1 //===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format MIPS assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MCTargetDesc/MipsBaseInfo.h" 17 #include "MCTargetDesc/MipsMCNaCl.h" 18 #include "Mips.h" 19 #include "MipsAsmPrinter.h" 20 #include "MipsInstrInfo.h" 21 #include "MipsMCInstLower.h" 22 #include "MipsTargetMachine.h" 23 #include "MipsTargetStreamer.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Mangler.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCELFStreamer.h" 40 #include "llvm/MC/MCExpr.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/MC/MCInstBuilder.h" 43 #include "llvm/MC/MCSection.h" 44 #include "llvm/MC/MCSectionELF.h" 45 #include "llvm/MC/MCSymbolELF.h" 46 #include "llvm/Support/ELF.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <string> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "mips-asm-printer" 56 57 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { 58 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); 59 } 60 61 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 62 Subtarget = &MF.getSubtarget<MipsSubtarget>(); 63 64 MipsFI = MF.getInfo<MipsFunctionInfo>(); 65 if (Subtarget->inMips16Mode()) 66 for (std::map< 67 const char *, 68 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator 69 it = MipsFI->StubsNeeded.begin(); 70 it != MipsFI->StubsNeeded.end(); ++it) { 71 const char *Symbol = it->first; 72 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second; 73 if (StubsNeeded.find(Symbol) == StubsNeeded.end()) 74 StubsNeeded[Symbol] = Signature; 75 } 76 MCP = MF.getConstantPool(); 77 78 // In NaCl, all indirect jump targets must be aligned to bundle size. 79 if (Subtarget->isTargetNaCl()) 80 NaClAlignIndirectJumpTargets(MF); 81 82 AsmPrinter::runOnMachineFunction(MF); 83 84 EmitXRayTable(); 85 86 return true; 87 } 88 89 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { 90 MCOp = MCInstLowering.LowerOperand(MO); 91 return MCOp.isValid(); 92 } 93 94 #include "MipsGenMCPseudoLowering.inc" 95 96 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, 97 // JALR, or JALR64 as appropriate for the target 98 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, 99 const MachineInstr *MI) { 100 bool HasLinkReg = false; 101 bool InMicroMipsMode = Subtarget->inMicroMipsMode(); 102 MCInst TmpInst0; 103 104 if (Subtarget->hasMips64r6()) { 105 // MIPS64r6 should use (JALR64 ZERO_64, $rs) 106 TmpInst0.setOpcode(Mips::JALR64); 107 HasLinkReg = true; 108 } else if (Subtarget->hasMips32r6()) { 109 // MIPS32r6 should use (JALR ZERO, $rs) 110 if (InMicroMipsMode) 111 TmpInst0.setOpcode(Mips::JRC16_MMR6); 112 else { 113 TmpInst0.setOpcode(Mips::JALR); 114 HasLinkReg = true; 115 } 116 } else if (Subtarget->inMicroMipsMode()) 117 // microMIPS should use (JR_MM $rs) 118 TmpInst0.setOpcode(Mips::JR_MM); 119 else { 120 // Everything else should use (JR $rs) 121 TmpInst0.setOpcode(Mips::JR); 122 } 123 124 MCOperand MCOp; 125 126 if (HasLinkReg) { 127 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; 128 TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); 129 } 130 131 lowerOperand(MI->getOperand(0), MCOp); 132 TmpInst0.addOperand(MCOp); 133 134 EmitToStreamer(OutStreamer, TmpInst0); 135 } 136 137 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) { 138 MipsTargetStreamer &TS = getTargetStreamer(); 139 unsigned Opc = MI->getOpcode(); 140 TS.forbidModuleDirective(); 141 142 if (MI->isDebugValue()) { 143 SmallString<128> Str; 144 raw_svector_ostream OS(Str); 145 146 PrintDebugValueComment(MI, OS); 147 return; 148 } 149 150 // If we just ended a constant pool, mark it as such. 151 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { 152 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 153 InConstantPool = false; 154 } 155 if (Opc == Mips::CONSTPOOL_ENTRY) { 156 // CONSTPOOL_ENTRY - This instruction represents a floating 157 // constant pool in the function. The first operand is the ID# 158 // for this instruction, the second is the index into the 159 // MachineConstantPool that this is, the third is the size in 160 // bytes of this constant pool entry. 161 // The required alignment is specified on the basic block holding this MI. 162 // 163 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 164 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 165 166 // If this is the first entry of the pool, mark it. 167 if (!InConstantPool) { 168 OutStreamer->EmitDataRegion(MCDR_DataRegion); 169 InConstantPool = true; 170 } 171 172 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 173 174 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 175 if (MCPE.isMachineConstantPoolEntry()) 176 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 177 else 178 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); 179 return; 180 } 181 182 switch (Opc) { 183 case Mips::PATCHABLE_FUNCTION_ENTER: 184 LowerPATCHABLE_FUNCTION_ENTER(*MI); 185 return; 186 case Mips::PATCHABLE_FUNCTION_EXIT: 187 LowerPATCHABLE_FUNCTION_EXIT(*MI); 188 return; 189 case Mips::PATCHABLE_TAIL_CALL: 190 LowerPATCHABLE_TAIL_CALL(*MI); 191 return; 192 } 193 194 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 195 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 196 197 do { 198 // Do any auto-generated pseudo lowerings. 199 if (emitPseudoExpansionLowering(*OutStreamer, &*I)) 200 continue; 201 202 if (I->getOpcode() == Mips::PseudoReturn || 203 I->getOpcode() == Mips::PseudoReturn64 || 204 I->getOpcode() == Mips::PseudoIndirectBranch || 205 I->getOpcode() == Mips::PseudoIndirectBranch64 || 206 I->getOpcode() == Mips::TAILCALLREG || 207 I->getOpcode() == Mips::TAILCALLREG64) { 208 emitPseudoIndirectBranch(*OutStreamer, &*I); 209 continue; 210 } 211 212 // The inMips16Mode() test is not permanent. 213 // Some instructions are marked as pseudo right now which 214 // would make the test fail for the wrong reason but 215 // that will be fixed soon. We need this here because we are 216 // removing another test for this situation downstream in the 217 // callchain. 218 // 219 if (I->isPseudo() && !Subtarget->inMips16Mode() 220 && !isLongBranchPseudo(I->getOpcode())) 221 llvm_unreachable("Pseudo opcode found in EmitInstruction()"); 222 223 MCInst TmpInst0; 224 MCInstLowering.Lower(&*I, TmpInst0); 225 EmitToStreamer(*OutStreamer, TmpInst0); 226 } while ((++I != E) && I->isInsideBundle()); // Delay slot check 227 } 228 229 //===----------------------------------------------------------------------===// 230 // 231 // Mips Asm Directives 232 // 233 // -- Frame directive "frame Stackpointer, Stacksize, RARegister" 234 // Describe the stack frame. 235 // 236 // -- Mask directives "(f)mask bitmask, offset" 237 // Tells the assembler which registers are saved and where. 238 // bitmask - contain a little endian bitset indicating which registers are 239 // saved on function prologue (e.g. with a 0x80000000 mask, the 240 // assembler knows the register 31 (RA) is saved at prologue. 241 // offset - the position before stack pointer subtraction indicating where 242 // the first saved register on prologue is located. (e.g. with a 243 // 244 // Consider the following function prologue: 245 // 246 // .frame $fp,48,$ra 247 // .mask 0xc0000000,-8 248 // addiu $sp, $sp, -48 249 // sw $ra, 40($sp) 250 // sw $fp, 36($sp) 251 // 252 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and 253 // 30 (FP) are saved at prologue. As the save order on prologue is from 254 // left to right, RA is saved first. A -8 offset means that after the 255 // stack pointer subtration, the first register in the mask (RA) will be 256 // saved at address 48-8=40. 257 // 258 //===----------------------------------------------------------------------===// 259 260 //===----------------------------------------------------------------------===// 261 // Mask directives 262 //===----------------------------------------------------------------------===// 263 264 // Create a bitmask with all callee saved registers for CPU or Floating Point 265 // registers. For CPU registers consider RA, GP and FP for saving if necessary. 266 void MipsAsmPrinter::printSavedRegsBitmask() { 267 // CPU and FPU Saved Registers Bitmasks 268 unsigned CPUBitmask = 0, FPUBitmask = 0; 269 int CPUTopSavedRegOff, FPUTopSavedRegOff; 270 271 // Set the CPU and FPU Bitmasks 272 const MachineFrameInfo &MFI = MF->getFrameInfo(); 273 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 274 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 275 // size of stack area to which FP callee-saved regs are saved. 276 unsigned CPURegSize = Mips::GPR32RegClass.getSize(); 277 unsigned FGR32RegSize = Mips::FGR32RegClass.getSize(); 278 unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize(); 279 bool HasAFGR64Reg = false; 280 unsigned CSFPRegsSize = 0; 281 282 for (const auto &I : CSI) { 283 unsigned Reg = I.getReg(); 284 unsigned RegNum = TRI->getEncodingValue(Reg); 285 286 // If it's a floating point register, set the FPU Bitmask. 287 // If it's a general purpose register, set the CPU Bitmask. 288 if (Mips::FGR32RegClass.contains(Reg)) { 289 FPUBitmask |= (1 << RegNum); 290 CSFPRegsSize += FGR32RegSize; 291 } else if (Mips::AFGR64RegClass.contains(Reg)) { 292 FPUBitmask |= (3 << RegNum); 293 CSFPRegsSize += AFGR64RegSize; 294 HasAFGR64Reg = true; 295 } else if (Mips::GPR32RegClass.contains(Reg)) 296 CPUBitmask |= (1 << RegNum); 297 } 298 299 // FP Regs are saved right below where the virtual frame pointer points to. 300 FPUTopSavedRegOff = FPUBitmask ? 301 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; 302 303 // CPU Regs are saved below FP Regs. 304 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; 305 306 MipsTargetStreamer &TS = getTargetStreamer(); 307 // Print CPUBitmask 308 TS.emitMask(CPUBitmask, CPUTopSavedRegOff); 309 310 // Print FPUBitmask 311 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); 312 } 313 314 //===----------------------------------------------------------------------===// 315 // Frame and Set directives 316 //===----------------------------------------------------------------------===// 317 318 /// Frame Directive 319 void MipsAsmPrinter::emitFrameDirective() { 320 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); 321 322 unsigned stackReg = RI.getFrameRegister(*MF); 323 unsigned returnReg = RI.getRARegister(); 324 unsigned stackSize = MF->getFrameInfo().getStackSize(); 325 326 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); 327 } 328 329 /// Emit Set directives. 330 const char *MipsAsmPrinter::getCurrentABIString() const { 331 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { 332 case MipsABIInfo::ABI::O32: return "abi32"; 333 case MipsABIInfo::ABI::N32: return "abiN32"; 334 case MipsABIInfo::ABI::N64: return "abi64"; 335 default: llvm_unreachable("Unknown Mips ABI"); 336 } 337 } 338 339 void MipsAsmPrinter::EmitFunctionEntryLabel() { 340 MipsTargetStreamer &TS = getTargetStreamer(); 341 342 // NaCl sandboxing requires that indirect call instructions are masked. 343 // This means that function entry points should be bundle-aligned. 344 if (Subtarget->isTargetNaCl()) 345 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); 346 347 if (Subtarget->inMicroMipsMode()) { 348 TS.emitDirectiveSetMicroMips(); 349 TS.setUsesMicroMips(); 350 } else 351 TS.emitDirectiveSetNoMicroMips(); 352 353 if (Subtarget->inMips16Mode()) 354 TS.emitDirectiveSetMips16(); 355 else 356 TS.emitDirectiveSetNoMips16(); 357 358 TS.emitDirectiveEnt(*CurrentFnSym); 359 OutStreamer->EmitLabel(CurrentFnSym); 360 } 361 362 /// EmitFunctionBodyStart - Targets can override this to emit stuff before 363 /// the first basic block in the function. 364 void MipsAsmPrinter::EmitFunctionBodyStart() { 365 MipsTargetStreamer &TS = getTargetStreamer(); 366 367 MCInstLowering.Initialize(&MF->getContext()); 368 369 bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked); 370 if (!IsNakedFunction) 371 emitFrameDirective(); 372 373 if (!IsNakedFunction) 374 printSavedRegsBitmask(); 375 376 if (!Subtarget->inMips16Mode()) { 377 TS.emitDirectiveSetNoReorder(); 378 TS.emitDirectiveSetNoMacro(); 379 TS.emitDirectiveSetNoAt(); 380 } 381 } 382 383 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after 384 /// the last basic block in the function. 385 void MipsAsmPrinter::EmitFunctionBodyEnd() { 386 MipsTargetStreamer &TS = getTargetStreamer(); 387 388 // There are instruction for this macros, but they must 389 // always be at the function end, and we can't emit and 390 // break with BB logic. 391 if (!Subtarget->inMips16Mode()) { 392 TS.emitDirectiveSetAt(); 393 TS.emitDirectiveSetMacro(); 394 TS.emitDirectiveSetReorder(); 395 } 396 TS.emitDirectiveEnd(CurrentFnSym->getName()); 397 // Make sure to terminate any constant pools that were at the end 398 // of the function. 399 if (!InConstantPool) 400 return; 401 InConstantPool = false; 402 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 403 } 404 405 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 406 MipsTargetStreamer &TS = getTargetStreamer(); 407 if (MBB.size() == 0) 408 TS.emitDirectiveInsn(); 409 } 410 411 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 412 /// exactly one predecessor and the control transfer mechanism between 413 /// the predecessor and this block is a fall-through. 414 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* 415 MBB) const { 416 // The predecessor has to be immediately before this block. 417 const MachineBasicBlock *Pred = *MBB->pred_begin(); 418 419 // If the predecessor is a switch statement, assume a jump table 420 // implementation, so it is not a fall through. 421 if (const BasicBlock *bb = Pred->getBasicBlock()) 422 if (isa<SwitchInst>(bb->getTerminator())) 423 return false; 424 425 // If this is a landing pad, it isn't a fall through. If it has no preds, 426 // then nothing falls through to it. 427 if (MBB->isEHPad() || MBB->pred_empty()) 428 return false; 429 430 // If there isn't exactly one predecessor, it can't be a fall through. 431 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 432 ++PI2; 433 434 if (PI2 != MBB->pred_end()) 435 return false; 436 437 // The predecessor has to be immediately before this block. 438 if (!Pred->isLayoutSuccessor(MBB)) 439 return false; 440 441 // If the block is completely empty, then it definitely does fall through. 442 if (Pred->empty()) 443 return true; 444 445 // Otherwise, check the last instruction. 446 // Check if the last terminator is an unconditional branch. 447 MachineBasicBlock::const_iterator I = Pred->end(); 448 while (I != Pred->begin() && !(--I)->isTerminator()) ; 449 450 return !I->isBarrier(); 451 } 452 453 // Print out an operand for an inline asm expression. 454 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 455 unsigned AsmVariant, const char *ExtraCode, 456 raw_ostream &O) { 457 // Does this asm operand have a single letter operand modifier? 458 if (ExtraCode && ExtraCode[0]) { 459 if (ExtraCode[1] != 0) return true; // Unknown modifier. 460 461 const MachineOperand &MO = MI->getOperand(OpNum); 462 switch (ExtraCode[0]) { 463 default: 464 // See if this is a generic print operand 465 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O); 466 case 'X': // hex const int 467 if ((MO.getType()) != MachineOperand::MO_Immediate) 468 return true; 469 O << "0x" << Twine::utohexstr(MO.getImm()); 470 return false; 471 case 'x': // hex const int (low 16 bits) 472 if ((MO.getType()) != MachineOperand::MO_Immediate) 473 return true; 474 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); 475 return false; 476 case 'd': // decimal const int 477 if ((MO.getType()) != MachineOperand::MO_Immediate) 478 return true; 479 O << MO.getImm(); 480 return false; 481 case 'm': // decimal const int minus 1 482 if ((MO.getType()) != MachineOperand::MO_Immediate) 483 return true; 484 O << MO.getImm() - 1; 485 return false; 486 case 'z': { 487 // $0 if zero, regular printing otherwise 488 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) { 489 O << "$0"; 490 return false; 491 } 492 // If not, call printOperand as normal. 493 break; 494 } 495 case 'D': // Second part of a double word register operand 496 case 'L': // Low order register of a double word register operand 497 case 'M': // High order register of a double word register operand 498 { 499 if (OpNum == 0) 500 return true; 501 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 502 if (!FlagsOP.isImm()) 503 return true; 504 unsigned Flags = FlagsOP.getImm(); 505 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 506 // Number of registers represented by this operand. We are looking 507 // for 2 for 32 bit mode and 1 for 64 bit mode. 508 if (NumVals != 2) { 509 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { 510 unsigned Reg = MO.getReg(); 511 O << '$' << MipsInstPrinter::getRegisterName(Reg); 512 return false; 513 } 514 return true; 515 } 516 517 unsigned RegOp = OpNum; 518 if (!Subtarget->isGP64bit()){ 519 // Endianness reverses which register holds the high or low value 520 // between M and L. 521 switch(ExtraCode[0]) { 522 case 'M': 523 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; 524 break; 525 case 'L': 526 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; 527 break; 528 case 'D': // Always the second part 529 RegOp = OpNum + 1; 530 } 531 if (RegOp >= MI->getNumOperands()) 532 return true; 533 const MachineOperand &MO = MI->getOperand(RegOp); 534 if (!MO.isReg()) 535 return true; 536 unsigned Reg = MO.getReg(); 537 O << '$' << MipsInstPrinter::getRegisterName(Reg); 538 return false; 539 } 540 } 541 case 'w': 542 // Print MSA registers for the 'f' constraint 543 // In LLVM, the 'w' modifier doesn't need to do anything. 544 // We can just call printOperand as normal. 545 break; 546 } 547 } 548 549 printOperand(MI, OpNum, O); 550 return false; 551 } 552 553 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 554 unsigned OpNum, unsigned AsmVariant, 555 const char *ExtraCode, 556 raw_ostream &O) { 557 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); 558 const MachineOperand &BaseMO = MI->getOperand(OpNum); 559 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); 560 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand."); 561 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand."); 562 int Offset = OffsetMO.getImm(); 563 564 // Currently we are expecting either no ExtraCode or 'D' 565 if (ExtraCode) { 566 if (ExtraCode[0] == 'D') 567 Offset += 4; 568 else 569 return true; // Unknown modifier. 570 // FIXME: M = high order bits 571 // FIXME: L = low order bits 572 } 573 574 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")"; 575 576 return false; 577 } 578 579 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, 580 raw_ostream &O) { 581 const MachineOperand &MO = MI->getOperand(opNum); 582 bool closeP = false; 583 584 if (MO.getTargetFlags()) 585 closeP = true; 586 587 switch(MO.getTargetFlags()) { 588 case MipsII::MO_GPREL: O << "%gp_rel("; break; 589 case MipsII::MO_GOT_CALL: O << "%call16("; break; 590 case MipsII::MO_GOT: O << "%got("; break; 591 case MipsII::MO_ABS_HI: O << "%hi("; break; 592 case MipsII::MO_ABS_LO: O << "%lo("; break; 593 case MipsII::MO_HIGHER: O << "%higher("; break; 594 case MipsII::MO_HIGHEST: O << "%highest(("; break; 595 case MipsII::MO_TLSGD: O << "%tlsgd("; break; 596 case MipsII::MO_GOTTPREL: O << "%gottprel("; break; 597 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; 598 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; 599 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; 600 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; 601 case MipsII::MO_GOT_DISP: O << "%got_disp("; break; 602 case MipsII::MO_GOT_PAGE: O << "%got_page("; break; 603 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; 604 } 605 606 switch (MO.getType()) { 607 case MachineOperand::MO_Register: 608 O << '$' 609 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); 610 break; 611 612 case MachineOperand::MO_Immediate: 613 O << MO.getImm(); 614 break; 615 616 case MachineOperand::MO_MachineBasicBlock: 617 MO.getMBB()->getSymbol()->print(O, MAI); 618 return; 619 620 case MachineOperand::MO_GlobalAddress: 621 getSymbol(MO.getGlobal())->print(O, MAI); 622 break; 623 624 case MachineOperand::MO_BlockAddress: { 625 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 626 O << BA->getName(); 627 break; 628 } 629 630 case MachineOperand::MO_ConstantPoolIndex: 631 O << getDataLayout().getPrivateGlobalPrefix() << "CPI" 632 << getFunctionNumber() << "_" << MO.getIndex(); 633 if (MO.getOffset()) 634 O << "+" << MO.getOffset(); 635 break; 636 637 default: 638 llvm_unreachable("<unknown operand type>"); 639 } 640 641 if (closeP) O << ")"; 642 } 643 644 void MipsAsmPrinter:: 645 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { 646 // Load/Store memory operands -- imm($reg) 647 // If PIC target the target is loaded as the 648 // pattern lw $25,%call16($28) 649 650 // opNum can be invalid if instruction has reglist as operand. 651 // MemOperand is always last operand of instruction (base + offset). 652 switch (MI->getOpcode()) { 653 default: 654 break; 655 case Mips::SWM32_MM: 656 case Mips::LWM32_MM: 657 opNum = MI->getNumOperands() - 2; 658 break; 659 } 660 661 printOperand(MI, opNum+1, O); 662 O << "("; 663 printOperand(MI, opNum, O); 664 O << ")"; 665 } 666 667 void MipsAsmPrinter:: 668 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { 669 // when using stack locations for not load/store instructions 670 // print the same way as all normal 3 operand instructions. 671 printOperand(MI, opNum, O); 672 O << ", "; 673 printOperand(MI, opNum+1, O); 674 return; 675 } 676 677 void MipsAsmPrinter:: 678 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, 679 const char *Modifier) { 680 const MachineOperand &MO = MI->getOperand(opNum); 681 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); 682 } 683 684 void MipsAsmPrinter:: 685 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { 686 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { 687 if (i != opNum) O << ", "; 688 printOperand(MI, i, O); 689 } 690 } 691 692 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) { 693 MipsTargetStreamer &TS = getTargetStreamer(); 694 695 // MipsTargetStreamer has an initialization order problem when emitting an 696 // object file directly (see MipsTargetELFStreamer for full details). Work 697 // around it by re-initializing the PIC state here. 698 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); 699 700 // Compute MIPS architecture attributes based on the default subtarget 701 // that we'd have constructed. Module level directives aren't LTO 702 // clean anyhow. 703 // FIXME: For ifunc related functions we could iterate over and look 704 // for a feature string that doesn't match the default one. 705 const Triple &TT = TM.getTargetTriple(); 706 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); 707 StringRef FS = TM.getTargetFeatureString(); 708 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); 709 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM); 710 711 bool IsABICalls = STI.isABICalls(); 712 const MipsABIInfo &ABI = MTM.getABI(); 713 if (IsABICalls) { 714 TS.emitDirectiveAbiCalls(); 715 // FIXME: This condition should be a lot more complicated that it is here. 716 // Ideally it should test for properties of the ABI and not the ABI 717 // itself. 718 // For the moment, I'm only correcting enough to make MIPS-IV work. 719 if (!isPositionIndependent() && STI.hasSym32()) 720 TS.emitDirectiveOptionPic0(); 721 } 722 723 // Tell the assembler which ABI we are using 724 std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); 725 OutStreamer->SwitchSection( 726 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); 727 728 // NaN: At the moment we only support: 729 // 1. .nan legacy (default) 730 // 2. .nan 2008 731 STI.isNaN2008() ? TS.emitDirectiveNaN2008() 732 : TS.emitDirectiveNaNLegacy(); 733 734 // TODO: handle O64 ABI 735 736 TS.updateABIInfo(STI); 737 738 // We should always emit a '.module fp=...' but binutils 2.24 does not accept 739 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or 740 // -mfp64) and omit it otherwise. 741 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) 742 TS.emitDirectiveModuleFP(); 743 744 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not 745 // accept it. We therefore emit it when it contradicts the default or an 746 // option has changed the default (i.e. FPXX) and omit it otherwise. 747 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) 748 TS.emitDirectiveModuleOddSPReg(); 749 } 750 751 void MipsAsmPrinter::emitInlineAsmStart() const { 752 MipsTargetStreamer &TS = getTargetStreamer(); 753 754 // GCC's choice of assembler options for inline assembly code ('at', 'macro' 755 // and 'reorder') is different from LLVM's choice for generated code ('noat', 756 // 'nomacro' and 'noreorder'). 757 // In order to maintain compatibility with inline assembly code which depends 758 // on GCC's assembler options being used, we have to switch to those options 759 // for the duration of the inline assembly block and then switch back. 760 TS.emitDirectiveSetPush(); 761 TS.emitDirectiveSetAt(); 762 TS.emitDirectiveSetMacro(); 763 TS.emitDirectiveSetReorder(); 764 OutStreamer->AddBlankLine(); 765 } 766 767 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 768 const MCSubtargetInfo *EndInfo) const { 769 OutStreamer->AddBlankLine(); 770 getTargetStreamer().emitDirectiveSetPop(); 771 } 772 773 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { 774 MCInst I; 775 I.setOpcode(Mips::JAL); 776 I.addOperand( 777 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); 778 OutStreamer->EmitInstruction(I, STI); 779 } 780 781 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, 782 unsigned Reg) { 783 MCInst I; 784 I.setOpcode(Opcode); 785 I.addOperand(MCOperand::createReg(Reg)); 786 OutStreamer->EmitInstruction(I, STI); 787 } 788 789 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, 790 unsigned Opcode, unsigned Reg1, 791 unsigned Reg2) { 792 MCInst I; 793 // 794 // Because of the current td files for Mips32, the operands for MTC1 795 // appear backwards from their normal assembly order. It's not a trivial 796 // change to fix this in the td file so we adjust for it here. 797 // 798 if (Opcode == Mips::MTC1) { 799 unsigned Temp = Reg1; 800 Reg1 = Reg2; 801 Reg2 = Temp; 802 } 803 I.setOpcode(Opcode); 804 I.addOperand(MCOperand::createReg(Reg1)); 805 I.addOperand(MCOperand::createReg(Reg2)); 806 OutStreamer->EmitInstruction(I, STI); 807 } 808 809 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, 810 unsigned Opcode, unsigned Reg1, 811 unsigned Reg2, unsigned Reg3) { 812 MCInst I; 813 I.setOpcode(Opcode); 814 I.addOperand(MCOperand::createReg(Reg1)); 815 I.addOperand(MCOperand::createReg(Reg2)); 816 I.addOperand(MCOperand::createReg(Reg3)); 817 OutStreamer->EmitInstruction(I, STI); 818 } 819 820 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, 821 unsigned MovOpc, unsigned Reg1, 822 unsigned Reg2, unsigned FPReg1, 823 unsigned FPReg2, bool LE) { 824 if (!LE) { 825 unsigned temp = Reg1; 826 Reg1 = Reg2; 827 Reg2 = temp; 828 } 829 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); 830 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); 831 } 832 833 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, 834 Mips16HardFloatInfo::FPParamVariant PV, 835 bool LE, bool ToFP) { 836 using namespace Mips16HardFloatInfo; 837 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; 838 switch (PV) { 839 case FSig: 840 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 841 break; 842 case FFSig: 843 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); 844 break; 845 case FDSig: 846 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 847 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 848 break; 849 case DSig: 850 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 851 break; 852 case DDSig: 853 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 854 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 855 break; 856 case DFSig: 857 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 858 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); 859 break; 860 case NoSig: 861 return; 862 } 863 } 864 865 void MipsAsmPrinter::EmitSwapFPIntRetval( 866 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, 867 bool LE) { 868 using namespace Mips16HardFloatInfo; 869 unsigned MovOpc = Mips::MFC1; 870 switch (RV) { 871 case FRet: 872 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); 873 break; 874 case DRet: 875 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 876 break; 877 case CFRet: 878 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 879 break; 880 case CDRet: 881 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 882 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); 883 break; 884 case NoFPRet: 885 break; 886 } 887 } 888 889 void MipsAsmPrinter::EmitFPCallStub( 890 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { 891 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); 892 using namespace Mips16HardFloatInfo; 893 bool LE = getDataLayout().isLittleEndian(); 894 // Construct a local MCSubtargetInfo here. 895 // This is because the MachineFunction won't exist (but have not yet been 896 // freed) and since we're at the global level we can use the default 897 // constructed subtarget. 898 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 899 TM.getTargetTriple().str(), TM.getTargetCPU(), 900 TM.getTargetFeatureString())); 901 902 // 903 // .global xxxx 904 // 905 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global); 906 const char *RetType; 907 // 908 // make the comment field identifying the return and parameter 909 // types of the floating point stub 910 // # Stub function to call rettype xxxx (params) 911 // 912 switch (Signature->RetSig) { 913 case FRet: 914 RetType = "float"; 915 break; 916 case DRet: 917 RetType = "double"; 918 break; 919 case CFRet: 920 RetType = "complex"; 921 break; 922 case CDRet: 923 RetType = "double complex"; 924 break; 925 case NoFPRet: 926 RetType = ""; 927 break; 928 } 929 const char *Parms; 930 switch (Signature->ParamSig) { 931 case FSig: 932 Parms = "float"; 933 break; 934 case FFSig: 935 Parms = "float, float"; 936 break; 937 case FDSig: 938 Parms = "float, double"; 939 break; 940 case DSig: 941 Parms = "double"; 942 break; 943 case DDSig: 944 Parms = "double, double"; 945 break; 946 case DFSig: 947 Parms = "double, float"; 948 break; 949 case NoSig: 950 Parms = ""; 951 break; 952 } 953 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + 954 Twine(Symbol) + " (" + Twine(Parms) + ")"); 955 // 956 // probably not necessary but we save and restore the current section state 957 // 958 OutStreamer->PushSection(); 959 // 960 // .section mips16.call.fpxxxx,"ax",@progbits 961 // 962 MCSectionELF *M = OutContext.getELFSection( 963 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, 964 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); 965 OutStreamer->SwitchSection(M, nullptr); 966 // 967 // .align 2 968 // 969 OutStreamer->EmitValueToAlignment(4); 970 MipsTargetStreamer &TS = getTargetStreamer(); 971 // 972 // .set nomips16 973 // .set nomicromips 974 // 975 TS.emitDirectiveSetNoMips16(); 976 TS.emitDirectiveSetNoMicroMips(); 977 // 978 // .ent __call_stub_fp_xxxx 979 // .type __call_stub_fp_xxxx,@function 980 // __call_stub_fp_xxxx: 981 // 982 std::string x = "__call_stub_fp_" + std::string(Symbol); 983 MCSymbolELF *Stub = 984 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); 985 TS.emitDirectiveEnt(*Stub); 986 MCSymbol *MType = 987 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); 988 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction); 989 OutStreamer->EmitLabel(Stub); 990 991 // Only handle non-pic for now. 992 assert(!isPositionIndependent() && 993 "should not be here if we are compiling pic"); 994 TS.emitDirectiveSetReorder(); 995 // 996 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement 997 // stubs without raw text but this current patch is for compiler generated 998 // functions and they all return some value. 999 // The calling sequence for non pic is different in that case and we need 1000 // to implement %lo and %hi in order to handle the case of no return value 1001 // See the corresponding method in Mips16HardFloat for details. 1002 // 1003 // mov the return address to S2. 1004 // we have no stack space to store it and we are about to make another call. 1005 // We need to make sure that the enclosing function knows to save S2 1006 // This should have already been handled. 1007 // 1008 // Mov $18, $31 1009 1010 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); 1011 1012 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); 1013 1014 // Jal xxxx 1015 // 1016 EmitJal(*STI, MSymbol); 1017 1018 // fix return values 1019 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); 1020 // 1021 // do the return 1022 // if (Signature->RetSig == NoFPRet) 1023 // llvm_unreachable("should not be any stubs here with no return value"); 1024 // else 1025 EmitInstrReg(*STI, Mips::JR, Mips::S2); 1026 1027 MCSymbol *Tmp = OutContext.createTempSymbol(); 1028 OutStreamer->EmitLabel(Tmp); 1029 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); 1030 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); 1031 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); 1032 OutStreamer->emitELFSize(Stub, T_min_E); 1033 TS.emitDirectiveEnd(x); 1034 OutStreamer->PopSection(); 1035 } 1036 1037 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) { 1038 // Emit needed stubs 1039 // 1040 for (std::map< 1041 const char *, 1042 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator 1043 it = StubsNeeded.begin(); 1044 it != StubsNeeded.end(); ++it) { 1045 const char *Symbol = it->first; 1046 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second; 1047 EmitFPCallStub(Symbol, Signature); 1048 } 1049 // return to the text section 1050 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); 1051 } 1052 1053 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { 1054 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; 1055 // For mips32 we want to emit the following pattern: 1056 // 1057 // .Lxray_sled_N: 1058 // ALIGN 1059 // B .tmpN 1060 // 11 NOP instructions (44 bytes) 1061 // ADDIU T9, T9, 52 1062 // .tmpN 1063 // 1064 // We need the 44 bytes (11 instructions) because at runtime, we'd 1065 // be patching over the full 48 bytes (12 instructions) with the following 1066 // pattern: 1067 // 1068 // ADDIU SP, SP, -8 1069 // NOP 1070 // SW RA, 4(SP) 1071 // SW T9, 0(SP) 1072 // LUI T9, %hi(__xray_FunctionEntry/Exit) 1073 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1074 // LUI T0, %hi(function_id) 1075 // JALR T9 1076 // ORI T0, T0, %lo(function_id) 1077 // LW T9, 0(SP) 1078 // LW RA, 4(SP) 1079 // ADDIU SP, SP, 8 1080 // 1081 // We add 52 bytes to t9 because we want to adjust the function pointer to 1082 // the actual start of function i.e. the address just after the noop sled. 1083 // We do this because gp displacement relocation is emitted at the start of 1084 // of the function i.e after the nop sled and to correctly calculate the 1085 // global offset table address, t9 must hold the address of the instruction 1086 // containing the gp displacement relocation. 1087 // FIXME: Is this correct for the static relocation model? 1088 // 1089 // For mips64 we want to emit the following pattern: 1090 // 1091 // .Lxray_sled_N: 1092 // ALIGN 1093 // B .tmpN 1094 // 15 NOP instructions (60 bytes) 1095 // .tmpN 1096 // 1097 // We need the 60 bytes (15 instructions) because at runtime, we'd 1098 // be patching over the full 64 bytes (16 instructions) with the following 1099 // pattern: 1100 // 1101 // DADDIU SP, SP, -16 1102 // NOP 1103 // SD RA, 8(SP) 1104 // SD T9, 0(SP) 1105 // LUI T9, %highest(__xray_FunctionEntry/Exit) 1106 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) 1107 // DSLL T9, T9, 16 1108 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) 1109 // DSLL T9, T9, 16 1110 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1111 // LUI T0, %hi(function_id) 1112 // JALR T9 1113 // ADDIU T0, T0, %lo(function_id) 1114 // LD T9, 0(SP) 1115 // LD RA, 8(SP) 1116 // DADDIU SP, SP, 16 1117 // 1118 OutStreamer->EmitCodeAlignment(4); 1119 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1120 OutStreamer->EmitLabel(CurSled); 1121 auto Target = OutContext.createTempSymbol(); 1122 1123 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual 1124 // start of function 1125 const MCExpr *TargetExpr = MCSymbolRefExpr::create( 1126 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); 1127 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) 1128 .addReg(Mips::ZERO) 1129 .addReg(Mips::ZERO) 1130 .addExpr(TargetExpr)); 1131 1132 for (int8_t I = 0; I < NoopsInSledCount; I++) 1133 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) 1134 .addReg(Mips::ZERO) 1135 .addReg(Mips::ZERO) 1136 .addImm(0)); 1137 1138 OutStreamer->EmitLabel(Target); 1139 1140 if (!Subtarget->isGP64bit()) { 1141 EmitToStreamer(*OutStreamer, 1142 MCInstBuilder(Mips::ADDiu) 1143 .addReg(Mips::T9) 1144 .addReg(Mips::T9) 1145 .addImm(0x34)); 1146 } 1147 1148 recordSled(CurSled, MI, Kind); 1149 } 1150 1151 void MipsAsmPrinter::EmitXRayTable() { 1152 if (Sleds.empty()) 1153 return; 1154 if (Subtarget->isTargetELF()) { 1155 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 1156 auto Fn = MF->getFunction(); 1157 MCSection *Section; 1158 1159 if (Fn->hasComdat()) 1160 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 1161 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 1162 Fn->getComdat()->getName()); 1163 else 1164 Section = 1165 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 1166 ELF::SHF_ALLOC, 0, CurrentFnSym->getName()); 1167 1168 OutStreamer->SwitchSection(Section); 1169 for (const auto &Sled : Sleds) { 1170 OutStreamer->EmitSymbolValue(Sled.Sled, Subtarget->isGP64bit() ? 8 : 4); 1171 OutStreamer->EmitSymbolValue(CurrentFnSym, Subtarget->isGP64bit() ? 8 : 4); 1172 auto Kind = static_cast<uint8_t>(Sled.Kind); 1173 OutStreamer->EmitBytes( 1174 StringRef(reinterpret_cast<const char *>(&Kind), 1)); 1175 OutStreamer->EmitBytes( 1176 StringRef(reinterpret_cast<const char *>(&Sled.AlwaysInstrument), 1)); 1177 OutStreamer->EmitZeros(Subtarget->isGP64bit() ? 14 : 6); 1178 } 1179 OutStreamer->SwitchSection(PrevSection); 1180 } 1181 Sleds.clear(); 1182 } 1183 1184 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { 1185 EmitSled(MI, SledKind::FUNCTION_ENTER); 1186 } 1187 1188 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 1189 EmitSled(MI, SledKind::FUNCTION_EXIT); 1190 } 1191 1192 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 1193 EmitSled(MI, SledKind::TAIL_CALL); 1194 } 1195 1196 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 1197 raw_ostream &OS) { 1198 // TODO: implement 1199 } 1200 1201 // Emit .dtprelword or .dtpreldword directive 1202 // and value for debug thread local expression. 1203 void MipsAsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 1204 unsigned Size) const { 1205 switch (Size) { 1206 case 4: 1207 OutStreamer->EmitDTPRel32Value(Value); 1208 break; 1209 case 8: 1210 OutStreamer->EmitDTPRel64Value(Value); 1211 break; 1212 default: 1213 llvm_unreachable("Unexpected size of expression value."); 1214 } 1215 } 1216 1217 // Align all targets of indirect branches on bundle size. Used only if target 1218 // is NaCl. 1219 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { 1220 // Align all blocks that are jumped to through jump table. 1221 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { 1222 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); 1223 for (unsigned I = 0; I < JT.size(); ++I) { 1224 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs; 1225 1226 for (unsigned J = 0; J < MBBs.size(); ++J) 1227 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1228 } 1229 } 1230 1231 // If basic block address is taken, block can be target of indirect branch. 1232 for (auto &MBB : MF) { 1233 if (MBB.hasAddressTaken()) 1234 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1235 } 1236 } 1237 1238 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { 1239 return (Opcode == Mips::LONG_BRANCH_LUi 1240 || Opcode == Mips::LONG_BRANCH_ADDiu 1241 || Opcode == Mips::LONG_BRANCH_DADDiu); 1242 } 1243 1244 // Force static initialization. 1245 extern "C" void LLVMInitializeMipsAsmPrinter() { 1246 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); 1247 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); 1248 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); 1249 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); 1250 } 1251