1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsHexagon.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39
40 #include "HexagonSubtarget.h"
41 #include "HexagonTargetMachine.h"
42
43 #include <algorithm>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49
50 #define DEBUG_TYPE "hexagon-vc"
51
52 using namespace llvm;
53
54 namespace {
55 class HexagonVectorCombine {
56 public:
HexagonVectorCombine(Function & F_,AliasAnalysis & AA_,AssumptionCache & AC_,DominatorTree & DT_,TargetLibraryInfo & TLI_,const TargetMachine & TM_)57 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
58 DominatorTree &DT_, TargetLibraryInfo &TLI_,
59 const TargetMachine &TM_)
60 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
61 TLI(TLI_),
62 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
63
64 bool run();
65
66 // Common integer type.
67 IntegerType *getIntTy() const;
68 // Byte type: either scalar (when Length = 0), or vector with given
69 // element count.
70 Type *getByteTy(int ElemCount = 0) const;
71 // Boolean type: either scalar (when Length = 0), or vector with given
72 // element count.
73 Type *getBoolTy(int ElemCount = 0) const;
74 // Create a ConstantInt of type returned by getIntTy with the value Val.
75 ConstantInt *getConstInt(int Val) const;
76 // Get the integer value of V, if it exists.
77 Optional<APInt> getIntValue(const Value *Val) const;
78 // Is V a constant 0, or a vector of 0s?
79 bool isZero(const Value *Val) const;
80 // Is V an undef value?
81 bool isUndef(const Value *Val) const;
82
83 int getSizeOf(const Value *Val) const;
84 int getSizeOf(const Type *Ty) const;
85 int getAllocSizeOf(const Type *Ty) const;
86 int getTypeAlignment(Type *Ty) const;
87
88 Constant *getNullValue(Type *Ty) const;
89 Constant *getFullValue(Type *Ty) const;
90
91 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
92 int Length, int Where) const;
93 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
94 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
95 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
96 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
97 Value *Pad) const;
98 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
99 Type *ToTy) const;
100 Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
101 Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
102
103 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
104 Type *RetTy, ArrayRef<Value *> Args) const;
105
106 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
107
108 template <typename T = std::vector<Instruction *>>
109 bool isSafeToMoveBeforeInBB(const Instruction &In,
110 BasicBlock::const_iterator To,
111 const T &Ignore = {}) const;
112
113 Function &F;
114 const DataLayout &DL;
115 AliasAnalysis &AA;
116 AssumptionCache &AC;
117 DominatorTree &DT;
118 TargetLibraryInfo &TLI;
119 const HexagonSubtarget &HST;
120
121 private:
122 #ifndef NDEBUG
123 // These two functions are only used for assertions at the moment.
124 bool isByteVecTy(Type *Ty) const;
125 bool isSectorTy(Type *Ty) const;
126 #endif
127 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
128 int Length) const;
129 };
130
131 class AlignVectors {
132 public:
AlignVectors(HexagonVectorCombine & HVC_)133 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
134
135 bool run();
136
137 private:
138 using InstList = std::vector<Instruction *>;
139
140 struct Segment {
141 void *Data;
142 int Start;
143 int Size;
144 };
145
146 struct AddrInfo {
147 AddrInfo(const AddrInfo &) = default;
AddrInfo__anon2c83e0c90111::AlignVectors::AddrInfo148 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
149 Align H)
150 : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
151 NeedAlign(HVC.getTypeAlignment(ValTy)) {}
152 AddrInfo &operator=(const AddrInfo &) = default;
153
154 // XXX: add Size member?
155 Instruction *Inst;
156 Value *Addr;
157 Type *ValTy;
158 Align HaveAlign;
159 Align NeedAlign;
160 int Offset = 0; // Offset (in bytes) from the first member of the
161 // containing AddrList.
162 };
163 using AddrList = std::vector<AddrInfo>;
164
165 struct InstrLess {
operator ()__anon2c83e0c90111::AlignVectors::InstrLess166 bool operator()(const Instruction *A, const Instruction *B) const {
167 return A->comesBefore(B);
168 }
169 };
170 using DepList = std::set<Instruction *, InstrLess>;
171
172 struct MoveGroup {
MoveGroup__anon2c83e0c90111::AlignVectors::MoveGroup173 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
174 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
175 Instruction *Base; // Base instruction of the parent address group.
176 InstList Main; // Main group of instructions.
177 InstList Deps; // List of dependencies.
178 bool IsHvx; // Is this group of HVX instructions?
179 bool IsLoad; // Is this a load group?
180 };
181 using MoveList = std::vector<MoveGroup>;
182
183 struct ByteSpan {
184 struct Segment {
185 // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
Segment__anon2c83e0c90111::AlignVectors::ByteSpan::Segment186 Segment(Value *Val, int Begin, int Len)
187 : Val(Val), Start(Begin), Size(Len) {}
188 Segment(const Segment &Seg) = default;
189 Segment &operator=(const Segment &Seg) = default;
190 Value *Val; // Value representable as a sequence of bytes.
191 int Start; // First byte of the value that belongs to the segment.
192 int Size; // Number of bytes in the segment.
193 };
194
195 struct Block {
Block__anon2c83e0c90111::AlignVectors::ByteSpan::Block196 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
Block__anon2c83e0c90111::AlignVectors::ByteSpan::Block197 Block(Value *Val, int Off, int Len, int Pos)
198 : Seg(Val, Off, Len), Pos(Pos) {}
199 Block(const Block &Blk) = default;
200 Block &operator=(const Block &Blk) = default;
201 Segment Seg; // Value segment.
202 int Pos; // Position (offset) of the segment in the Block.
203 };
204
205 int extent() const;
206 ByteSpan section(int Start, int Length) const;
207 ByteSpan &shift(int Offset);
208 SmallVector<Value *, 8> values() const;
209
size__anon2c83e0c90111::AlignVectors::ByteSpan210 int size() const { return Blocks.size(); }
operator []__anon2c83e0c90111::AlignVectors::ByteSpan211 Block &operator[](int i) { return Blocks[i]; }
212
213 std::vector<Block> Blocks;
214
215 using iterator = decltype(Blocks)::iterator;
begin__anon2c83e0c90111::AlignVectors::ByteSpan216 iterator begin() { return Blocks.begin(); }
end__anon2c83e0c90111::AlignVectors::ByteSpan217 iterator end() { return Blocks.end(); }
218 using const_iterator = decltype(Blocks)::const_iterator;
begin__anon2c83e0c90111::AlignVectors::ByteSpan219 const_iterator begin() const { return Blocks.begin(); }
end__anon2c83e0c90111::AlignVectors::ByteSpan220 const_iterator end() const { return Blocks.end(); }
221 };
222
223 Align getAlignFromValue(const Value *V) const;
224 Optional<MemoryLocation> getLocation(const Instruction &In) const;
225 Optional<AddrInfo> getAddrInfo(Instruction &In) const;
226 bool isHvx(const AddrInfo &AI) const;
227
228 Value *getPayload(Value *Val) const;
229 Value *getMask(Value *Val) const;
230 Value *getPassThrough(Value *Val) const;
231
232 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
233 int Adjust) const;
234 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
235 int Alignment) const;
236 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
237 int Alignment, Value *Mask, Value *PassThru) const;
238 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
239 int Alignment, Value *Mask) const;
240
241 bool createAddressGroups();
242 MoveList createLoadGroups(const AddrList &Group) const;
243 MoveList createStoreGroups(const AddrList &Group) const;
244 bool move(const MoveGroup &Move) const;
245 bool realignGroup(const MoveGroup &Move) const;
246
247 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
248 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
249 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
250
251 std::map<Instruction *, AddrList> AddrGroups;
252 HexagonVectorCombine &HVC;
253 };
254
255 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::AddrInfo & AI)256 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
257 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
258 OS << "Addr: " << *AI.Addr << '\n';
259 OS << "Type: " << *AI.ValTy << '\n';
260 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
261 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
262 OS << "Offset: " << AI.Offset;
263 return OS;
264 }
265
266 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::MoveGroup & MG)267 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
268 OS << "Main\n";
269 for (Instruction *I : MG.Main)
270 OS << " " << *I << '\n';
271 OS << "Deps\n";
272 for (Instruction *I : MG.Deps)
273 OS << " " << *I << '\n';
274 return OS;
275 }
276
277 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::ByteSpan & BS)278 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
279 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
280 for (const AlignVectors::ByteSpan::Block &B : BS) {
281 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
282 << *B.Seg.Val << '\n';
283 }
284 OS << ']';
285 return OS;
286 }
287
288 } // namespace
289
290 namespace {
291
getIfUnordered(T * MaybeT)292 template <typename T> T *getIfUnordered(T *MaybeT) {
293 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
294 }
isCandidate(Instruction * In)295 template <typename T> T *isCandidate(Instruction *In) {
296 return dyn_cast<T>(In);
297 }
isCandidate(Instruction * In)298 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
299 return getIfUnordered(dyn_cast<LoadInst>(In));
300 }
isCandidate(Instruction * In)301 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
302 return getIfUnordered(dyn_cast<StoreInst>(In));
303 }
304
305 #if !defined(_MSC_VER) || _MSC_VER >= 1926
306 // VS2017 and some versions of VS2019 have trouble compiling this:
307 // error C2976: 'std::map': too few template arguments
308 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
309 template <typename Pred, typename... Ts>
erase_if(std::map<Ts...> & map,Pred p)310 void erase_if(std::map<Ts...> &map, Pred p)
311 #else
312 template <typename Pred, typename T, typename U>
313 void erase_if(std::map<T, U> &map, Pred p)
314 #endif
315 {
316 for (auto i = map.begin(), e = map.end(); i != e;) {
317 if (p(*i))
318 i = map.erase(i);
319 else
320 i = std::next(i);
321 }
322 }
323
324 // Forward other erase_ifs to the LLVM implementations.
erase_if(T && container,Pred p)325 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
326 llvm::erase_if(std::forward<T>(container), p);
327 }
328
329 } // namespace
330
331 // --- Begin AlignVectors
332
extent() const333 auto AlignVectors::ByteSpan::extent() const -> int {
334 if (size() == 0)
335 return 0;
336 int Min = Blocks[0].Pos;
337 int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
338 for (int i = 1, e = size(); i != e; ++i) {
339 Min = std::min(Min, Blocks[i].Pos);
340 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
341 }
342 return Max - Min;
343 }
344
section(int Start,int Length) const345 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
346 ByteSpan Section;
347 for (const ByteSpan::Block &B : Blocks) {
348 int L = std::max(B.Pos, Start); // Left end.
349 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
350 if (L < R) {
351 // How much to chop off the beginning of the segment:
352 int Off = L > B.Pos ? L - B.Pos : 0;
353 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
354 }
355 }
356 return Section;
357 }
358
shift(int Offset)359 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
360 for (Block &B : Blocks)
361 B.Pos += Offset;
362 return *this;
363 }
364
values() const365 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
366 SmallVector<Value *, 8> Values(Blocks.size());
367 for (int i = 0, e = Blocks.size(); i != e; ++i)
368 Values[i] = Blocks[i].Seg.Val;
369 return Values;
370 }
371
getAlignFromValue(const Value * V) const372 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
373 const auto *C = dyn_cast<ConstantInt>(V);
374 assert(C && "Alignment must be a compile-time constant integer");
375 return C->getAlignValue();
376 }
377
getAddrInfo(Instruction & In) const378 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
379 if (auto *L = isCandidate<LoadInst>(&In))
380 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
381 L->getAlign());
382 if (auto *S = isCandidate<StoreInst>(&In))
383 return AddrInfo(HVC, S, S->getPointerOperand(),
384 S->getValueOperand()->getType(), S->getAlign());
385 if (auto *II = isCandidate<IntrinsicInst>(&In)) {
386 Intrinsic::ID ID = II->getIntrinsicID();
387 switch (ID) {
388 case Intrinsic::masked_load:
389 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
390 getAlignFromValue(II->getArgOperand(1)));
391 case Intrinsic::masked_store:
392 return AddrInfo(HVC, II, II->getArgOperand(1),
393 II->getArgOperand(0)->getType(),
394 getAlignFromValue(II->getArgOperand(2)));
395 }
396 }
397 return Optional<AddrInfo>();
398 }
399
isHvx(const AddrInfo & AI) const400 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
401 return HVC.HST.isTypeForHVX(AI.ValTy);
402 }
403
getPayload(Value * Val) const404 auto AlignVectors::getPayload(Value *Val) const -> Value * {
405 if (auto *In = dyn_cast<Instruction>(Val)) {
406 Intrinsic::ID ID = 0;
407 if (auto *II = dyn_cast<IntrinsicInst>(In))
408 ID = II->getIntrinsicID();
409 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
410 return In->getOperand(0);
411 }
412 return Val;
413 }
414
getMask(Value * Val) const415 auto AlignVectors::getMask(Value *Val) const -> Value * {
416 if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
417 switch (II->getIntrinsicID()) {
418 case Intrinsic::masked_load:
419 return II->getArgOperand(2);
420 case Intrinsic::masked_store:
421 return II->getArgOperand(3);
422 }
423 }
424
425 Type *ValTy = getPayload(Val)->getType();
426 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
427 int ElemCount = VecTy->getElementCount().getFixedValue();
428 return HVC.getFullValue(HVC.getBoolTy(ElemCount));
429 }
430 return HVC.getFullValue(HVC.getBoolTy());
431 }
432
getPassThrough(Value * Val) const433 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
434 if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
435 if (II->getIntrinsicID() == Intrinsic::masked_load)
436 return II->getArgOperand(3);
437 }
438 return UndefValue::get(getPayload(Val)->getType());
439 }
440
createAdjustedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Adjust) const441 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
442 Type *ValTy, int Adjust) const
443 -> Value * {
444 // The adjustment is in bytes, but if it's a multiple of the type size,
445 // we don't need to do pointer casts.
446 auto *PtrTy = cast<PointerType>(Ptr->getType());
447 if (!PtrTy->isOpaque()) {
448 Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
449 int ElemSize = HVC.getAllocSizeOf(ElemTy);
450 if (Adjust % ElemSize == 0 && Adjust != 0) {
451 Value *Tmp0 =
452 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
453 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
454 }
455 }
456
457 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
458 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
459 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
460 HVC.getConstInt(Adjust));
461 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
462 }
463
createAlignedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Alignment) const464 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
465 Type *ValTy, int Alignment) const
466 -> Value * {
467 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
468 Value *Mask = HVC.getConstInt(-Alignment);
469 Value *And = Builder.CreateAnd(AsInt, Mask);
470 return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
471 }
472
createAlignedLoad(IRBuilder<> & Builder,Type * ValTy,Value * Ptr,int Alignment,Value * Mask,Value * PassThru) const473 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
474 Value *Ptr, int Alignment, Value *Mask,
475 Value *PassThru) const -> Value * {
476 assert(!HVC.isUndef(Mask)); // Should this be allowed?
477 if (HVC.isZero(Mask))
478 return PassThru;
479 if (Mask == ConstantInt::getTrue(Mask->getType()))
480 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
481 return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
482 }
483
createAlignedStore(IRBuilder<> & Builder,Value * Val,Value * Ptr,int Alignment,Value * Mask) const484 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
485 Value *Ptr, int Alignment,
486 Value *Mask) const -> Value * {
487 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
488 return UndefValue::get(Val->getType());
489 if (Mask == ConstantInt::getTrue(Mask->getType()))
490 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
491 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
492 }
493
createAddressGroups()494 auto AlignVectors::createAddressGroups() -> bool {
495 // An address group created here may contain instructions spanning
496 // multiple basic blocks.
497 AddrList WorkStack;
498
499 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
500 for (AddrInfo &W : WorkStack) {
501 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
502 return std::make_pair(W.Inst, *D);
503 }
504 return std::make_pair(nullptr, 0);
505 };
506
507 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
508 BasicBlock &Block = *DomN->getBlock();
509 for (Instruction &I : Block) {
510 auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
511 if (!AI)
512 continue;
513 auto F = findBaseAndOffset(*AI);
514 Instruction *GroupInst;
515 if (Instruction *BI = F.first) {
516 AI->Offset = F.second;
517 GroupInst = BI;
518 } else {
519 WorkStack.push_back(*AI);
520 GroupInst = AI->Inst;
521 }
522 AddrGroups[GroupInst].push_back(*AI);
523 }
524
525 for (DomTreeNode *C : DomN->children())
526 Visit(C, Visit);
527
528 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
529 WorkStack.pop_back();
530 };
531
532 traverseBlock(HVC.DT.getRootNode(), traverseBlock);
533 assert(WorkStack.empty());
534
535 // AddrGroups are formed.
536
537 // Remove groups of size 1.
538 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
539 // Remove groups that don't use HVX types.
540 erase_if(AddrGroups, [&](auto &G) {
541 return llvm::none_of(
542 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
543 });
544
545 return !AddrGroups.empty();
546 }
547
createLoadGroups(const AddrList & Group) const548 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
549 // Form load groups.
550 // To avoid complications with moving code across basic blocks, only form
551 // groups that are contained within a single basic block.
552
553 auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
554 BasicBlock *Parent = Base->getParent();
555 assert(In->getParent() == Parent &&
556 "Base and In should be in the same block");
557 assert(Base->comesBefore(In) && "Base should come before In");
558
559 DepList Deps;
560 std::deque<Instruction *> WorkQ = {In};
561 while (!WorkQ.empty()) {
562 Instruction *D = WorkQ.front();
563 WorkQ.pop_front();
564 Deps.insert(D);
565 for (Value *Op : D->operands()) {
566 if (auto *I = dyn_cast<Instruction>(Op)) {
567 if (I->getParent() == Parent && Base->comesBefore(I))
568 WorkQ.push_back(I);
569 }
570 }
571 }
572 return Deps;
573 };
574
575 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
576 assert(!Move.Main.empty() && "Move group should have non-empty Main");
577 // Don't mix HVX and non-HVX instructions.
578 if (Move.IsHvx != isHvx(Info))
579 return false;
580 // Leading instruction in the load group.
581 Instruction *Base = Move.Main.front();
582 if (Base->getParent() != Info.Inst->getParent())
583 return false;
584
585 auto isSafeToMoveToBase = [&](const Instruction *I) {
586 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
587 };
588 DepList Deps = getUpwardDeps(Info.Inst, Base);
589 if (!llvm::all_of(Deps, isSafeToMoveToBase))
590 return false;
591
592 // The dependencies will be moved together with the load, so make sure
593 // that none of them could be moved independently in another group.
594 Deps.erase(Info.Inst);
595 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
596 if (llvm::any_of(Deps, inAddrMap))
597 return false;
598 Move.Main.push_back(Info.Inst);
599 llvm::append_range(Move.Deps, Deps);
600 return true;
601 };
602
603 MoveList LoadGroups;
604
605 for (const AddrInfo &Info : Group) {
606 if (!Info.Inst->mayReadFromMemory())
607 continue;
608 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
609 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
610 }
611
612 // Erase singleton groups.
613 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
614 return LoadGroups;
615 }
616
createStoreGroups(const AddrList & Group) const617 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
618 // Form store groups.
619 // To avoid complications with moving code across basic blocks, only form
620 // groups that are contained within a single basic block.
621
622 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
623 assert(!Move.Main.empty() && "Move group should have non-empty Main");
624 // For stores with return values we'd have to collect downward depenencies.
625 // There are no such stores that we handle at the moment, so omit that.
626 assert(Info.Inst->getType()->isVoidTy() &&
627 "Not handling stores with return values");
628 // Don't mix HVX and non-HVX instructions.
629 if (Move.IsHvx != isHvx(Info))
630 return false;
631 // For stores we need to be careful whether it's safe to move them.
632 // Stores that are otherwise safe to move together may not appear safe
633 // to move over one another (i.e. isSafeToMoveBefore may return false).
634 Instruction *Base = Move.Main.front();
635 if (Base->getParent() != Info.Inst->getParent())
636 return false;
637 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
638 return false;
639 Move.Main.push_back(Info.Inst);
640 return true;
641 };
642
643 MoveList StoreGroups;
644
645 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
646 const AddrInfo &Info = *I;
647 if (!Info.Inst->mayWriteToMemory())
648 continue;
649 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
650 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
651 }
652
653 // Erase singleton groups.
654 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
655 return StoreGroups;
656 }
657
move(const MoveGroup & Move) const658 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
659 assert(!Move.Main.empty() && "Move group should have non-empty Main");
660 Instruction *Where = Move.Main.front();
661
662 if (Move.IsLoad) {
663 // Move all deps to before Where, keeping order.
664 for (Instruction *D : Move.Deps)
665 D->moveBefore(Where);
666 // Move all main instructions to after Where, keeping order.
667 ArrayRef<Instruction *> Main(Move.Main);
668 for (Instruction *M : Main.drop_front(1)) {
669 M->moveAfter(Where);
670 Where = M;
671 }
672 } else {
673 // NOTE: Deps are empty for "store" groups. If they need to be
674 // non-empty, decide on the order.
675 assert(Move.Deps.empty());
676 // Move all main instructions to before Where, inverting order.
677 ArrayRef<Instruction *> Main(Move.Main);
678 for (Instruction *M : Main.drop_front(1)) {
679 M->moveBefore(Where);
680 Where = M;
681 }
682 }
683
684 return Move.Main.size() + Move.Deps.size() > 1;
685 }
686
realignGroup(const MoveGroup & Move) const687 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
688 // TODO: Needs support for masked loads/stores of "scalar" vectors.
689 if (!Move.IsHvx)
690 return false;
691
692 // Return the element with the maximum alignment from Range,
693 // where GetValue obtains the value to compare from an element.
694 auto getMaxOf = [](auto Range, auto GetValue) {
695 return *std::max_element(
696 Range.begin(), Range.end(),
697 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
698 };
699
700 const AddrList &BaseInfos = AddrGroups.at(Move.Base);
701
702 // Conceptually, there is a vector of N bytes covering the addresses
703 // starting from the minimum offset (i.e. Base.Addr+Start). This vector
704 // represents a contiguous memory region that spans all accessed memory
705 // locations.
706 // The correspondence between loaded or stored values will be expressed
707 // in terms of this vector. For example, the 0th element of the vector
708 // from the Base address info will start at byte Start from the beginning
709 // of this conceptual vector.
710 //
711 // This vector will be loaded/stored starting at the nearest down-aligned
712 // address and the amount od the down-alignment will be AlignVal:
713 // valign(load_vector(align_down(Base+Start)), AlignVal)
714
715 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
716 AddrList MoveInfos;
717 llvm::copy_if(
718 BaseInfos, std::back_inserter(MoveInfos),
719 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
720
721 // Maximum alignment present in the whole address group.
722 const AddrInfo &WithMaxAlign =
723 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
724 Align MaxGiven = WithMaxAlign.HaveAlign;
725
726 // Minimum alignment present in the move address group.
727 const AddrInfo &WithMinOffset =
728 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
729
730 const AddrInfo &WithMaxNeeded =
731 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
732 Align MinNeeded = WithMaxNeeded.NeedAlign;
733
734 // Set the builder at the top instruction in the move group.
735 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
736 IRBuilder<> Builder(TopIn);
737 Value *AlignAddr = nullptr; // Actual aligned address.
738 Value *AlignVal = nullptr; // Right-shift amount (for valign).
739
740 if (MinNeeded <= MaxGiven) {
741 int Start = WithMinOffset.Offset;
742 int OffAtMax = WithMaxAlign.Offset;
743 // Shift the offset of the maximally aligned instruction (OffAtMax)
744 // back by just enough multiples of the required alignment to cover the
745 // distance from Start to OffAtMax.
746 // Calculate the address adjustment amount based on the address with the
747 // maximum alignment. This is to allow a simple gep instruction instead
748 // of potential bitcasts to i8*.
749 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
750 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
751 WithMaxAlign.ValTy, Adjust);
752 int Diff = Start - (OffAtMax + Adjust);
753 AlignVal = HVC.getConstInt(Diff);
754 assert(Diff >= 0);
755 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
756 } else {
757 // WithMinOffset is the lowest address in the group,
758 // WithMinOffset.Addr = Base+Start.
759 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
760 // mask off unnecessary bits, so it's ok to just the original pointer as
761 // the alignment amount.
762 // Do an explicit down-alignment of the address to avoid creating an
763 // aligned instruction with an address that is not really aligned.
764 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
765 WithMinOffset.ValTy, MinNeeded.value());
766 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
767 }
768
769 ByteSpan VSpan;
770 for (const AddrInfo &AI : MoveInfos) {
771 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
772 AI.Offset - WithMinOffset.Offset);
773 }
774
775 // The aligned loads/stores will use blocks that are either scalars,
776 // or HVX vectors. Let "sector" be the unified term for such a block.
777 // blend(scalar, vector) -> sector...
778 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
779 : std::max<int>(MinNeeded.value(), 4);
780 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
781 assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
782
783 Type *SecTy = HVC.getByteTy(ScLen);
784 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
785 bool DoAlign = !HVC.isZero(AlignVal);
786
787 if (Move.IsLoad) {
788 ByteSpan ASpan;
789 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
790 auto *Undef = UndefValue::get(SecTy);
791
792 for (int i = 0; i != NumSectors + DoAlign; ++i) {
793 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
794 // FIXME: generate a predicated load?
795 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
796 // If vector shifting is potentially needed, accumulate metadata
797 // from source sections of twice the load width.
798 int Start = (i - DoAlign) * ScLen;
799 int Width = (1 + DoAlign) * ScLen;
800 propagateMetadata(cast<Instruction>(Load),
801 VSpan.section(Start, Width).values());
802 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
803 }
804
805 if (DoAlign) {
806 for (int j = 0; j != NumSectors; ++j) {
807 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
808 ASpan[j + 1].Seg.Val, AlignVal);
809 }
810 }
811
812 for (ByteSpan::Block &B : VSpan) {
813 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
814 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
815 for (ByteSpan::Block &S : ASection) {
816 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
817 Accum =
818 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
819 }
820 // Instead of casting everything to bytes for the vselect, cast to the
821 // original value type. This will avoid complications with casting masks.
822 // For example, in cases when the original mask applied to i32, it could
823 // be converted to a mask applicable to i8 via pred_typecast intrinsic,
824 // but if the mask is not exactly of HVX length, extra handling would be
825 // needed to make it work.
826 Type *ValTy = getPayload(B.Seg.Val)->getType();
827 Value *Cast = Builder.CreateBitCast(Accum, ValTy);
828 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
829 getPassThrough(B.Seg.Val));
830 B.Seg.Val->replaceAllUsesWith(Sel);
831 }
832 } else {
833 // Stores.
834 ByteSpan ASpanV, ASpanM;
835
836 // Return a vector value corresponding to the input value Val:
837 // either <1 x Val> for scalar Val, or Val itself for vector Val.
838 auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
839 Type *Ty = Val->getType();
840 if (Ty->isVectorTy())
841 return Val;
842 auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
843 return Builder.CreateBitCast(Val, VecTy);
844 };
845
846 // Create an extra "undef" sector at the beginning and at the end.
847 // They will be used as the left/right filler in the vlalign step.
848 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
849 // For stores, the size of each section is an aligned vector length.
850 // Adjust the store offsets relative to the section start offset.
851 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
852 Value *AccumV = UndefValue::get(SecTy);
853 Value *AccumM = HVC.getNullValue(SecTy);
854 for (ByteSpan::Block &S : VSection) {
855 Value *Pay = getPayload(S.Seg.Val);
856 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
857 Pay->getType(), HVC.getByteTy());
858 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
859 S.Seg.Start, S.Seg.Size, S.Pos);
860 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
861 S.Seg.Start, S.Seg.Size, S.Pos);
862 }
863 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
864 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
865 }
866
867 // vlalign
868 if (DoAlign) {
869 for (int j = 1; j != NumSectors + 2; ++j) {
870 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
871 ASpanV[j].Seg.Val, AlignVal);
872 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
873 ASpanM[j].Seg.Val, AlignVal);
874 }
875 }
876
877 for (int i = 0; i != NumSectors + DoAlign; ++i) {
878 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
879 Value *Val = ASpanV[i].Seg.Val;
880 Value *Mask = ASpanM[i].Seg.Val; // bytes
881 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
882 Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
883 HVC.vlsb(Builder, Mask));
884 // If vector shifting is potentially needed, accumulate metadata
885 // from source sections of twice the store width.
886 int Start = (i - DoAlign) * ScLen;
887 int Width = (1 + DoAlign) * ScLen;
888 propagateMetadata(cast<Instruction>(Store),
889 VSpan.section(Start, Width).values());
890 }
891 }
892 }
893
894 for (auto *Inst : Move.Main)
895 Inst->eraseFromParent();
896
897 return true;
898 }
899
run()900 auto AlignVectors::run() -> bool {
901 if (!createAddressGroups())
902 return false;
903
904 bool Changed = false;
905 MoveList LoadGroups, StoreGroups;
906
907 for (auto &G : AddrGroups) {
908 llvm::append_range(LoadGroups, createLoadGroups(G.second));
909 llvm::append_range(StoreGroups, createStoreGroups(G.second));
910 }
911
912 for (auto &M : LoadGroups)
913 Changed |= move(M);
914 for (auto &M : StoreGroups)
915 Changed |= move(M);
916
917 for (auto &M : LoadGroups)
918 Changed |= realignGroup(M);
919 for (auto &M : StoreGroups)
920 Changed |= realignGroup(M);
921
922 return Changed;
923 }
924
925 // --- End AlignVectors
926
run()927 auto HexagonVectorCombine::run() -> bool {
928 if (!HST.useHVXOps())
929 return false;
930
931 bool Changed = AlignVectors(*this).run();
932 return Changed;
933 }
934
getIntTy() const935 auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
936 return Type::getInt32Ty(F.getContext());
937 }
938
getByteTy(int ElemCount) const939 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
940 assert(ElemCount >= 0);
941 IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
942 if (ElemCount == 0)
943 return ByteTy;
944 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
945 }
946
getBoolTy(int ElemCount) const947 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
948 assert(ElemCount >= 0);
949 IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
950 if (ElemCount == 0)
951 return BoolTy;
952 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
953 }
954
getConstInt(int Val) const955 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
956 return ConstantInt::getSigned(getIntTy(), Val);
957 }
958
isZero(const Value * Val) const959 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
960 if (auto *C = dyn_cast<Constant>(Val))
961 return C->isZeroValue();
962 return false;
963 }
964
getIntValue(const Value * Val) const965 auto HexagonVectorCombine::getIntValue(const Value *Val) const
966 -> Optional<APInt> {
967 if (auto *CI = dyn_cast<ConstantInt>(Val))
968 return CI->getValue();
969 return None;
970 }
971
isUndef(const Value * Val) const972 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
973 return isa<UndefValue>(Val);
974 }
975
getSizeOf(const Value * Val) const976 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
977 return getSizeOf(Val->getType());
978 }
979
getSizeOf(const Type * Ty) const980 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
981 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
982 }
983
getAllocSizeOf(const Type * Ty) const984 auto HexagonVectorCombine::getAllocSizeOf(const Type *Ty) const -> int {
985 return DL.getTypeAllocSize(const_cast<Type *>(Ty)).getFixedValue();
986 }
987
getTypeAlignment(Type * Ty) const988 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
989 // The actual type may be shorter than the HVX vector, so determine
990 // the alignment based on subtarget info.
991 if (HST.isTypeForHVX(Ty))
992 return HST.getVectorLength();
993 return DL.getABITypeAlign(Ty).value();
994 }
995
getNullValue(Type * Ty) const996 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
997 assert(Ty->isIntOrIntVectorTy());
998 auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
999 if (auto *VecTy = dyn_cast<VectorType>(Ty))
1000 return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
1001 return Zero;
1002 }
1003
getFullValue(Type * Ty) const1004 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
1005 assert(Ty->isIntOrIntVectorTy());
1006 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
1007 if (auto *VecTy = dyn_cast<VectorType>(Ty))
1008 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
1009 return Minus1;
1010 }
1011
1012 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
insertb(IRBuilder<> & Builder,Value * Dst,Value * Src,int Start,int Length,int Where) const1013 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
1014 int Start, int Length, int Where) const
1015 -> Value * {
1016 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1017 int SrcLen = getSizeOf(Src);
1018 int DstLen = getSizeOf(Dst);
1019 assert(0 <= Start && Start + Length <= SrcLen);
1020 assert(0 <= Where && Where + Length <= DstLen);
1021
1022 int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1023 auto *Undef = UndefValue::get(getByteTy());
1024 Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1025 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1026
1027 SmallVector<int, 256> SMask(P2Len);
1028 for (int i = 0; i != P2Len; ++i) {
1029 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1030 // Otherwise, pick Dst[i];
1031 SMask[i] =
1032 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1033 }
1034
1035 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1036 return vresize(Builder, P2Insert, DstLen, Undef);
1037 }
1038
vlalignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1039 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1040 Value *Amt) const -> Value * {
1041 assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1042 assert(isSectorTy(Hi->getType()));
1043 if (isZero(Amt))
1044 return Hi;
1045 int VecLen = getSizeOf(Hi);
1046 if (auto IntAmt = getIntValue(Amt))
1047 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1048 VecLen);
1049
1050 if (HST.isTypeForHVX(Hi->getType())) {
1051 int HwLen = HST.getVectorLength();
1052 assert(VecLen == HwLen && "Expecting an exact HVX type");
1053 Intrinsic::ID V6_vlalignb = HwLen == 64
1054 ? Intrinsic::hexagon_V6_vlalignb
1055 : Intrinsic::hexagon_V6_vlalignb_128B;
1056 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1057 {Hi, Lo, Amt});
1058 }
1059
1060 if (VecLen == 4) {
1061 Value *Pair = concat(Builder, {Lo, Hi});
1062 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1063 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1064 return Builder.CreateBitCast(Trunc, Hi->getType());
1065 }
1066 if (VecLen == 8) {
1067 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1068 return vralignb(Builder, Lo, Hi, Sub);
1069 }
1070 llvm_unreachable("Unexpected vector length");
1071 }
1072
vralignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1073 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1074 Value *Amt) const -> Value * {
1075 assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1076 assert(isSectorTy(Lo->getType()));
1077 if (isZero(Amt))
1078 return Lo;
1079 int VecLen = getSizeOf(Lo);
1080 if (auto IntAmt = getIntValue(Amt))
1081 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1082
1083 if (HST.isTypeForHVX(Lo->getType())) {
1084 int HwLen = HST.getVectorLength();
1085 assert(VecLen == HwLen && "Expecting an exact HVX type");
1086 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1087 : Intrinsic::hexagon_V6_valignb_128B;
1088 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1089 {Hi, Lo, Amt});
1090 }
1091
1092 if (VecLen == 4) {
1093 Value *Pair = concat(Builder, {Lo, Hi});
1094 Value *Shift = Builder.CreateLShr(Pair, Amt);
1095 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1096 return Builder.CreateBitCast(Trunc, Lo->getType());
1097 }
1098 if (VecLen == 8) {
1099 Type *Int64Ty = Type::getInt64Ty(F.getContext());
1100 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1101 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1102 Function *FI = Intrinsic::getDeclaration(F.getParent(),
1103 Intrinsic::hexagon_S2_valignrb);
1104 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1105 return Builder.CreateBitCast(Call, Lo->getType());
1106 }
1107 llvm_unreachable("Unexpected vector length");
1108 }
1109
1110 // Concatenates a sequence of vectors of the same type.
concat(IRBuilder<> & Builder,ArrayRef<Value * > Vecs) const1111 auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1112 ArrayRef<Value *> Vecs) const -> Value * {
1113 assert(!Vecs.empty());
1114 SmallVector<int, 256> SMask;
1115 std::vector<Value *> Work[2];
1116 int ThisW = 0, OtherW = 1;
1117
1118 Work[ThisW].assign(Vecs.begin(), Vecs.end());
1119 while (Work[ThisW].size() > 1) {
1120 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1121 int ElemCount = Ty->getElementCount().getFixedValue();
1122 SMask.resize(ElemCount * 2);
1123 std::iota(SMask.begin(), SMask.end(), 0);
1124
1125 Work[OtherW].clear();
1126 if (Work[ThisW].size() % 2 != 0)
1127 Work[ThisW].push_back(UndefValue::get(Ty));
1128 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1129 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1130 Work[ThisW][i + 1], SMask);
1131 Work[OtherW].push_back(Joined);
1132 }
1133 std::swap(ThisW, OtherW);
1134 }
1135
1136 // Since there may have been some undefs appended to make shuffle operands
1137 // have the same type, perform the last shuffle to only pick the original
1138 // elements.
1139 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1140 std::iota(SMask.begin(), SMask.end(), 0);
1141 Value *Total = Work[OtherW].front();
1142 return Builder.CreateShuffleVector(Total, SMask);
1143 }
1144
vresize(IRBuilder<> & Builder,Value * Val,int NewSize,Value * Pad) const1145 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1146 int NewSize, Value *Pad) const -> Value * {
1147 assert(isa<VectorType>(Val->getType()));
1148 auto *ValTy = cast<VectorType>(Val->getType());
1149 assert(ValTy->getElementType() == Pad->getType());
1150
1151 int CurSize = ValTy->getElementCount().getFixedValue();
1152 if (CurSize == NewSize)
1153 return Val;
1154 // Truncate?
1155 if (CurSize > NewSize)
1156 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1157 // Extend.
1158 SmallVector<int, 128> SMask(NewSize);
1159 std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1160 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1161 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1162 return Builder.CreateShuffleVector(Val, PadVec, SMask);
1163 }
1164
rescale(IRBuilder<> & Builder,Value * Mask,Type * FromTy,Type * ToTy) const1165 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1166 Type *FromTy, Type *ToTy) const -> Value * {
1167 // Mask is a vector <N x i1>, where each element corresponds to an
1168 // element of FromTy. Remap it so that each element will correspond
1169 // to an element of ToTy.
1170 assert(isa<VectorType>(Mask->getType()));
1171
1172 Type *FromSTy = FromTy->getScalarType();
1173 Type *ToSTy = ToTy->getScalarType();
1174 if (FromSTy == ToSTy)
1175 return Mask;
1176
1177 int FromSize = getSizeOf(FromSTy);
1178 int ToSize = getSizeOf(ToSTy);
1179 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1180
1181 auto *MaskTy = cast<VectorType>(Mask->getType());
1182 int FromCount = MaskTy->getElementCount().getFixedValue();
1183 int ToCount = (FromCount * FromSize) / ToSize;
1184 assert((FromCount * FromSize) % ToSize == 0);
1185
1186 auto *FromITy = IntegerType::get(F.getContext(), FromSize * 8);
1187 auto *ToITy = IntegerType::get(F.getContext(), ToSize * 8);
1188
1189 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1190 // -> trunc to <M x i1>.
1191 Value *Ext = Builder.CreateSExt(
1192 Mask, VectorType::get(FromITy, FromCount, /*Scalable*/ false));
1193 Value *Cast = Builder.CreateBitCast(
1194 Ext, VectorType::get(ToITy, ToCount, /*Scalable*/ false));
1195 return Builder.CreateTrunc(
1196 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1197 }
1198
1199 // Bitcast to bytes, and return least significant bits.
vlsb(IRBuilder<> & Builder,Value * Val) const1200 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1201 -> Value * {
1202 Type *ScalarTy = Val->getType()->getScalarType();
1203 if (ScalarTy == getBoolTy())
1204 return Val;
1205
1206 Value *Bytes = vbytes(Builder, Val);
1207 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1208 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1209 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1210 // <1 x i1>.
1211 return Builder.CreateTrunc(Bytes, getBoolTy());
1212 }
1213
1214 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
vbytes(IRBuilder<> & Builder,Value * Val) const1215 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1216 -> Value * {
1217 Type *ScalarTy = Val->getType()->getScalarType();
1218 if (ScalarTy == getByteTy())
1219 return Val;
1220
1221 if (ScalarTy != getBoolTy())
1222 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1223 // For bool, return a sext from i1 to i8.
1224 if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1225 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1226 return Builder.CreateSExt(Val, getByteTy());
1227 }
1228
createHvxIntrinsic(IRBuilder<> & Builder,Intrinsic::ID IntID,Type * RetTy,ArrayRef<Value * > Args) const1229 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1230 Intrinsic::ID IntID, Type *RetTy,
1231 ArrayRef<Value *> Args) const
1232 -> Value * {
1233 int HwLen = HST.getVectorLength();
1234 Type *BoolTy = Type::getInt1Ty(F.getContext());
1235 Type *Int32Ty = Type::getInt32Ty(F.getContext());
1236 // HVX vector -> v16i32/v32i32
1237 // HVX vector predicate -> v512i1/v1024i1
1238 auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1239 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1240 Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1241 if (ElemTy == Int32Ty)
1242 return Ty;
1243 if (ElemTy == BoolTy)
1244 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1245 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1246 }
1247 // Non-HVX type. It should be a scalar.
1248 assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1249 return Ty;
1250 };
1251
1252 auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1253 Type *DestTy) -> Value * {
1254 Type *SrcTy = Val->getType();
1255 if (SrcTy == DestTy)
1256 return Val;
1257 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1258 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1259 // This should take care of casts the other way too, for example
1260 // v1024i1 -> v32i1.
1261 Intrinsic::ID TC = HwLen == 64
1262 ? Intrinsic::hexagon_V6_pred_typecast
1263 : Intrinsic::hexagon_V6_pred_typecast_128B;
1264 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1265 {DestTy, Val->getType()});
1266 return Builder.CreateCall(FI, {Val});
1267 }
1268 // Non-predicate HVX vector.
1269 return Builder.CreateBitCast(Val, DestTy);
1270 }
1271 // Non-HVX type. It should be a scalar, and it should already have
1272 // a valid type.
1273 llvm_unreachable("Unexpected type");
1274 };
1275
1276 SmallVector<Value *, 4> IntOps;
1277 for (Value *A : Args)
1278 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1279 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1280 Value *Call = Builder.CreateCall(FI, IntOps);
1281
1282 Type *CallTy = Call->getType();
1283 if (CallTy == RetTy)
1284 return Call;
1285 // Scalar types should have RetTy matching the call return type.
1286 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1287 if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1288 return getCast(Builder, Call, RetTy);
1289 return Builder.CreateBitCast(Call, RetTy);
1290 }
1291
calculatePointerDifference(Value * Ptr0,Value * Ptr1) const1292 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1293 Value *Ptr1) const
1294 -> Optional<int> {
1295 struct Builder : IRBuilder<> {
1296 Builder(BasicBlock *B) : IRBuilder<>(B) {}
1297 ~Builder() {
1298 for (Instruction *I : llvm::reverse(ToErase))
1299 I->eraseFromParent();
1300 }
1301 SmallVector<Instruction *, 8> ToErase;
1302 };
1303
1304 #define CallBuilder(B, F) \
1305 [&](auto &B_) { \
1306 Value *V = B_.F; \
1307 if (auto *I = dyn_cast<Instruction>(V)) \
1308 B_.ToErase.push_back(I); \
1309 return V; \
1310 }(B)
1311
1312 auto Simplify = [&](Value *V) {
1313 if (auto *I = dyn_cast<Instruction>(V)) {
1314 SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1315 if (Value *S = simplifyInstruction(I, Q))
1316 return S;
1317 }
1318 return V;
1319 };
1320
1321 auto StripBitCast = [](Value *V) {
1322 while (auto *C = dyn_cast<BitCastInst>(V))
1323 V = C->getOperand(0);
1324 return V;
1325 };
1326
1327 Ptr0 = StripBitCast(Ptr0);
1328 Ptr1 = StripBitCast(Ptr1);
1329 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1330 return None;
1331
1332 auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1333 auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1334 if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1335 return None;
1336
1337 Builder B(Gep0->getParent());
1338 int Scale = getAllocSizeOf(Gep0->getSourceElementType());
1339
1340 // FIXME: for now only check GEPs with a single index.
1341 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1342 return None;
1343
1344 Value *Idx0 = Gep0->getOperand(1);
1345 Value *Idx1 = Gep1->getOperand(1);
1346
1347 // First, try to simplify the subtraction directly.
1348 if (auto *Diff = dyn_cast<ConstantInt>(
1349 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1350 return Diff->getSExtValue() * Scale;
1351
1352 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1353 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1354 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1355 if (Unknown.isAllOnes())
1356 return None;
1357
1358 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1359 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1360 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1361 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1362 int Diff0 = 0;
1363 if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1364 Diff0 = C->getSExtValue();
1365 } else {
1366 return None;
1367 }
1368
1369 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1370 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1371 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1372 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1373 int Diff1 = 0;
1374 if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1375 Diff1 = C->getSExtValue();
1376 } else {
1377 return None;
1378 }
1379
1380 return (Diff0 + Diff1) * Scale;
1381
1382 #undef CallBuilder
1383 }
1384
1385 template <typename T>
isSafeToMoveBeforeInBB(const Instruction & In,BasicBlock::const_iterator To,const T & Ignore) const1386 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1387 BasicBlock::const_iterator To,
1388 const T &Ignore) const
1389 -> bool {
1390 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1391 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1392 switch (II->getIntrinsicID()) {
1393 case Intrinsic::masked_load:
1394 return MemoryLocation::getForArgument(II, 0, TLI);
1395 case Intrinsic::masked_store:
1396 return MemoryLocation::getForArgument(II, 1, TLI);
1397 }
1398 }
1399 return MemoryLocation::getOrNone(&I);
1400 };
1401
1402 // The source and the destination must be in the same basic block.
1403 const BasicBlock &Block = *In.getParent();
1404 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1405 // No PHIs.
1406 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1407 return false;
1408
1409 if (!mayHaveNonDefUseDependency(In))
1410 return true;
1411 bool MayWrite = In.mayWriteToMemory();
1412 auto MaybeLoc = getLocOrNone(In);
1413
1414 auto From = In.getIterator();
1415 if (From == To)
1416 return true;
1417 bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1418 auto Range =
1419 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1420 for (auto It = Range.first; It != Range.second; ++It) {
1421 const Instruction &I = *It;
1422 if (llvm::is_contained(Ignore, &I))
1423 continue;
1424 // assume intrinsic can be ignored
1425 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1426 if (II->getIntrinsicID() == Intrinsic::assume)
1427 continue;
1428 }
1429 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1430 if (I.mayThrow())
1431 return false;
1432 if (auto *CB = dyn_cast<CallBase>(&I)) {
1433 if (!CB->hasFnAttr(Attribute::WillReturn))
1434 return false;
1435 if (!CB->hasFnAttr(Attribute::NoSync))
1436 return false;
1437 }
1438 if (I.mayReadOrWriteMemory()) {
1439 auto MaybeLocI = getLocOrNone(I);
1440 if (MayWrite || I.mayWriteToMemory()) {
1441 if (!MaybeLoc || !MaybeLocI)
1442 return false;
1443 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1444 return false;
1445 }
1446 }
1447 }
1448 return true;
1449 }
1450
1451 #ifndef NDEBUG
isByteVecTy(Type * Ty) const1452 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1453 if (auto *VecTy = dyn_cast<VectorType>(Ty))
1454 return VecTy->getElementType() == getByteTy();
1455 return false;
1456 }
1457
isSectorTy(Type * Ty) const1458 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1459 if (!isByteVecTy(Ty))
1460 return false;
1461 int Size = getSizeOf(Ty);
1462 if (HST.isTypeForHVX(Ty))
1463 return Size == static_cast<int>(HST.getVectorLength());
1464 return Size == 4 || Size == 8;
1465 }
1466 #endif
1467
getElementRange(IRBuilder<> & Builder,Value * Lo,Value * Hi,int Start,int Length) const1468 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1469 Value *Hi, int Start,
1470 int Length) const -> Value * {
1471 assert(0 <= Start && Start < Length);
1472 SmallVector<int, 128> SMask(Length);
1473 std::iota(SMask.begin(), SMask.end(), Start);
1474 return Builder.CreateShuffleVector(Lo, Hi, SMask);
1475 }
1476
1477 // Pass management.
1478
1479 namespace llvm {
1480 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1481 FunctionPass *createHexagonVectorCombineLegacyPass();
1482 } // namespace llvm
1483
1484 namespace {
1485 class HexagonVectorCombineLegacy : public FunctionPass {
1486 public:
1487 static char ID;
1488
HexagonVectorCombineLegacy()1489 HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1490
getPassName() const1491 StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1492
getAnalysisUsage(AnalysisUsage & AU) const1493 void getAnalysisUsage(AnalysisUsage &AU) const override {
1494 AU.setPreservesCFG();
1495 AU.addRequired<AAResultsWrapperPass>();
1496 AU.addRequired<AssumptionCacheTracker>();
1497 AU.addRequired<DominatorTreeWrapperPass>();
1498 AU.addRequired<TargetLibraryInfoWrapperPass>();
1499 AU.addRequired<TargetPassConfig>();
1500 FunctionPass::getAnalysisUsage(AU);
1501 }
1502
runOnFunction(Function & F)1503 bool runOnFunction(Function &F) override {
1504 if (skipFunction(F))
1505 return false;
1506 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1507 AssumptionCache &AC =
1508 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1509 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1510 TargetLibraryInfo &TLI =
1511 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1512 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1513 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1514 return HVC.run();
1515 }
1516 };
1517 } // namespace
1518
1519 char HexagonVectorCombineLegacy::ID = 0;
1520
1521 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1522 "Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)1523 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1524 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1525 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1526 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1527 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1528 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1529 "Hexagon Vector Combine", false, false)
1530
1531 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1532 return new HexagonVectorCombineLegacy();
1533 }
1534