1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format MIPS assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MipsAsmPrinter.h" 16 #include "InstPrinter/MipsInstPrinter.h" 17 #include "MCTargetDesc/MipsABIInfo.h" 18 #include "MCTargetDesc/MipsBaseInfo.h" 19 #include "MCTargetDesc/MipsMCNaCl.h" 20 #include "MCTargetDesc/MipsMCTargetDesc.h" 21 #include "Mips.h" 22 #include "MipsMCInstLower.h" 23 #include "MipsMachineFunction.h" 24 #include "MipsSubtarget.h" 25 #include "MipsTargetMachine.h" 26 #include "MipsTargetStreamer.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCExpr.h" 49 #include "llvm/MC/MCInst.h" 50 #include "llvm/MC/MCInstBuilder.h" 51 #include "llvm/MC/MCObjectFileInfo.h" 52 #include "llvm/MC/MCSectionELF.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/MC/MCSymbolELF.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <map> 63 #include <memory> 64 #include <string> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "mips-asm-printer" 70 71 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { 72 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); 73 } 74 75 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 76 Subtarget = &MF.getSubtarget<MipsSubtarget>(); 77 78 MipsFI = MF.getInfo<MipsFunctionInfo>(); 79 if (Subtarget->inMips16Mode()) 80 for (std::map< 81 const char *, 82 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 83 it = MipsFI->StubsNeeded.begin(); 84 it != MipsFI->StubsNeeded.end(); ++it) { 85 const char *Symbol = it->first; 86 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 87 if (StubsNeeded.find(Symbol) == StubsNeeded.end()) 88 StubsNeeded[Symbol] = Signature; 89 } 90 MCP = MF.getConstantPool(); 91 92 // In NaCl, all indirect jump targets must be aligned to bundle size. 93 if (Subtarget->isTargetNaCl()) 94 NaClAlignIndirectJumpTargets(MF); 95 96 AsmPrinter::runOnMachineFunction(MF); 97 98 emitXRayTable(); 99 100 return true; 101 } 102 103 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { 104 MCOp = MCInstLowering.LowerOperand(MO); 105 return MCOp.isValid(); 106 } 107 108 #include "MipsGenMCPseudoLowering.inc" 109 110 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, 111 // JALR, or JALR64 as appropriate for the target. 112 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, 113 const MachineInstr *MI) { 114 bool HasLinkReg = false; 115 bool InMicroMipsMode = Subtarget->inMicroMipsMode(); 116 MCInst TmpInst0; 117 118 if (Subtarget->hasMips64r6()) { 119 // MIPS64r6 should use (JALR64 ZERO_64, $rs) 120 TmpInst0.setOpcode(Mips::JALR64); 121 HasLinkReg = true; 122 } else if (Subtarget->hasMips32r6()) { 123 // MIPS32r6 should use (JALR ZERO, $rs) 124 if (InMicroMipsMode) 125 TmpInst0.setOpcode(Mips::JRC16_MMR6); 126 else { 127 TmpInst0.setOpcode(Mips::JALR); 128 HasLinkReg = true; 129 } 130 } else if (Subtarget->inMicroMipsMode()) 131 // microMIPS should use (JR_MM $rs) 132 TmpInst0.setOpcode(Mips::JR_MM); 133 else { 134 // Everything else should use (JR $rs) 135 TmpInst0.setOpcode(Mips::JR); 136 } 137 138 MCOperand MCOp; 139 140 if (HasLinkReg) { 141 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; 142 TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); 143 } 144 145 lowerOperand(MI->getOperand(0), MCOp); 146 TmpInst0.addOperand(MCOp); 147 148 EmitToStreamer(OutStreamer, TmpInst0); 149 } 150 151 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) { 152 MipsTargetStreamer &TS = getTargetStreamer(); 153 unsigned Opc = MI->getOpcode(); 154 TS.forbidModuleDirective(); 155 156 if (MI->isDebugValue()) { 157 SmallString<128> Str; 158 raw_svector_ostream OS(Str); 159 160 PrintDebugValueComment(MI, OS); 161 return; 162 } 163 164 // If we just ended a constant pool, mark it as such. 165 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { 166 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 167 InConstantPool = false; 168 } 169 if (Opc == Mips::CONSTPOOL_ENTRY) { 170 // CONSTPOOL_ENTRY - This instruction represents a floating 171 // constant pool in the function. The first operand is the ID# 172 // for this instruction, the second is the index into the 173 // MachineConstantPool that this is, the third is the size in 174 // bytes of this constant pool entry. 175 // The required alignment is specified on the basic block holding this MI. 176 // 177 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 178 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 179 180 // If this is the first entry of the pool, mark it. 181 if (!InConstantPool) { 182 OutStreamer->EmitDataRegion(MCDR_DataRegion); 183 InConstantPool = true; 184 } 185 186 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 187 188 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 189 if (MCPE.isMachineConstantPoolEntry()) 190 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 191 else 192 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); 193 return; 194 } 195 196 switch (Opc) { 197 case Mips::PATCHABLE_FUNCTION_ENTER: 198 LowerPATCHABLE_FUNCTION_ENTER(*MI); 199 return; 200 case Mips::PATCHABLE_FUNCTION_EXIT: 201 LowerPATCHABLE_FUNCTION_EXIT(*MI); 202 return; 203 case Mips::PATCHABLE_TAIL_CALL: 204 LowerPATCHABLE_TAIL_CALL(*MI); 205 return; 206 } 207 208 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 209 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 210 211 do { 212 // Do any auto-generated pseudo lowerings. 213 if (emitPseudoExpansionLowering(*OutStreamer, &*I)) 214 continue; 215 216 if (I->getOpcode() == Mips::PseudoReturn || 217 I->getOpcode() == Mips::PseudoReturn64 || 218 I->getOpcode() == Mips::PseudoIndirectBranch || 219 I->getOpcode() == Mips::PseudoIndirectBranch64 || 220 I->getOpcode() == Mips::TAILCALLREG || 221 I->getOpcode() == Mips::TAILCALLREG64) { 222 emitPseudoIndirectBranch(*OutStreamer, &*I); 223 continue; 224 } 225 226 // The inMips16Mode() test is not permanent. 227 // Some instructions are marked as pseudo right now which 228 // would make the test fail for the wrong reason but 229 // that will be fixed soon. We need this here because we are 230 // removing another test for this situation downstream in the 231 // callchain. 232 // 233 if (I->isPseudo() && !Subtarget->inMips16Mode() 234 && !isLongBranchPseudo(I->getOpcode())) 235 llvm_unreachable("Pseudo opcode found in EmitInstruction()"); 236 237 MCInst TmpInst0; 238 MCInstLowering.Lower(&*I, TmpInst0); 239 EmitToStreamer(*OutStreamer, TmpInst0); 240 } while ((++I != E) && I->isInsideBundle()); // Delay slot check 241 } 242 243 //===----------------------------------------------------------------------===// 244 // 245 // Mips Asm Directives 246 // 247 // -- Frame directive "frame Stackpointer, Stacksize, RARegister" 248 // Describe the stack frame. 249 // 250 // -- Mask directives "(f)mask bitmask, offset" 251 // Tells the assembler which registers are saved and where. 252 // bitmask - contain a little endian bitset indicating which registers are 253 // saved on function prologue (e.g. with a 0x80000000 mask, the 254 // assembler knows the register 31 (RA) is saved at prologue. 255 // offset - the position before stack pointer subtraction indicating where 256 // the first saved register on prologue is located. (e.g. with a 257 // 258 // Consider the following function prologue: 259 // 260 // .frame $fp,48,$ra 261 // .mask 0xc0000000,-8 262 // addiu $sp, $sp, -48 263 // sw $ra, 40($sp) 264 // sw $fp, 36($sp) 265 // 266 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and 267 // 30 (FP) are saved at prologue. As the save order on prologue is from 268 // left to right, RA is saved first. A -8 offset means that after the 269 // stack pointer subtration, the first register in the mask (RA) will be 270 // saved at address 48-8=40. 271 // 272 //===----------------------------------------------------------------------===// 273 274 //===----------------------------------------------------------------------===// 275 // Mask directives 276 //===----------------------------------------------------------------------===// 277 278 // Create a bitmask with all callee saved registers for CPU or Floating Point 279 // registers. For CPU registers consider RA, GP and FP for saving if necessary. 280 void MipsAsmPrinter::printSavedRegsBitmask() { 281 // CPU and FPU Saved Registers Bitmasks 282 unsigned CPUBitmask = 0, FPUBitmask = 0; 283 int CPUTopSavedRegOff, FPUTopSavedRegOff; 284 285 // Set the CPU and FPU Bitmasks 286 const MachineFrameInfo &MFI = MF->getFrameInfo(); 287 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 288 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 289 // size of stack area to which FP callee-saved regs are saved. 290 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8; 291 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8; 292 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8; 293 bool HasAFGR64Reg = false; 294 unsigned CSFPRegsSize = 0; 295 296 for (const auto &I : CSI) { 297 unsigned Reg = I.getReg(); 298 unsigned RegNum = TRI->getEncodingValue(Reg); 299 300 // If it's a floating point register, set the FPU Bitmask. 301 // If it's a general purpose register, set the CPU Bitmask. 302 if (Mips::FGR32RegClass.contains(Reg)) { 303 FPUBitmask |= (1 << RegNum); 304 CSFPRegsSize += FGR32RegSize; 305 } else if (Mips::AFGR64RegClass.contains(Reg)) { 306 FPUBitmask |= (3 << RegNum); 307 CSFPRegsSize += AFGR64RegSize; 308 HasAFGR64Reg = true; 309 } else if (Mips::GPR32RegClass.contains(Reg)) 310 CPUBitmask |= (1 << RegNum); 311 } 312 313 // FP Regs are saved right below where the virtual frame pointer points to. 314 FPUTopSavedRegOff = FPUBitmask ? 315 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; 316 317 // CPU Regs are saved below FP Regs. 318 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; 319 320 MipsTargetStreamer &TS = getTargetStreamer(); 321 // Print CPUBitmask 322 TS.emitMask(CPUBitmask, CPUTopSavedRegOff); 323 324 // Print FPUBitmask 325 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // Frame and Set directives 330 //===----------------------------------------------------------------------===// 331 332 /// Frame Directive 333 void MipsAsmPrinter::emitFrameDirective() { 334 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); 335 336 unsigned stackReg = RI.getFrameRegister(*MF); 337 unsigned returnReg = RI.getRARegister(); 338 unsigned stackSize = MF->getFrameInfo().getStackSize(); 339 340 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); 341 } 342 343 /// Emit Set directives. 344 const char *MipsAsmPrinter::getCurrentABIString() const { 345 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { 346 case MipsABIInfo::ABI::O32: return "abi32"; 347 case MipsABIInfo::ABI::N32: return "abiN32"; 348 case MipsABIInfo::ABI::N64: return "abi64"; 349 default: llvm_unreachable("Unknown Mips ABI"); 350 } 351 } 352 353 void MipsAsmPrinter::EmitFunctionEntryLabel() { 354 MipsTargetStreamer &TS = getTargetStreamer(); 355 356 // NaCl sandboxing requires that indirect call instructions are masked. 357 // This means that function entry points should be bundle-aligned. 358 if (Subtarget->isTargetNaCl()) 359 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); 360 361 if (Subtarget->inMicroMipsMode()) { 362 TS.emitDirectiveSetMicroMips(); 363 TS.setUsesMicroMips(); 364 TS.updateABIInfo(*Subtarget); 365 } else 366 TS.emitDirectiveSetNoMicroMips(); 367 368 if (Subtarget->inMips16Mode()) 369 TS.emitDirectiveSetMips16(); 370 else 371 TS.emitDirectiveSetNoMips16(); 372 373 TS.emitDirectiveEnt(*CurrentFnSym); 374 OutStreamer->EmitLabel(CurrentFnSym); 375 } 376 377 /// EmitFunctionBodyStart - Targets can override this to emit stuff before 378 /// the first basic block in the function. 379 void MipsAsmPrinter::EmitFunctionBodyStart() { 380 MipsTargetStreamer &TS = getTargetStreamer(); 381 382 MCInstLowering.Initialize(&MF->getContext()); 383 384 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked); 385 if (!IsNakedFunction) 386 emitFrameDirective(); 387 388 if (!IsNakedFunction) 389 printSavedRegsBitmask(); 390 391 if (!Subtarget->inMips16Mode()) { 392 TS.emitDirectiveSetNoReorder(); 393 TS.emitDirectiveSetNoMacro(); 394 TS.emitDirectiveSetNoAt(); 395 } 396 } 397 398 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after 399 /// the last basic block in the function. 400 void MipsAsmPrinter::EmitFunctionBodyEnd() { 401 MipsTargetStreamer &TS = getTargetStreamer(); 402 403 // There are instruction for this macros, but they must 404 // always be at the function end, and we can't emit and 405 // break with BB logic. 406 if (!Subtarget->inMips16Mode()) { 407 TS.emitDirectiveSetAt(); 408 TS.emitDirectiveSetMacro(); 409 TS.emitDirectiveSetReorder(); 410 } 411 TS.emitDirectiveEnd(CurrentFnSym->getName()); 412 // Make sure to terminate any constant pools that were at the end 413 // of the function. 414 if (!InConstantPool) 415 return; 416 InConstantPool = false; 417 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 418 } 419 420 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 421 AsmPrinter::EmitBasicBlockEnd(MBB); 422 MipsTargetStreamer &TS = getTargetStreamer(); 423 if (MBB.empty()) 424 TS.emitDirectiveInsn(); 425 } 426 427 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 428 /// exactly one predecessor and the control transfer mechanism between 429 /// the predecessor and this block is a fall-through. 430 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* 431 MBB) const { 432 // The predecessor has to be immediately before this block. 433 const MachineBasicBlock *Pred = *MBB->pred_begin(); 434 435 // If the predecessor is a switch statement, assume a jump table 436 // implementation, so it is not a fall through. 437 if (const BasicBlock *bb = Pred->getBasicBlock()) 438 if (isa<SwitchInst>(bb->getTerminator())) 439 return false; 440 441 // If this is a landing pad, it isn't a fall through. If it has no preds, 442 // then nothing falls through to it. 443 if (MBB->isEHPad() || MBB->pred_empty()) 444 return false; 445 446 // If there isn't exactly one predecessor, it can't be a fall through. 447 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 448 ++PI2; 449 450 if (PI2 != MBB->pred_end()) 451 return false; 452 453 // The predecessor has to be immediately before this block. 454 if (!Pred->isLayoutSuccessor(MBB)) 455 return false; 456 457 // If the block is completely empty, then it definitely does fall through. 458 if (Pred->empty()) 459 return true; 460 461 // Otherwise, check the last instruction. 462 // Check if the last terminator is an unconditional branch. 463 MachineBasicBlock::const_iterator I = Pred->end(); 464 while (I != Pred->begin() && !(--I)->isTerminator()) ; 465 466 return !I->isBarrier(); 467 } 468 469 // Print out an operand for an inline asm expression. 470 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 471 unsigned AsmVariant, const char *ExtraCode, 472 raw_ostream &O) { 473 // Does this asm operand have a single letter operand modifier? 474 if (ExtraCode && ExtraCode[0]) { 475 if (ExtraCode[1] != 0) return true; // Unknown modifier. 476 477 const MachineOperand &MO = MI->getOperand(OpNum); 478 switch (ExtraCode[0]) { 479 default: 480 // See if this is a generic print operand 481 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O); 482 case 'X': // hex const int 483 if ((MO.getType()) != MachineOperand::MO_Immediate) 484 return true; 485 O << "0x" << Twine::utohexstr(MO.getImm()); 486 return false; 487 case 'x': // hex const int (low 16 bits) 488 if ((MO.getType()) != MachineOperand::MO_Immediate) 489 return true; 490 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); 491 return false; 492 case 'd': // decimal const int 493 if ((MO.getType()) != MachineOperand::MO_Immediate) 494 return true; 495 O << MO.getImm(); 496 return false; 497 case 'm': // decimal const int minus 1 498 if ((MO.getType()) != MachineOperand::MO_Immediate) 499 return true; 500 O << MO.getImm() - 1; 501 return false; 502 case 'y': // exact log2 503 if ((MO.getType()) != MachineOperand::MO_Immediate) 504 return true; 505 if (!isPowerOf2_64(MO.getImm())) 506 return true; 507 O << Log2_64(MO.getImm()); 508 return false; 509 case 'z': 510 // $0 if zero, regular printing otherwise 511 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) { 512 O << "$0"; 513 return false; 514 } 515 // If not, call printOperand as normal. 516 break; 517 case 'D': // Second part of a double word register operand 518 case 'L': // Low order register of a double word register operand 519 case 'M': // High order register of a double word register operand 520 { 521 if (OpNum == 0) 522 return true; 523 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 524 if (!FlagsOP.isImm()) 525 return true; 526 unsigned Flags = FlagsOP.getImm(); 527 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 528 // Number of registers represented by this operand. We are looking 529 // for 2 for 32 bit mode and 1 for 64 bit mode. 530 if (NumVals != 2) { 531 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { 532 unsigned Reg = MO.getReg(); 533 O << '$' << MipsInstPrinter::getRegisterName(Reg); 534 return false; 535 } 536 return true; 537 } 538 539 unsigned RegOp = OpNum; 540 if (!Subtarget->isGP64bit()){ 541 // Endianness reverses which register holds the high or low value 542 // between M and L. 543 switch(ExtraCode[0]) { 544 case 'M': 545 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; 546 break; 547 case 'L': 548 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; 549 break; 550 case 'D': // Always the second part 551 RegOp = OpNum + 1; 552 } 553 if (RegOp >= MI->getNumOperands()) 554 return true; 555 const MachineOperand &MO = MI->getOperand(RegOp); 556 if (!MO.isReg()) 557 return true; 558 unsigned Reg = MO.getReg(); 559 O << '$' << MipsInstPrinter::getRegisterName(Reg); 560 return false; 561 } 562 } 563 case 'w': 564 // Print MSA registers for the 'f' constraint 565 // In LLVM, the 'w' modifier doesn't need to do anything. 566 // We can just call printOperand as normal. 567 break; 568 } 569 } 570 571 printOperand(MI, OpNum, O); 572 return false; 573 } 574 575 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 576 unsigned OpNum, unsigned AsmVariant, 577 const char *ExtraCode, 578 raw_ostream &O) { 579 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); 580 const MachineOperand &BaseMO = MI->getOperand(OpNum); 581 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); 582 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand."); 583 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand."); 584 int Offset = OffsetMO.getImm(); 585 586 // Currently we are expecting either no ExtraCode or 'D','M','L'. 587 if (ExtraCode) { 588 switch (ExtraCode[0]) { 589 case 'D': 590 Offset += 4; 591 break; 592 case 'M': 593 if (Subtarget->isLittle()) 594 Offset += 4; 595 break; 596 case 'L': 597 if (!Subtarget->isLittle()) 598 Offset += 4; 599 break; 600 default: 601 return true; // Unknown modifier. 602 } 603 } 604 605 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) 606 << ")"; 607 608 return false; 609 } 610 611 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, 612 raw_ostream &O) { 613 const MachineOperand &MO = MI->getOperand(opNum); 614 bool closeP = false; 615 616 if (MO.getTargetFlags()) 617 closeP = true; 618 619 switch(MO.getTargetFlags()) { 620 case MipsII::MO_GPREL: O << "%gp_rel("; break; 621 case MipsII::MO_GOT_CALL: O << "%call16("; break; 622 case MipsII::MO_GOT: O << "%got("; break; 623 case MipsII::MO_ABS_HI: O << "%hi("; break; 624 case MipsII::MO_ABS_LO: O << "%lo("; break; 625 case MipsII::MO_HIGHER: O << "%higher("; break; 626 case MipsII::MO_HIGHEST: O << "%highest(("; break; 627 case MipsII::MO_TLSGD: O << "%tlsgd("; break; 628 case MipsII::MO_GOTTPREL: O << "%gottprel("; break; 629 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; 630 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; 631 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; 632 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; 633 case MipsII::MO_GOT_DISP: O << "%got_disp("; break; 634 case MipsII::MO_GOT_PAGE: O << "%got_page("; break; 635 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; 636 } 637 638 switch (MO.getType()) { 639 case MachineOperand::MO_Register: 640 O << '$' 641 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); 642 break; 643 644 case MachineOperand::MO_Immediate: 645 O << MO.getImm(); 646 break; 647 648 case MachineOperand::MO_MachineBasicBlock: 649 MO.getMBB()->getSymbol()->print(O, MAI); 650 return; 651 652 case MachineOperand::MO_GlobalAddress: 653 getSymbol(MO.getGlobal())->print(O, MAI); 654 break; 655 656 case MachineOperand::MO_BlockAddress: { 657 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 658 O << BA->getName(); 659 break; 660 } 661 662 case MachineOperand::MO_ConstantPoolIndex: 663 O << getDataLayout().getPrivateGlobalPrefix() << "CPI" 664 << getFunctionNumber() << "_" << MO.getIndex(); 665 if (MO.getOffset()) 666 O << "+" << MO.getOffset(); 667 break; 668 669 default: 670 llvm_unreachable("<unknown operand type>"); 671 } 672 673 if (closeP) O << ")"; 674 } 675 676 void MipsAsmPrinter:: 677 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { 678 // Load/Store memory operands -- imm($reg) 679 // If PIC target the target is loaded as the 680 // pattern lw $25,%call16($28) 681 682 // opNum can be invalid if instruction has reglist as operand. 683 // MemOperand is always last operand of instruction (base + offset). 684 switch (MI->getOpcode()) { 685 default: 686 break; 687 case Mips::SWM32_MM: 688 case Mips::LWM32_MM: 689 opNum = MI->getNumOperands() - 2; 690 break; 691 } 692 693 printOperand(MI, opNum+1, O); 694 O << "("; 695 printOperand(MI, opNum, O); 696 O << ")"; 697 } 698 699 void MipsAsmPrinter:: 700 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { 701 // when using stack locations for not load/store instructions 702 // print the same way as all normal 3 operand instructions. 703 printOperand(MI, opNum, O); 704 O << ", "; 705 printOperand(MI, opNum+1, O); 706 } 707 708 void MipsAsmPrinter:: 709 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, 710 const char *Modifier) { 711 const MachineOperand &MO = MI->getOperand(opNum); 712 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); 713 } 714 715 void MipsAsmPrinter:: 716 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { 717 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { 718 if (i != opNum) O << ", "; 719 printOperand(MI, i, O); 720 } 721 } 722 723 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) { 724 MipsTargetStreamer &TS = getTargetStreamer(); 725 726 // MipsTargetStreamer has an initialization order problem when emitting an 727 // object file directly (see MipsTargetELFStreamer for full details). Work 728 // around it by re-initializing the PIC state here. 729 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); 730 731 // Compute MIPS architecture attributes based on the default subtarget 732 // that we'd have constructed. Module level directives aren't LTO 733 // clean anyhow. 734 // FIXME: For ifunc related functions we could iterate over and look 735 // for a feature string that doesn't match the default one. 736 const Triple &TT = TM.getTargetTriple(); 737 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); 738 StringRef FS = TM.getTargetFeatureString(); 739 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); 740 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, 0); 741 742 bool IsABICalls = STI.isABICalls(); 743 const MipsABIInfo &ABI = MTM.getABI(); 744 if (IsABICalls) { 745 TS.emitDirectiveAbiCalls(); 746 // FIXME: This condition should be a lot more complicated that it is here. 747 // Ideally it should test for properties of the ABI and not the ABI 748 // itself. 749 // For the moment, I'm only correcting enough to make MIPS-IV work. 750 if (!isPositionIndependent() && STI.hasSym32()) 751 TS.emitDirectiveOptionPic0(); 752 } 753 754 // Tell the assembler which ABI we are using 755 std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); 756 OutStreamer->SwitchSection( 757 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); 758 759 // NaN: At the moment we only support: 760 // 1. .nan legacy (default) 761 // 2. .nan 2008 762 STI.isNaN2008() ? TS.emitDirectiveNaN2008() 763 : TS.emitDirectiveNaNLegacy(); 764 765 // TODO: handle O64 ABI 766 767 TS.updateABIInfo(STI); 768 769 // We should always emit a '.module fp=...' but binutils 2.24 does not accept 770 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or 771 // -mfp64) and omit it otherwise. 772 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) 773 TS.emitDirectiveModuleFP(); 774 775 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not 776 // accept it. We therefore emit it when it contradicts the default or an 777 // option has changed the default (i.e. FPXX) and omit it otherwise. 778 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) 779 TS.emitDirectiveModuleOddSPReg(); 780 } 781 782 void MipsAsmPrinter::emitInlineAsmStart() const { 783 MipsTargetStreamer &TS = getTargetStreamer(); 784 785 // GCC's choice of assembler options for inline assembly code ('at', 'macro' 786 // and 'reorder') is different from LLVM's choice for generated code ('noat', 787 // 'nomacro' and 'noreorder'). 788 // In order to maintain compatibility with inline assembly code which depends 789 // on GCC's assembler options being used, we have to switch to those options 790 // for the duration of the inline assembly block and then switch back. 791 TS.emitDirectiveSetPush(); 792 TS.emitDirectiveSetAt(); 793 TS.emitDirectiveSetMacro(); 794 TS.emitDirectiveSetReorder(); 795 OutStreamer->AddBlankLine(); 796 } 797 798 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 799 const MCSubtargetInfo *EndInfo) const { 800 OutStreamer->AddBlankLine(); 801 getTargetStreamer().emitDirectiveSetPop(); 802 } 803 804 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { 805 MCInst I; 806 I.setOpcode(Mips::JAL); 807 I.addOperand( 808 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); 809 OutStreamer->EmitInstruction(I, STI); 810 } 811 812 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, 813 unsigned Reg) { 814 MCInst I; 815 I.setOpcode(Opcode); 816 I.addOperand(MCOperand::createReg(Reg)); 817 OutStreamer->EmitInstruction(I, STI); 818 } 819 820 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, 821 unsigned Opcode, unsigned Reg1, 822 unsigned Reg2) { 823 MCInst I; 824 // 825 // Because of the current td files for Mips32, the operands for MTC1 826 // appear backwards from their normal assembly order. It's not a trivial 827 // change to fix this in the td file so we adjust for it here. 828 // 829 if (Opcode == Mips::MTC1) { 830 unsigned Temp = Reg1; 831 Reg1 = Reg2; 832 Reg2 = Temp; 833 } 834 I.setOpcode(Opcode); 835 I.addOperand(MCOperand::createReg(Reg1)); 836 I.addOperand(MCOperand::createReg(Reg2)); 837 OutStreamer->EmitInstruction(I, STI); 838 } 839 840 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, 841 unsigned Opcode, unsigned Reg1, 842 unsigned Reg2, unsigned Reg3) { 843 MCInst I; 844 I.setOpcode(Opcode); 845 I.addOperand(MCOperand::createReg(Reg1)); 846 I.addOperand(MCOperand::createReg(Reg2)); 847 I.addOperand(MCOperand::createReg(Reg3)); 848 OutStreamer->EmitInstruction(I, STI); 849 } 850 851 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, 852 unsigned MovOpc, unsigned Reg1, 853 unsigned Reg2, unsigned FPReg1, 854 unsigned FPReg2, bool LE) { 855 if (!LE) { 856 unsigned temp = Reg1; 857 Reg1 = Reg2; 858 Reg2 = temp; 859 } 860 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); 861 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); 862 } 863 864 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, 865 Mips16HardFloatInfo::FPParamVariant PV, 866 bool LE, bool ToFP) { 867 using namespace Mips16HardFloatInfo; 868 869 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; 870 switch (PV) { 871 case FSig: 872 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 873 break; 874 case FFSig: 875 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); 876 break; 877 case FDSig: 878 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 879 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 880 break; 881 case DSig: 882 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 883 break; 884 case DDSig: 885 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 886 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 887 break; 888 case DFSig: 889 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 890 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); 891 break; 892 case NoSig: 893 return; 894 } 895 } 896 897 void MipsAsmPrinter::EmitSwapFPIntRetval( 898 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, 899 bool LE) { 900 using namespace Mips16HardFloatInfo; 901 902 unsigned MovOpc = Mips::MFC1; 903 switch (RV) { 904 case FRet: 905 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); 906 break; 907 case DRet: 908 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 909 break; 910 case CFRet: 911 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 912 break; 913 case CDRet: 914 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 915 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); 916 break; 917 case NoFPRet: 918 break; 919 } 920 } 921 922 void MipsAsmPrinter::EmitFPCallStub( 923 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { 924 using namespace Mips16HardFloatInfo; 925 926 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); 927 bool LE = getDataLayout().isLittleEndian(); 928 // Construct a local MCSubtargetInfo here. 929 // This is because the MachineFunction won't exist (but have not yet been 930 // freed) and since we're at the global level we can use the default 931 // constructed subtarget. 932 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 933 TM.getTargetTriple().str(), TM.getTargetCPU(), 934 TM.getTargetFeatureString())); 935 936 // 937 // .global xxxx 938 // 939 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global); 940 const char *RetType; 941 // 942 // make the comment field identifying the return and parameter 943 // types of the floating point stub 944 // # Stub function to call rettype xxxx (params) 945 // 946 switch (Signature->RetSig) { 947 case FRet: 948 RetType = "float"; 949 break; 950 case DRet: 951 RetType = "double"; 952 break; 953 case CFRet: 954 RetType = "complex"; 955 break; 956 case CDRet: 957 RetType = "double complex"; 958 break; 959 case NoFPRet: 960 RetType = ""; 961 break; 962 } 963 const char *Parms; 964 switch (Signature->ParamSig) { 965 case FSig: 966 Parms = "float"; 967 break; 968 case FFSig: 969 Parms = "float, float"; 970 break; 971 case FDSig: 972 Parms = "float, double"; 973 break; 974 case DSig: 975 Parms = "double"; 976 break; 977 case DDSig: 978 Parms = "double, double"; 979 break; 980 case DFSig: 981 Parms = "double, float"; 982 break; 983 case NoSig: 984 Parms = ""; 985 break; 986 } 987 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + 988 Twine(Symbol) + " (" + Twine(Parms) + ")"); 989 // 990 // probably not necessary but we save and restore the current section state 991 // 992 OutStreamer->PushSection(); 993 // 994 // .section mips16.call.fpxxxx,"ax",@progbits 995 // 996 MCSectionELF *M = OutContext.getELFSection( 997 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, 998 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); 999 OutStreamer->SwitchSection(M, nullptr); 1000 // 1001 // .align 2 1002 // 1003 OutStreamer->EmitValueToAlignment(4); 1004 MipsTargetStreamer &TS = getTargetStreamer(); 1005 // 1006 // .set nomips16 1007 // .set nomicromips 1008 // 1009 TS.emitDirectiveSetNoMips16(); 1010 TS.emitDirectiveSetNoMicroMips(); 1011 // 1012 // .ent __call_stub_fp_xxxx 1013 // .type __call_stub_fp_xxxx,@function 1014 // __call_stub_fp_xxxx: 1015 // 1016 std::string x = "__call_stub_fp_" + std::string(Symbol); 1017 MCSymbolELF *Stub = 1018 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); 1019 TS.emitDirectiveEnt(*Stub); 1020 MCSymbol *MType = 1021 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); 1022 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction); 1023 OutStreamer->EmitLabel(Stub); 1024 1025 // Only handle non-pic for now. 1026 assert(!isPositionIndependent() && 1027 "should not be here if we are compiling pic"); 1028 TS.emitDirectiveSetReorder(); 1029 // 1030 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement 1031 // stubs without raw text but this current patch is for compiler generated 1032 // functions and they all return some value. 1033 // The calling sequence for non pic is different in that case and we need 1034 // to implement %lo and %hi in order to handle the case of no return value 1035 // See the corresponding method in Mips16HardFloat for details. 1036 // 1037 // mov the return address to S2. 1038 // we have no stack space to store it and we are about to make another call. 1039 // We need to make sure that the enclosing function knows to save S2 1040 // This should have already been handled. 1041 // 1042 // Mov $18, $31 1043 1044 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); 1045 1046 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); 1047 1048 // Jal xxxx 1049 // 1050 EmitJal(*STI, MSymbol); 1051 1052 // fix return values 1053 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); 1054 // 1055 // do the return 1056 // if (Signature->RetSig == NoFPRet) 1057 // llvm_unreachable("should not be any stubs here with no return value"); 1058 // else 1059 EmitInstrReg(*STI, Mips::JR, Mips::S2); 1060 1061 MCSymbol *Tmp = OutContext.createTempSymbol(); 1062 OutStreamer->EmitLabel(Tmp); 1063 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); 1064 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); 1065 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); 1066 OutStreamer->emitELFSize(Stub, T_min_E); 1067 TS.emitDirectiveEnd(x); 1068 OutStreamer->PopSection(); 1069 } 1070 1071 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) { 1072 // Emit needed stubs 1073 // 1074 for (std::map< 1075 const char *, 1076 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 1077 it = StubsNeeded.begin(); 1078 it != StubsNeeded.end(); ++it) { 1079 const char *Symbol = it->first; 1080 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 1081 EmitFPCallStub(Symbol, Signature); 1082 } 1083 // return to the text section 1084 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); 1085 } 1086 1087 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { 1088 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; 1089 // For mips32 we want to emit the following pattern: 1090 // 1091 // .Lxray_sled_N: 1092 // ALIGN 1093 // B .tmpN 1094 // 11 NOP instructions (44 bytes) 1095 // ADDIU T9, T9, 52 1096 // .tmpN 1097 // 1098 // We need the 44 bytes (11 instructions) because at runtime, we'd 1099 // be patching over the full 48 bytes (12 instructions) with the following 1100 // pattern: 1101 // 1102 // ADDIU SP, SP, -8 1103 // NOP 1104 // SW RA, 4(SP) 1105 // SW T9, 0(SP) 1106 // LUI T9, %hi(__xray_FunctionEntry/Exit) 1107 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1108 // LUI T0, %hi(function_id) 1109 // JALR T9 1110 // ORI T0, T0, %lo(function_id) 1111 // LW T9, 0(SP) 1112 // LW RA, 4(SP) 1113 // ADDIU SP, SP, 8 1114 // 1115 // We add 52 bytes to t9 because we want to adjust the function pointer to 1116 // the actual start of function i.e. the address just after the noop sled. 1117 // We do this because gp displacement relocation is emitted at the start of 1118 // of the function i.e after the nop sled and to correctly calculate the 1119 // global offset table address, t9 must hold the address of the instruction 1120 // containing the gp displacement relocation. 1121 // FIXME: Is this correct for the static relocation model? 1122 // 1123 // For mips64 we want to emit the following pattern: 1124 // 1125 // .Lxray_sled_N: 1126 // ALIGN 1127 // B .tmpN 1128 // 15 NOP instructions (60 bytes) 1129 // .tmpN 1130 // 1131 // We need the 60 bytes (15 instructions) because at runtime, we'd 1132 // be patching over the full 64 bytes (16 instructions) with the following 1133 // pattern: 1134 // 1135 // DADDIU SP, SP, -16 1136 // NOP 1137 // SD RA, 8(SP) 1138 // SD T9, 0(SP) 1139 // LUI T9, %highest(__xray_FunctionEntry/Exit) 1140 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) 1141 // DSLL T9, T9, 16 1142 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) 1143 // DSLL T9, T9, 16 1144 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1145 // LUI T0, %hi(function_id) 1146 // JALR T9 1147 // ADDIU T0, T0, %lo(function_id) 1148 // LD T9, 0(SP) 1149 // LD RA, 8(SP) 1150 // DADDIU SP, SP, 16 1151 // 1152 OutStreamer->EmitCodeAlignment(4); 1153 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1154 OutStreamer->EmitLabel(CurSled); 1155 auto Target = OutContext.createTempSymbol(); 1156 1157 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual 1158 // start of function 1159 const MCExpr *TargetExpr = MCSymbolRefExpr::create( 1160 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); 1161 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) 1162 .addReg(Mips::ZERO) 1163 .addReg(Mips::ZERO) 1164 .addExpr(TargetExpr)); 1165 1166 for (int8_t I = 0; I < NoopsInSledCount; I++) 1167 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) 1168 .addReg(Mips::ZERO) 1169 .addReg(Mips::ZERO) 1170 .addImm(0)); 1171 1172 OutStreamer->EmitLabel(Target); 1173 1174 if (!Subtarget->isGP64bit()) { 1175 EmitToStreamer(*OutStreamer, 1176 MCInstBuilder(Mips::ADDiu) 1177 .addReg(Mips::T9) 1178 .addReg(Mips::T9) 1179 .addImm(0x34)); 1180 } 1181 1182 recordSled(CurSled, MI, Kind); 1183 } 1184 1185 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { 1186 EmitSled(MI, SledKind::FUNCTION_ENTER); 1187 } 1188 1189 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 1190 EmitSled(MI, SledKind::FUNCTION_EXIT); 1191 } 1192 1193 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 1194 EmitSled(MI, SledKind::TAIL_CALL); 1195 } 1196 1197 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 1198 raw_ostream &OS) { 1199 // TODO: implement 1200 } 1201 1202 // Emit .dtprelword or .dtpreldword directive 1203 // and value for debug thread local expression. 1204 void MipsAsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 1205 unsigned Size) const { 1206 switch (Size) { 1207 case 4: 1208 OutStreamer->EmitDTPRel32Value(Value); 1209 break; 1210 case 8: 1211 OutStreamer->EmitDTPRel64Value(Value); 1212 break; 1213 default: 1214 llvm_unreachable("Unexpected size of expression value."); 1215 } 1216 } 1217 1218 // Align all targets of indirect branches on bundle size. Used only if target 1219 // is NaCl. 1220 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { 1221 // Align all blocks that are jumped to through jump table. 1222 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { 1223 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); 1224 for (unsigned I = 0; I < JT.size(); ++I) { 1225 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs; 1226 1227 for (unsigned J = 0; J < MBBs.size(); ++J) 1228 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1229 } 1230 } 1231 1232 // If basic block address is taken, block can be target of indirect branch. 1233 for (auto &MBB : MF) { 1234 if (MBB.hasAddressTaken()) 1235 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1236 } 1237 } 1238 1239 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { 1240 return (Opcode == Mips::LONG_BRANCH_LUi 1241 || Opcode == Mips::LONG_BRANCH_ADDiu 1242 || Opcode == Mips::LONG_BRANCH_DADDiu); 1243 } 1244 1245 // Force static initialization. 1246 extern "C" void LLVMInitializeMipsAsmPrinter() { 1247 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); 1248 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); 1249 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); 1250 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); 1251 } 1252