1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/Process.h" 66 #include "llvm/Support/TargetRegistry.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/ModuleUtils.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <memory> 74 #include <new> 75 76 using namespace llvm; 77 using namespace llvm::XCOFF; 78 79 #define DEBUG_TYPE "asmprinter" 80 81 // Specialize DenseMapInfo to allow 82 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 83 // This specialization is needed here because that type is used as keys in the 84 // map representing TOC entries. 85 namespace llvm { 86 template <> 87 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 88 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 89 90 static inline TOCKey getEmptyKey() { 91 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 92 } 93 static inline TOCKey getTombstoneKey() { 94 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 95 } 96 static unsigned getHashValue(const TOCKey &PairVal) { 97 return detail::combineHashValue( 98 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 99 DenseMapInfo<int>::getHashValue(PairVal.second)); 100 } 101 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 102 }; 103 } // end namespace llvm 104 105 namespace { 106 107 class PPCAsmPrinter : public AsmPrinter { 108 protected: 109 // For TLS on AIX, we need to be able to identify TOC entries of specific 110 // VariantKind so we can add the right relocations when we generate the 111 // entries. So each entry is represented by a pair of MCSymbol and 112 // VariantKind. For example, we need to be able to identify the following 113 // entry as a TLSGD entry so we can add the @m relocation: 114 // .tc .i[TC],i[TL]@m 115 // By default, VK_None is used for the VariantKind. 116 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 117 MCSymbol *> 118 TOC; 119 const PPCSubtarget *Subtarget = nullptr; 120 StackMaps SM; 121 122 public: 123 explicit PPCAsmPrinter(TargetMachine &TM, 124 std::unique_ptr<MCStreamer> Streamer) 125 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 126 127 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 128 129 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 130 MCSymbolRefExpr::VariantKind Kind = 131 MCSymbolRefExpr::VariantKind::VK_None); 132 133 bool doInitialization(Module &M) override { 134 if (!TOC.empty()) 135 TOC.clear(); 136 return AsmPrinter::doInitialization(M); 137 } 138 139 void emitInstruction(const MachineInstr *MI) override; 140 141 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 142 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 143 /// The \p MI would be INLINEASM ONLY. 144 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 145 146 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 147 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 148 const char *ExtraCode, raw_ostream &O) override; 149 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 150 const char *ExtraCode, raw_ostream &O) override; 151 152 void emitEndOfAsmFile(Module &M) override; 153 154 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 155 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 156 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 159 bool Changed = AsmPrinter::runOnMachineFunction(MF); 160 emitXRayTable(); 161 return Changed; 162 } 163 }; 164 165 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 166 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 167 public: 168 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 169 std::unique_ptr<MCStreamer> Streamer) 170 : PPCAsmPrinter(TM, std::move(Streamer)) {} 171 172 StringRef getPassName() const override { 173 return "Linux PPC Assembly Printer"; 174 } 175 176 void emitStartOfAsmFile(Module &M) override; 177 void emitEndOfAsmFile(Module &) override; 178 179 void emitFunctionEntryLabel() override; 180 181 void emitFunctionBodyStart() override; 182 void emitFunctionBodyEnd() override; 183 void emitInstruction(const MachineInstr *MI) override; 184 }; 185 186 class PPCAIXAsmPrinter : public PPCAsmPrinter { 187 private: 188 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 189 /// linkage for them in AIX. 190 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 191 192 /// A format indicator and unique trailing identifier to form part of the 193 /// sinit/sterm function names. 194 std::string FormatIndicatorAndUniqueModId; 195 196 static void ValidateGV(const GlobalVariable *GV); 197 // Record a list of GlobalAlias associated with a GlobalObject. 198 // This is used for AIX's extra-label-at-definition aliasing strategy. 199 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 200 GOAliasMap; 201 202 void emitTracebackTable(); 203 204 public: 205 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 206 : PPCAsmPrinter(TM, std::move(Streamer)) { 207 if (MAI->isLittleEndian()) 208 report_fatal_error( 209 "cannot create AIX PPC Assembly Printer for a little-endian target"); 210 } 211 212 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 213 214 bool doInitialization(Module &M) override; 215 216 void emitXXStructorList(const DataLayout &DL, const Constant *List, 217 bool IsCtor) override; 218 219 void SetupMachineFunction(MachineFunction &MF) override; 220 221 void emitGlobalVariable(const GlobalVariable *GV) override; 222 223 void emitFunctionDescriptor() override; 224 225 void emitFunctionEntryLabel() override; 226 227 void emitFunctionBodyEnd() override; 228 229 void emitEndOfAsmFile(Module &) override; 230 231 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 232 233 void emitInstruction(const MachineInstr *MI) override; 234 235 bool doFinalization(Module &M) override; 236 237 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 238 }; 239 240 } // end anonymous namespace 241 242 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 243 raw_ostream &O) { 244 // Computing the address of a global symbol, not calling it. 245 const GlobalValue *GV = MO.getGlobal(); 246 getSymbol(GV)->print(O, MAI); 247 printOffset(MO.getOffset(), O); 248 } 249 250 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 251 raw_ostream &O) { 252 const DataLayout &DL = getDataLayout(); 253 const MachineOperand &MO = MI->getOperand(OpNo); 254 255 switch (MO.getType()) { 256 case MachineOperand::MO_Register: { 257 // The MI is INLINEASM ONLY and UseVSXReg is always false. 258 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 259 260 // Linux assembler (Others?) does not take register mnemonics. 261 // FIXME - What about special registers used in mfspr/mtspr? 262 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 263 return; 264 } 265 case MachineOperand::MO_Immediate: 266 O << MO.getImm(); 267 return; 268 269 case MachineOperand::MO_MachineBasicBlock: 270 MO.getMBB()->getSymbol()->print(O, MAI); 271 return; 272 case MachineOperand::MO_ConstantPoolIndex: 273 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 274 << MO.getIndex(); 275 return; 276 case MachineOperand::MO_BlockAddress: 277 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 278 return; 279 case MachineOperand::MO_GlobalAddress: { 280 PrintSymbolOperand(MO, O); 281 return; 282 } 283 284 default: 285 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 286 return; 287 } 288 } 289 290 /// PrintAsmOperand - Print out an operand for an inline asm expression. 291 /// 292 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 293 const char *ExtraCode, raw_ostream &O) { 294 // Does this asm operand have a single letter operand modifier? 295 if (ExtraCode && ExtraCode[0]) { 296 if (ExtraCode[1] != 0) return true; // Unknown modifier. 297 298 switch (ExtraCode[0]) { 299 default: 300 // See if this is a generic print operand 301 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 302 case 'L': // Write second word of DImode reference. 303 // Verify that this operand has two consecutive registers. 304 if (!MI->getOperand(OpNo).isReg() || 305 OpNo+1 == MI->getNumOperands() || 306 !MI->getOperand(OpNo+1).isReg()) 307 return true; 308 ++OpNo; // Return the high-part. 309 break; 310 case 'I': 311 // Write 'i' if an integer constant, otherwise nothing. Used to print 312 // addi vs add, etc. 313 if (MI->getOperand(OpNo).isImm()) 314 O << "i"; 315 return false; 316 case 'x': 317 if(!MI->getOperand(OpNo).isReg()) 318 return true; 319 // This operand uses VSX numbering. 320 // If the operand is a VMX register, convert it to a VSX register. 321 Register Reg = MI->getOperand(OpNo).getReg(); 322 if (PPCInstrInfo::isVRRegister(Reg)) 323 Reg = PPC::VSX32 + (Reg - PPC::V0); 324 else if (PPCInstrInfo::isVFRegister(Reg)) 325 Reg = PPC::VSX32 + (Reg - PPC::VF0); 326 const char *RegName; 327 RegName = PPCInstPrinter::getRegisterName(Reg); 328 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 329 O << RegName; 330 return false; 331 } 332 } 333 334 printOperand(MI, OpNo, O); 335 return false; 336 } 337 338 // At the moment, all inline asm memory operands are a single register. 339 // In any case, the output of this routine should always be just one 340 // assembler operand. 341 342 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 343 const char *ExtraCode, 344 raw_ostream &O) { 345 if (ExtraCode && ExtraCode[0]) { 346 if (ExtraCode[1] != 0) return true; // Unknown modifier. 347 348 switch (ExtraCode[0]) { 349 default: return true; // Unknown modifier. 350 case 'L': // A memory reference to the upper word of a double word op. 351 O << getDataLayout().getPointerSize() << "("; 352 printOperand(MI, OpNo, O); 353 O << ")"; 354 return false; 355 case 'y': // A memory reference for an X-form instruction 356 O << "0, "; 357 printOperand(MI, OpNo, O); 358 return false; 359 case 'U': // Print 'u' for update form. 360 case 'X': // Print 'x' for indexed form. 361 // FIXME: Currently for PowerPC memory operands are always loaded 362 // into a register, so we never get an update or indexed form. 363 // This is bad even for offset forms, since even if we know we 364 // have a value in -16(r1), we will generate a load into r<n> 365 // and then load from 0(r<n>). Until that issue is fixed, 366 // tolerate 'U' and 'X' but don't output anything. 367 assert(MI->getOperand(OpNo).isReg()); 368 return false; 369 } 370 } 371 372 assert(MI->getOperand(OpNo).isReg()); 373 O << "0("; 374 printOperand(MI, OpNo, O); 375 O << ")"; 376 return false; 377 } 378 379 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 380 /// exists for it. If not, create one. Then return a symbol that references 381 /// the TOC entry. 382 MCSymbol * 383 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 384 MCSymbolRefExpr::VariantKind Kind) { 385 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 386 if (!TOCEntry) 387 TOCEntry = createTempSymbol("C"); 388 return TOCEntry; 389 } 390 391 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 392 emitStackMaps(SM); 393 } 394 395 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 396 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 397 398 auto &Ctx = OutStreamer->getContext(); 399 MCSymbol *MILabel = Ctx.createTempSymbol(); 400 OutStreamer->emitLabel(MILabel); 401 402 SM.recordStackMap(*MILabel, MI); 403 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 404 405 // Scan ahead to trim the shadow. 406 const MachineBasicBlock &MBB = *MI.getParent(); 407 MachineBasicBlock::const_iterator MII(MI); 408 ++MII; 409 while (NumNOPBytes > 0) { 410 if (MII == MBB.end() || MII->isCall() || 411 MII->getOpcode() == PPC::DBG_VALUE || 412 MII->getOpcode() == TargetOpcode::PATCHPOINT || 413 MII->getOpcode() == TargetOpcode::STACKMAP) 414 break; 415 ++MII; 416 NumNOPBytes -= 4; 417 } 418 419 // Emit nops. 420 for (unsigned i = 0; i < NumNOPBytes; i += 4) 421 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 422 } 423 424 // Lower a patchpoint of the form: 425 // [<def>], <id>, <numBytes>, <target>, <numArgs> 426 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 427 auto &Ctx = OutStreamer->getContext(); 428 MCSymbol *MILabel = Ctx.createTempSymbol(); 429 OutStreamer->emitLabel(MILabel); 430 431 SM.recordPatchPoint(*MILabel, MI); 432 PatchPointOpers Opers(&MI); 433 434 unsigned EncodedBytes = 0; 435 const MachineOperand &CalleeMO = Opers.getCallTarget(); 436 437 if (CalleeMO.isImm()) { 438 int64_t CallTarget = CalleeMO.getImm(); 439 if (CallTarget) { 440 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 441 "High 16 bits of call target should be zero."); 442 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 443 EncodedBytes = 0; 444 // Materialize the jump address: 445 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 446 .addReg(ScratchReg) 447 .addImm((CallTarget >> 32) & 0xFFFF)); 448 ++EncodedBytes; 449 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 450 .addReg(ScratchReg) 451 .addReg(ScratchReg) 452 .addImm(32).addImm(16)); 453 ++EncodedBytes; 454 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 455 .addReg(ScratchReg) 456 .addReg(ScratchReg) 457 .addImm((CallTarget >> 16) & 0xFFFF)); 458 ++EncodedBytes; 459 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 460 .addReg(ScratchReg) 461 .addReg(ScratchReg) 462 .addImm(CallTarget & 0xFFFF)); 463 464 // Save the current TOC pointer before the remote call. 465 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 466 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 467 .addReg(PPC::X2) 468 .addImm(TOCSaveOffset) 469 .addReg(PPC::X1)); 470 ++EncodedBytes; 471 472 // If we're on ELFv1, then we need to load the actual function pointer 473 // from the function descriptor. 474 if (!Subtarget->isELFv2ABI()) { 475 // Load the new TOC pointer and the function address, but not r11 476 // (needing this is rare, and loading it here would prevent passing it 477 // via a 'nest' parameter. 478 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 479 .addReg(PPC::X2) 480 .addImm(8) 481 .addReg(ScratchReg)); 482 ++EncodedBytes; 483 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 484 .addReg(ScratchReg) 485 .addImm(0) 486 .addReg(ScratchReg)); 487 ++EncodedBytes; 488 } 489 490 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 491 .addReg(ScratchReg)); 492 ++EncodedBytes; 493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 494 ++EncodedBytes; 495 496 // Restore the TOC pointer after the call. 497 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 498 .addReg(PPC::X2) 499 .addImm(TOCSaveOffset) 500 .addReg(PPC::X1)); 501 ++EncodedBytes; 502 } 503 } else if (CalleeMO.isGlobal()) { 504 const GlobalValue *GValue = CalleeMO.getGlobal(); 505 MCSymbol *MOSymbol = getSymbol(GValue); 506 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 507 508 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 509 .addExpr(SymVar)); 510 EncodedBytes += 2; 511 } 512 513 // Each instruction is 4 bytes. 514 EncodedBytes *= 4; 515 516 // Emit padding. 517 unsigned NumBytes = Opers.getNumPatchBytes(); 518 assert(NumBytes >= EncodedBytes && 519 "Patchpoint can't request size less than the length of a call."); 520 assert((NumBytes - EncodedBytes) % 4 == 0 && 521 "Invalid number of NOP bytes requested!"); 522 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 523 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 524 } 525 526 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 527 /// call to __tls_get_addr to the current output stream. 528 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 529 MCSymbolRefExpr::VariantKind VK) { 530 StringRef Name = "__tls_get_addr"; 531 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 532 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 533 unsigned Opcode = PPC::BL8_NOP_TLS; 534 535 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 536 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 537 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 538 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 539 Opcode = PPC::BL8_NOTOC_TLS; 540 } 541 const Module *M = MF->getFunction().getParent(); 542 543 assert(MI->getOperand(0).isReg() && 544 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 545 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 546 "GETtls[ld]ADDR[32] must define GPR3"); 547 assert(MI->getOperand(1).isReg() && 548 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 549 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 550 "GETtls[ld]ADDR[32] must read GPR3"); 551 552 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 553 Kind = MCSymbolRefExpr::VK_PLT; 554 555 const MCExpr *TlsRef = 556 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 557 558 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 559 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 560 M->getPICLevel() == PICLevel::BigPIC) 561 TlsRef = MCBinaryExpr::createAdd( 562 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 563 const MachineOperand &MO = MI->getOperand(2); 564 const GlobalValue *GValue = MO.getGlobal(); 565 MCSymbol *MOSymbol = getSymbol(GValue); 566 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 567 EmitToStreamer(*OutStreamer, 568 MCInstBuilder(Subtarget->isPPC64() ? Opcode 569 : (unsigned)PPC::BL_TLS) 570 .addExpr(TlsRef) 571 .addExpr(SymVar)); 572 } 573 574 /// Map a machine operand for a TOC pseudo-machine instruction to its 575 /// corresponding MCSymbol. 576 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 577 AsmPrinter &AP) { 578 switch (MO.getType()) { 579 case MachineOperand::MO_GlobalAddress: 580 return AP.getSymbol(MO.getGlobal()); 581 case MachineOperand::MO_ConstantPoolIndex: 582 return AP.GetCPISymbol(MO.getIndex()); 583 case MachineOperand::MO_JumpTableIndex: 584 return AP.GetJTISymbol(MO.getIndex()); 585 case MachineOperand::MO_BlockAddress: 586 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 587 default: 588 llvm_unreachable("Unexpected operand type to get symbol."); 589 } 590 } 591 592 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 593 /// the current output stream. 594 /// 595 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 596 MCInst TmpInst; 597 const bool IsPPC64 = Subtarget->isPPC64(); 598 const bool IsAIX = Subtarget->isAIXABI(); 599 const Module *M = MF->getFunction().getParent(); 600 PICLevel::Level PL = M->getPICLevel(); 601 602 #ifndef NDEBUG 603 // Validate that SPE and FPU are mutually exclusive in codegen 604 if (!MI->isInlineAsm()) { 605 for (const MachineOperand &MO: MI->operands()) { 606 if (MO.isReg()) { 607 Register Reg = MO.getReg(); 608 if (Subtarget->hasSPE()) { 609 if (PPC::F4RCRegClass.contains(Reg) || 610 PPC::F8RCRegClass.contains(Reg) || 611 PPC::VFRCRegClass.contains(Reg) || 612 PPC::VRRCRegClass.contains(Reg) || 613 PPC::VSFRCRegClass.contains(Reg) || 614 PPC::VSSRCRegClass.contains(Reg) 615 ) 616 llvm_unreachable("SPE targets cannot have FPRegs!"); 617 } else { 618 if (PPC::SPERCRegClass.contains(Reg)) 619 llvm_unreachable("SPE register found in FPU-targeted code!"); 620 } 621 } 622 } 623 } 624 #endif 625 626 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 627 ptrdiff_t OriginalOffset) { 628 // Apply an offset to the TOC-based expression such that the adjusted 629 // notional offset from the TOC base (to be encoded into the instruction's D 630 // or DS field) is the signed 16-bit truncation of the original notional 631 // offset from the TOC base. 632 // This is consistent with the treatment used both by XL C/C++ and 633 // by AIX ld -r. 634 ptrdiff_t Adjustment = 635 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 636 return MCBinaryExpr::createAdd( 637 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 638 }; 639 640 auto getTOCEntryLoadingExprForXCOFF = 641 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 642 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 643 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 644 const auto TOCEntryIter = 645 TOC.find({MOSymbol, MCSymbolRefExpr::VariantKind::VK_None}); 646 assert(TOCEntryIter != TOC.end() && 647 "Could not find the TOC entry for this symbol."); 648 const ptrdiff_t EntryDistanceFromTOCBase = 649 (TOCEntryIter - TOC.begin()) * EntryByteSize; 650 constexpr int16_t PositiveTOCRange = INT16_MAX; 651 652 if (EntryDistanceFromTOCBase > PositiveTOCRange) 653 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 654 655 return Expr; 656 }; 657 658 // Lower multi-instruction pseudo operations. 659 switch (MI->getOpcode()) { 660 default: break; 661 case TargetOpcode::DBG_VALUE: 662 llvm_unreachable("Should be handled target independently"); 663 case TargetOpcode::STACKMAP: 664 return LowerSTACKMAP(SM, *MI); 665 case TargetOpcode::PATCHPOINT: 666 return LowerPATCHPOINT(SM, *MI); 667 668 case PPC::MoveGOTtoLR: { 669 // Transform %lr = MoveGOTtoLR 670 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 671 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 672 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 673 // blrl 674 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 675 MCSymbol *GOTSymbol = 676 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 677 const MCExpr *OffsExpr = 678 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 679 MCSymbolRefExpr::VK_PPC_LOCAL, 680 OutContext), 681 MCConstantExpr::create(4, OutContext), 682 OutContext); 683 684 // Emit the 'bl'. 685 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 686 return; 687 } 688 case PPC::MovePCtoLR: 689 case PPC::MovePCtoLR8: { 690 // Transform %lr = MovePCtoLR 691 // Into this, where the label is the PIC base: 692 // bl L1$pb 693 // L1$pb: 694 MCSymbol *PICBase = MF->getPICBaseSymbol(); 695 696 // Emit the 'bl'. 697 EmitToStreamer(*OutStreamer, 698 MCInstBuilder(PPC::BL) 699 // FIXME: We would like an efficient form for this, so we 700 // don't have to do a lot of extra uniquing. 701 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 702 703 // Emit the label. 704 OutStreamer->emitLabel(PICBase); 705 return; 706 } 707 case PPC::UpdateGBR: { 708 // Transform %rd = UpdateGBR(%rt, %ri) 709 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 710 // add %rd, %rt, %ri 711 // or into (if secure plt mode is on): 712 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 713 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 714 // Get the offset from the GOT Base Register to the GOT 715 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 716 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 717 unsigned PICR = TmpInst.getOperand(0).getReg(); 718 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 719 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 720 : ".LTOC"); 721 const MCExpr *PB = 722 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 723 724 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 725 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 726 727 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 728 EmitToStreamer( 729 *OutStreamer, 730 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 731 732 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 733 EmitToStreamer( 734 *OutStreamer, 735 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 736 return; 737 } else { 738 MCSymbol *PICOffset = 739 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 740 TmpInst.setOpcode(PPC::LWZ); 741 const MCExpr *Exp = 742 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 743 const MCExpr *PB = 744 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 745 MCSymbolRefExpr::VK_None, 746 OutContext); 747 const MCOperand TR = TmpInst.getOperand(1); 748 const MCOperand PICR = TmpInst.getOperand(0); 749 750 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 751 TmpInst.getOperand(1) = 752 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 753 TmpInst.getOperand(0) = TR; 754 TmpInst.getOperand(2) = PICR; 755 EmitToStreamer(*OutStreamer, TmpInst); 756 757 TmpInst.setOpcode(PPC::ADD4); 758 TmpInst.getOperand(0) = PICR; 759 TmpInst.getOperand(1) = TR; 760 TmpInst.getOperand(2) = PICR; 761 EmitToStreamer(*OutStreamer, TmpInst); 762 return; 763 } 764 } 765 case PPC::LWZtoc: { 766 // Transform %rN = LWZtoc @op1, %r2 767 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 768 769 // Change the opcode to LWZ. 770 TmpInst.setOpcode(PPC::LWZ); 771 772 const MachineOperand &MO = MI->getOperand(1); 773 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 774 "Invalid operand for LWZtoc."); 775 776 // Map the operand to its corresponding MCSymbol. 777 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 778 779 // Create a reference to the GOT entry for the symbol. The GOT entry will be 780 // synthesized later. 781 if (PL == PICLevel::SmallPIC && !IsAIX) { 782 const MCExpr *Exp = 783 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 784 OutContext); 785 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 786 EmitToStreamer(*OutStreamer, TmpInst); 787 return; 788 } 789 790 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 791 // storage allocated in the TOC which contains the address of 792 // 'MOSymbol'. Said TOC entry will be synthesized later. 793 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 794 const MCExpr *Exp = 795 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 796 797 // AIX uses the label directly as the lwz displacement operand for 798 // references into the toc section. The displacement value will be generated 799 // relative to the toc-base. 800 if (IsAIX) { 801 assert( 802 TM.getCodeModel() == CodeModel::Small && 803 "This pseudo should only be selected for 32-bit small code model."); 804 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 805 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 806 EmitToStreamer(*OutStreamer, TmpInst); 807 return; 808 } 809 810 // Create an explicit subtract expression between the local symbol and 811 // '.LTOC' to manifest the toc-relative offset. 812 const MCExpr *PB = MCSymbolRefExpr::create( 813 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 814 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 815 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 816 EmitToStreamer(*OutStreamer, TmpInst); 817 return; 818 } 819 case PPC::LDtocJTI: 820 case PPC::LDtocCPT: 821 case PPC::LDtocBA: 822 case PPC::LDtoc: { 823 // Transform %x3 = LDtoc @min1, %x2 824 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 825 826 // Change the opcode to LD. 827 TmpInst.setOpcode(PPC::LD); 828 829 const MachineOperand &MO = MI->getOperand(1); 830 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 831 "Invalid operand!"); 832 833 // Map the operand to its corresponding MCSymbol. 834 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 835 836 // Map the machine operand to its corresponding MCSymbol, then map the 837 // global address operand to be a reference to the TOC entry we will 838 // synthesize later. 839 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 840 841 const MCSymbolRefExpr::VariantKind VK = 842 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 843 const MCExpr *Exp = 844 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 845 TmpInst.getOperand(1) = MCOperand::createExpr( 846 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 847 EmitToStreamer(*OutStreamer, TmpInst); 848 return; 849 } 850 case PPC::ADDIStocHA: { 851 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 852 "This pseudo should only be selected for 32-bit large code model on" 853 " AIX."); 854 855 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 856 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 857 858 // Change the opcode to ADDIS. 859 TmpInst.setOpcode(PPC::ADDIS); 860 861 const MachineOperand &MO = MI->getOperand(2); 862 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 863 "Invalid operand for ADDIStocHA."); 864 865 // Map the machine operand to its corresponding MCSymbol. 866 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 867 868 // Always use TOC on AIX. Map the global address operand to be a reference 869 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 870 // reference the storage allocated in the TOC which contains the address of 871 // 'MOSymbol'. 872 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 873 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 874 MCSymbolRefExpr::VK_PPC_U, 875 OutContext); 876 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 877 EmitToStreamer(*OutStreamer, TmpInst); 878 return; 879 } 880 case PPC::LWZtocL: { 881 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 882 "This pseudo should only be selected for 32-bit large code model on" 883 " AIX."); 884 885 // Transform %rd = LWZtocL @sym, %rs. 886 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 887 888 // Change the opcode to lwz. 889 TmpInst.setOpcode(PPC::LWZ); 890 891 const MachineOperand &MO = MI->getOperand(1); 892 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 893 "Invalid operand for LWZtocL."); 894 895 // Map the machine operand to its corresponding MCSymbol. 896 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 897 898 // Always use TOC on AIX. Map the global address operand to be a reference 899 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 900 // reference the storage allocated in the TOC which contains the address of 901 // 'MOSymbol'. 902 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 903 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 904 MCSymbolRefExpr::VK_PPC_L, 905 OutContext); 906 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 907 EmitToStreamer(*OutStreamer, TmpInst); 908 return; 909 } 910 case PPC::ADDIStocHA8: { 911 // Transform %xd = ADDIStocHA8 %x2, @sym 912 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 913 914 // Change the opcode to ADDIS8. If the global address is the address of 915 // an external symbol, is a jump table address, is a block address, or is a 916 // constant pool index with large code model enabled, then generate a TOC 917 // entry and reference that. Otherwise, reference the symbol directly. 918 TmpInst.setOpcode(PPC::ADDIS8); 919 920 const MachineOperand &MO = MI->getOperand(2); 921 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 922 "Invalid operand for ADDIStocHA8!"); 923 924 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 925 926 const bool GlobalToc = 927 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 928 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 929 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 930 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 931 932 const MCSymbolRefExpr::VariantKind VK = 933 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 934 935 const MCExpr *Exp = 936 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 937 938 if (!MO.isJTI() && MO.getOffset()) 939 Exp = MCBinaryExpr::createAdd(Exp, 940 MCConstantExpr::create(MO.getOffset(), 941 OutContext), 942 OutContext); 943 944 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 945 EmitToStreamer(*OutStreamer, TmpInst); 946 return; 947 } 948 case PPC::LDtocL: { 949 // Transform %xd = LDtocL @sym, %xs 950 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 951 952 // Change the opcode to LD. If the global address is the address of 953 // an external symbol, is a jump table address, is a block address, or is 954 // a constant pool index with large code model enabled, then generate a 955 // TOC entry and reference that. Otherwise, reference the symbol directly. 956 TmpInst.setOpcode(PPC::LD); 957 958 const MachineOperand &MO = MI->getOperand(1); 959 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 960 MO.isBlockAddress()) && 961 "Invalid operand for LDtocL!"); 962 963 LLVM_DEBUG(assert( 964 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 965 "LDtocL used on symbol that could be accessed directly is " 966 "invalid. Must match ADDIStocHA8.")); 967 968 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 969 970 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 971 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 972 973 const MCSymbolRefExpr::VariantKind VK = 974 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 975 const MCExpr *Exp = 976 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 977 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 978 EmitToStreamer(*OutStreamer, TmpInst); 979 return; 980 } 981 case PPC::ADDItocL: { 982 // Transform %xd = ADDItocL %xs, @sym 983 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 984 985 // Change the opcode to ADDI8. If the global address is external, then 986 // generate a TOC entry and reference that. Otherwise, reference the 987 // symbol directly. 988 TmpInst.setOpcode(PPC::ADDI8); 989 990 const MachineOperand &MO = MI->getOperand(2); 991 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 992 993 LLVM_DEBUG(assert( 994 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 995 "Interposable definitions must use indirect access.")); 996 997 const MCExpr *Exp = 998 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 999 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1000 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1001 EmitToStreamer(*OutStreamer, TmpInst); 1002 return; 1003 } 1004 case PPC::ADDISgotTprelHA: { 1005 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1006 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1007 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1008 const MachineOperand &MO = MI->getOperand(2); 1009 const GlobalValue *GValue = MO.getGlobal(); 1010 MCSymbol *MOSymbol = getSymbol(GValue); 1011 const MCExpr *SymGotTprel = 1012 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1013 OutContext); 1014 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1015 .addReg(MI->getOperand(0).getReg()) 1016 .addReg(MI->getOperand(1).getReg()) 1017 .addExpr(SymGotTprel)); 1018 return; 1019 } 1020 case PPC::LDgotTprelL: 1021 case PPC::LDgotTprelL32: { 1022 // Transform %xd = LDgotTprelL @sym, %xs 1023 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1024 1025 // Change the opcode to LD. 1026 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1027 const MachineOperand &MO = MI->getOperand(1); 1028 const GlobalValue *GValue = MO.getGlobal(); 1029 MCSymbol *MOSymbol = getSymbol(GValue); 1030 const MCExpr *Exp = MCSymbolRefExpr::create( 1031 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1032 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1033 OutContext); 1034 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1035 EmitToStreamer(*OutStreamer, TmpInst); 1036 return; 1037 } 1038 1039 case PPC::PPC32PICGOT: { 1040 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1041 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1042 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1043 1044 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1045 // FIXME: We would like an efficient form for this, so we don't have to do 1046 // a lot of extra uniquing. 1047 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1048 const MCExpr *OffsExpr = 1049 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1050 MCSymbolRefExpr::create(GOTRef, OutContext), 1051 OutContext); 1052 OutStreamer->emitLabel(GOTRef); 1053 OutStreamer->emitValue(OffsExpr, 4); 1054 OutStreamer->emitLabel(NextInstr); 1055 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1056 .addReg(MI->getOperand(0).getReg())); 1057 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1058 .addReg(MI->getOperand(1).getReg()) 1059 .addImm(0) 1060 .addReg(MI->getOperand(0).getReg())); 1061 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1062 .addReg(MI->getOperand(0).getReg()) 1063 .addReg(MI->getOperand(1).getReg()) 1064 .addReg(MI->getOperand(0).getReg())); 1065 return; 1066 } 1067 case PPC::PPC32GOT: { 1068 MCSymbol *GOTSymbol = 1069 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1070 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1071 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1072 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1073 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1074 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1075 .addReg(MI->getOperand(0).getReg()) 1076 .addExpr(SymGotTlsL)); 1077 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1078 .addReg(MI->getOperand(0).getReg()) 1079 .addReg(MI->getOperand(0).getReg()) 1080 .addExpr(SymGotTlsHA)); 1081 return; 1082 } 1083 case PPC::ADDIStlsgdHA: { 1084 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1085 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1086 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1087 const MachineOperand &MO = MI->getOperand(2); 1088 const GlobalValue *GValue = MO.getGlobal(); 1089 MCSymbol *MOSymbol = getSymbol(GValue); 1090 const MCExpr *SymGotTlsGD = 1091 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1092 OutContext); 1093 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1094 .addReg(MI->getOperand(0).getReg()) 1095 .addReg(MI->getOperand(1).getReg()) 1096 .addExpr(SymGotTlsGD)); 1097 return; 1098 } 1099 case PPC::ADDItlsgdL: 1100 // Transform: %xd = ADDItlsgdL %xs, @sym 1101 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1102 case PPC::ADDItlsgdL32: { 1103 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1104 // Into: %rd = ADDI %rs, sym@got@tlsgd 1105 const MachineOperand &MO = MI->getOperand(2); 1106 const GlobalValue *GValue = MO.getGlobal(); 1107 MCSymbol *MOSymbol = getSymbol(GValue); 1108 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1109 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1110 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1111 OutContext); 1112 EmitToStreamer(*OutStreamer, 1113 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1114 .addReg(MI->getOperand(0).getReg()) 1115 .addReg(MI->getOperand(1).getReg()) 1116 .addExpr(SymGotTlsGD)); 1117 return; 1118 } 1119 case PPC::GETtlsADDR: 1120 // Transform: %x3 = GETtlsADDR %x3, @sym 1121 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1122 case PPC::GETtlsADDRPCREL: 1123 case PPC::GETtlsADDR32: { 1124 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1125 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1126 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1127 return; 1128 } 1129 case PPC::ADDIStlsldHA: { 1130 // Transform: %xd = ADDIStlsldHA %x2, @sym 1131 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1132 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1133 const MachineOperand &MO = MI->getOperand(2); 1134 const GlobalValue *GValue = MO.getGlobal(); 1135 MCSymbol *MOSymbol = getSymbol(GValue); 1136 const MCExpr *SymGotTlsLD = 1137 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1138 OutContext); 1139 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1140 .addReg(MI->getOperand(0).getReg()) 1141 .addReg(MI->getOperand(1).getReg()) 1142 .addExpr(SymGotTlsLD)); 1143 return; 1144 } 1145 case PPC::ADDItlsldL: 1146 // Transform: %xd = ADDItlsldL %xs, @sym 1147 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1148 case PPC::ADDItlsldL32: { 1149 // Transform: %rd = ADDItlsldL32 %rs, @sym 1150 // Into: %rd = ADDI %rs, sym@got@tlsld 1151 const MachineOperand &MO = MI->getOperand(2); 1152 const GlobalValue *GValue = MO.getGlobal(); 1153 MCSymbol *MOSymbol = getSymbol(GValue); 1154 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1155 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1156 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1157 OutContext); 1158 EmitToStreamer(*OutStreamer, 1159 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1160 .addReg(MI->getOperand(0).getReg()) 1161 .addReg(MI->getOperand(1).getReg()) 1162 .addExpr(SymGotTlsLD)); 1163 return; 1164 } 1165 case PPC::GETtlsldADDR: 1166 // Transform: %x3 = GETtlsldADDR %x3, @sym 1167 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1168 case PPC::GETtlsldADDRPCREL: 1169 case PPC::GETtlsldADDR32: { 1170 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1171 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1172 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1173 return; 1174 } 1175 case PPC::ADDISdtprelHA: 1176 // Transform: %xd = ADDISdtprelHA %xs, @sym 1177 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1178 case PPC::ADDISdtprelHA32: { 1179 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1180 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1181 const MachineOperand &MO = MI->getOperand(2); 1182 const GlobalValue *GValue = MO.getGlobal(); 1183 MCSymbol *MOSymbol = getSymbol(GValue); 1184 const MCExpr *SymDtprel = 1185 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1186 OutContext); 1187 EmitToStreamer( 1188 *OutStreamer, 1189 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1190 .addReg(MI->getOperand(0).getReg()) 1191 .addReg(MI->getOperand(1).getReg()) 1192 .addExpr(SymDtprel)); 1193 return; 1194 } 1195 case PPC::PADDIdtprel: { 1196 // Transform: %rd = PADDIdtprel %rs, @sym 1197 // Into: %rd = PADDI8 %rs, sym@dtprel 1198 const MachineOperand &MO = MI->getOperand(2); 1199 const GlobalValue *GValue = MO.getGlobal(); 1200 MCSymbol *MOSymbol = getSymbol(GValue); 1201 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1202 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1203 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1204 .addReg(MI->getOperand(0).getReg()) 1205 .addReg(MI->getOperand(1).getReg()) 1206 .addExpr(SymDtprel)); 1207 return; 1208 } 1209 1210 case PPC::ADDIdtprelL: 1211 // Transform: %xd = ADDIdtprelL %xs, @sym 1212 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1213 case PPC::ADDIdtprelL32: { 1214 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1215 // Into: %rd = ADDI %rs, sym@dtprel@l 1216 const MachineOperand &MO = MI->getOperand(2); 1217 const GlobalValue *GValue = MO.getGlobal(); 1218 MCSymbol *MOSymbol = getSymbol(GValue); 1219 const MCExpr *SymDtprel = 1220 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1221 OutContext); 1222 EmitToStreamer(*OutStreamer, 1223 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1224 .addReg(MI->getOperand(0).getReg()) 1225 .addReg(MI->getOperand(1).getReg()) 1226 .addExpr(SymDtprel)); 1227 return; 1228 } 1229 case PPC::MFOCRF: 1230 case PPC::MFOCRF8: 1231 if (!Subtarget->hasMFOCRF()) { 1232 // Transform: %r3 = MFOCRF %cr7 1233 // Into: %r3 = MFCR ;; cr7 1234 unsigned NewOpcode = 1235 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1236 OutStreamer->AddComment(PPCInstPrinter:: 1237 getRegisterName(MI->getOperand(1).getReg())); 1238 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1239 .addReg(MI->getOperand(0).getReg())); 1240 return; 1241 } 1242 break; 1243 case PPC::MTOCRF: 1244 case PPC::MTOCRF8: 1245 if (!Subtarget->hasMFOCRF()) { 1246 // Transform: %cr7 = MTOCRF %r3 1247 // Into: MTCRF mask, %r3 ;; cr7 1248 unsigned NewOpcode = 1249 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1250 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1251 ->getEncodingValue(MI->getOperand(0).getReg()); 1252 OutStreamer->AddComment(PPCInstPrinter:: 1253 getRegisterName(MI->getOperand(0).getReg())); 1254 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1255 .addImm(Mask) 1256 .addReg(MI->getOperand(1).getReg())); 1257 return; 1258 } 1259 break; 1260 case PPC::LD: 1261 case PPC::STD: 1262 case PPC::LWA_32: 1263 case PPC::LWA: { 1264 // Verify alignment is legal, so we don't create relocations 1265 // that can't be supported. 1266 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1267 const MachineOperand &MO = MI->getOperand(OpNum); 1268 if (MO.isGlobal()) { 1269 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1270 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1271 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1272 } 1273 // Now process the instruction normally. 1274 break; 1275 } 1276 } 1277 1278 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1279 EmitToStreamer(*OutStreamer, TmpInst); 1280 } 1281 1282 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1283 if (!Subtarget->isPPC64()) 1284 return PPCAsmPrinter::emitInstruction(MI); 1285 1286 switch (MI->getOpcode()) { 1287 default: 1288 return PPCAsmPrinter::emitInstruction(MI); 1289 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1290 // .begin: 1291 // b .end # lis 0, FuncId[16..32] 1292 // nop # li 0, FuncId[0..15] 1293 // std 0, -8(1) 1294 // mflr 0 1295 // bl __xray_FunctionEntry 1296 // mtlr 0 1297 // .end: 1298 // 1299 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1300 // of instructions change. 1301 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1302 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1303 OutStreamer->emitLabel(BeginOfSled); 1304 EmitToStreamer(*OutStreamer, 1305 MCInstBuilder(PPC::B).addExpr( 1306 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1308 EmitToStreamer( 1309 *OutStreamer, 1310 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1311 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1312 EmitToStreamer(*OutStreamer, 1313 MCInstBuilder(PPC::BL8_NOP) 1314 .addExpr(MCSymbolRefExpr::create( 1315 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1316 OutContext))); 1317 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1318 OutStreamer->emitLabel(EndOfSled); 1319 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1320 break; 1321 } 1322 case TargetOpcode::PATCHABLE_RET: { 1323 unsigned RetOpcode = MI->getOperand(0).getImm(); 1324 MCInst RetInst; 1325 RetInst.setOpcode(RetOpcode); 1326 for (const auto &MO : 1327 make_range(std::next(MI->operands_begin()), MI->operands_end())) { 1328 MCOperand MCOp; 1329 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1330 RetInst.addOperand(MCOp); 1331 } 1332 1333 bool IsConditional; 1334 if (RetOpcode == PPC::BCCLR) { 1335 IsConditional = true; 1336 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1337 RetOpcode == PPC::TCRETURNai8) { 1338 break; 1339 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1340 IsConditional = false; 1341 } else { 1342 EmitToStreamer(*OutStreamer, RetInst); 1343 break; 1344 } 1345 1346 MCSymbol *FallthroughLabel; 1347 if (IsConditional) { 1348 // Before: 1349 // bgtlr cr0 1350 // 1351 // After: 1352 // ble cr0, .end 1353 // .p2align 3 1354 // .begin: 1355 // blr # lis 0, FuncId[16..32] 1356 // nop # li 0, FuncId[0..15] 1357 // std 0, -8(1) 1358 // mflr 0 1359 // bl __xray_FunctionExit 1360 // mtlr 0 1361 // blr 1362 // .end: 1363 // 1364 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1365 // of instructions change. 1366 FallthroughLabel = OutContext.createTempSymbol(); 1367 EmitToStreamer( 1368 *OutStreamer, 1369 MCInstBuilder(PPC::BCC) 1370 .addImm(PPC::InvertPredicate( 1371 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1372 .addReg(MI->getOperand(2).getReg()) 1373 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1374 RetInst = MCInst(); 1375 RetInst.setOpcode(PPC::BLR8); 1376 } 1377 // .p2align 3 1378 // .begin: 1379 // b(lr)? # lis 0, FuncId[16..32] 1380 // nop # li 0, FuncId[0..15] 1381 // std 0, -8(1) 1382 // mflr 0 1383 // bl __xray_FunctionExit 1384 // mtlr 0 1385 // b(lr)? 1386 // 1387 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1388 // of instructions change. 1389 OutStreamer->emitCodeAlignment(8); 1390 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1391 OutStreamer->emitLabel(BeginOfSled); 1392 EmitToStreamer(*OutStreamer, RetInst); 1393 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1394 EmitToStreamer( 1395 *OutStreamer, 1396 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1397 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1398 EmitToStreamer(*OutStreamer, 1399 MCInstBuilder(PPC::BL8_NOP) 1400 .addExpr(MCSymbolRefExpr::create( 1401 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1402 OutContext))); 1403 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1404 EmitToStreamer(*OutStreamer, RetInst); 1405 if (IsConditional) 1406 OutStreamer->emitLabel(FallthroughLabel); 1407 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1408 break; 1409 } 1410 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1411 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1412 case TargetOpcode::PATCHABLE_TAIL_CALL: 1413 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1414 // normal function exit from a tail exit. 1415 llvm_unreachable("Tail call is handled in the normal case. See comments " 1416 "around this assert."); 1417 } 1418 } 1419 1420 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1421 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1422 PPCTargetStreamer *TS = 1423 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1424 1425 if (TS) 1426 TS->emitAbiVersion(2); 1427 } 1428 1429 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1430 !isPositionIndependent()) 1431 return AsmPrinter::emitStartOfAsmFile(M); 1432 1433 if (M.getPICLevel() == PICLevel::SmallPIC) 1434 return AsmPrinter::emitStartOfAsmFile(M); 1435 1436 OutStreamer->SwitchSection(OutContext.getELFSection( 1437 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1438 1439 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1440 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1441 1442 OutStreamer->emitLabel(CurrentPos); 1443 1444 // The GOT pointer points to the middle of the GOT, in order to reference the 1445 // entire 64kB range. 0x8000 is the midpoint. 1446 const MCExpr *tocExpr = 1447 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1448 MCConstantExpr::create(0x8000, OutContext), 1449 OutContext); 1450 1451 OutStreamer->emitAssignment(TOCSym, tocExpr); 1452 1453 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1454 } 1455 1456 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1457 // linux/ppc32 - Normal entry label. 1458 if (!Subtarget->isPPC64() && 1459 (!isPositionIndependent() || 1460 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1461 return AsmPrinter::emitFunctionEntryLabel(); 1462 1463 if (!Subtarget->isPPC64()) { 1464 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1465 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1466 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1467 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1468 OutStreamer->emitLabel(RelocSymbol); 1469 1470 const MCExpr *OffsExpr = 1471 MCBinaryExpr::createSub( 1472 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1473 OutContext), 1474 MCSymbolRefExpr::create(PICBase, OutContext), 1475 OutContext); 1476 OutStreamer->emitValue(OffsExpr, 4); 1477 OutStreamer->emitLabel(CurrentFnSym); 1478 return; 1479 } else 1480 return AsmPrinter::emitFunctionEntryLabel(); 1481 } 1482 1483 // ELFv2 ABI - Normal entry label. 1484 if (Subtarget->isELFv2ABI()) { 1485 // In the Large code model, we allow arbitrary displacements between 1486 // the text section and its associated TOC section. We place the 1487 // full 8-byte offset to the TOC in memory immediately preceding 1488 // the function global entry point. 1489 if (TM.getCodeModel() == CodeModel::Large 1490 && !MF->getRegInfo().use_empty(PPC::X2)) { 1491 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1492 1493 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1494 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1495 const MCExpr *TOCDeltaExpr = 1496 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1497 MCSymbolRefExpr::create(GlobalEPSymbol, 1498 OutContext), 1499 OutContext); 1500 1501 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1502 OutStreamer->emitValue(TOCDeltaExpr, 8); 1503 } 1504 return AsmPrinter::emitFunctionEntryLabel(); 1505 } 1506 1507 // Emit an official procedure descriptor. 1508 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1509 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1510 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1511 OutStreamer->SwitchSection(Section); 1512 OutStreamer->emitLabel(CurrentFnSym); 1513 OutStreamer->emitValueToAlignment(8); 1514 MCSymbol *Symbol1 = CurrentFnSymForSize; 1515 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1516 // entry point. 1517 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1518 8 /*size*/); 1519 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1520 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1521 OutStreamer->emitValue( 1522 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1523 8/*size*/); 1524 // Emit a null environment pointer. 1525 OutStreamer->emitIntValue(0, 8 /* size */); 1526 OutStreamer->SwitchSection(Current.first, Current.second); 1527 } 1528 1529 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1530 const DataLayout &DL = getDataLayout(); 1531 1532 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1533 1534 PPCTargetStreamer *TS = 1535 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1536 1537 if (!TOC.empty()) { 1538 const char *Name = isPPC64 ? ".toc" : ".got2"; 1539 MCSectionELF *Section = OutContext.getELFSection( 1540 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1541 OutStreamer->SwitchSection(Section); 1542 if (!isPPC64) 1543 OutStreamer->emitValueToAlignment(4); 1544 1545 for (const auto &TOCMapPair : TOC) { 1546 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1547 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1548 1549 OutStreamer->emitLabel(TOCEntryLabel); 1550 if (isPPC64 && TS != nullptr) 1551 TS->emitTCEntry(*TOCEntryTarget); 1552 else 1553 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1554 } 1555 } 1556 1557 PPCAsmPrinter::emitEndOfAsmFile(M); 1558 } 1559 1560 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1561 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1562 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1563 // provide two entry points. The ABI guarantees that when calling the 1564 // local entry point, r2 is set up by the caller to contain the TOC base 1565 // for this function, and when calling the global entry point, r12 is set 1566 // up by the caller to hold the address of the global entry point. We 1567 // thus emit a prefix sequence along the following lines: 1568 // 1569 // func: 1570 // .Lfunc_gepNN: 1571 // # global entry point 1572 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1573 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1574 // .Lfunc_lepNN: 1575 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1576 // # local entry point, followed by function body 1577 // 1578 // For the Large code model, we create 1579 // 1580 // .Lfunc_tocNN: 1581 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1582 // func: 1583 // .Lfunc_gepNN: 1584 // # global entry point 1585 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1586 // add r2,r2,r12 1587 // .Lfunc_lepNN: 1588 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1589 // # local entry point, followed by function body 1590 // 1591 // This ensures we have r2 set up correctly while executing the function 1592 // body, no matter which entry point is called. 1593 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1594 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1595 !MF->getRegInfo().use_empty(PPC::R2); 1596 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1597 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1598 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1599 Subtarget->isELFv2ABI() && UsesX2OrR2; 1600 1601 // Only do all that if the function uses R2 as the TOC pointer 1602 // in the first place. We don't need the global entry point if the 1603 // function uses R2 as an allocatable register. 1604 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1605 // Note: The logic here must be synchronized with the code in the 1606 // branch-selection pass which sets the offset of the first block in the 1607 // function. This matters because it affects the alignment. 1608 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1609 OutStreamer->emitLabel(GlobalEntryLabel); 1610 const MCSymbolRefExpr *GlobalEntryLabelExp = 1611 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1612 1613 if (TM.getCodeModel() != CodeModel::Large) { 1614 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1615 const MCExpr *TOCDeltaExpr = 1616 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1617 GlobalEntryLabelExp, OutContext); 1618 1619 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1620 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1621 .addReg(PPC::X2) 1622 .addReg(PPC::X12) 1623 .addExpr(TOCDeltaHi)); 1624 1625 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1626 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1627 .addReg(PPC::X2) 1628 .addReg(PPC::X2) 1629 .addExpr(TOCDeltaLo)); 1630 } else { 1631 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1632 const MCExpr *TOCOffsetDeltaExpr = 1633 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1634 GlobalEntryLabelExp, OutContext); 1635 1636 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1637 .addReg(PPC::X2) 1638 .addExpr(TOCOffsetDeltaExpr) 1639 .addReg(PPC::X12)); 1640 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1641 .addReg(PPC::X2) 1642 .addReg(PPC::X2) 1643 .addReg(PPC::X12)); 1644 } 1645 1646 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1647 OutStreamer->emitLabel(LocalEntryLabel); 1648 const MCSymbolRefExpr *LocalEntryLabelExp = 1649 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1650 const MCExpr *LocalOffsetExp = 1651 MCBinaryExpr::createSub(LocalEntryLabelExp, 1652 GlobalEntryLabelExp, OutContext); 1653 1654 PPCTargetStreamer *TS = 1655 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1656 1657 if (TS) 1658 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1659 } else if (Subtarget->isUsingPCRelativeCalls()) { 1660 // When generating the entry point for a function we have a few scenarios 1661 // based on whether or not that function uses R2 and whether or not that 1662 // function makes calls (or is a leaf function). 1663 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1664 // and preserves it). In this case st_other=0 and both 1665 // the local and global entry points for the function are the same. 1666 // No special entry point code is required. 1667 // 2) A function uses the TOC pointer R2. This function may or may not have 1668 // calls. In this case st_other=[2,6] and the global and local entry 1669 // points are different. Code to correctly setup the TOC pointer in R2 1670 // is put between the global and local entry points. This case is 1671 // covered by the if statatement above. 1672 // 3) A function does not use the TOC pointer R2 but does have calls. 1673 // In this case st_other=1 since we do not know whether or not any 1674 // of the callees clobber R2. This case is dealt with in this else if 1675 // block. Tail calls are considered calls and the st_other should also 1676 // be set to 1 in that case as well. 1677 // 4) The function does not use the TOC pointer but R2 is used inside 1678 // the function. In this case st_other=1 once again. 1679 // 5) This function uses inline asm. We mark R2 as reserved if the function 1680 // has inline asm as we have to assume that it may be used. 1681 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1682 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1683 PPCTargetStreamer *TS = 1684 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1685 if (TS) 1686 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1687 MCConstantExpr::create(1, OutContext)); 1688 } 1689 } 1690 } 1691 1692 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1693 /// directive. 1694 /// 1695 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1696 // Only the 64-bit target requires a traceback table. For now, 1697 // we only emit the word of zeroes that GDB requires to find 1698 // the end of the function, and zeroes for the eight-byte 1699 // mandatory fields. 1700 // FIXME: We should fill in the eight-byte mandatory fields as described in 1701 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1702 // currently make use of these fields). 1703 if (Subtarget->isPPC64()) { 1704 OutStreamer->emitIntValue(0, 4/*size*/); 1705 OutStreamer->emitIntValue(0, 8/*size*/); 1706 } 1707 } 1708 1709 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1710 MCSymbol *GVSym) const { 1711 1712 assert(MAI->hasVisibilityOnlyWithLinkage() && 1713 "AIX's linkage directives take a visibility setting."); 1714 1715 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1716 switch (GV->getLinkage()) { 1717 case GlobalValue::ExternalLinkage: 1718 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1719 break; 1720 case GlobalValue::LinkOnceAnyLinkage: 1721 case GlobalValue::LinkOnceODRLinkage: 1722 case GlobalValue::WeakAnyLinkage: 1723 case GlobalValue::WeakODRLinkage: 1724 case GlobalValue::ExternalWeakLinkage: 1725 LinkageAttr = MCSA_Weak; 1726 break; 1727 case GlobalValue::AvailableExternallyLinkage: 1728 LinkageAttr = MCSA_Extern; 1729 break; 1730 case GlobalValue::PrivateLinkage: 1731 return; 1732 case GlobalValue::InternalLinkage: 1733 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1734 "InternalLinkage should not have other visibility setting."); 1735 LinkageAttr = MCSA_LGlobal; 1736 break; 1737 case GlobalValue::AppendingLinkage: 1738 llvm_unreachable("Should never emit this"); 1739 case GlobalValue::CommonLinkage: 1740 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1741 } 1742 1743 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1744 1745 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1746 if (!TM.getIgnoreXCOFFVisibility()) { 1747 switch (GV->getVisibility()) { 1748 1749 // TODO: "exported" and "internal" Visibility needs to go here. 1750 case GlobalValue::DefaultVisibility: 1751 break; 1752 case GlobalValue::HiddenVisibility: 1753 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1754 break; 1755 case GlobalValue::ProtectedVisibility: 1756 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1757 break; 1758 } 1759 } 1760 1761 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1762 VisibilityAttr); 1763 } 1764 1765 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1766 // Setup CurrentFnDescSym and its containing csect. 1767 MCSectionXCOFF *FnDescSec = 1768 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1769 &MF.getFunction(), TM)); 1770 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1771 1772 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1773 1774 return AsmPrinter::SetupMachineFunction(MF); 1775 } 1776 1777 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1778 1779 if (!TM.getXCOFFTracebackTable()) 1780 return; 1781 1782 emitTracebackTable(); 1783 } 1784 1785 void PPCAIXAsmPrinter::emitTracebackTable() { 1786 1787 // Create a symbol for the end of function. 1788 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1789 OutStreamer->emitLabel(FuncEnd); 1790 1791 OutStreamer->AddComment("Traceback table begin"); 1792 // Begin with a fullword of zero. 1793 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1794 1795 SmallString<128> CommentString; 1796 raw_svector_ostream CommentOS(CommentString); 1797 1798 auto EmitComment = [&]() { 1799 OutStreamer->AddComment(CommentOS.str()); 1800 CommentString.clear(); 1801 }; 1802 1803 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 1804 EmitComment(); 1805 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 1806 }; 1807 1808 unsigned int Version = 0; 1809 CommentOS << "Version = " << Version; 1810 EmitCommentAndValue(Version, 1); 1811 1812 // There is a lack of information in the IR to assist with determining the 1813 // source language. AIX exception handling mechanism would only search for 1814 // personality routine and LSDA area when such language supports exception 1815 // handling. So to be conservatively correct and allow runtime to do its job, 1816 // we need to set it to C++ for now. 1817 TracebackTable::LanguageID LanguageIdentifier = 1818 TracebackTable::CPlusPlus; // C++ 1819 1820 CommentOS << "Language = " 1821 << getNameForTracebackTableLanguageId(LanguageIdentifier); 1822 EmitCommentAndValue(LanguageIdentifier, 1); 1823 1824 // This is only populated for the third and fourth bytes. 1825 uint32_t FirstHalfOfMandatoryField = 0; 1826 1827 // Emit the 3rd byte of the mandatory field. 1828 1829 // We always set traceback offset bit to true. 1830 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 1831 1832 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1833 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1834 1835 // Check the function uses floating-point processor instructions or not 1836 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 1837 if (MRI.isPhysRegUsed(Reg)) { 1838 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 1839 break; 1840 } 1841 } 1842 1843 #define GENBOOLCOMMENT(Prefix, V, Field) \ 1844 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 1845 << #Field 1846 1847 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 1848 CommentOS << (PrefixAndName) << " = " \ 1849 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 1850 (TracebackTable::Field##Shift)) 1851 1852 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 1853 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 1854 EmitComment(); 1855 1856 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 1857 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 1858 EmitComment(); 1859 1860 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 1861 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 1862 EmitComment(); 1863 1864 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 1865 EmitComment(); 1866 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 1867 IsFloatingPointOperationLogOrAbortEnabled); 1868 EmitComment(); 1869 1870 OutStreamer->emitIntValueInHexWithPadding( 1871 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1872 1873 // Set the 4th byte of the mandatory field. 1874 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 1875 1876 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!"); 1877 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 1878 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 1879 1880 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1881 if (!MustSaveCRs.empty()) 1882 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 1883 1884 if (FI->mustSaveLR()) 1885 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 1886 1887 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 1888 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 1889 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 1890 EmitComment(); 1891 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 1892 OnConditionDirective); 1893 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 1894 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 1895 EmitComment(); 1896 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 1897 1); 1898 1899 // Set the 5th byte of mandatory field. 1900 uint32_t SecondHalfOfMandatoryField = 0; 1901 1902 // Always store back chain. 1903 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 1904 1905 uint32_t FPRSaved = 0; 1906 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 1907 if (MRI.isPhysRegModified(Reg)) { 1908 FPRSaved = PPC::F31 - Reg + 1; 1909 break; 1910 } 1911 } 1912 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 1913 TracebackTable::FPRSavedMask; 1914 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 1915 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 1916 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 1917 EmitComment(); 1918 OutStreamer->emitIntValueInHexWithPadding( 1919 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 1920 1921 // Set the 6th byte of mandatory field. 1922 bool ShouldEmitEHBlock = TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF); 1923 if (ShouldEmitEHBlock) 1924 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 1925 1926 uint32_t GPRSaved = 0; 1927 1928 // X13 is reserved under 64-bit environment. 1929 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 1930 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 1931 1932 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 1933 if (MRI.isPhysRegModified(Reg)) { 1934 GPRSaved = GPREnd - Reg + 1; 1935 break; 1936 } 1937 } 1938 1939 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 1940 TracebackTable::GPRSavedMask; 1941 1942 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasVectorInfo); 1943 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasExtensionTable); 1944 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 1945 EmitComment(); 1946 OutStreamer->emitIntValueInHexWithPadding( 1947 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 1948 1949 // Set the 7th byte of mandatory field. 1950 uint32_t NumberOfFixedPara = FI->getFixedParamNum(); 1951 SecondHalfOfMandatoryField |= 1952 (NumberOfFixedPara << TracebackTable::NumberOfFixedParmsShift) & 1953 TracebackTable::NumberOfFixedParmsMask; 1954 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 1955 NumberOfFixedParms); 1956 EmitComment(); 1957 OutStreamer->emitIntValueInHexWithPadding( 1958 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1959 1960 // Set the 8th byte of mandatory field. 1961 1962 // Always set parameter on stack. 1963 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 1964 1965 uint32_t NumberOfFPPara = FI->getFloatingPointParamNum(); 1966 SecondHalfOfMandatoryField |= 1967 (NumberOfFPPara << TracebackTable::NumberOfFloatingPointParmsShift) & 1968 TracebackTable::NumberOfFloatingPointParmsMask; 1969 1970 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 1971 NumberOfFloatingPointParms); 1972 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 1973 EmitComment(); 1974 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 1975 1); 1976 1977 // Generate the optional fields of traceback table. 1978 1979 // Parameter type. 1980 if (NumberOfFixedPara || NumberOfFPPara) { 1981 assert((SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) == 1982 0 && 1983 "VectorInfo has not been implemented."); 1984 uint32_t ParaType = FI->getParameterType(); 1985 CommentOS << "Parameter type = " 1986 << XCOFF::parseParmsType(ParaType, 1987 NumberOfFixedPara + NumberOfFPPara); 1988 EmitComment(); 1989 OutStreamer->emitIntValueInHexWithPadding(ParaType, sizeof(ParaType)); 1990 } 1991 1992 // Traceback table offset. 1993 OutStreamer->AddComment("Function size"); 1994 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 1995 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 1996 &(MF->getFunction()), TM); 1997 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 1998 } 1999 2000 // Since we unset the Int_Handler. 2001 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2002 report_fatal_error("Hand_Mask not implement yet"); 2003 2004 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2005 report_fatal_error("Ctl_Info not implement yet"); 2006 2007 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2008 StringRef Name = MF->getName().substr(0, INT16_MAX); 2009 int16_t NameLength = Name.size(); 2010 CommentOS << "Function name len = " 2011 << static_cast<unsigned int>(NameLength); 2012 EmitCommentAndValue(NameLength, 2); 2013 OutStreamer->AddComment("Function Name"); 2014 OutStreamer->emitBytes(Name); 2015 } 2016 2017 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2018 uint8_t AllocReg = XCOFF::AllocRegNo; 2019 OutStreamer->AddComment("AllocaUsed"); 2020 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2021 } 2022 2023 uint8_t ExtensionTableFlag = 0; 2024 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2025 if (ShouldEmitEHBlock) 2026 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2027 2028 CommentOS << "ExtensionTableFlag = " 2029 << getExtendedTBTableFlagString(ExtensionTableFlag); 2030 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2031 } 2032 2033 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2034 auto &Ctx = OutStreamer->getContext(); 2035 MCSymbol *EHInfoSym = 2036 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2037 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2038 const MCSymbol *TOCBaseSym = 2039 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2040 ->getQualNameSymbol(); 2041 const MCExpr *Exp = 2042 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2043 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2044 2045 const DataLayout &DL = getDataLayout(); 2046 OutStreamer->emitValueToAlignment(4); 2047 OutStreamer->AddComment("EHInfo Table"); 2048 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2049 } 2050 2051 #undef GENBOOLCOMMENT 2052 #undef GENVALUECOMMENT 2053 } 2054 2055 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 2056 // Early error checking limiting what is supported. 2057 if (GV->isThreadLocal()) 2058 report_fatal_error("Thread local not yet supported on AIX."); 2059 2060 if (GV->hasComdat()) 2061 report_fatal_error("COMDAT not yet supported by AIX."); 2062 } 2063 2064 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2065 return GV->hasAppendingLinkage() && 2066 StringSwitch<bool>(GV->getName()) 2067 // TODO: Linker could still eliminate the GV if we just skip 2068 // handling llvm.used array. Skipping them for now until we or the 2069 // AIX OS team come up with a good solution. 2070 .Case("llvm.used", true) 2071 // It's correct to just skip llvm.compiler.used array here. 2072 .Case("llvm.compiler.used", true) 2073 .Default(false); 2074 } 2075 2076 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2077 return StringSwitch<bool>(GV->getName()) 2078 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2079 .Default(false); 2080 } 2081 2082 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2083 // Special LLVM global arrays have been handled at the initialization. 2084 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2085 return; 2086 2087 assert(!GV->getName().startswith("llvm.") && 2088 "Unhandled intrinsic global variable."); 2089 ValidateGV(GV); 2090 2091 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2092 2093 if (GV->isDeclarationForLinker()) { 2094 emitLinkage(GV, GVSym); 2095 return; 2096 } 2097 2098 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2099 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 2100 report_fatal_error("Encountered a global variable kind that is " 2101 "not supported yet."); 2102 2103 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2104 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2105 2106 // Switch to the containing csect. 2107 OutStreamer->SwitchSection(Csect); 2108 2109 const DataLayout &DL = GV->getParent()->getDataLayout(); 2110 2111 // Handle common symbols. 2112 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 2113 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2114 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 2115 GVSym->setStorageClass( 2116 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2117 2118 if (GVKind.isBSSLocal()) 2119 OutStreamer->emitXCOFFLocalCommonSymbol( 2120 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2121 GVSym, Alignment.value()); 2122 else 2123 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2124 return; 2125 } 2126 2127 MCSymbol *EmittedInitSym = GVSym; 2128 emitLinkage(GV, EmittedInitSym); 2129 emitAlignment(getGVAlignment(GV, DL), GV); 2130 2131 // When -fdata-sections is enabled, every GlobalVariable will 2132 // be put into its own csect; therefore, label is not necessary here. 2133 if (!TM.getDataSections() || GV->hasSection()) { 2134 OutStreamer->emitLabel(EmittedInitSym); 2135 } 2136 2137 // Emit aliasing label for global variable. 2138 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2139 OutStreamer->emitLabel(getSymbol(Alias)); 2140 }); 2141 2142 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2143 } 2144 2145 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2146 const DataLayout &DL = getDataLayout(); 2147 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2148 2149 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2150 // Emit function descriptor. 2151 OutStreamer->SwitchSection( 2152 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2153 2154 // Emit aliasing label for function descriptor csect. 2155 llvm::for_each(GOAliasMap[&MF->getFunction()], 2156 [this](const GlobalAlias *Alias) { 2157 OutStreamer->emitLabel(getSymbol(Alias)); 2158 }); 2159 2160 // Emit function entry point address. 2161 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2162 PointerSize); 2163 // Emit TOC base address. 2164 const MCSymbol *TOCBaseSym = 2165 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2166 ->getQualNameSymbol(); 2167 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2168 PointerSize); 2169 // Emit a null environment pointer. 2170 OutStreamer->emitIntValue(0, PointerSize); 2171 2172 OutStreamer->SwitchSection(Current.first, Current.second); 2173 } 2174 2175 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2176 // It's not necessary to emit the label when we have individual 2177 // function in its own csect. 2178 if (!TM.getFunctionSections()) 2179 PPCAsmPrinter::emitFunctionEntryLabel(); 2180 2181 // Emit aliasing label for function entry point label. 2182 llvm::for_each( 2183 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2184 OutStreamer->emitLabel( 2185 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2186 }); 2187 } 2188 2189 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2190 // If there are no functions in this module, we will never need to reference 2191 // the TOC base. 2192 if (M.empty()) 2193 return; 2194 2195 // Switch to section to emit TOC base. 2196 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2197 2198 PPCTargetStreamer *TS = 2199 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2200 2201 for (auto &I : TOC) { 2202 // Setup the csect for the current TC entry. 2203 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 2204 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2205 OutStreamer->SwitchSection(TCEntry); 2206 2207 OutStreamer->emitLabel(I.second); 2208 if (TS != nullptr) 2209 TS->emitTCEntry(*I.first.first); 2210 } 2211 } 2212 2213 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2214 const bool Result = PPCAsmPrinter::doInitialization(M); 2215 2216 auto setCsectAlignment = [this](const GlobalObject *GO) { 2217 // Declarations have 0 alignment which is set by default. 2218 if (GO->isDeclarationForLinker()) 2219 return; 2220 2221 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2222 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2223 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2224 2225 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2226 if (GOAlign > Csect->getAlignment()) 2227 Csect->setAlignment(GOAlign); 2228 }; 2229 2230 // We need to know, up front, the alignment of csects for the assembly path, 2231 // because once a .csect directive gets emitted, we could not change the 2232 // alignment value on it. 2233 for (const auto &G : M.globals()) { 2234 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2235 continue; 2236 2237 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2238 // Generate a format indicator and a unique module id to be a part of 2239 // the sinit and sterm function names. 2240 if (FormatIndicatorAndUniqueModId.empty()) { 2241 std::string UniqueModuleId = getUniqueModuleId(&M); 2242 if (UniqueModuleId != "") 2243 // TODO: Use source file full path to generate the unique module id 2244 // and add a format indicator as a part of function name in case we 2245 // will support more than one format. 2246 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2247 else 2248 // Use the Pid and current time as the unique module id when we cannot 2249 // generate one based on a module's strong external symbols. 2250 // FIXME: Adjust the comment accordingly after we use source file full 2251 // path instead. 2252 FormatIndicatorAndUniqueModId = 2253 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2254 "_" + llvm::itostr(time(nullptr)); 2255 } 2256 2257 emitSpecialLLVMGlobal(&G); 2258 continue; 2259 } 2260 2261 setCsectAlignment(&G); 2262 } 2263 2264 for (const auto &F : M) 2265 setCsectAlignment(&F); 2266 2267 // Construct an aliasing list for each GlobalObject. 2268 for (const auto &Alias : M.aliases()) { 2269 const GlobalObject *Base = Alias.getBaseObject(); 2270 if (!Base) 2271 report_fatal_error( 2272 "alias without a base object is not yet supported on AIX"); 2273 GOAliasMap[Base].push_back(&Alias); 2274 } 2275 2276 return Result; 2277 } 2278 2279 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2280 switch (MI->getOpcode()) { 2281 default: 2282 break; 2283 case PPC::BL8: 2284 case PPC::BL: 2285 case PPC::BL8_NOP: 2286 case PPC::BL_NOP: { 2287 const MachineOperand &MO = MI->getOperand(0); 2288 if (MO.isSymbol()) { 2289 MCSymbolXCOFF *S = 2290 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2291 ExtSymSDNodeSymbols.insert(S); 2292 } 2293 } break; 2294 case PPC::BL_TLS: 2295 case PPC::BL8_TLS: 2296 case PPC::BL8_TLS_: 2297 case PPC::BL8_NOP_TLS: 2298 report_fatal_error("TLS call not yet implemented"); 2299 case PPC::TAILB: 2300 case PPC::TAILB8: 2301 case PPC::TAILBA: 2302 case PPC::TAILBA8: 2303 case PPC::TAILBCTR: 2304 case PPC::TAILBCTR8: 2305 if (MI->getOperand(0).isSymbol()) 2306 report_fatal_error("Tail call for extern symbol not yet supported."); 2307 break; 2308 } 2309 return PPCAsmPrinter::emitInstruction(MI); 2310 } 2311 2312 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2313 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2314 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2315 return PPCAsmPrinter::doFinalization(M); 2316 } 2317 2318 static unsigned mapToSinitPriority(int P) { 2319 if (P < 0 || P > 65535) 2320 report_fatal_error("invalid init priority"); 2321 2322 if (P <= 20) 2323 return P; 2324 2325 if (P < 81) 2326 return 20 + (P - 20) * 16; 2327 2328 if (P <= 1124) 2329 return 1004 + (P - 81); 2330 2331 if (P < 64512) 2332 return 2047 + (P - 1124) * 33878; 2333 2334 return 2147482625u + (P - 64512); 2335 } 2336 2337 static std::string convertToSinitPriority(int Priority) { 2338 // This helper function converts clang init priority to values used in sinit 2339 // and sterm functions. 2340 // 2341 // The conversion strategies are: 2342 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2343 // reserved priority range [0, 1023] by 2344 // - directly mapping the first 21 and the last 20 elements of the ranges 2345 // - linear interpolating the intermediate values with a step size of 16. 2346 // 2347 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2348 // sinit/sterm priority range [1024, 2147483648] by: 2349 // - directly mapping the first and the last 1024 elements of the ranges 2350 // - linear interpolating the intermediate values with a step size of 33878. 2351 unsigned int P = mapToSinitPriority(Priority); 2352 2353 std::string PrioritySuffix; 2354 llvm::raw_string_ostream os(PrioritySuffix); 2355 os << llvm::format_hex_no_prefix(P, 8); 2356 os.flush(); 2357 return PrioritySuffix; 2358 } 2359 2360 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2361 const Constant *List, bool IsCtor) { 2362 SmallVector<Structor, 8> Structors; 2363 preprocessXXStructorList(DL, List, Structors); 2364 if (Structors.empty()) 2365 return; 2366 2367 unsigned Index = 0; 2368 for (Structor &S : Structors) { 2369 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2370 S.Func = CE->getOperand(0); 2371 2372 llvm::GlobalAlias::create( 2373 GlobalValue::ExternalLinkage, 2374 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2375 llvm::Twine(convertToSinitPriority(S.Priority)) + 2376 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2377 llvm::Twine("_", llvm::utostr(Index++)), 2378 cast<Function>(S.Func)); 2379 } 2380 } 2381 2382 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2383 unsigned Encoding) { 2384 if (GV) { 2385 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2386 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2387 const MCSymbol *TOCBaseSym = 2388 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2389 ->getQualNameSymbol(); 2390 auto &Ctx = OutStreamer->getContext(); 2391 const MCExpr *Exp = 2392 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2393 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2394 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2395 } else 2396 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2397 } 2398 2399 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2400 // given output stream. 2401 static AsmPrinter * 2402 createPPCAsmPrinterPass(TargetMachine &tm, 2403 std::unique_ptr<MCStreamer> &&Streamer) { 2404 if (tm.getTargetTriple().isOSAIX()) 2405 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2406 2407 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2408 } 2409 2410 // Force static initialization. 2411 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2412 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2413 createPPCAsmPrinterPass); 2414 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2415 createPPCAsmPrinterPass); 2416 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2417 createPPCAsmPrinterPass); 2418 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2419 createPPCAsmPrinterPass); 2420 } 2421