSymbol *MOSymbol = getSymbol(GValue); 1011 const MCExpr *SymGotTprel = 1012 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1013 OutContext); 1014 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1015 .addReg(MI->getOperand(0).getReg()) 1016 .addReg(MI->getOperand(1).getReg()) 1017 .addExpr(SymGotTprel)); 1018 return; 1019 } 1020 case PPC::LDgotTprelL: 1021 case PPC::LDgotTprelL32: { 1022 // Transform %xd = LDgotTprelL @sym, %xs 1023 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1024 1025 // Change the opcode to LD. 1026 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1027 const MachineOperand &MO = MI->getOperand(1); 1028 const GlobalValue *GValue = MO.getGlobal(); 1029 MCSymbol *MOSymbol = getSymbol(GValue); 1030 const MCExpr *Exp = MCSymbolRefExpr::create( 1031 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1032 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1033 OutContext); 1034 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1035 EmitToStreamer(*OutStreamer, TmpInst); 1036 return; 1037 } 1038 1039 case PPC::PPC32PICGOT: { 1040 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1041 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1042 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1043 1044 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1045 // FIXME: We would like an efficient form for this, so we don't have to do 1046 // a lot of extra uniquing. 1047 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1048 const MCExpr *OffsExpr = 1049 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1050 MCSymbolRefExpr::create(GOTRef, OutContext), 1051 OutContext); 1052 OutStreamer->emitLabel(GOTRef); 1053 OutStreamer->emitValue(OffsExpr, 4); 1054 OutStreamer->emitLabel(NextInstr); 1055 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1056 .addReg(MI->getOperand(0).getReg())); 1057 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1058 .addReg(MI->getOperand(1).getReg()) 1059 .addImm(0) 1060 .addReg(MI->getOperand(0).getReg())); 1061 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1062 .addReg(MI->getOperand(0).getReg()) 1063 .addReg(MI->getOperand(1).getReg()) 1064 .addReg(MI->getOperand(0).getReg())); 1065 return; 1066 } 1067 case PPC::PPC32GOT: { 1068 MCSymbol *GOTSymbol = 1069 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1070 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1071 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1072 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1073 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1074 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1075 .addReg(MI->getOperand(0).getReg()) 1076 .addExpr(SymGotTlsL)); 1077 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1078 .addReg(MI->getOperand(0).getReg()) 1079 .addReg(MI->getOperand(0).getReg()) 1080 .addExpr(SymGotTlsHA)); 1081 return; 1082 } 1083 case PPC::ADDIStlsgdHA: { 1084 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1085 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1086 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1087 const MachineOperand &MO = MI->getOperand(2); 1088 const GlobalValue *GValue = MO.getGlobal(); 1089 MCSymbol *MOSymbol = getSymbol(GValue); 1090 const MCExpr *SymGotTlsGD = 1091 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1092 OutContext); 1093 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1094 .addReg(MI->getOperand(0).getReg()) 1095 .addReg(MI->getOperand(1).getReg()) 1096 .addExpr(SymGotTlsGD)); 1097 return; 1098 } 1099 case PPC::ADDItlsgdL: 1100 // Transform: %xd = ADDItlsgdL %xs, @sym 1101 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1102 case PPC::ADDItlsgdL32: { 1103 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1104 // Into: %rd = ADDI %rs, sym@got@tlsgd 1105 const MachineOperand &MO = MI->getOperand(2); 1106 const GlobalValue *GValue = MO.getGlobal(); 1107 MCSymbol *MOSymbol = getSymbol(GValue); 1108 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1109 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1110 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1111 OutContext); 1112 EmitToStreamer(*OutStreamer, 1113 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1114 .addReg(MI->getOperand(0).getReg()) 1115 .addReg(MI->getOperand(1).getReg()) 1116 .addExpr(SymGotTlsGD)); 1117 return; 1118 } 1119 case PPC::GETtlsADDR: 1120 // Transform: %x3 = GETtlsADDR %x3, @sym 1121 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1122 case PPC::GETtlsADDRPCREL: 1123 case PPC::GETtlsADDR32: { 1124 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1125 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1126 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1127 return; 1128 } 1129 case PPC::ADDIStlsldHA: { 1130 // Transform: %xd = ADDIStlsldHA %x2, @sym 1131 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1132 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1133 const MachineOperand &MO = MI->getOperand(2); 1134 const GlobalValue *GValue = MO.getGlobal(); 1135 MCSymbol *MOSymbol = getSymbol(GValue); 1136 const MCExpr *SymGotTlsLD = 1137 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1138 OutContext); 1139 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1140 .addReg(MI->getOperand(0).getReg()) 1141 .addReg(MI->getOperand(1).getReg()) 1142 .addExpr(SymGotTlsLD)); 1143 return; 1144 } 1145 case PPC::ADDItlsldL: 1146 // Transform: %xd = ADDItlsldL %xs, @sym 1147 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1148 case PPC::ADDItlsldL32: { 1149 // Transform: %rd = ADDItlsldL32 %rs, @sym 1150 // Into: %rd = ADDI %rs, sym@got@tlsld 1151 const MachineOperand &MO = MI->getOperand(2); 1152 const GlobalValue *GValue = MO.getGlobal(); 1153 MCSymbol *MOSymbol = getSymbol(GValue); 1154 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1155 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1156 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1157 OutContext); 1158 EmitToStreamer(*OutStreamer, 1159 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1160 .addReg(MI->getOperand(0).getReg()) 1161 .addReg(MI->getOperand(1).getReg()) 1162 .addExpr(SymGotTlsLD)); 1163 return; 1164 } 1165 case PPC::GETtlsldADDR: 1166 // Transform: %x3 = GETtlsldADDR %x3, @sym 1167 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1168 case PPC::GETtlsldADDRPCREL: 1169 case PPC::GETtlsldADDR32: { 1170 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1171 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1172 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1173 return; 1174 } 1175 case PPC::ADDISdtprelHA: 1176 // Transform: %xd = ADDISdtprelHA %xs, @sym 1177 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1178 case PPC::ADDISdtprelHA32: { 1179 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1180 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1181 const MachineOperand &MO = MI->getOperand(2); 1182 const GlobalValue *GValue = MO.getGlobal(); 1183 MCSymbol *MOSymbol = getSymbol(GValue); 1184 const MCExpr *SymDtprel = 1185 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1186 OutContext); 1187 EmitToStreamer( 1188 *OutStreamer, 1189 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1190 .addReg(MI->getOperand(0).getReg()) 1191 .addReg(MI->getOperand(1).getReg()) 1192 .addExpr(SymDtprel)); 1193 return; 1194 } 1195 case PPC::PADDIdtprel: { 1196 // Transform: %rd = PADDIdtprel %rs, @sym 1197 // Into: %rd = PADDI8 %rs, sym@dtprel 1198 const MachineOperand &MO = MI->getOperand(2); 1199 const GlobalValue *GValue = MO.getGlobal(); 1200 MCSymbol *MOSymbol = getSymbol(GValue); 1201 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1202 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1203 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1204 .addReg(MI->getOperand(0).getReg()) 1205 .addReg(MI->getOperand(1).getReg()) 1206 .addExpr(SymDtprel)); 1207 return; 1208 } 1209 1210 case PPC::ADDIdtprelL: 1211 // Transform: %xd = ADDIdtprelL %xs, @sym 1212 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1213 case PPC::ADDIdtprelL32: { 1214 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1215 // Into: %rd = ADDI %rs, sym@dtprel@l 1216 const MachineOperand &MO = MI->getOperand(2); 1217 const GlobalValue *GValue = MO.getGlobal(); 1218 MCSymbol *MOSymbol = getSymbol(GValue); 1219 const MCExpr *SymDtprel = 1220 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1221 OutContext); 1222 EmitToStreamer(*OutStreamer, 1223 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1224 .addReg(MI->getOperand(0).getReg()) 1225 .addReg(MI->getOperand(1).getReg()) 1226 .addExpr(SymDtprel)); 1227 return; 1228 } 1229 case PPC::MFOCRF: 1230 case PPC::MFOCRF8: 1231 if (!Subtarget->hasMFOCRF()) { 1232 // Transform: %r3 = MFOCRF %cr7 1233 // Into: %r3 = MFCR ;; cr7 1234 unsigned NewOpcode = 1235 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1236 OutStreamer->AddComment(PPCInstPrinter:: 1237 getRegisterName(MI->getOperand(1).getReg())); 1238 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1239 .addReg(MI->getOperand(0).getReg())); 1240 return; 1241 } 1242 break; 1243 case PPC::MTOCRF: 1244 case PPC::MTOCRF8: 1245 if (!Subtarget->hasMFOCRF()) { 1246 // Transform: %cr7 = MTOCRF %r3 1247 // Into: MTCRF mask, %r3 ;; cr7 1248 unsigned NewOpcode = 1249 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1250 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1251 ->getEncodingValue(MI->getOperand(0).getReg()); 1252 OutStreamer->AddComment(PPCInstPrinter:: 1253 getRegisterName(MI->getOperand(0).getReg())); 1254 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1255 .addImm(Mask) 1256 .addReg(MI->getOperand(1).getReg())); 1257 return; 1258 } 1259 break; 1260 case PPC::LD: 1261 case PPC::STD: 1262 case PPC::LWA_32: 1263 case PPC::LWA: { 1264 // Verify alignment is legal, so we don't create relocations 1265 // that can't be supported. 1266 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1267 const MachineOperand &MO = MI->getOperand(OpNum); 1268 if (MO.isGlobal()) { 1269 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1270 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1271 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1272 } 1273 // Now process the instruction normally. 1274 break; 1275 } 1276 } 1277 1278 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1279 EmitToStreamer(*OutStreamer, TmpInst); 1280 } 1281 1282 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1283 if (!Subtarget->isPPC64()) 1284 return PPCAsmPrinter::emitInstruction(MI); 1285 1286 switch (MI->getOpcode()) { 1287 default: 1288 return PPCAsmPrinter::emitInstruction(MI); 1289 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1290 // .begin: 1291 // b .end # lis 0, FuncId[16..32] 1292 // nop # li 0, FuncId[0..15] 1293 // std 0, -8(1) 1294 // mflr 0 1295 // bl __xray_FunctionEntry 1296 // mtlr 0 1297 // .end: 1298 // 1299 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1300 // of instructions change. 1301 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1302 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1303 OutStreamer->emitLabel(BeginOfSled); 1304 EmitToStreamer(*OutStreamer, 1305 MCInstBuilder(PPC::B).addExpr( 1306 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1308 EmitToStreamer( 1309 *OutStreamer, 1310 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1311 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1312 EmitToStreamer(*OutStreamer, 1313 MCInstBuilder(PPC::BL8_NOP) 1314 .addExpr(MCSymbolRefExpr::create( 1315 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1316 OutContext))); 1317 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1318 OutStreamer->emitLabel(EndOfSled); 1319 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1320 break; 1321 } 1322 case TargetOpcode::PATCHABLE_RET: { 1323 unsigned RetOpcode = MI->getOperand(0).getImm(); 1324 MCInst RetInst; 1325 RetInst.setOpcode(RetOpcode); 1326 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1327 MCOperand MCOp; 1328 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1329 RetInst.addOperand(MCOp); 1330 } 1331 1332 bool IsConditional; 1333 if (RetOpcode == PPC::BCCLR) { 1334 IsConditional = true; 1335 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1336 RetOpcode == PPC::TCRETURNai8) { 1337 break; 1338 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1339 IsConditional = false; 1340 } else { 1341 EmitToStreamer(*OutStreamer, RetInst); 1342 break; 1343 } 1344 1345 MCSymbol *FallthroughLabel; 1346 if (IsConditional) { 1347 // Before: 1348 // bgtlr cr0 1349 // 1350 // After: 1351 // ble cr0, .end 1352 // .p2align 3 1353 // .begin: 1354 // blr # lis 0, FuncId[16..32] 1355 // nop # li 0, FuncId[0..15] 1356 // std 0, -8(1) 1357 // mflr 0 1358 // bl __xray_FunctionExit 1359 // mtlr 0 1360 // blr 1361 // .end: 1362 // 1363 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1364 // of instructions change. 1365 FallthroughLabel = OutContext.createTempSymbol(); 1366 EmitToStreamer( 1367 *OutStreamer, 1368 MCInstBuilder(PPC::BCC) 1369 .addImm(PPC::InvertPredicate( 1370 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1371 .addReg(MI->getOperand(2).getReg()) 1372 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1373 RetInst = MCInst(); 1374 RetInst.setOpcode(PPC::BLR8); 1375 } 1376 // .p2align 3 1377 // .begin: 1378 // b(lr)? # lis 0, FuncId[16..32] 1379 // nop # li 0, FuncId[0..15] 1380 // std 0, -8(1) 1381 // mflr 0 1382 // bl __xray_FunctionExit 1383 // mtlr 0 1384 // b(lr)? 1385 // 1386 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1387 // of instructions change. 1388 OutStreamer->emitCodeAlignment(8); 1389 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1390 OutStreamer->emitLabel(BeginOfSled); 1391 EmitToStreamer(*OutStreamer, RetInst); 1392 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1393 EmitToStreamer( 1394 *OutStreamer, 1395 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1396 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1397 EmitToStreamer(*OutStreamer, 1398 MCInstBuilder(PPC::BL8_NOP) 1399 .addExpr(MCSymbolRefExpr::create( 1400 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1401 OutContext))); 1402 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1403 EmitToStreamer(*OutStreamer, RetInst); 1404 if (IsConditional) 1405 OutStreamer->emitLabel(FallthroughLabel); 1406 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1407 break; 1408 } 1409 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1410 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1411 case TargetOpcode::PATCHABLE_TAIL_CALL: 1412 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1413 // normal function exit from a tail exit. 1414 llvm_unreachable("Tail call is handled in the normal case. See comments " 1415 "around this assert."); 1416 } 1417 } 1418 1419 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1420 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1421 PPCTargetStreamer *TS = 1422 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1423 1424 if (TS) 1425 TS->emitAbiVersion(2); 1426 } 1427 1428 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1429 !isPositionIndependent()) 1430 return AsmPrinter::emitStartOfAsmFile(M); 1431 1432 if (M.getPICLevel() == PICLevel::SmallPIC) 1433 return AsmPrinter::emitStartOfAsmFile(M); 1434 1435 OutStreamer->SwitchSection(OutContext.getELFSection( 1436 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1437 1438 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1439 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1440 1441 OutStreamer->emitLabel(CurrentPos); 1442 1443 // The GOT pointer points to the middle of the GOT, in order to reference the 1444 // entire 64kB range. 0x8000 is the midpoint. 1445 const MCExpr *tocExpr = 1446 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1447 MCConstantExpr::create(0x8000, OutContext), 1448 OutContext); 1449 1450 OutStreamer->emitAssignment(TOCSym, tocExpr); 1451 1452 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1453 } 1454 1455 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1456 // linux/ppc32 - Normal entry label. 1457 if (!Subtarget->isPPC64() && 1458 (!isPositionIndependent() || 1459 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1460 return AsmPrinter::emitFunctionEntryLabel(); 1461 1462 if (!Subtarget->isPPC64()) { 1463 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1464 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1465 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1466 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1467 OutStreamer->emitLabel(RelocSymbol); 1468 1469 const MCExpr *OffsExpr = 1470 MCBinaryExpr::createSub( 1471 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1472 OutContext), 1473 MCSymbolRefExpr::create(PICBase, OutContext), 1474 OutContext); 1475 OutStreamer->emitValue(OffsExpr, 4); 1476 OutStreamer->emitLabel(CurrentFnSym); 1477 return; 1478 } else 1479 return AsmPrinter::emitFunctionEntryLabel(); 1480 } 1481 1482 // ELFv2 ABI - Normal entry label. 1483 if (Subtarget->isELFv2ABI()) { 1484 // In the Large code model, we allow arbitrary displacements between 1485 // the text section and its associated TOC section. We place the 1486 // full 8-byte offset to the TOC in memory immediately preceding 1487 // the function global entry point. 1488 if (TM.getCodeModel() == CodeModel::Large 1489 && !MF->getRegInfo().use_empty(PPC::X2)) { 1490 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1491 1492 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1493 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1494 const MCExpr *TOCDeltaExpr = 1495 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1496 MCSymbolRefExpr::create(GlobalEPSymbol, 1497 OutContext), 1498 OutContext); 1499 1500 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1501 OutStreamer->emitValue(TOCDeltaExpr, 8); 1502 } 1503 return AsmPrinter::emitFunctionEntryLabel(); 1504 } 1505 1506 // Emit an official procedure descriptor. 1507 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1508 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1509 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1510 OutStreamer->SwitchSection(Section); 1511 OutStreamer->emitLabel(CurrentFnSym); 1512 OutStreamer->emitValueToAlignment(8); 1513 MCSymbol *Symbol1 = CurrentFnSymForSize; 1514 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1515 // entry point. 1516 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1517 8 /*size*/); 1518 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1519 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1520 OutStreamer->emitValue( 1521 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1522 8/*size*/); 1523 // Emit a null environment pointer. 1524 OutStreamer->emitIntValue(0, 8 /* size */); 1525 OutStreamer->SwitchSection(Current.first, Current.second); 1526 } 1527 1528 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1529 const DataLayout &DL = getDataLayout(); 1530 1531 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1532 1533 PPCTargetStreamer *TS = 1534 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1535 1536 if (!TOC.empty()) { 1537 const char *Name = isPPC64 ? ".toc" : ".got2"; 1538 MCSectionELF *Section = OutContext.getELFSection( 1539 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1540 OutStreamer->SwitchSection(Section); 1541 if (!isPPC64) 1542 OutStreamer->emitValueToAlignment(4); 1543 1544 for (const auto &TOCMapPair : TOC) { 1545 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1546 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1547 1548 OutStreamer->emitLabel(TOCEntryLabel); 1549 if (isPPC64 && TS != nullptr) 1550 TS->emitTCEntry(*TOCEntryTarget); 1551 else 1552 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1553 } 1554 } 1555 1556 PPCAsmPrinter::emitEndOfAsmFile(M); 1557 } 1558 1559 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1560 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1561 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1562 // provide two entry points. The ABI guarantees that when calling the 1563 // local entry point, r2 is set up by the caller to contain the TOC base 1564 // for this function, and when calling the global entry point, r12 is set 1565 // up by the caller to hold the address of the global entry point. We 1566 // thus emit a prefix sequence along the following lines: 1567 // 1568 // func: 1569 // .Lfunc_gepNN: 1570 // # global entry point 1571 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1572 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1573 // .Lfunc_lepNN: 1574 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1575 // # local entry point, followed by function body 1576 // 1577 // For the Large code model, we create 1578 // 1579 // .Lfunc_tocNN: 1580 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1581 // func: 1582 // .Lfunc_gepNN: 1583 // # global entry point 1584 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1585 // add r2,r2,r12 1586 // .Lfunc_lepNN: 1587 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1588 // # local entry point, followed by function body 1589 // 1590 // This ensures we have r2 set up correctly while executing the function 1591 // body, no matter which entry point is called. 1592 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1593 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1594 !MF->getRegInfo().use_empty(PPC::R2); 1595 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1596 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1597 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1598 Subtarget->isELFv2ABI() && UsesX2OrR2; 1599 1600 // Only do all that if the function uses R2 as the TOC pointer 1601 // in the first place. We don't need the global entry point if the 1602 // function uses R2 as an allocatable register. 1603 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1604 // Note: The logic here must be synchronized with the code in the 1605 // branch-selection pass which sets the offset of the first block in the 1606 // function. This matters because it affects the alignment. 1607 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1608 OutStreamer->emitLabel(GlobalEntryLabel); 1609 const MCSymbolRefExpr *GlobalEntryLabelExp = 1610 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1611 1612 if (TM.getCodeModel() != CodeModel::Large) { 1613 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1614 const MCExpr *TOCDeltaExpr = 1615 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1616 GlobalEntryLabelExp, OutContext); 1617 1618 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1619 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1620 .addReg(PPC::X2) 1621 .addReg(PPC::X12) 1622 .addExpr(TOCDeltaHi)); 1623 1624 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1625 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1626 .addReg(PPC::X2) 1627 .addReg(PPC::X2) 1628 .addExpr(TOCDeltaLo)); 1629 } else { 1630 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1631 const MCExpr *TOCOffsetDeltaExpr = 1632 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1633 GlobalEntryLabelExp, OutContext); 1634 1635 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1636 .addReg(PPC::X2) 1637 .addExpr(TOCOffsetDeltaExpr) 1638 .addReg(PPC::X12)); 1639 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1640 .addReg(PPC::X2) 1641 .addReg(PPC::X2) 1642 .addReg(PPC::X12)); 1643 } 1644 1645 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1646 OutStreamer->emitLabel(LocalEntryLabel); 1647 const MCSymbolRefExpr *LocalEntryLabelExp = 1648 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1649 const MCExpr *LocalOffsetExp = 1650 MCBinaryExpr::createSub(LocalEntryLabelExp, 1651 GlobalEntryLabelExp, OutContext); 1652 1653 PPCTargetStreamer *TS = 1654 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1655 1656 if (TS) 1657 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1658 } else if (Subtarget->isUsingPCRelativeCalls()) { 1659 // When generating the entry point for a function we have a few scenarios 1660 // based on whether or not that function uses R2 and whether or not that 1661 // function makes calls (or is a leaf function). 1662 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1663 // and preserves it). In this case st_other=0 and both 1664 // the local and global entry points for the function are the same. 1665 // No special entry point code is required. 1666 // 2) A function uses the TOC pointer R2. This function may or may not have 1667 // calls. In this case st_other=[2,6] and the global and local entry 1668 // points are different. Code to correctly setup the TOC pointer in R2 1669 // is put between the global and local entry points. This case is 1670 // covered by the if statatement above. 1671 // 3) A function does not use the TOC pointer R2 but does have calls. 1672 // In this case st_other=1 since we do not know whether or not any 1673 // of the callees clobber R2. This case is dealt with in this else if 1674 // block. Tail calls are considered calls and the st_other should also 1675 // be set to 1 in that case as well. 1676 // 4) The function does not use the TOC pointer but R2 is used inside 1677 // the function. In this case st_other=1 once again. 1678 // 5) This function uses inline asm. We mark R2 as reserved if the function 1679 // has inline asm as we have to assume that it may be used. 1680 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1681 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1682 PPCTargetStreamer *TS = 1683 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1684 if (TS) 1685 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1686 MCConstantExpr::create(1, OutContext)); 1687 } 1688 } 1689 } 1690 1691 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1692 /// directive. 1693 /// 1694 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1695 // Only the 64-bit target requires a traceback table. For now, 1696 // we only emit the word of zeroes that GDB requires to find 1697 // the end of the function, and zeroes for the eight-byte 1698 // mandatory fields. 1699 // FIXME: We should fill in the eight-byte mandatory fields as described in 1700 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1701 // currently make use of these fields). 1702 if (Subtarget->isPPC64()) { 1703 OutStreamer->emitIntValue(0, 4/*size*/); 1704 OutStreamer->emitIntValue(0, 8/*size*/); 1705 } 1706 } 1707 1708 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1709 MCSymbol *GVSym) const { 1710 1711 assert(MAI->hasVisibilityOnlyWithLinkage() && 1712 "AIX's linkage directives take a visibility setting."); 1713 1714 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1715 switch (GV->getLinkage()) { 1716 case GlobalValue::ExternalLinkage: 1717 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1718 break; 1719 case GlobalValue::LinkOnceAnyLinkage: 1720 case GlobalValue::LinkOnceODRLinkage: 1721 case GlobalValue::WeakAnyLinkage: 1722 case GlobalValue::WeakODRLinkage: 1723 case GlobalValue::ExternalWeakLinkage: 1724 LinkageAttr = MCSA_Weak; 1725 break; 1726 case GlobalValue::AvailableExternallyLinkage: 1727 LinkageAttr = MCSA_Extern; 1728 break; 1729 case GlobalValue::PrivateLinkage: 1730 return; 1731 case GlobalValue::InternalLinkage: 1732 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1733 "InternalLinkage should not have other visibility setting."); 1734 LinkageAttr = MCSA_LGlobal; 1735 break; 1736 case GlobalValue::AppendingLinkage: 1737 llvm_unreachable("Should never emit this"); 1738 case GlobalValue::CommonLinkage: 1739 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1740 } 1741 1742 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1743 1744 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1745 if (!TM.getIgnoreXCOFFVisibility()) { 1746 switch (GV->getVisibility()) { 1747 1748 // TODO: "exported" and "internal" Visibility needs to go here. 1749 case GlobalValue::DefaultVisibility: 1750 break; 1751 case GlobalValue::HiddenVisibility: 1752 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1753 break; 1754 case GlobalValue::ProtectedVisibility: 1755 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1756 break; 1757 } 1758 } 1759 1760 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1761 VisibilityAttr); 1762 } 1763 1764 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1765 // Setup CurrentFnDescSym and its containing csect. 1766 MCSectionXCOFF *FnDescSec = 1767 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1768 &MF.getFunction(), TM)); 1769 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1770 1771 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1772 1773 return AsmPrinter::SetupMachineFunction(MF); 1774 } 1775 1776 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1777 1778 if (!TM.getXCOFFTracebackTable()) 1779 return; 1780 1781 emitTracebackTable(); 1782 } 1783 1784 void PPCAIXAsmPrinter::emitTracebackTable() { 1785 1786 // Create a symbol for the end of function. 1787 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1788 OutStreamer->emitLabel(FuncEnd); 1789 1790 OutStreamer->AddComment("Traceback table begin"); 1791 // Begin with a fullword of zero. 1792 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1793 1794 SmallString<128> CommentString; 1795 raw_svector_ostream CommentOS(CommentString); 1796 1797 auto EmitComment = [&]() { 1798 OutStreamer->AddComment(CommentOS.str()); 1799 CommentString.clear(); 1800 }; 1801 1802 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 1803 EmitComment(); 1804 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 1805 }; 1806 1807 unsigned int Version = 0; 1808 CommentOS << "Version = " << Version; 1809 EmitCommentAndValue(Version, 1); 1810 1811 // There is a lack of information in the IR to assist with determining the 1812 // source language. AIX exception handling mechanism would only search for 1813 // personality routine and LSDA area when such language supports exception 1814 // handling. So to be conservatively correct and allow runtime to do its job, 1815 // we need to set it to C++ for now. 1816 TracebackTable::LanguageID LanguageIdentifier = 1817 TracebackTable::CPlusPlus; // C++ 1818 1819 CommentOS << "Language = " 1820 << getNameForTracebackTableLanguageId(LanguageIdentifier); 1821 EmitCommentAndValue(LanguageIdentifier, 1); 1822 1823 // This is only populated for the third and fourth bytes. 1824 uint32_t FirstHalfOfMandatoryField = 0; 1825 1826 // Emit the 3rd byte of the mandatory field. 1827 1828 // We always set traceback offset bit to true. 1829 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 1830 1831 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1832 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1833 1834 // Check the function uses floating-point processor instructions or not 1835 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 1836 if (MRI.isPhysRegUsed(Reg)) { 1837 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 1838 break; 1839 } 1840 } 1841 1842 #define GENBOOLCOMMENT(Prefix, V, Field) \ 1843 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 1844 << #Field 1845 1846 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 1847 CommentOS << (PrefixAndName) << " = " \ 1848 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 1849 (TracebackTable::Field##Shift)) 1850 1851 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 1852 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 1853 EmitComment(); 1854 1855 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 1856 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 1857 EmitComment(); 1858 1859 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 1860 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 1861 EmitComment(); 1862 1863 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 1864 EmitComment(); 1865 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 1866 IsFloatingPointOperationLogOrAbortEnabled); 1867 EmitComment(); 1868 1869 OutStreamer->emitIntValueInHexWithPadding( 1870 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1871 1872 // Set the 4th byte of the mandatory field. 1873 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 1874 1875 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!"); 1876 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 1877 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 1878 1879 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1880 if (!MustSaveCRs.empty()) 1881 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 1882 1883 if (FI->mustSaveLR()) 1884 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 1885 1886 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 1887 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 1888 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 1889 EmitComment(); 1890 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 1891 OnConditionDirective); 1892 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 1893 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 1894 EmitComment(); 1895 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 1896 1); 1897 1898 // Set the 5th byte of mandatory field. 1899 uint32_t SecondHalfOfMandatoryField = 0; 1900 1901 // Always store back chain. 1902 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 1903 1904 uint32_t FPRSaved = 0; 1905 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 1906 if (MRI.isPhysRegModified(Reg)) { 1907 FPRSaved = PPC::F31 - Reg + 1; 1908 break; 1909 } 1910 } 1911 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 1912 TracebackTable::FPRSavedMask; 1913 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 1914 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 1915 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 1916 EmitComment(); 1917 OutStreamer->emitIntValueInHexWithPadding( 1918 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 1919 1920 // Set the 6th byte of mandatory field. 1921 bool ShouldEmitEHBlock = TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF); 1922 if (ShouldEmitEHBlock) 1923 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 1924 1925 uint32_t GPRSaved = 0; 1926 1927 // X13 is reserved under 64-bit environment. 1928 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 1929 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 1930 1931 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 1932 if (MRI.isPhysRegModified(Reg)) { 1933 GPRSaved = GPREnd - Reg + 1; 1934 break; 1935 } 1936 } 1937 1938 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 1939 TracebackTable::GPRSavedMask; 1940 1941 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasVectorInfo); 1942 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasExtensionTable); 1943 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 1944 EmitComment(); 1945 OutStreamer->emitIntValueInHexWithPadding( 1946 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 1947 1948 // Set the 7th byte of mandatory field. 1949 uint32_t NumberOfFixedPara = FI->getFixedParamNum(); 1950 SecondHalfOfMandatoryField |= 1951 (NumberOfFixedPara << TracebackTable::NumberOfFixedParmsShift) & 1952 TracebackTable::NumberOfFixedParmsMask; 1953 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 1954 NumberOfFixedParms); 1955 EmitComment(); 1956 OutStreamer->emitIntValueInHexWithPadding( 1957 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1958 1959 // Set the 8th byte of mandatory field. 1960 1961 // Always set parameter on stack. 1962 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 1963 1964 uint32_t NumberOfFPPara = FI->getFloatingPointParamNum(); 1965 SecondHalfOfMandatoryField |= 1966 (NumberOfFPPara << TracebackTable::NumberOfFloatingPointParmsShift) & 1967 TracebackTable::NumberOfFloatingPointParmsMask; 1968 1969 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 1970 NumberOfFloatingPointParms); 1971 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 1972 EmitComment(); 1973 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 1974 1); 1975 1976 // Generate the optional fields of traceback table. 1977 1978 // Parameter type. 1979 if (NumberOfFixedPara || NumberOfFPPara) { 1980 assert((SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) == 1981 0 && 1982 "VectorInfo has not been implemented."); 1983 uint32_t ParaType = FI->getParameterType(); 1984 CommentOS << "Parameter type = " 1985 << XCOFF::parseParmsType(ParaType, 1986 NumberOfFixedPara + NumberOfFPPara); 1987 EmitComment(); 1988 OutStreamer->emitIntValueInHexWithPadding(ParaType, sizeof(ParaType)); 1989 } 1990 1991 // Traceback table offset. 1992 OutStreamer->AddComment("Function size"); 1993 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 1994 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 1995 &(MF->getFunction()), TM); 1996 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 1997 } 1998 1999 // Since we unset the Int_Handler. 2000 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2001 report_fatal_error("Hand_Mask not implement yet"); 2002 2003 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2004 report_fatal_error("Ctl_Info not implement yet"); 2005 2006 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2007 StringRef Name = MF->getName().substr(0, INT16_MAX); 2008 int16_t NameLength = Name.size(); 2009 CommentOS << "Function name len = " 2010 << static_cast<unsigned int>(NameLength); 2011 EmitCommentAndValue(NameLength, 2); 2012 OutStreamer->AddComment("Function Name"); 2013 OutStreamer->emitBytes(Name); 2014 } 2015 2016 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2017 uint8_t AllocReg = XCOFF::AllocRegNo; 2018 OutStreamer->AddComment("AllocaUsed"); 2019 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2020 } 2021 2022 uint8_t ExtensionTableFlag = 0; 2023 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2024 if (ShouldEmitEHBlock) 2025 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2026 2027 CommentOS << "ExtensionTableFlag = " 2028 << getExtendedTBTableFlagString(ExtensionTableFlag); 2029 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2030 } 2031 2032 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2033 auto &Ctx = OutStreamer->getContext(); 2034 MCSymbol *EHInfoSym = 2035 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2036 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2037 const MCSymbol *TOCBaseSym = 2038 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2039 ->getQualNameSymbol(); 2040 const MCExpr *Exp = 2041 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2042 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2043 2044 const DataLayout &DL = getDataLayout(); 2045 OutStreamer->emitValueToAlignment(4); 2046 OutStreamer->AddComment("EHInfo Table"); 2047 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2048 } 2049 2050 #undef GENBOOLCOMMENT 2051 #undef GENVALUECOMMENT 2052 } 2053 2054 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 2055 // Early error checking limiting what is supported. 2056 if (GV->isThreadLocal()) 2057 report_fatal_error("Thread local not yet supported on AIX."); 2058 2059 if (GV->hasComdat()) 2060 report_fatal_error("COMDAT not yet supported by AIX."); 2061 } 2062 2063 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2064 return GV->hasAppendingLinkage() && 2065 StringSwitch<bool>(GV->getName()) 2066 // TODO: Linker could still eliminate the GV if we just skip 2067 // handling llvm.used array. Skipping them for now until we or the 2068 // AIX OS team come up with a good solution. 2069 .Case("llvm.used", true) 2070 // It's correct to just skip llvm.compiler.used array here. 2071 .Case("llvm.compiler.used", true) 2072 .Default(false); 2073 } 2074 2075 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2076 return StringSwitch<bool>(GV->getName()) 2077 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2078 .Default(false); 2079 } 2080 2081 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2082 // Special LLVM global arrays have been handled at the initialization. 2083 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2084 return; 2085 2086 assert(!GV->getName().startswith("llvm.") && 2087 "Unhandled intrinsic global variable."); 2088 ValidateGV(GV); 2089 2090 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2091 2092 if (GV->isDeclarationForLinker()) { 2093 emitLinkage(GV, GVSym); 2094 return; 2095 } 2096 2097 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2098 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 2099 report_fatal_error("Encountered a global variable kind that is " 2100 "not supported yet."); 2101 2102 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2103 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2104 2105 // Switch to the containing csect. 2106 OutStreamer->SwitchSection(Csect); 2107 2108 const DataLayout &DL = GV->getParent()->getDataLayout(); 2109 2110 // Handle common symbols. 2111 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 2112 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2113 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 2114 GVSym->setStorageClass( 2115 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2116 2117 if (GVKind.isBSSLocal()) 2118 OutStreamer->emitXCOFFLocalCommonSymbol( 2119 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2120 GVSym, Alignment.value()); 2121 else 2122 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2123 return; 2124 } 2125 2126 MCSymbol *EmittedInitSym = GVSym; 2127 emitLinkage(GV, EmittedInitSym); 2128 emitAlignment(getGVAlignment(GV, DL), GV); 2129 2130 // When -fdata-sections is enabled, every GlobalVariable will 2131 // be put into its own csect; therefore, label is not necessary here. 2132 if (!TM.getDataSections() || GV->hasSection()) { 2133 OutStreamer->emitLabel(EmittedInitSym); 2134 } 2135 2136 // Emit aliasing label for global variable. 2137 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2138 OutStreamer->emitLabel(getSymbol(Alias)); 2139 }); 2140 2141 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2142 } 2143 2144 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2145 const DataLayout &DL = getDataLayout(); 2146 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2147 2148 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2149 // Emit function descriptor. 2150 OutStreamer->SwitchSection( 2151 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2152 2153 // Emit aliasing label for function descriptor csect. 2154 llvm::for_each(GOAliasMap[&MF->getFunction()], 2155 [this](const GlobalAlias *Alias) { 2156 OutStreamer->emitLabel(getSymbol(Alias)); 2157 }); 2158 2159 // Emit function entry point address. 2160 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2161 PointerSize); 2162 // Emit TOC base address. 2163 const MCSymbol *TOCBaseSym = 2164 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2165 ->getQualNameSymbol(); 2166 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2167 PointerSize); 2168 // Emit a null environment pointer. 2169 OutStreamer->emitIntValue(0, PointerSize); 2170 2171 OutStreamer->SwitchSection(Current.first, Current.second); 2172 } 2173 2174 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2175 // It's not necessary to emit the label when we have individual 2176 // function in its own csect. 2177 if (!TM.getFunctionSections()) 2178 PPCAsmPrinter::emitFunctionEntryLabel(); 2179 2180 // Emit aliasing label for function entry point label. 2181 llvm::for_each( 2182 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2183 OutStreamer->emitLabel( 2184 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2185 }); 2186 } 2187 2188 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2189 // If there are no functions in this module, we will never need to reference 2190 // the TOC base. 2191 if (M.empty()) 2192 return; 2193 2194 // Switch to section to emit TOC base. 2195 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2196 2197 PPCTargetStreamer *TS = 2198 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2199 2200 for (auto &I : TOC) { 2201 // Setup the csect for the current TC entry. 2202 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 2203 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2204 OutStreamer->SwitchSection(TCEntry); 2205 2206 OutStreamer->emitLabel(I.second); 2207 if (TS != nullptr) 2208 TS->emitTCEntry(*I.first.first); 2209 } 2210 } 2211 2212 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2213 const bool Result = PPCAsmPrinter::doInitialization(M); 2214 2215 auto setCsectAlignment = [this](const GlobalObject *GO) { 2216 // Declarations have 0 alignment which is set by default. 2217 if (GO->isDeclarationForLinker()) 2218 return; 2219 2220 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2221 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2222 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2223 2224 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2225 if (GOAlign > Csect->getAlignment()) 2226 Csect->setAlignment(GOAlign); 2227 }; 2228 2229 // We need to know, up front, the alignment of csects for the assembly path, 2230 // because once a .csect directive gets emitted, we could not change the 2231 // alignment value on it. 2232 for (const auto &G : M.globals()) { 2233 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2234 continue; 2235 2236 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2237 // Generate a format indicator and a unique module id to be a part of 2238 // the sinit and sterm function names. 2239 if (FormatIndicatorAndUniqueModId.empty()) { 2240 std::string UniqueModuleId = getUniqueModuleId(&M); 2241 if (UniqueModuleId != "") 2242 // TODO: Use source file full path to generate the unique module id 2243 // and add a format indicator as a part of function name in case we 2244 // will support more than one format. 2245 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2246 else 2247 // Use the Pid and current time as the unique module id when we cannot 2248 // generate one based on a module's strong external symbols. 2249 // FIXME: Adjust the comment accordingly after we use source file full 2250 // path instead. 2251 FormatIndicatorAndUniqueModId = 2252 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2253 "_" + llvm::itostr(time(nullptr)); 2254 } 2255 2256 emitSpecialLLVMGlobal(&G); 2257 continue; 2258 } 2259 2260 setCsectAlignment(&G); 2261 } 2262 2263 for (const auto &F : M) 2264 setCsectAlignment(&F); 2265 2266 // Construct an aliasing list for each GlobalObject. 2267 for (const auto &Alias : M.aliases()) { 2268 const GlobalObject *Base = Alias.getBaseObject(); 2269 if (!Base) 2270 report_fatal_error( 2271 "alias without a base object is not yet supported on AIX"); 2272 GOAliasMap[Base].push_back(&Alias); 2273 } 2274 2275 return Result; 2276 } 2277 2278 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2279 switch (MI->getOpcode()) { 2280 default: 2281 break; 2282 case PPC::BL8: 2283 case PPC::BL: 2284 case PPC::BL8_NOP: 2285 case PPC::BL_NOP: { 2286 const MachineOperand &MO = MI->getOperand(0); 2287 if (MO.isSymbol()) { 2288 MCSymbolXCOFF *S = 2289 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2290 ExtSymSDNodeSymbols.insert(S); 2291 } 2292 } break; 2293 case PPC::BL_TLS: 2294 case PPC::BL8_TLS: 2295 case PPC::BL8_TLS_: 2296 case PPC::BL8_NOP_TLS: 2297 report_fatal_error("TLS call not yet implemented"); 2298 case PPC::TAILB: 2299 case PPC::TAILB8: 2300 case PPC::TAILBA: 2301 case PPC::TAILBA8: 2302 case PPC::TAILBCTR: 2303 case PPC::TAILBCTR8: 2304 if (MI->getOperand(0).isSymbol()) 2305 report_fatal_error("Tail call for extern symbol not yet supported."); 2306 break; 2307 } 2308 return PPCAsmPrinter::emitInstruction(MI); 2309 } 2310 2311 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2312 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2313 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2314 return PPCAsmPrinter::doFinalization(M); 2315 } 2316 2317 static unsigned mapToSinitPriority(int P) { 2318 if (P < 0 || P > 65535) 2319 report_fatal_error("invalid init priority"); 2320 2321 if (P <= 20) 2322 return P; 2323 2324 if (P < 81) 2325 return 20 + (P - 20) * 16; 2326 2327 if (P <= 1124) 2328 return 1004 + (P - 81); 2329 2330 if (P < 64512) 2331 return 2047 + (P - 1124) * 33878; 2332 2333 return 2147482625u + (P - 64512); 2334 } 2335 2336 static std::string convertToSinitPriority(int Priority) { 2337 // This helper function converts clang init priority to values used in sinit 2338 // and sterm functions. 2339 // 2340 // The conversion strategies are: 2341 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2342 // reserved priority range [0, 1023] by 2343 // - directly mapping the first 21 and the last 20 elements of the ranges 2344 // - linear interpolating the intermediate values with a step size of 16. 2345 // 2346 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2347 // sinit/sterm priority range [1024, 2147483648] by: 2348 // - directly mapping the first and the last 1024 elements of the ranges 2349 // - linear interpolating the intermediate values with a step size of 33878. 2350 unsigned int P = mapToSinitPriority(Priority); 2351 2352 std::string PrioritySuffix; 2353 llvm::raw_string_ostream os(PrioritySuffix); 2354 os << llvm::format_hex_no_prefix(P, 8); 2355 os.flush(); 2356 return PrioritySuffix; 2357 } 2358 2359 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2360 const Constant *List, bool IsCtor) { 2361 SmallVector<Structor, 8> Structors; 2362 preprocessXXStructorList(DL, List, Structors); 2363 if (Structors.empty()) 2364 return; 2365 2366 unsigned Index = 0; 2367 for (Structor &S : Structors) { 2368 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2369 S.Func = CE->getOperand(0); 2370 2371 llvm::GlobalAlias::create( 2372 GlobalValue::ExternalLinkage, 2373 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2374 llvm::Twine(convertToSinitPriority(S.Priority)) + 2375 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2376 llvm::Twine("_", llvm::utostr(Index++)), 2377 cast<Function>(S.Func)); 2378 } 2379 } 2380 2381 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2382 unsigned Encoding) { 2383 if (GV) { 2384 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2385 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2386 const MCSymbol *TOCBaseSym = 2387 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2388 ->getQualNameSymbol(); 2389 auto &Ctx = OutStreamer->getContext(); 2390 const MCExpr *Exp = 2391 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2392 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2393 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2394 } else 2395 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2396 } 2397 2398 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2399 // given output stream. 2400 static AsmPrinter * 2401 createPPCAsmPrinterPass(TargetMachine &tm, 2402 std::unique_ptr<MCStreamer> &&Streamer) { 2403 if (tm.getTargetTriple().isOSAIX()) 2404 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2405 2406 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2407 } 2408 2409 // Force static initialization. 2410 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2411 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2412 createPPCAsmPrinterPass); 2413 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2414 createPPCAsmPrinterPass); 2415 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2416 createPPCAsmPrinterPass); 2417 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2418 createPPCAsmPrinterPass); 2419 } 2420