1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/Process.h" 66 #include "llvm/Support/TargetRegistry.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/ModuleUtils.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <memory> 74 #include <new> 75 76 using namespace llvm; 77 using namespace llvm::XCOFF; 78 79 #define DEBUG_TYPE "asmprinter" 80 81 // Specialize DenseMapInfo to allow 82 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 83 // This specialization is needed here because that type is used as keys in the 84 // map representing TOC entries. 85 template <> 86 struct llvm::DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 87 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 88 89 static inline TOCKey getEmptyKey() { 90 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 91 } 92 static inline TOCKey getTombstoneKey() { 93 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 94 } 95 static unsigned getHashValue(const TOCKey &PairVal) { 96 return detail::combineHashValue( 97 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 98 DenseMapInfo<int>::getHashValue(PairVal.second)); 99 } 100 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 101 }; 102 103 namespace { 104 105 class PPCAsmPrinter : public AsmPrinter { 106 protected: 107 // For TLS on AIX, we need to be able to identify TOC entries of specific 108 // VariantKind so we can add the right relocations when we generate the 109 // entries. So each entry is represented by a pair of MCSymbol and 110 // VariantKind. For example, we need to be able to identify the following 111 // entry as a TLSGD entry so we can add the @m relocation: 112 // .tc .i[TC],i[TL]@m 113 // By default, VK_None is used for the VariantKind. 114 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 115 MCSymbol *> 116 TOC; 117 const PPCSubtarget *Subtarget = nullptr; 118 StackMaps SM; 119 120 public: 121 explicit PPCAsmPrinter(TargetMachine &TM, 122 std::unique_ptr<MCStreamer> Streamer) 123 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 124 125 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 126 127 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 128 MCSymbolRefExpr::VariantKind Kind = 129 MCSymbolRefExpr::VariantKind::VK_None); 130 131 bool doInitialization(Module &M) override { 132 if (!TOC.empty()) 133 TOC.clear(); 134 return AsmPrinter::doInitialization(M); 135 } 136 137 void emitInstruction(const MachineInstr *MI) override; 138 139 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 140 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 141 /// The \p MI would be INLINEASM ONLY. 142 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 143 144 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 145 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 146 const char *ExtraCode, raw_ostream &O) override; 147 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 148 const char *ExtraCode, raw_ostream &O) override; 149 150 void emitEndOfAsmFile(Module &M) override; 151 152 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 153 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 154 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 155 bool runOnMachineFunction(MachineFunction &MF) override { 156 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 157 bool Changed = AsmPrinter::runOnMachineFunction(MF); 158 emitXRayTable(); 159 return Changed; 160 } 161 }; 162 163 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 164 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 165 public: 166 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 167 std::unique_ptr<MCStreamer> Streamer) 168 : PPCAsmPrinter(TM, std::move(Streamer)) {} 169 170 StringRef getPassName() const override { 171 return "Linux PPC Assembly Printer"; 172 } 173 174 void emitStartOfAsmFile(Module &M) override; 175 void emitEndOfAsmFile(Module &) override; 176 177 void emitFunctionEntryLabel() override; 178 179 void emitFunctionBodyStart() override; 180 void emitFunctionBodyEnd() override; 181 void emitInstruction(const MachineInstr *MI) override; 182 }; 183 184 class PPCAIXAsmPrinter : public PPCAsmPrinter { 185 private: 186 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 187 /// linkage for them in AIX. 188 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 189 190 /// A format indicator and unique trailing identifier to form part of the 191 /// sinit/sterm function names. 192 std::string FormatIndicatorAndUniqueModId; 193 194 static void ValidateGV(const GlobalVariable *GV); 195 // Record a list of GlobalAlias associated with a GlobalObject. 196 // This is used for AIX's extra-label-at-definition aliasing strategy. 197 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 198 GOAliasMap; 199 200 void emitTracebackTable(); 201 202 public: 203 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 204 : PPCAsmPrinter(TM, std::move(Streamer)) { 205 if (MAI->isLittleEndian()) 206 report_fatal_error( 207 "cannot create AIX PPC Assembly Printer for a little-endian target"); 208 } 209 210 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 211 212 bool doInitialization(Module &M) override; 213 214 void emitXXStructorList(const DataLayout &DL, const Constant *List, 215 bool IsCtor) override; 216 217 void SetupMachineFunction(MachineFunction &MF) override; 218 219 void emitGlobalVariable(const GlobalVariable *GV) override; 220 221 void emitFunctionDescriptor() override; 222 223 void emitFunctionEntryLabel() override; 224 225 void emitFunctionBodyEnd() override; 226 227 void emitEndOfAsmFile(Module &) override; 228 229 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 230 231 void emitInstruction(const MachineInstr *MI) override; 232 233 bool doFinalization(Module &M) override; 234 235 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 236 }; 237 238 } // end anonymous namespace 239 240 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 241 raw_ostream &O) { 242 // Computing the address of a global symbol, not calling it. 243 const GlobalValue *GV = MO.getGlobal(); 244 getSymbol(GV)->print(O, MAI); 245 printOffset(MO.getOffset(), O); 246 } 247 248 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 249 raw_ostream &O) { 250 const DataLayout &DL = getDataLayout(); 251 const MachineOperand &MO = MI->getOperand(OpNo); 252 253 switch (MO.getType()) { 254 case MachineOperand::MO_Register: { 255 // The MI is INLINEASM ONLY and UseVSXReg is always false. 256 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 257 258 // Linux assembler (Others?) does not take register mnemonics. 259 // FIXME - What about special registers used in mfspr/mtspr? 260 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 261 return; 262 } 263 case MachineOperand::MO_Immediate: 264 O << MO.getImm(); 265 return; 266 267 case MachineOperand::MO_MachineBasicBlock: 268 MO.getMBB()->getSymbol()->print(O, MAI); 269 return; 270 case MachineOperand::MO_ConstantPoolIndex: 271 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 272 << MO.getIndex(); 273 return; 274 case MachineOperand::MO_BlockAddress: 275 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 276 return; 277 case MachineOperand::MO_GlobalAddress: { 278 PrintSymbolOperand(MO, O); 279 return; 280 } 281 282 default: 283 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 284 return; 285 } 286 } 287 288 /// PrintAsmOperand - Print out an operand for an inline asm expression. 289 /// 290 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 291 const char *ExtraCode, raw_ostream &O) { 292 // Does this asm operand have a single letter operand modifier? 293 if (ExtraCode && ExtraCode[0]) { 294 if (ExtraCode[1] != 0) return true; // Unknown modifier. 295 296 switch (ExtraCode[0]) { 297 default: 298 // See if this is a generic print operand 299 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 300 case 'L': // Write second word of DImode reference. 301 // Verify that this operand has two consecutive registers. 302 if (!MI->getOperand(OpNo).isReg() || 303 OpNo+1 == MI->getNumOperands() || 304 !MI->getOperand(OpNo+1).isReg()) 305 return true; 306 ++OpNo; // Return the high-part. 307 break; 308 case 'I': 309 // Write 'i' if an integer constant, otherwise nothing. Used to print 310 // addi vs add, etc. 311 if (MI->getOperand(OpNo).isImm()) 312 O << "i"; 313 return false; 314 case 'x': 315 if(!MI->getOperand(OpNo).isReg()) 316 return true; 317 // This operand uses VSX numbering. 318 // If the operand is a VMX register, convert it to a VSX register. 319 Register Reg = MI->getOperand(OpNo).getReg(); 320 if (PPCInstrInfo::isVRRegister(Reg)) 321 Reg = PPC::VSX32 + (Reg - PPC::V0); 322 else if (PPCInstrInfo::isVFRegister(Reg)) 323 Reg = PPC::VSX32 + (Reg - PPC::VF0); 324 const char *RegName; 325 RegName = PPCInstPrinter::getRegisterName(Reg); 326 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 327 O << RegName; 328 return false; 329 } 330 } 331 332 printOperand(MI, OpNo, O); 333 return false; 334 } 335 336 // At the moment, all inline asm memory operands are a single register. 337 // In any case, the output of this routine should always be just one 338 // assembler operand. 339 340 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 341 const char *ExtraCode, 342 raw_ostream &O) { 343 if (ExtraCode && ExtraCode[0]) { 344 if (ExtraCode[1] != 0) return true; // Unknown modifier. 345 346 switch (ExtraCode[0]) { 347 default: return true; // Unknown modifier. 348 case 'L': // A memory reference to the upper word of a double word op. 349 O << getDataLayout().getPointerSize() << "("; 350 printOperand(MI, OpNo, O); 351 O << ")"; 352 return false; 353 case 'y': // A memory reference for an X-form instruction 354 O << "0, "; 355 printOperand(MI, OpNo, O); 356 return false; 357 case 'U': // Print 'u' for update form. 358 case 'X': // Print 'x' for indexed form. 359 // FIXME: Currently for PowerPC memory operands are always loaded 360 // into a register, so we never get an update or indexed form. 361 // This is bad even for offset forms, since even if we know we 362 // have a value in -16(r1), we will generate a load into r<n> 363 // and then load from 0(r<n>). Until that issue is fixed, 364 // tolerate 'U' and 'X' but don't output anything. 365 assert(MI->getOperand(OpNo).isReg()); 366 return false; 367 } 368 } 369 370 assert(MI->getOperand(OpNo).isReg()); 371 O << "0("; 372 printOperand(MI, OpNo, O); 373 O << ")"; 374 return false; 375 } 376 377 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 378 /// exists for it. If not, create one. Then return a symbol that references 379 /// the TOC entry. 380 MCSymbol * 381 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 382 MCSymbolRefExpr::VariantKind Kind) { 383 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 384 if (!TOCEntry) 385 TOCEntry = createTempSymbol("C"); 386 return TOCEntry; 387 } 388 389 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 390 emitStackMaps(SM); 391 } 392 393 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 394 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 395 396 auto &Ctx = OutStreamer->getContext(); 397 MCSymbol *MILabel = Ctx.createTempSymbol(); 398 OutStreamer->emitLabel(MILabel); 399 400 SM.recordStackMap(*MILabel, MI); 401 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 402 403 // Scan ahead to trim the shadow. 404 const MachineBasicBlock &MBB = *MI.getParent(); 405 MachineBasicBlock::const_iterator MII(MI); 406 ++MII; 407 while (NumNOPBytes > 0) { 408 if (MII == MBB.end() || MII->isCall() || 409 MII->getOpcode() == PPC::DBG_VALUE || 410 MII->getOpcode() == TargetOpcode::PATCHPOINT || 411 MII->getOpcode() == TargetOpcode::STACKMAP) 412 break; 413 ++MII; 414 NumNOPBytes -= 4; 415 } 416 417 // Emit nops. 418 for (unsigned i = 0; i < NumNOPBytes; i += 4) 419 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 420 } 421 422 // Lower a patchpoint of the form: 423 // [<def>], <id>, <numBytes>, <target>, <numArgs> 424 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 425 auto &Ctx = OutStreamer->getContext(); 426 MCSymbol *MILabel = Ctx.createTempSymbol(); 427 OutStreamer->emitLabel(MILabel); 428 429 SM.recordPatchPoint(*MILabel, MI); 430 PatchPointOpers Opers(&MI); 431 432 unsigned EncodedBytes = 0; 433 const MachineOperand &CalleeMO = Opers.getCallTarget(); 434 435 if (CalleeMO.isImm()) { 436 int64_t CallTarget = CalleeMO.getImm(); 437 if (CallTarget) { 438 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 439 "High 16 bits of call target should be zero."); 440 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 441 EncodedBytes = 0; 442 // Materialize the jump address: 443 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 444 .addReg(ScratchReg) 445 .addImm((CallTarget >> 32) & 0xFFFF)); 446 ++EncodedBytes; 447 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 448 .addReg(ScratchReg) 449 .addReg(ScratchReg) 450 .addImm(32).addImm(16)); 451 ++EncodedBytes; 452 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 453 .addReg(ScratchReg) 454 .addReg(ScratchReg) 455 .addImm((CallTarget >> 16) & 0xFFFF)); 456 ++EncodedBytes; 457 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 458 .addReg(ScratchReg) 459 .addReg(ScratchReg) 460 .addImm(CallTarget & 0xFFFF)); 461 462 // Save the current TOC pointer before the remote call. 463 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 464 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 465 .addReg(PPC::X2) 466 .addImm(TOCSaveOffset) 467 .addReg(PPC::X1)); 468 ++EncodedBytes; 469 470 // If we're on ELFv1, then we need to load the actual function pointer 471 // from the function descriptor. 472 if (!Subtarget->isELFv2ABI()) { 473 // Load the new TOC pointer and the function address, but not r11 474 // (needing this is rare, and loading it here would prevent passing it 475 // via a 'nest' parameter. 476 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 477 .addReg(PPC::X2) 478 .addImm(8) 479 .addReg(ScratchReg)); 480 ++EncodedBytes; 481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 482 .addReg(ScratchReg) 483 .addImm(0) 484 .addReg(ScratchReg)); 485 ++EncodedBytes; 486 } 487 488 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 489 .addReg(ScratchReg)); 490 ++EncodedBytes; 491 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 492 ++EncodedBytes; 493 494 // Restore the TOC pointer after the call. 495 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 496 .addReg(PPC::X2) 497 .addImm(TOCSaveOffset) 498 .addReg(PPC::X1)); 499 ++EncodedBytes; 500 } 501 } else if (CalleeMO.isGlobal()) { 502 const GlobalValue *GValue = CalleeMO.getGlobal(); 503 MCSymbol *MOSymbol = getSymbol(GValue); 504 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 505 506 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 507 .addExpr(SymVar)); 508 EncodedBytes += 2; 509 } 510 511 // Each instruction is 4 bytes. 512 EncodedBytes *= 4; 513 514 // Emit padding. 515 unsigned NumBytes = Opers.getNumPatchBytes(); 516 assert(NumBytes >= EncodedBytes && 517 "Patchpoint can't request size less than the length of a call."); 518 assert((NumBytes - EncodedBytes) % 4 == 0 && 519 "Invalid number of NOP bytes requested!"); 520 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 521 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 522 } 523 524 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 525 /// call to __tls_get_addr to the current output stream. 526 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 527 MCSymbolRefExpr::VariantKind VK) { 528 StringRef Name = "__tls_get_addr"; 529 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name); 530 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 531 unsigned Opcode = PPC::BL8_NOP_TLS; 532 533 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 534 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 535 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 536 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 537 Opcode = PPC::BL8_NOTOC_TLS; 538 } 539 const Module *M = MF->getFunction().getParent(); 540 541 assert(MI->getOperand(0).isReg() && 542 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 543 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 544 "GETtls[ld]ADDR[32] must define GPR3"); 545 assert(MI->getOperand(1).isReg() && 546 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 547 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 548 "GETtls[ld]ADDR[32] must read GPR3"); 549 550 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 551 Kind = MCSymbolRefExpr::VK_PLT; 552 553 const MCExpr *TlsRef = 554 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 555 556 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 557 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 558 M->getPICLevel() == PICLevel::BigPIC) 559 TlsRef = MCBinaryExpr::createAdd( 560 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 561 const MachineOperand &MO = MI->getOperand(2); 562 const GlobalValue *GValue = MO.getGlobal(); 563 MCSymbol *MOSymbol = getSymbol(GValue); 564 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 565 EmitToStreamer(*OutStreamer, 566 MCInstBuilder(Subtarget->isPPC64() ? Opcode 567 : (unsigned)PPC::BL_TLS) 568 .addExpr(TlsRef) 569 .addExpr(SymVar)); 570 } 571 572 /// Map a machine operand for a TOC pseudo-machine instruction to its 573 /// corresponding MCSymbol. 574 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 575 AsmPrinter &AP) { 576 switch (MO.getType()) { 577 case MachineOperand::MO_GlobalAddress: 578 return AP.getSymbol(MO.getGlobal()); 579 case MachineOperand::MO_ConstantPoolIndex: 580 return AP.GetCPISymbol(MO.getIndex()); 581 case MachineOperand::MO_JumpTableIndex: 582 return AP.GetJTISymbol(MO.getIndex()); 583 case MachineOperand::MO_BlockAddress: 584 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 585 default: 586 llvm_unreachable("Unexpected operand type to get symbol."); 587 } 588 } 589 590 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 591 /// the current output stream. 592 /// 593 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 594 MCInst TmpInst; 595 const bool IsPPC64 = Subtarget->isPPC64(); 596 const bool IsAIX = Subtarget->isAIXABI(); 597 const Module *M = MF->getFunction().getParent(); 598 PICLevel::Level PL = M->getPICLevel(); 599 600 #ifndef NDEBUG 601 // Validate that SPE and FPU are mutually exclusive in codegen 602 if (!MI->isInlineAsm()) { 603 for (const MachineOperand &MO: MI->operands()) { 604 if (MO.isReg()) { 605 Register Reg = MO.getReg(); 606 if (Subtarget->hasSPE()) { 607 if (PPC::F4RCRegClass.contains(Reg) || 608 PPC::F8RCRegClass.contains(Reg) || 609 PPC::VFRCRegClass.contains(Reg) || 610 PPC::VRRCRegClass.contains(Reg) || 611 PPC::VSFRCRegClass.contains(Reg) || 612 PPC::VSSRCRegClass.contains(Reg) 613 ) 614 llvm_unreachable("SPE targets cannot have FPRegs!"); 615 } else { 616 if (PPC::SPERCRegClass.contains(Reg)) 617 llvm_unreachable("SPE register found in FPU-targeted code!"); 618 } 619 } 620 } 621 } 622 #endif 623 624 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 625 ptrdiff_t OriginalOffset) { 626 // Apply an offset to the TOC-based expression such that the adjusted 627 // notional offset from the TOC base (to be encoded into the instruction's D 628 // or DS field) is the signed 16-bit truncation of the original notional 629 // offset from the TOC base. 630 // This is consistent with the treatment used both by XL C/C++ and 631 // by AIX ld -r. 632 ptrdiff_t Adjustment = 633 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 634 return MCBinaryExpr::createAdd( 635 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 636 }; 637 638 auto getTOCEntryLoadingExprForXCOFF = 639 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 640 this](const MCSymbol *MOSymbol, const MCExpr *Expr) -> const MCExpr * { 641 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 642 const auto TOCEntryIter = 643 TOC.find({MOSymbol, MCSymbolRefExpr::VariantKind::VK_None}); 644 assert(TOCEntryIter != TOC.end() && 645 "Could not find the TOC entry for this symbol."); 646 const ptrdiff_t EntryDistanceFromTOCBase = 647 (TOCEntryIter - TOC.begin()) * EntryByteSize; 648 constexpr int16_t PositiveTOCRange = INT16_MAX; 649 650 if (EntryDistanceFromTOCBase > PositiveTOCRange) 651 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 652 653 return Expr; 654 }; 655 656 // Lower multi-instruction pseudo operations. 657 switch (MI->getOpcode()) { 658 default: break; 659 case TargetOpcode::DBG_VALUE: 660 llvm_unreachable("Should be handled target independently"); 661 case TargetOpcode::STACKMAP: 662 return LowerSTACKMAP(SM, *MI); 663 case TargetOpcode::PATCHPOINT: 664 return LowerPATCHPOINT(SM, *MI); 665 666 case PPC::MoveGOTtoLR: { 667 // Transform %lr = MoveGOTtoLR 668 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 669 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 670 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 671 // blrl 672 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 673 MCSymbol *GOTSymbol = 674 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 675 const MCExpr *OffsExpr = 676 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 677 MCSymbolRefExpr::VK_PPC_LOCAL, 678 OutContext), 679 MCConstantExpr::create(4, OutContext), 680 OutContext); 681 682 // Emit the 'bl'. 683 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 684 return; 685 } 686 case PPC::MovePCtoLR: 687 case PPC::MovePCtoLR8: { 688 // Transform %lr = MovePCtoLR 689 // Into this, where the label is the PIC base: 690 // bl L1$pb 691 // L1$pb: 692 MCSymbol *PICBase = MF->getPICBaseSymbol(); 693 694 // Emit the 'bl'. 695 EmitToStreamer(*OutStreamer, 696 MCInstBuilder(PPC::BL) 697 // FIXME: We would like an efficient form for this, so we 698 // don't have to do a lot of extra uniquing. 699 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 700 701 // Emit the label. 702 OutStreamer->emitLabel(PICBase); 703 return; 704 } 705 case PPC::UpdateGBR: { 706 // Transform %rd = UpdateGBR(%rt, %ri) 707 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 708 // add %rd, %rt, %ri 709 // or into (if secure plt mode is on): 710 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 711 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 712 // Get the offset from the GOT Base Register to the GOT 713 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 714 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 715 unsigned PICR = TmpInst.getOperand(0).getReg(); 716 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 717 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 718 : ".LTOC"); 719 const MCExpr *PB = 720 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 721 722 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 723 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 724 725 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 726 EmitToStreamer( 727 *OutStreamer, 728 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 729 730 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 731 EmitToStreamer( 732 *OutStreamer, 733 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 734 return; 735 } else { 736 MCSymbol *PICOffset = 737 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 738 TmpInst.setOpcode(PPC::LWZ); 739 const MCExpr *Exp = 740 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 741 const MCExpr *PB = 742 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 743 MCSymbolRefExpr::VK_None, 744 OutContext); 745 const MCOperand TR = TmpInst.getOperand(1); 746 const MCOperand PICR = TmpInst.getOperand(0); 747 748 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 749 TmpInst.getOperand(1) = 750 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 751 TmpInst.getOperand(0) = TR; 752 TmpInst.getOperand(2) = PICR; 753 EmitToStreamer(*OutStreamer, TmpInst); 754 755 TmpInst.setOpcode(PPC::ADD4); 756 TmpInst.getOperand(0) = PICR; 757 TmpInst.getOperand(1) = TR; 758 TmpInst.getOperand(2) = PICR; 759 EmitToStreamer(*OutStreamer, TmpInst); 760 return; 761 } 762 } 763 case PPC::LWZtoc: { 764 // Transform %rN = LWZtoc @op1, %r2 765 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 766 767 // Change the opcode to LWZ. 768 TmpInst.setOpcode(PPC::LWZ); 769 770 const MachineOperand &MO = MI->getOperand(1); 771 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 772 "Invalid operand for LWZtoc."); 773 774 // Map the operand to its corresponding MCSymbol. 775 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 776 777 // Create a reference to the GOT entry for the symbol. The GOT entry will be 778 // synthesized later. 779 if (PL == PICLevel::SmallPIC && !IsAIX) { 780 const MCExpr *Exp = 781 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 782 OutContext); 783 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 784 EmitToStreamer(*OutStreamer, TmpInst); 785 return; 786 } 787 788 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 789 // storage allocated in the TOC which contains the address of 790 // 'MOSymbol'. Said TOC entry will be synthesized later. 791 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 792 const MCExpr *Exp = 793 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 794 795 // AIX uses the label directly as the lwz displacement operand for 796 // references into the toc section. The displacement value will be generated 797 // relative to the toc-base. 798 if (IsAIX) { 799 assert( 800 TM.getCodeModel() == CodeModel::Small && 801 "This pseudo should only be selected for 32-bit small code model."); 802 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp); 803 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 804 EmitToStreamer(*OutStreamer, TmpInst); 805 return; 806 } 807 808 // Create an explicit subtract expression between the local symbol and 809 // '.LTOC' to manifest the toc-relative offset. 810 const MCExpr *PB = MCSymbolRefExpr::create( 811 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 812 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 813 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 814 EmitToStreamer(*OutStreamer, TmpInst); 815 return; 816 } 817 case PPC::LDtocJTI: 818 case PPC::LDtocCPT: 819 case PPC::LDtocBA: 820 case PPC::LDtoc: { 821 // Transform %x3 = LDtoc @min1, %x2 822 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 823 824 // Change the opcode to LD. 825 TmpInst.setOpcode(PPC::LD); 826 827 const MachineOperand &MO = MI->getOperand(1); 828 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 829 "Invalid operand!"); 830 831 // Map the operand to its corresponding MCSymbol. 832 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 833 834 // Map the machine operand to its corresponding MCSymbol, then map the 835 // global address operand to be a reference to the TOC entry we will 836 // synthesize later. 837 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 838 839 const MCSymbolRefExpr::VariantKind VK = 840 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 841 const MCExpr *Exp = 842 MCSymbolRefExpr::create(TOCEntry, VK, OutContext); 843 TmpInst.getOperand(1) = MCOperand::createExpr( 844 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp) : Exp); 845 EmitToStreamer(*OutStreamer, TmpInst); 846 return; 847 } 848 case PPC::ADDIStocHA: { 849 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 850 "This pseudo should only be selected for 32-bit large code model on" 851 " AIX."); 852 853 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 854 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 855 856 // Change the opcode to ADDIS. 857 TmpInst.setOpcode(PPC::ADDIS); 858 859 const MachineOperand &MO = MI->getOperand(2); 860 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 861 "Invalid operand for ADDIStocHA."); 862 863 // Map the machine operand to its corresponding MCSymbol. 864 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 865 866 // Always use TOC on AIX. Map the global address operand to be a reference 867 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 868 // reference the storage allocated in the TOC which contains the address of 869 // 'MOSymbol'. 870 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 871 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 872 MCSymbolRefExpr::VK_PPC_U, 873 OutContext); 874 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 875 EmitToStreamer(*OutStreamer, TmpInst); 876 return; 877 } 878 case PPC::LWZtocL: { 879 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 880 "This pseudo should only be selected for 32-bit large code model on" 881 " AIX."); 882 883 // Transform %rd = LWZtocL @sym, %rs. 884 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 885 886 // Change the opcode to lwz. 887 TmpInst.setOpcode(PPC::LWZ); 888 889 const MachineOperand &MO = MI->getOperand(1); 890 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 891 "Invalid operand for LWZtocL."); 892 893 // Map the machine operand to its corresponding MCSymbol. 894 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 895 896 // Always use TOC on AIX. Map the global address operand to be a reference 897 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 898 // reference the storage allocated in the TOC which contains the address of 899 // 'MOSymbol'. 900 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol); 901 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 902 MCSymbolRefExpr::VK_PPC_L, 903 OutContext); 904 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 905 EmitToStreamer(*OutStreamer, TmpInst); 906 return; 907 } 908 case PPC::ADDIStocHA8: { 909 // Transform %xd = ADDIStocHA8 %x2, @sym 910 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 911 912 // Change the opcode to ADDIS8. If the global address is the address of 913 // an external symbol, is a jump table address, is a block address, or is a 914 // constant pool index with large code model enabled, then generate a TOC 915 // entry and reference that. Otherwise, reference the symbol directly. 916 TmpInst.setOpcode(PPC::ADDIS8); 917 918 const MachineOperand &MO = MI->getOperand(2); 919 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 920 "Invalid operand for ADDIStocHA8!"); 921 922 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 923 924 const bool GlobalToc = 925 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 926 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 927 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 928 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 929 930 const MCSymbolRefExpr::VariantKind VK = 931 IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 932 933 const MCExpr *Exp = 934 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 935 936 if (!MO.isJTI() && MO.getOffset()) 937 Exp = MCBinaryExpr::createAdd(Exp, 938 MCConstantExpr::create(MO.getOffset(), 939 OutContext), 940 OutContext); 941 942 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 943 EmitToStreamer(*OutStreamer, TmpInst); 944 return; 945 } 946 case PPC::LDtocL: { 947 // Transform %xd = LDtocL @sym, %xs 948 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 949 950 // Change the opcode to LD. If the global address is the address of 951 // an external symbol, is a jump table address, is a block address, or is 952 // a constant pool index with large code model enabled, then generate a 953 // TOC entry and reference that. Otherwise, reference the symbol directly. 954 TmpInst.setOpcode(PPC::LD); 955 956 const MachineOperand &MO = MI->getOperand(1); 957 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 958 MO.isBlockAddress()) && 959 "Invalid operand for LDtocL!"); 960 961 LLVM_DEBUG(assert( 962 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 963 "LDtocL used on symbol that could be accessed directly is " 964 "invalid. Must match ADDIStocHA8.")); 965 966 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 967 968 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 969 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol); 970 971 const MCSymbolRefExpr::VariantKind VK = 972 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 973 const MCExpr *Exp = 974 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 975 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 976 EmitToStreamer(*OutStreamer, TmpInst); 977 return; 978 } 979 case PPC::ADDItocL: { 980 // Transform %xd = ADDItocL %xs, @sym 981 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 982 983 // Change the opcode to ADDI8. If the global address is external, then 984 // generate a TOC entry and reference that. Otherwise, reference the 985 // symbol directly. 986 TmpInst.setOpcode(PPC::ADDI8); 987 988 const MachineOperand &MO = MI->getOperand(2); 989 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 990 991 LLVM_DEBUG(assert( 992 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 993 "Interposable definitions must use indirect access.")); 994 995 const MCExpr *Exp = 996 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 997 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 998 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 999 EmitToStreamer(*OutStreamer, TmpInst); 1000 return; 1001 } 1002 case PPC::ADDISgotTprelHA: { 1003 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1004 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1005 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1006 const MachineOperand &MO = MI->getOperand(2); 1007 const GlobalValue *GValue = MO.getGlobal(); 1008 MCSymbol *MOSymbol = getSymbol(GValue); 1009 const MCExpr *SymGotTprel = 1010 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1011 OutContext); 1012 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1013 .addReg(MI->getOperand(0).getReg()) 1014 .addReg(MI->getOperand(1).getReg()) 1015 .addExpr(SymGotTprel)); 1016 return; 1017 } 1018 case PPC::LDgotTprelL: 1019 case PPC::LDgotTprelL32: { 1020 // Transform %xd = LDgotTprelL @sym, %xs 1021 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1022 1023 // Change the opcode to LD. 1024 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1025 const MachineOperand &MO = MI->getOperand(1); 1026 const GlobalValue *GValue = MO.getGlobal(); 1027 MCSymbol *MOSymbol = getSymbol(GValue); 1028 const MCExpr *Exp = MCSymbolRefExpr::create( 1029 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1030 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1031 OutContext); 1032 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1033 EmitToStreamer(*OutStreamer, TmpInst); 1034 return; 1035 } 1036 1037 case PPC::PPC32PICGOT: { 1038 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1039 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1040 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1041 1042 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1043 // FIXME: We would like an efficient form for this, so we don't have to do 1044 // a lot of extra uniquing. 1045 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1046 const MCExpr *OffsExpr = 1047 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1048 MCSymbolRefExpr::create(GOTRef, OutContext), 1049 OutContext); 1050 OutStreamer->emitLabel(GOTRef); 1051 OutStreamer->emitValue(OffsExpr, 4); 1052 OutStreamer->emitLabel(NextInstr); 1053 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1054 .addReg(MI->getOperand(0).getReg())); 1055 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1056 .addReg(MI->getOperand(1).getReg()) 1057 .addImm(0) 1058 .addReg(MI->getOperand(0).getReg())); 1059 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1060 .addReg(MI->getOperand(0).getReg()) 1061 .addReg(MI->getOperand(1).getReg()) 1062 .addReg(MI->getOperand(0).getReg())); 1063 return; 1064 } 1065 case PPC::PPC32GOT: { 1066 MCSymbol *GOTSymbol = 1067 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1068 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1069 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1070 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1071 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1072 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1073 .addReg(MI->getOperand(0).getReg()) 1074 .addExpr(SymGotTlsL)); 1075 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1076 .addReg(MI->getOperand(0).getReg()) 1077 .addReg(MI->getOperand(0).getReg()) 1078 .addExpr(SymGotTlsHA)); 1079 return; 1080 } 1081 case PPC::ADDIStlsgdHA: { 1082 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1083 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1084 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1085 const MachineOperand &MO = MI->getOperand(2); 1086 const GlobalValue *GValue = MO.getGlobal(); 1087 MCSymbol *MOSymbol = getSymbol(GValue); 1088 const MCExpr *SymGotTlsGD = 1089 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1090 OutContext); 1091 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1092 .addReg(MI->getOperand(0).getReg()) 1093 .addReg(MI->getOperand(1).getReg()) 1094 .addExpr(SymGotTlsGD)); 1095 return; 1096 } 1097 case PPC::ADDItlsgdL: 1098 // Transform: %xd = ADDItlsgdL %xs, @sym 1099 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1100 case PPC::ADDItlsgdL32: { 1101 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1102 // Into: %rd = ADDI %rs, sym@got@tlsgd 1103 const MachineOperand &MO = MI->getOperand(2); 1104 const GlobalValue *GValue = MO.getGlobal(); 1105 MCSymbol *MOSymbol = getSymbol(GValue); 1106 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1107 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1108 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1109 OutContext); 1110 EmitToStreamer(*OutStreamer, 1111 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1112 .addReg(MI->getOperand(0).getReg()) 1113 .addReg(MI->getOperand(1).getReg()) 1114 .addExpr(SymGotTlsGD)); 1115 return; 1116 } 1117 case PPC::GETtlsADDR: 1118 // Transform: %x3 = GETtlsADDR %x3, @sym 1119 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1120 case PPC::GETtlsADDRPCREL: 1121 case PPC::GETtlsADDR32: { 1122 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1123 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1124 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1125 return; 1126 } 1127 case PPC::ADDIStlsldHA: { 1128 // Transform: %xd = ADDIStlsldHA %x2, @sym 1129 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1130 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1131 const MachineOperand &MO = MI->getOperand(2); 1132 const GlobalValue *GValue = MO.getGlobal(); 1133 MCSymbol *MOSymbol = getSymbol(GValue); 1134 const MCExpr *SymGotTlsLD = 1135 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1136 OutContext); 1137 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1138 .addReg(MI->getOperand(0).getReg()) 1139 .addReg(MI->getOperand(1).getReg()) 1140 .addExpr(SymGotTlsLD)); 1141 return; 1142 } 1143 case PPC::ADDItlsldL: 1144 // Transform: %xd = ADDItlsldL %xs, @sym 1145 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1146 case PPC::ADDItlsldL32: { 1147 // Transform: %rd = ADDItlsldL32 %rs, @sym 1148 // Into: %rd = ADDI %rs, sym@got@tlsld 1149 const MachineOperand &MO = MI->getOperand(2); 1150 const GlobalValue *GValue = MO.getGlobal(); 1151 MCSymbol *MOSymbol = getSymbol(GValue); 1152 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1153 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1154 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1155 OutContext); 1156 EmitToStreamer(*OutStreamer, 1157 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1158 .addReg(MI->getOperand(0).getReg()) 1159 .addReg(MI->getOperand(1).getReg()) 1160 .addExpr(SymGotTlsLD)); 1161 return; 1162 } 1163 case PPC::GETtlsldADDR: 1164 // Transform: %x3 = GETtlsldADDR %x3, @sym 1165 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1166 case PPC::GETtlsldADDRPCREL: 1167 case PPC::GETtlsldADDR32: { 1168 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1169 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1170 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1171 return; 1172 } 1173 case PPC::ADDISdtprelHA: 1174 // Transform: %xd = ADDISdtprelHA %xs, @sym 1175 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1176 case PPC::ADDISdtprelHA32: { 1177 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1178 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1179 const MachineOperand &MO = MI->getOperand(2); 1180 const GlobalValue *GValue = MO.getGlobal(); 1181 MCSymbol *MOSymbol = getSymbol(GValue); 1182 const MCExpr *SymDtprel = 1183 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1184 OutContext); 1185 EmitToStreamer( 1186 *OutStreamer, 1187 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1188 .addReg(MI->getOperand(0).getReg()) 1189 .addReg(MI->getOperand(1).getReg()) 1190 .addExpr(SymDtprel)); 1191 return; 1192 } 1193 case PPC::PADDIdtprel: { 1194 // Transform: %rd = PADDIdtprel %rs, @sym 1195 // Into: %rd = PADDI8 %rs, sym@dtprel 1196 const MachineOperand &MO = MI->getOperand(2); 1197 const GlobalValue *GValue = MO.getGlobal(); 1198 MCSymbol *MOSymbol = getSymbol(GValue); 1199 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1200 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1201 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1202 .addReg(MI->getOperand(0).getReg()) 1203 .addReg(MI->getOperand(1).getReg()) 1204 .addExpr(SymDtprel)); 1205 return; 1206 } 1207 1208 case PPC::ADDIdtprelL: 1209 // Transform: %xd = ADDIdtprelL %xs, @sym 1210 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1211 case PPC::ADDIdtprelL32: { 1212 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1213 // Into: %rd = ADDI %rs, sym@dtprel@l 1214 const MachineOperand &MO = MI->getOperand(2); 1215 const GlobalValue *GValue = MO.getGlobal(); 1216 MCSymbol *MOSymbol = getSymbol(GValue); 1217 const MCExpr *SymDtprel = 1218 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1219 OutContext); 1220 EmitToStreamer(*OutStreamer, 1221 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1222 .addReg(MI->getOperand(0).getReg()) 1223 .addReg(MI->getOperand(1).getReg()) 1224 .addExpr(SymDtprel)); 1225 return; 1226 } 1227 case PPC::MFOCRF: 1228 case PPC::MFOCRF8: 1229 if (!Subtarget->hasMFOCRF()) { 1230 // Transform: %r3 = MFOCRF %cr7 1231 // Into: %r3 = MFCR ;; cr7 1232 unsigned NewOpcode = 1233 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1234 OutStreamer->AddComment(PPCInstPrinter:: 1235 getRegisterName(MI->getOperand(1).getReg())); 1236 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1237 .addReg(MI->getOperand(0).getReg())); 1238 return; 1239 } 1240 break; 1241 case PPC::MTOCRF: 1242 case PPC::MTOCRF8: 1243 if (!Subtarget->hasMFOCRF()) { 1244 // Transform: %cr7 = MTOCRF %r3 1245 // Into: MTCRF mask, %r3 ;; cr7 1246 unsigned NewOpcode = 1247 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1248 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1249 ->getEncodingValue(MI->getOperand(0).getReg()); 1250 OutStreamer->AddComment(PPCInstPrinter:: 1251 getRegisterName(MI->getOperand(0).getReg())); 1252 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1253 .addImm(Mask) 1254 .addReg(MI->getOperand(1).getReg())); 1255 return; 1256 } 1257 break; 1258 case PPC::LD: 1259 case PPC::STD: 1260 case PPC::LWA_32: 1261 case PPC::LWA: { 1262 // Verify alignment is legal, so we don't create relocations 1263 // that can't be supported. 1264 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1265 const MachineOperand &MO = MI->getOperand(OpNum); 1266 if (MO.isGlobal()) { 1267 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1268 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1269 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1270 } 1271 // Now process the instruction normally. 1272 break; 1273 } 1274 } 1275 1276 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1277 EmitToStreamer(*OutStreamer, TmpInst); 1278 } 1279 1280 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1281 if (!Subtarget->isPPC64()) 1282 return PPCAsmPrinter::emitInstruction(MI); 1283 1284 switch (MI->getOpcode()) { 1285 default: 1286 return PPCAsmPrinter::emitInstruction(MI); 1287 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1288 // .begin: 1289 // b .end # lis 0, FuncId[16..32] 1290 // nop # li 0, FuncId[0..15] 1291 // std 0, -8(1) 1292 // mflr 0 1293 // bl __xray_FunctionEntry 1294 // mtlr 0 1295 // .end: 1296 // 1297 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1298 // of instructions change. 1299 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1300 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1301 OutStreamer->emitLabel(BeginOfSled); 1302 EmitToStreamer(*OutStreamer, 1303 MCInstBuilder(PPC::B).addExpr( 1304 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1305 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1306 EmitToStreamer( 1307 *OutStreamer, 1308 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1309 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1310 EmitToStreamer(*OutStreamer, 1311 MCInstBuilder(PPC::BL8_NOP) 1312 .addExpr(MCSymbolRefExpr::create( 1313 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1314 OutContext))); 1315 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1316 OutStreamer->emitLabel(EndOfSled); 1317 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1318 break; 1319 } 1320 case TargetOpcode::PATCHABLE_RET: { 1321 unsigned RetOpcode = MI->getOperand(0).getImm(); 1322 MCInst RetInst; 1323 RetInst.setOpcode(RetOpcode); 1324 for (const auto &MO : 1325 make_range(std::next(MI->operands_begin()), MI->operands_end())) { 1326 MCOperand MCOp; 1327 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1328 RetInst.addOperand(MCOp); 1329 } 1330 1331 bool IsConditional; 1332 if (RetOpcode == PPC::BCCLR) { 1333 IsConditional = true; 1334 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1335 RetOpcode == PPC::TCRETURNai8) { 1336 break; 1337 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1338 IsConditional = false; 1339 } else { 1340 EmitToStreamer(*OutStreamer, RetInst); 1341 break; 1342 } 1343 1344 MCSymbol *FallthroughLabel; 1345 if (IsConditional) { 1346 // Before: 1347 // bgtlr cr0 1348 // 1349 // After: 1350 // ble cr0, .end 1351 // .p2align 3 1352 // .begin: 1353 // blr # lis 0, FuncId[16..32] 1354 // nop # li 0, FuncId[0..15] 1355 // std 0, -8(1) 1356 // mflr 0 1357 // bl __xray_FunctionExit 1358 // mtlr 0 1359 // blr 1360 // .end: 1361 // 1362 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1363 // of instructions change. 1364 FallthroughLabel = OutContext.createTempSymbol(); 1365 EmitToStreamer( 1366 *OutStreamer, 1367 MCInstBuilder(PPC::BCC) 1368 .addImm(PPC::InvertPredicate( 1369 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1370 .addReg(MI->getOperand(2).getReg()) 1371 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1372 RetInst = MCInst(); 1373 RetInst.setOpcode(PPC::BLR8); 1374 } 1375 // .p2align 3 1376 // .begin: 1377 // b(lr)? # lis 0, FuncId[16..32] 1378 // nop # li 0, FuncId[0..15] 1379 // std 0, -8(1) 1380 // mflr 0 1381 // bl __xray_FunctionExit 1382 // mtlr 0 1383 // b(lr)? 1384 // 1385 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1386 // of instructions change. 1387 OutStreamer->emitCodeAlignment(8); 1388 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1389 OutStreamer->emitLabel(BeginOfSled); 1390 EmitToStreamer(*OutStreamer, RetInst); 1391 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1392 EmitToStreamer( 1393 *OutStreamer, 1394 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1395 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1396 EmitToStreamer(*OutStreamer, 1397 MCInstBuilder(PPC::BL8_NOP) 1398 .addExpr(MCSymbolRefExpr::create( 1399 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1400 OutContext))); 1401 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1402 EmitToStreamer(*OutStreamer, RetInst); 1403 if (IsConditional) 1404 OutStreamer->emitLabel(FallthroughLabel); 1405 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1406 break; 1407 } 1408 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1409 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1410 case TargetOpcode::PATCHABLE_TAIL_CALL: 1411 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1412 // normal function exit from a tail exit. 1413 llvm_unreachable("Tail call is handled in the normal case. See comments " 1414 "around this assert."); 1415 } 1416 } 1417 1418 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1419 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1420 PPCTargetStreamer *TS = 1421 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1422 1423 if (TS) 1424 TS->emitAbiVersion(2); 1425 } 1426 1427 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1428 !isPositionIndependent()) 1429 return AsmPrinter::emitStartOfAsmFile(M); 1430 1431 if (M.getPICLevel() == PICLevel::SmallPIC) 1432 return AsmPrinter::emitStartOfAsmFile(M); 1433 1434 OutStreamer->SwitchSection(OutContext.getELFSection( 1435 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1436 1437 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1438 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1439 1440 OutStreamer->emitLabel(CurrentPos); 1441 1442 // The GOT pointer points to the middle of the GOT, in order to reference the 1443 // entire 64kB range. 0x8000 is the midpoint. 1444 const MCExpr *tocExpr = 1445 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1446 MCConstantExpr::create(0x8000, OutContext), 1447 OutContext); 1448 1449 OutStreamer->emitAssignment(TOCSym, tocExpr); 1450 1451 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1452 } 1453 1454 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1455 // linux/ppc32 - Normal entry label. 1456 if (!Subtarget->isPPC64() && 1457 (!isPositionIndependent() || 1458 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1459 return AsmPrinter::emitFunctionEntryLabel(); 1460 1461 if (!Subtarget->isPPC64()) { 1462 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1463 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1464 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1465 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1466 OutStreamer->emitLabel(RelocSymbol); 1467 1468 const MCExpr *OffsExpr = 1469 MCBinaryExpr::createSub( 1470 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1471 OutContext), 1472 MCSymbolRefExpr::create(PICBase, OutContext), 1473 OutContext); 1474 OutStreamer->emitValue(OffsExpr, 4); 1475 OutStreamer->emitLabel(CurrentFnSym); 1476 return; 1477 } else 1478 return AsmPrinter::emitFunctionEntryLabel(); 1479 } 1480 1481 // ELFv2 ABI - Normal entry label. 1482 if (Subtarget->isELFv2ABI()) { 1483 // In the Large code model, we allow arbitrary displacements between 1484 // the text section and its associated TOC section. We place the 1485 // full 8-byte offset to the TOC in memory immediately preceding 1486 // the function global entry point. 1487 if (TM.getCodeModel() == CodeModel::Large 1488 && !MF->getRegInfo().use_empty(PPC::X2)) { 1489 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1490 1491 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1492 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1493 const MCExpr *TOCDeltaExpr = 1494 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1495 MCSymbolRefExpr::create(GlobalEPSymbol, 1496 OutContext), 1497 OutContext); 1498 1499 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1500 OutStreamer->emitValue(TOCDeltaExpr, 8); 1501 } 1502 return AsmPrinter::emitFunctionEntryLabel(); 1503 } 1504 1505 // Emit an official procedure descriptor. 1506 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1507 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1508 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1509 OutStreamer->SwitchSection(Section); 1510 OutStreamer->emitLabel(CurrentFnSym); 1511 OutStreamer->emitValueToAlignment(8); 1512 MCSymbol *Symbol1 = CurrentFnSymForSize; 1513 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1514 // entry point. 1515 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1516 8 /*size*/); 1517 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1518 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1519 OutStreamer->emitValue( 1520 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1521 8/*size*/); 1522 // Emit a null environment pointer. 1523 OutStreamer->emitIntValue(0, 8 /* size */); 1524 OutStreamer->SwitchSection(Current.first, Current.second); 1525 } 1526 1527 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1528 const DataLayout &DL = getDataLayout(); 1529 1530 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1531 1532 PPCTargetStreamer *TS = 1533 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1534 1535 if (!TOC.empty()) { 1536 const char *Name = isPPC64 ? ".toc" : ".got2"; 1537 MCSectionELF *Section = OutContext.getELFSection( 1538 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1539 OutStreamer->SwitchSection(Section); 1540 if (!isPPC64) 1541 OutStreamer->emitValueToAlignment(4); 1542 1543 for (const auto &TOCMapPair : TOC) { 1544 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1545 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1546 1547 OutStreamer->emitLabel(TOCEntryLabel); 1548 if (isPPC64 && TS != nullptr) 1549 TS->emitTCEntry(*TOCEntryTarget); 1550 else 1551 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1552 } 1553 } 1554 1555 PPCAsmPrinter::emitEndOfAsmFile(M); 1556 } 1557 1558 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1559 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1560 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1561 // provide two entry points. The ABI guarantees that when calling the 1562 // local entry point, r2 is set up by the caller to contain the TOC base 1563 // for this function, and when calling the global entry point, r12 is set 1564 // up by the caller to hold the address of the global entry point. We 1565 // thus emit a prefix sequence along the following lines: 1566 // 1567 // func: 1568 // .Lfunc_gepNN: 1569 // # global entry point 1570 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1571 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1572 // .Lfunc_lepNN: 1573 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1574 // # local entry point, followed by function body 1575 // 1576 // For the Large code model, we create 1577 // 1578 // .Lfunc_tocNN: 1579 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1580 // func: 1581 // .Lfunc_gepNN: 1582 // # global entry point 1583 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1584 // add r2,r2,r12 1585 // .Lfunc_lepNN: 1586 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1587 // # local entry point, followed by function body 1588 // 1589 // This ensures we have r2 set up correctly while executing the function 1590 // body, no matter which entry point is called. 1591 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1592 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1593 !MF->getRegInfo().use_empty(PPC::R2); 1594 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1595 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1596 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1597 Subtarget->isELFv2ABI() && UsesX2OrR2; 1598 1599 // Only do all that if the function uses R2 as the TOC pointer 1600 // in the first place. We don't need the global entry point if the 1601 // function uses R2 as an allocatable register. 1602 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1603 // Note: The logic here must be synchronized with the code in the 1604 // branch-selection pass which sets the offset of the first block in the 1605 // function. This matters because it affects the alignment. 1606 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1607 OutStreamer->emitLabel(GlobalEntryLabel); 1608 const MCSymbolRefExpr *GlobalEntryLabelExp = 1609 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1610 1611 if (TM.getCodeModel() != CodeModel::Large) { 1612 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1613 const MCExpr *TOCDeltaExpr = 1614 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1615 GlobalEntryLabelExp, OutContext); 1616 1617 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1618 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1619 .addReg(PPC::X2) 1620 .addReg(PPC::X12) 1621 .addExpr(TOCDeltaHi)); 1622 1623 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1624 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1625 .addReg(PPC::X2) 1626 .addReg(PPC::X2) 1627 .addExpr(TOCDeltaLo)); 1628 } else { 1629 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1630 const MCExpr *TOCOffsetDeltaExpr = 1631 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1632 GlobalEntryLabelExp, OutContext); 1633 1634 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1635 .addReg(PPC::X2) 1636 .addExpr(TOCOffsetDeltaExpr) 1637 .addReg(PPC::X12)); 1638 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1639 .addReg(PPC::X2) 1640 .addReg(PPC::X2) 1641 .addReg(PPC::X12)); 1642 } 1643 1644 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1645 OutStreamer->emitLabel(LocalEntryLabel); 1646 const MCSymbolRefExpr *LocalEntryLabelExp = 1647 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1648 const MCExpr *LocalOffsetExp = 1649 MCBinaryExpr::createSub(LocalEntryLabelExp, 1650 GlobalEntryLabelExp, OutContext); 1651 1652 PPCTargetStreamer *TS = 1653 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1654 1655 if (TS) 1656 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1657 } else if (Subtarget->isUsingPCRelativeCalls()) { 1658 // When generating the entry point for a function we have a few scenarios 1659 // based on whether or not that function uses R2 and whether or not that 1660 // function makes calls (or is a leaf function). 1661 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1662 // and preserves it). In this case st_other=0 and both 1663 // the local and global entry points for the function are the same. 1664 // No special entry point code is required. 1665 // 2) A function uses the TOC pointer R2. This function may or may not have 1666 // calls. In this case st_other=[2,6] and the global and local entry 1667 // points are different. Code to correctly setup the TOC pointer in R2 1668 // is put between the global and local entry points. This case is 1669 // covered by the if statatement above. 1670 // 3) A function does not use the TOC pointer R2 but does have calls. 1671 // In this case st_other=1 since we do not know whether or not any 1672 // of the callees clobber R2. This case is dealt with in this else if 1673 // block. Tail calls are considered calls and the st_other should also 1674 // be set to 1 in that case as well. 1675 // 4) The function does not use the TOC pointer but R2 is used inside 1676 // the function. In this case st_other=1 once again. 1677 // 5) This function uses inline asm. We mark R2 as reserved if the function 1678 // has inline asm as we have to assume that it may be used. 1679 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1680 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1681 PPCTargetStreamer *TS = 1682 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1683 if (TS) 1684 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1685 MCConstantExpr::create(1, OutContext)); 1686 } 1687 } 1688 } 1689 1690 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1691 /// directive. 1692 /// 1693 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1694 // Only the 64-bit target requires a traceback table. For now, 1695 // we only emit the word of zeroes that GDB requires to find 1696 // the end of the function, and zeroes for the eight-byte 1697 // mandatory fields. 1698 // FIXME: We should fill in the eight-byte mandatory fields as described in 1699 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1700 // currently make use of these fields). 1701 if (Subtarget->isPPC64()) { 1702 OutStreamer->emitIntValue(0, 4/*size*/); 1703 OutStreamer->emitIntValue(0, 8/*size*/); 1704 } 1705 } 1706 1707 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1708 MCSymbol *GVSym) const { 1709 1710 assert(MAI->hasVisibilityOnlyWithLinkage() && 1711 "AIX's linkage directives take a visibility setting."); 1712 1713 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1714 switch (GV->getLinkage()) { 1715 case GlobalValue::ExternalLinkage: 1716 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1717 break; 1718 case GlobalValue::LinkOnceAnyLinkage: 1719 case GlobalValue::LinkOnceODRLinkage: 1720 case GlobalValue::WeakAnyLinkage: 1721 case GlobalValue::WeakODRLinkage: 1722 case GlobalValue::ExternalWeakLinkage: 1723 LinkageAttr = MCSA_Weak; 1724 break; 1725 case GlobalValue::AvailableExternallyLinkage: 1726 LinkageAttr = MCSA_Extern; 1727 break; 1728 case GlobalValue::PrivateLinkage: 1729 return; 1730 case GlobalValue::InternalLinkage: 1731 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1732 "InternalLinkage should not have other visibility setting."); 1733 LinkageAttr = MCSA_LGlobal; 1734 break; 1735 case GlobalValue::AppendingLinkage: 1736 llvm_unreachable("Should never emit this"); 1737 case GlobalValue::CommonLinkage: 1738 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1739 } 1740 1741 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1742 1743 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1744 if (!TM.getIgnoreXCOFFVisibility()) { 1745 switch (GV->getVisibility()) { 1746 1747 // TODO: "exported" and "internal" Visibility needs to go here. 1748 case GlobalValue::DefaultVisibility: 1749 break; 1750 case GlobalValue::HiddenVisibility: 1751 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1752 break; 1753 case GlobalValue::ProtectedVisibility: 1754 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1755 break; 1756 } 1757 } 1758 1759 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1760 VisibilityAttr); 1761 } 1762 1763 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1764 // Setup CurrentFnDescSym and its containing csect. 1765 MCSectionXCOFF *FnDescSec = 1766 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1767 &MF.getFunction(), TM)); 1768 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1769 1770 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1771 1772 return AsmPrinter::SetupMachineFunction(MF); 1773 } 1774 1775 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1776 1777 if (!TM.getXCOFFTracebackTable()) 1778 return; 1779 1780 emitTracebackTable(); 1781 } 1782 1783 void PPCAIXAsmPrinter::emitTracebackTable() { 1784 1785 // Create a symbol for the end of function. 1786 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1787 OutStreamer->emitLabel(FuncEnd); 1788 1789 OutStreamer->AddComment("Traceback table begin"); 1790 // Begin with a fullword of zero. 1791 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1792 1793 SmallString<128> CommentString; 1794 raw_svector_ostream CommentOS(CommentString); 1795 1796 auto EmitComment = [&]() { 1797 OutStreamer->AddComment(CommentOS.str()); 1798 CommentString.clear(); 1799 }; 1800 1801 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 1802 EmitComment(); 1803 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 1804 }; 1805 1806 unsigned int Version = 0; 1807 CommentOS << "Version = " << Version; 1808 EmitCommentAndValue(Version, 1); 1809 1810 // There is a lack of information in the IR to assist with determining the 1811 // source language. AIX exception handling mechanism would only search for 1812 // personality routine and LSDA area when such language supports exception 1813 // handling. So to be conservatively correct and allow runtime to do its job, 1814 // we need to set it to C++ for now. 1815 TracebackTable::LanguageID LanguageIdentifier = 1816 TracebackTable::CPlusPlus; // C++ 1817 1818 CommentOS << "Language = " 1819 << getNameForTracebackTableLanguageId(LanguageIdentifier); 1820 EmitCommentAndValue(LanguageIdentifier, 1); 1821 1822 // This is only populated for the third and fourth bytes. 1823 uint32_t FirstHalfOfMandatoryField = 0; 1824 1825 // Emit the 3rd byte of the mandatory field. 1826 1827 // We always set traceback offset bit to true. 1828 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 1829 1830 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1831 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1832 1833 // Check the function uses floating-point processor instructions or not 1834 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 1835 if (MRI.isPhysRegUsed(Reg)) { 1836 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 1837 break; 1838 } 1839 } 1840 1841 #define GENBOOLCOMMENT(Prefix, V, Field) \ 1842 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 1843 << #Field 1844 1845 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 1846 CommentOS << (PrefixAndName) << " = " \ 1847 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 1848 (TracebackTable::Field##Shift)) 1849 1850 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 1851 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 1852 EmitComment(); 1853 1854 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 1855 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 1856 EmitComment(); 1857 1858 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 1859 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 1860 EmitComment(); 1861 1862 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 1863 EmitComment(); 1864 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 1865 IsFloatingPointOperationLogOrAbortEnabled); 1866 EmitComment(); 1867 1868 OutStreamer->emitIntValueInHexWithPadding( 1869 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1870 1871 // Set the 4th byte of the mandatory field. 1872 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 1873 1874 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!"); 1875 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 1876 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 1877 1878 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1879 if (!MustSaveCRs.empty()) 1880 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 1881 1882 if (FI->mustSaveLR()) 1883 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 1884 1885 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 1886 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 1887 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 1888 EmitComment(); 1889 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 1890 OnConditionDirective); 1891 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 1892 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 1893 EmitComment(); 1894 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 1895 1); 1896 1897 // Set the 5th byte of mandatory field. 1898 uint32_t SecondHalfOfMandatoryField = 0; 1899 1900 // Always store back chain. 1901 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 1902 1903 uint32_t FPRSaved = 0; 1904 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 1905 if (MRI.isPhysRegModified(Reg)) { 1906 FPRSaved = PPC::F31 - Reg + 1; 1907 break; 1908 } 1909 } 1910 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 1911 TracebackTable::FPRSavedMask; 1912 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 1913 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 1914 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 1915 EmitComment(); 1916 OutStreamer->emitIntValueInHexWithPadding( 1917 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 1918 1919 // Set the 6th byte of mandatory field. 1920 bool ShouldEmitEHBlock = TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF); 1921 if (ShouldEmitEHBlock) 1922 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 1923 1924 uint32_t GPRSaved = 0; 1925 1926 // X13 is reserved under 64-bit environment. 1927 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 1928 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 1929 1930 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 1931 if (MRI.isPhysRegModified(Reg)) { 1932 GPRSaved = GPREnd - Reg + 1; 1933 break; 1934 } 1935 } 1936 1937 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 1938 TracebackTable::GPRSavedMask; 1939 1940 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasVectorInfo); 1941 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasExtensionTable); 1942 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 1943 EmitComment(); 1944 OutStreamer->emitIntValueInHexWithPadding( 1945 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 1946 1947 // Set the 7th byte of mandatory field. 1948 uint32_t NumberOfFixedPara = FI->getFixedParamNum(); 1949 SecondHalfOfMandatoryField |= 1950 (NumberOfFixedPara << TracebackTable::NumberOfFixedParmsShift) & 1951 TracebackTable::NumberOfFixedParmsMask; 1952 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 1953 NumberOfFixedParms); 1954 EmitComment(); 1955 OutStreamer->emitIntValueInHexWithPadding( 1956 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 1957 1958 // Set the 8th byte of mandatory field. 1959 1960 // Always set parameter on stack. 1961 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 1962 1963 uint32_t NumberOfFPPara = FI->getFloatingPointParamNum(); 1964 SecondHalfOfMandatoryField |= 1965 (NumberOfFPPara << TracebackTable::NumberOfFloatingPointParmsShift) & 1966 TracebackTable::NumberOfFloatingPointParmsMask; 1967 1968 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 1969 NumberOfFloatingPointParms); 1970 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 1971 EmitComment(); 1972 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 1973 1); 1974 1975 // Generate the optional fields of traceback table. 1976 1977 // Parameter type. 1978 if (NumberOfFixedPara || NumberOfFPPara) { 1979 assert((SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) == 1980 0 && 1981 "VectorInfo has not been implemented."); 1982 uint32_t ParaType = FI->getParameterType(); 1983 CommentOS << "Parameter type = " 1984 << XCOFF::parseParmsType(ParaType, 1985 NumberOfFixedPara + NumberOfFPPara); 1986 EmitComment(); 1987 OutStreamer->emitIntValueInHexWithPadding(ParaType, sizeof(ParaType)); 1988 } 1989 1990 // Traceback table offset. 1991 OutStreamer->AddComment("Function size"); 1992 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 1993 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 1994 &(MF->getFunction()), TM); 1995 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 1996 } 1997 1998 // Since we unset the Int_Handler. 1999 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2000 report_fatal_error("Hand_Mask not implement yet"); 2001 2002 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2003 report_fatal_error("Ctl_Info not implement yet"); 2004 2005 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2006 StringRef Name = MF->getName().substr(0, INT16_MAX); 2007 int16_t NameLength = Name.size(); 2008 CommentOS << "Function name len = " 2009 << static_cast<unsigned int>(NameLength); 2010 EmitCommentAndValue(NameLength, 2); 2011 OutStreamer->AddComment("Function Name"); 2012 OutStreamer->emitBytes(Name); 2013 } 2014 2015 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2016 uint8_t AllocReg = XCOFF::AllocRegNo; 2017 OutStreamer->AddComment("AllocaUsed"); 2018 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2019 } 2020 2021 uint8_t ExtensionTableFlag = 0; 2022 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2023 if (ShouldEmitEHBlock) 2024 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2025 2026 CommentOS << "ExtensionTableFlag = " 2027 << getExtendedTBTableFlagString(ExtensionTableFlag); 2028 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2029 } 2030 2031 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2032 auto &Ctx = OutStreamer->getContext(); 2033 MCSymbol *EHInfoSym = 2034 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2035 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2036 const MCSymbol *TOCBaseSym = 2037 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2038 ->getQualNameSymbol(); 2039 const MCExpr *Exp = 2040 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2041 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2042 2043 const DataLayout &DL = getDataLayout(); 2044 OutStreamer->emitValueToAlignment(4); 2045 OutStreamer->AddComment("EHInfo Table"); 2046 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2047 } 2048 2049 #undef GENBOOLCOMMENT 2050 #undef GENVALUECOMMENT 2051 } 2052 2053 void PPCAIXAsmPrinter::ValidateGV(const GlobalVariable *GV) { 2054 // Early error checking limiting what is supported. 2055 if (GV->isThreadLocal()) 2056 report_fatal_error("Thread local not yet supported on AIX."); 2057 2058 if (GV->hasComdat()) 2059 report_fatal_error("COMDAT not yet supported by AIX."); 2060 } 2061 2062 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2063 return GV->hasAppendingLinkage() && 2064 StringSwitch<bool>(GV->getName()) 2065 // TODO: Linker could still eliminate the GV if we just skip 2066 // handling llvm.used array. Skipping them for now until we or the 2067 // AIX OS team come up with a good solution. 2068 .Case("llvm.used", true) 2069 // It's correct to just skip llvm.compiler.used array here. 2070 .Case("llvm.compiler.used", true) 2071 .Default(false); 2072 } 2073 2074 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2075 return StringSwitch<bool>(GV->getName()) 2076 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2077 .Default(false); 2078 } 2079 2080 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2081 // Special LLVM global arrays have been handled at the initialization. 2082 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2083 return; 2084 2085 assert(!GV->getName().startswith("llvm.") && 2086 "Unhandled intrinsic global variable."); 2087 ValidateGV(GV); 2088 2089 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2090 2091 if (GV->isDeclarationForLinker()) { 2092 emitLinkage(GV, GVSym); 2093 return; 2094 } 2095 2096 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2097 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly()) 2098 report_fatal_error("Encountered a global variable kind that is " 2099 "not supported yet."); 2100 2101 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2102 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2103 2104 // Switch to the containing csect. 2105 OutStreamer->SwitchSection(Csect); 2106 2107 const DataLayout &DL = GV->getParent()->getDataLayout(); 2108 2109 // Handle common symbols. 2110 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 2111 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2112 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 2113 GVSym->setStorageClass( 2114 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2115 2116 if (GVKind.isBSSLocal()) 2117 OutStreamer->emitXCOFFLocalCommonSymbol( 2118 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2119 GVSym, Alignment.value()); 2120 else 2121 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2122 return; 2123 } 2124 2125 MCSymbol *EmittedInitSym = GVSym; 2126 emitLinkage(GV, EmittedInitSym); 2127 emitAlignment(getGVAlignment(GV, DL), GV); 2128 2129 // When -fdata-sections is enabled, every GlobalVariable will 2130 // be put into its own csect; therefore, label is not necessary here. 2131 if (!TM.getDataSections() || GV->hasSection()) { 2132 OutStreamer->emitLabel(EmittedInitSym); 2133 } 2134 2135 // Emit aliasing label for global variable. 2136 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2137 OutStreamer->emitLabel(getSymbol(Alias)); 2138 }); 2139 2140 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2141 } 2142 2143 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2144 const DataLayout &DL = getDataLayout(); 2145 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2146 2147 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2148 // Emit function descriptor. 2149 OutStreamer->SwitchSection( 2150 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2151 2152 // Emit aliasing label for function descriptor csect. 2153 llvm::for_each(GOAliasMap[&MF->getFunction()], 2154 [this](const GlobalAlias *Alias) { 2155 OutStreamer->emitLabel(getSymbol(Alias)); 2156 }); 2157 2158 // Emit function entry point address. 2159 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2160 PointerSize); 2161 // Emit TOC base address. 2162 const MCSymbol *TOCBaseSym = 2163 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2164 ->getQualNameSymbol(); 2165 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2166 PointerSize); 2167 // Emit a null environment pointer. 2168 OutStreamer->emitIntValue(0, PointerSize); 2169 2170 OutStreamer->SwitchSection(Current.first, Current.second); 2171 } 2172 2173 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2174 // It's not necessary to emit the label when we have individual 2175 // function in its own csect. 2176 if (!TM.getFunctionSections()) 2177 PPCAsmPrinter::emitFunctionEntryLabel(); 2178 2179 // Emit aliasing label for function entry point label. 2180 llvm::for_each( 2181 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2182 OutStreamer->emitLabel( 2183 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2184 }); 2185 } 2186 2187 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2188 // If there are no functions in this module, we will never need to reference 2189 // the TOC base. 2190 if (M.empty()) 2191 return; 2192 2193 // Switch to section to emit TOC base. 2194 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2195 2196 PPCTargetStreamer *TS = 2197 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2198 2199 for (auto &I : TOC) { 2200 // Setup the csect for the current TC entry. 2201 MCSectionXCOFF *TCEntry = cast<MCSectionXCOFF>( 2202 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2203 OutStreamer->SwitchSection(TCEntry); 2204 2205 OutStreamer->emitLabel(I.second); 2206 if (TS != nullptr) 2207 TS->emitTCEntry(*I.first.first); 2208 } 2209 } 2210 2211 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2212 const bool Result = PPCAsmPrinter::doInitialization(M); 2213 2214 auto setCsectAlignment = [this](const GlobalObject *GO) { 2215 // Declarations have 0 alignment which is set by default. 2216 if (GO->isDeclarationForLinker()) 2217 return; 2218 2219 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2220 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2221 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2222 2223 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2224 if (GOAlign > Csect->getAlignment()) 2225 Csect->setAlignment(GOAlign); 2226 }; 2227 2228 // We need to know, up front, the alignment of csects for the assembly path, 2229 // because once a .csect directive gets emitted, we could not change the 2230 // alignment value on it. 2231 for (const auto &G : M.globals()) { 2232 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2233 continue; 2234 2235 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2236 // Generate a format indicator and a unique module id to be a part of 2237 // the sinit and sterm function names. 2238 if (FormatIndicatorAndUniqueModId.empty()) { 2239 std::string UniqueModuleId = getUniqueModuleId(&M); 2240 if (UniqueModuleId != "") 2241 // TODO: Use source file full path to generate the unique module id 2242 // and add a format indicator as a part of function name in case we 2243 // will support more than one format. 2244 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2245 else 2246 // Use the Pid and current time as the unique module id when we cannot 2247 // generate one based on a module's strong external symbols. 2248 // FIXME: Adjust the comment accordingly after we use source file full 2249 // path instead. 2250 FormatIndicatorAndUniqueModId = 2251 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2252 "_" + llvm::itostr(time(nullptr)); 2253 } 2254 2255 emitSpecialLLVMGlobal(&G); 2256 continue; 2257 } 2258 2259 setCsectAlignment(&G); 2260 } 2261 2262 for (const auto &F : M) 2263 setCsectAlignment(&F); 2264 2265 // Construct an aliasing list for each GlobalObject. 2266 for (const auto &Alias : M.aliases()) { 2267 const GlobalObject *Base = Alias.getBaseObject(); 2268 if (!Base) 2269 report_fatal_error( 2270 "alias without a base object is not yet supported on AIX"); 2271 GOAliasMap[Base].push_back(&Alias); 2272 } 2273 2274 return Result; 2275 } 2276 2277 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2278 switch (MI->getOpcode()) { 2279 default: 2280 break; 2281 case PPC::BL8: 2282 case PPC::BL: 2283 case PPC::BL8_NOP: 2284 case PPC::BL_NOP: { 2285 const MachineOperand &MO = MI->getOperand(0); 2286 if (MO.isSymbol()) { 2287 MCSymbolXCOFF *S = 2288 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2289 ExtSymSDNodeSymbols.insert(S); 2290 } 2291 } break; 2292 case PPC::BL_TLS: 2293 case PPC::BL8_TLS: 2294 case PPC::BL8_TLS_: 2295 case PPC::BL8_NOP_TLS: 2296 report_fatal_error("TLS call not yet implemented"); 2297 case PPC::TAILB: 2298 case PPC::TAILB8: 2299 case PPC::TAILBA: 2300 case PPC::TAILBA8: 2301 case PPC::TAILBCTR: 2302 case PPC::TAILBCTR8: 2303 if (MI->getOperand(0).isSymbol()) 2304 report_fatal_error("Tail call for extern symbol not yet supported."); 2305 break; 2306 } 2307 return PPCAsmPrinter::emitInstruction(MI); 2308 } 2309 2310 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2311 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2312 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2313 return PPCAsmPrinter::doFinalization(M); 2314 } 2315 2316 static unsigned mapToSinitPriority(int P) { 2317 if (P < 0 || P > 65535) 2318 report_fatal_error("invalid init priority"); 2319 2320 if (P <= 20) 2321 return P; 2322 2323 if (P < 81) 2324 return 20 + (P - 20) * 16; 2325 2326 if (P <= 1124) 2327 return 1004 + (P - 81); 2328 2329 if (P < 64512) 2330 return 2047 + (P - 1124) * 33878; 2331 2332 return 2147482625u + (P - 64512); 2333 } 2334 2335 static std::string convertToSinitPriority(int Priority) { 2336 // This helper function converts clang init priority to values used in sinit 2337 // and sterm functions. 2338 // 2339 // The conversion strategies are: 2340 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2341 // reserved priority range [0, 1023] by 2342 // - directly mapping the first 21 and the last 20 elements of the ranges 2343 // - linear interpolating the intermediate values with a step size of 16. 2344 // 2345 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2346 // sinit/sterm priority range [1024, 2147483648] by: 2347 // - directly mapping the first and the last 1024 elements of the ranges 2348 // - linear interpolating the intermediate values with a step size of 33878. 2349 unsigned int P = mapToSinitPriority(Priority); 2350 2351 std::string PrioritySuffix; 2352 llvm::raw_string_ostream os(PrioritySuffix); 2353 os << llvm::format_hex_no_prefix(P, 8); 2354 os.flush(); 2355 return PrioritySuffix; 2356 } 2357 2358 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2359 const Constant *List, bool IsCtor) { 2360 SmallVector<Structor, 8> Structors; 2361 preprocessXXStructorList(DL, List, Structors); 2362 if (Structors.empty()) 2363 return; 2364 2365 unsigned Index = 0; 2366 for (Structor &S : Structors) { 2367 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2368 S.Func = CE->getOperand(0); 2369 2370 llvm::GlobalAlias::create( 2371 GlobalValue::ExternalLinkage, 2372 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2373 llvm::Twine(convertToSinitPriority(S.Priority)) + 2374 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2375 llvm::Twine("_", llvm::utostr(Index++)), 2376 cast<Function>(S.Func)); 2377 } 2378 } 2379 2380 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2381 unsigned Encoding) { 2382 if (GV) { 2383 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2384 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2385 const MCSymbol *TOCBaseSym = 2386 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2387 ->getQualNameSymbol(); 2388 auto &Ctx = OutStreamer->getContext(); 2389 const MCExpr *Exp = 2390 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2391 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2392 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2393 } else 2394 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2395 } 2396 2397 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2398 // given output stream. 2399 static AsmPrinter * 2400 createPPCAsmPrinterPass(TargetMachine &tm, 2401 std::unique_ptr<MCStreamer> &&Streamer) { 2402 if (tm.getTargetTriple().isOSAIX()) 2403 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2404 2405 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2406 } 2407 2408 // Force static initialization. 2409 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2410 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2411 createPPCAsmPrinterPass); 2412 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2413 createPPCAsmPrinterPass); 2414 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2415 createPPCAsmPrinterPass); 2416 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2417 createPPCAsmPrinterPass); 2418 } 2419