1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
65
66 #define DEBUG_TYPE "hexagon-pei"
67
68 // Hexagon stack frame layout as defined by the ABI:
69 //
70 // Incoming arguments
71 // passed via stack
72 // |
73 // |
74 // SP during function's FP during function's |
75 // +-- runtime (top of stack) runtime (bottom) --+ |
76 // | | |
77 // --++---------------------+------------------+-----------------++-+-------
78 // | parameter area for | variable-size | fixed-size |LR| arg
79 // | called functions | local objects | local objects |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 // <- size known -> <- size unknown -> <- size known ->
82 //
83 // Low address High address
84 //
85 // <--- stack growth
86 //
87 //
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 // ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 // the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 // accessed using the SP, regardless whether they are aligned or not. (The
94 // alignment padding will be at the bottom of the stack (highest address),
95 // and so the offset with respect to the SP will be known at the compile-
96 // -time.)
97 //
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
104 //
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
115 //
116 // Illustration of the AP:
117 // FP --+
118 // |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
121 // stack frame | (aligned) | | (CSR, spills, etc.) |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 // |<-- Multiple of the -->|
124 // stack alignment +-- AP
125 //
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
134
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 // AP = PS_aligna A
137 // where
138 // A - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
141
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 // Rd = PS_alloca Rs, A
144 // where
145 // Rd - address of the allocated space
146 // Rs - minimum size (the actual allocated can be larger to accommodate
147 // alignment)
148 // A - required alignment
149
150 using namespace llvm;
151
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
154
155 static cl::opt<unsigned>
156 NumberScavengerSlots("number-scavenger-slots", cl::Hidden,
157 cl::desc("Set the number of scavenger slots"),
158 cl::init(2));
159
160 static cl::opt<int>
161 SpillFuncThreshold("spill-func-threshold", cl::Hidden,
162 cl::desc("Specify O2(not Os) spill func threshold"),
163 cl::init(6));
164
165 static cl::opt<int>
166 SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden,
167 cl::desc("Specify Os spill func threshold"),
168 cl::init(1));
169
170 static cl::opt<bool> EnableStackOVFSanitizer(
171 "enable-stackovf-sanitizer", cl::Hidden,
172 cl::desc("Enable runtime checks for stack overflow."), cl::init(false));
173
174 static cl::opt<bool>
175 EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden,
176 cl::desc("Enable stack frame shrink wrapping"));
177
178 static cl::opt<unsigned>
179 ShrinkLimit("shrink-frame-limit",
180 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden,
181 cl::desc("Max count of stack frame shrink-wraps"));
182
183 static cl::opt<bool>
184 EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden,
185 cl::desc("Enable long calls for save-restore stubs."),
186 cl::init(false));
187
188 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
189 cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
190
191 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
192 cl::init(true), cl::desc("Optimize spill slots"));
193
194 #ifndef NDEBUG
195 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
196 cl::init(std::numeric_limits<unsigned>::max()));
197 static unsigned SpillOptCount = 0;
198 #endif
199
200 namespace llvm {
201
202 void initializeHexagonCallFrameInformationPass(PassRegistry&);
203 FunctionPass *createHexagonCallFrameInformation();
204
205 } // end namespace llvm
206
207 namespace {
208
209 class HexagonCallFrameInformation : public MachineFunctionPass {
210 public:
211 static char ID;
212
HexagonCallFrameInformation()213 HexagonCallFrameInformation() : MachineFunctionPass(ID) {
214 PassRegistry &PR = *PassRegistry::getPassRegistry();
215 initializeHexagonCallFrameInformationPass(PR);
216 }
217
218 bool runOnMachineFunction(MachineFunction &MF) override;
219
getRequiredProperties() const220 MachineFunctionProperties getRequiredProperties() const override {
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoVRegs);
223 }
224 };
225
226 char HexagonCallFrameInformation::ID = 0;
227
228 } // end anonymous namespace
229
runOnMachineFunction(MachineFunction & MF)230 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
231 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
232 bool NeedCFI = MF.needsFrameMoves();
233
234 if (!NeedCFI)
235 return false;
236 HFI.insertCFIInstructions(MF);
237 return true;
238 }
239
240 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
241 "Hexagon call frame information", false, false)
242
createHexagonCallFrameInformation()243 FunctionPass *llvm::createHexagonCallFrameInformation() {
244 return new HexagonCallFrameInformation();
245 }
246
247 /// Map a register pair Reg to the subregister that has the greater "number",
248 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
getMax32BitSubRegister(unsigned Reg,const TargetRegisterInfo & TRI,bool hireg=true)249 static unsigned getMax32BitSubRegister(unsigned Reg,
250 const TargetRegisterInfo &TRI,
251 bool hireg = true) {
252 if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
253 return Reg;
254
255 unsigned RegNo = 0;
256 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
257 if (hireg) {
258 if (*SubRegs > RegNo)
259 RegNo = *SubRegs;
260 } else {
261 if (!RegNo || *SubRegs < RegNo)
262 RegNo = *SubRegs;
263 }
264 }
265 return RegNo;
266 }
267
268 /// Returns the callee saved register with the largest id in the vector.
getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo & TRI)269 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
270 const TargetRegisterInfo &TRI) {
271 static_assert(Hexagon::R1 > 0,
272 "Assume physical registers are encoded as positive integers");
273 if (CSI.empty())
274 return 0;
275
276 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
277 for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
278 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
279 if (Reg > Max)
280 Max = Reg;
281 }
282 return Max;
283 }
284
285 /// Checks if the basic block contains any instruction that needs a stack
286 /// frame to be already in place.
needsStackFrame(const MachineBasicBlock & MBB,const BitVector & CSR,const HexagonRegisterInfo & HRI)287 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
288 const HexagonRegisterInfo &HRI) {
289 for (const MachineInstr &MI : MBB) {
290 if (MI.isCall())
291 return true;
292 unsigned Opc = MI.getOpcode();
293 switch (Opc) {
294 case Hexagon::PS_alloca:
295 case Hexagon::PS_aligna:
296 return true;
297 default:
298 break;
299 }
300 // Check individual operands.
301 for (const MachineOperand &MO : MI.operands()) {
302 // While the presence of a frame index does not prove that a stack
303 // frame will be required, all frame indexes should be within alloc-
304 // frame/deallocframe. Otherwise, the code that translates a frame
305 // index into an offset would have to be aware of the placement of
306 // the frame creation/destruction instructions.
307 if (MO.isFI())
308 return true;
309 if (MO.isReg()) {
310 Register R = MO.getReg();
311 // Virtual registers will need scavenging, which then may require
312 // a stack slot.
313 if (R.isVirtual())
314 return true;
315 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
316 if (CSR[*S])
317 return true;
318 continue;
319 }
320 if (MO.isRegMask()) {
321 // A regmask would normally have all callee-saved registers marked
322 // as preserved, so this check would not be needed, but in case of
323 // ever having other regmasks (for other calling conventions),
324 // make sure they would be processed correctly.
325 const uint32_t *BM = MO.getRegMask();
326 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
327 unsigned R = x;
328 // If this regmask does not preserve a CSR, a frame will be needed.
329 if (!(BM[R/32] & (1u << (R%32))))
330 return true;
331 }
332 }
333 }
334 }
335 return false;
336 }
337
338 /// Returns true if MBB has a machine instructions that indicates a tail call
339 /// in the block.
hasTailCall(const MachineBasicBlock & MBB)340 static bool hasTailCall(const MachineBasicBlock &MBB) {
341 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
342 if (I == MBB.end())
343 return false;
344 unsigned RetOpc = I->getOpcode();
345 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
346 }
347
348 /// Returns true if MBB contains an instruction that returns.
hasReturn(const MachineBasicBlock & MBB)349 static bool hasReturn(const MachineBasicBlock &MBB) {
350 for (const MachineInstr &MI : MBB.terminators())
351 if (MI.isReturn())
352 return true;
353 return false;
354 }
355
356 /// Returns the "return" instruction from this block, or nullptr if there
357 /// isn't any.
getReturn(MachineBasicBlock & MBB)358 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
359 for (auto &I : MBB)
360 if (I.isReturn())
361 return &I;
362 return nullptr;
363 }
364
isRestoreCall(unsigned Opc)365 static bool isRestoreCall(unsigned Opc) {
366 switch (Opc) {
367 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
368 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
369 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
370 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
371 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
372 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
373 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
374 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
375 return true;
376 }
377 return false;
378 }
379
isOptNone(const MachineFunction & MF)380 static inline bool isOptNone(const MachineFunction &MF) {
381 return MF.getFunction().hasOptNone() ||
382 MF.getTarget().getOptLevel() == CodeGenOpt::None;
383 }
384
isOptSize(const MachineFunction & MF)385 static inline bool isOptSize(const MachineFunction &MF) {
386 const Function &F = MF.getFunction();
387 return F.hasOptSize() && !F.hasMinSize();
388 }
389
isMinSize(const MachineFunction & MF)390 static inline bool isMinSize(const MachineFunction &MF) {
391 return MF.getFunction().hasMinSize();
392 }
393
394 /// Implements shrink-wrapping of the stack frame. By default, stack frame
395 /// is created in the function entry block, and is cleaned up in every block
396 /// that returns. This function finds alternate blocks: one for the frame
397 /// setup (prolog) and one for the cleanup (epilog).
findShrunkPrologEpilog(MachineFunction & MF,MachineBasicBlock * & PrologB,MachineBasicBlock * & EpilogB) const398 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
399 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
400 static unsigned ShrinkCounter = 0;
401
402 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
403 MF.getFunction().isVarArg())
404 return;
405 if (ShrinkLimit.getPosition()) {
406 if (ShrinkCounter >= ShrinkLimit)
407 return;
408 ShrinkCounter++;
409 }
410
411 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
412
413 MachineDominatorTree MDT;
414 MDT.runOnMachineFunction(MF);
415 MachinePostDominatorTree MPT;
416 MPT.runOnMachineFunction(MF);
417
418 using UnsignedMap = DenseMap<unsigned, unsigned>;
419 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
420
421 UnsignedMap RPO;
422 RPOTType RPOT(&MF);
423 unsigned RPON = 0;
424 for (auto &I : RPOT)
425 RPO[I->getNumber()] = RPON++;
426
427 // Don't process functions that have loops, at least for now. Placement
428 // of prolog and epilog must take loop structure into account. For simpli-
429 // city don't do it right now.
430 for (auto &I : MF) {
431 unsigned BN = RPO[I.getNumber()];
432 for (MachineBasicBlock *Succ : I.successors())
433 // If found a back-edge, return.
434 if (RPO[Succ->getNumber()] <= BN)
435 return;
436 }
437
438 // Collect the set of blocks that need a stack frame to execute. Scan
439 // each block for uses/defs of callee-saved registers, calls, etc.
440 SmallVector<MachineBasicBlock*,16> SFBlocks;
441 BitVector CSR(Hexagon::NUM_TARGET_REGS);
442 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
443 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
444 CSR[*S] = true;
445
446 for (auto &I : MF)
447 if (needsStackFrame(I, CSR, HRI))
448 SFBlocks.push_back(&I);
449
450 LLVM_DEBUG({
451 dbgs() << "Blocks needing SF: {";
452 for (auto &B : SFBlocks)
453 dbgs() << " " << printMBBReference(*B);
454 dbgs() << " }\n";
455 });
456 // No frame needed?
457 if (SFBlocks.empty())
458 return;
459
460 // Pick a common dominator and a common post-dominator.
461 MachineBasicBlock *DomB = SFBlocks[0];
462 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
463 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
464 if (!DomB)
465 break;
466 }
467 MachineBasicBlock *PDomB = SFBlocks[0];
468 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
469 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
470 if (!PDomB)
471 break;
472 }
473 LLVM_DEBUG({
474 dbgs() << "Computed dom block: ";
475 if (DomB)
476 dbgs() << printMBBReference(*DomB);
477 else
478 dbgs() << "<null>";
479 dbgs() << ", computed pdom block: ";
480 if (PDomB)
481 dbgs() << printMBBReference(*PDomB);
482 else
483 dbgs() << "<null>";
484 dbgs() << "\n";
485 });
486 if (!DomB || !PDomB)
487 return;
488
489 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
490 if (!MDT.dominates(DomB, PDomB)) {
491 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
492 return;
493 }
494 if (!MPT.dominates(PDomB, DomB)) {
495 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
496 return;
497 }
498
499 // Finally, everything seems right.
500 PrologB = DomB;
501 EpilogB = PDomB;
502 }
503
504 /// Perform most of the PEI work here:
505 /// - saving/restoring of the callee-saved registers,
506 /// - stack frame creation and destruction.
507 /// Normally, this work is distributed among various functions, but doing it
508 /// in one place allows shrink-wrapping of the stack frame.
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const509 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
510 MachineBasicBlock &MBB) const {
511 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
512
513 MachineFrameInfo &MFI = MF.getFrameInfo();
514 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
515
516 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
517 if (EnableShrinkWrapping)
518 findShrunkPrologEpilog(MF, PrologB, EpilogB);
519
520 bool PrologueStubs = false;
521 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
522 insertPrologueInBlock(*PrologB, PrologueStubs);
523 updateEntryPaths(MF, *PrologB);
524
525 if (EpilogB) {
526 insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
527 insertEpilogueInBlock(*EpilogB);
528 } else {
529 for (auto &B : MF)
530 if (B.isReturnBlock())
531 insertCSRRestoresInBlock(B, CSI, HRI);
532
533 for (auto &B : MF)
534 if (B.isReturnBlock())
535 insertEpilogueInBlock(B);
536
537 for (auto &B : MF) {
538 if (B.empty())
539 continue;
540 MachineInstr *RetI = getReturn(B);
541 if (!RetI || isRestoreCall(RetI->getOpcode()))
542 continue;
543 for (auto &R : CSI)
544 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
545 }
546 }
547
548 if (EpilogB) {
549 // If there is an epilog block, it may not have a return instruction.
550 // In such case, we need to add the callee-saved registers as live-ins
551 // in all blocks on all paths from the epilog to any return block.
552 unsigned MaxBN = MF.getNumBlockIDs();
553 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
554 updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
555 }
556 }
557
558 /// Returns true if the target can safely skip saving callee-saved registers
559 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const560 bool HexagonFrameLowering::enableCalleeSaveSkip(
561 const MachineFunction &MF) const {
562 const auto &F = MF.getFunction();
563 assert(F.hasFnAttribute(Attribute::NoReturn) &&
564 F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
565 !F.getFunction().hasFnAttribute(Attribute::UWTable));
566 (void)F;
567
568 // No need to save callee saved registers if the function does not return.
569 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
570 }
571
572 // Helper function used to determine when to eliminate the stack frame for
573 // functions marked as noreturn and when the noreturn-stack-elim options are
574 // specified. When both these conditions are true, then a FP may not be needed
575 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
576 // but it used to check if the allocframe can be eliminated as well.
enableAllocFrameElim(const MachineFunction & MF)577 static bool enableAllocFrameElim(const MachineFunction &MF) {
578 const auto &F = MF.getFunction();
579 const auto &MFI = MF.getFrameInfo();
580 const auto &HST = MF.getSubtarget<HexagonSubtarget>();
581 assert(!MFI.hasVarSizedObjects() &&
582 !HST.getRegisterInfo()->hasStackRealignment(MF));
583 return F.hasFnAttribute(Attribute::NoReturn) &&
584 F.hasFnAttribute(Attribute::NoUnwind) &&
585 !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
586 MFI.getStackSize() == 0;
587 }
588
insertPrologueInBlock(MachineBasicBlock & MBB,bool PrologueStubs) const589 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
590 bool PrologueStubs) const {
591 MachineFunction &MF = *MBB.getParent();
592 MachineFrameInfo &MFI = MF.getFrameInfo();
593 auto &HST = MF.getSubtarget<HexagonSubtarget>();
594 auto &HII = *HST.getInstrInfo();
595 auto &HRI = *HST.getRegisterInfo();
596
597 Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
598
599 // Calculate the total stack frame size.
600 // Get the number of bytes to allocate from the FrameInfo.
601 unsigned FrameSize = MFI.getStackSize();
602 // Round up the max call frame size to the max alignment on the stack.
603 unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
604 MFI.setMaxCallFrameSize(MaxCFA);
605
606 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
607 MFI.setStackSize(FrameSize);
608
609 bool AlignStack = (MaxAlign > getStackAlign());
610
611 // Get the number of bytes to allocate from the FrameInfo.
612 unsigned NumBytes = MFI.getStackSize();
613 unsigned SP = HRI.getStackRegister();
614 unsigned MaxCF = MFI.getMaxCallFrameSize();
615 MachineBasicBlock::iterator InsertPt = MBB.begin();
616
617 SmallVector<MachineInstr *, 4> AdjustRegs;
618 for (auto &MBB : MF)
619 for (auto &MI : MBB)
620 if (MI.getOpcode() == Hexagon::PS_alloca)
621 AdjustRegs.push_back(&MI);
622
623 for (auto MI : AdjustRegs) {
624 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
625 expandAlloca(MI, HII, SP, MaxCF);
626 MI->eraseFromParent();
627 }
628
629 DebugLoc dl = MBB.findDebugLoc(InsertPt);
630
631 if (MF.getFunction().isVarArg() &&
632 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
633 // Calculate the size of register saved area.
634 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
635 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
636 ? NumVarArgRegs * 4
637 : NumVarArgRegs * 4 + 4;
638 if (RegisterSavedAreaSizePlusPadding > 0) {
639 // Decrement the stack pointer by size of register saved area plus
640 // padding if any.
641 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
642 .addReg(SP)
643 .addImm(-RegisterSavedAreaSizePlusPadding)
644 .setMIFlag(MachineInstr::FrameSetup);
645
646 int NumBytes = 0;
647 // Copy all the named arguments below register saved area.
648 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
649 for (int i = HMFI.getFirstNamedArgFrameIndex(),
650 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
651 uint64_t ObjSize = MFI.getObjectSize(i);
652 Align ObjAlign = MFI.getObjectAlign(i);
653
654 // Determine the kind of load/store that should be used.
655 unsigned LDOpc, STOpc;
656 uint64_t OpcodeChecker = ObjAlign.value();
657
658 // Handle cases where alignment of an object is > its size.
659 if (ObjAlign > ObjSize) {
660 if (ObjSize <= 1)
661 OpcodeChecker = 1;
662 else if (ObjSize <= 2)
663 OpcodeChecker = 2;
664 else if (ObjSize <= 4)
665 OpcodeChecker = 4;
666 else if (ObjSize > 4)
667 OpcodeChecker = 8;
668 }
669
670 switch (OpcodeChecker) {
671 case 1:
672 LDOpc = Hexagon::L2_loadrb_io;
673 STOpc = Hexagon::S2_storerb_io;
674 break;
675 case 2:
676 LDOpc = Hexagon::L2_loadrh_io;
677 STOpc = Hexagon::S2_storerh_io;
678 break;
679 case 4:
680 LDOpc = Hexagon::L2_loadri_io;
681 STOpc = Hexagon::S2_storeri_io;
682 break;
683 case 8:
684 default:
685 LDOpc = Hexagon::L2_loadrd_io;
686 STOpc = Hexagon::S2_storerd_io;
687 break;
688 }
689
690 unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
691 : Hexagon::R6;
692 int LoadStoreCount = ObjSize / OpcodeChecker;
693
694 if (ObjSize % OpcodeChecker)
695 ++LoadStoreCount;
696
697 // Get the start location of the load. NumBytes is basically the
698 // offset from the stack pointer of previous function, which would be
699 // the caller in this case, as this function has variable argument
700 // list.
701 if (NumBytes != 0)
702 NumBytes = alignTo(NumBytes, ObjAlign);
703
704 int Count = 0;
705 while (Count < LoadStoreCount) {
706 // Load the value of the named argument on stack.
707 BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
708 .addReg(SP)
709 .addImm(RegisterSavedAreaSizePlusPadding +
710 ObjAlign.value() * Count + NumBytes)
711 .setMIFlag(MachineInstr::FrameSetup);
712
713 // Store it below the register saved area plus padding.
714 BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
715 .addReg(SP)
716 .addImm(ObjAlign.value() * Count + NumBytes)
717 .addReg(RegUsed)
718 .setMIFlag(MachineInstr::FrameSetup);
719
720 Count++;
721 }
722 NumBytes += MFI.getObjectSize(i);
723 }
724
725 // Make NumBytes 8 byte aligned
726 NumBytes = alignTo(NumBytes, 8);
727
728 // If the number of registers having variable arguments is odd,
729 // leave 4 bytes of padding to get to the location where first
730 // variable argument which was passed through register was copied.
731 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
732
733 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
734 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
735 .addReg(SP)
736 .addImm(NumBytes + 4 * i)
737 .addReg(Hexagon::R0 + j)
738 .setMIFlag(MachineInstr::FrameSetup);
739 }
740 }
741 }
742
743 if (hasFP(MF)) {
744 insertAllocframe(MBB, InsertPt, NumBytes);
745 if (AlignStack) {
746 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
747 .addReg(SP)
748 .addImm(-int64_t(MaxAlign.value()));
749 }
750 // If the stack-checking is enabled, and we spilled the callee-saved
751 // registers inline (i.e. did not use a spill function), then call
752 // the stack checker directly.
753 if (EnableStackOVFSanitizer && !PrologueStubs)
754 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
755 .addExternalSymbol("__runtime_stack_check");
756 } else if (NumBytes > 0) {
757 assert(alignTo(NumBytes, 8) == NumBytes);
758 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
759 .addReg(SP)
760 .addImm(-int(NumBytes));
761 }
762 }
763
insertEpilogueInBlock(MachineBasicBlock & MBB) const764 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
765 MachineFunction &MF = *MBB.getParent();
766 auto &HST = MF.getSubtarget<HexagonSubtarget>();
767 auto &HII = *HST.getInstrInfo();
768 auto &HRI = *HST.getRegisterInfo();
769 unsigned SP = HRI.getStackRegister();
770
771 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
772 DebugLoc dl = MBB.findDebugLoc(InsertPt);
773
774 if (!hasFP(MF)) {
775 MachineFrameInfo &MFI = MF.getFrameInfo();
776 unsigned NumBytes = MFI.getStackSize();
777 if (MF.getFunction().isVarArg() &&
778 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
779 // On Hexagon Linux, deallocate the stack for the register saved area.
780 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
781 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
782 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
783 NumBytes += RegisterSavedAreaSizePlusPadding;
784 }
785 if (NumBytes) {
786 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
787 .addReg(SP)
788 .addImm(NumBytes);
789 }
790 return;
791 }
792
793 MachineInstr *RetI = getReturn(MBB);
794 unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
795
796 // Handle EH_RETURN.
797 if (RetOpc == Hexagon::EH_RETURN_JMPR) {
798 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
799 .addDef(Hexagon::D15)
800 .addReg(Hexagon::R30);
801 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
802 .addReg(SP)
803 .addReg(Hexagon::R28);
804 return;
805 }
806
807 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
808 // frame instruction if we encounter it.
809 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
810 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
811 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
812 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
813 MachineBasicBlock::iterator It = RetI;
814 ++It;
815 // Delete all instructions after the RESTORE (except labels).
816 while (It != MBB.end()) {
817 if (!It->isLabel())
818 It = MBB.erase(It);
819 else
820 ++It;
821 }
822 return;
823 }
824
825 // It is possible that the restoring code is a call to a library function.
826 // All of the restore* functions include "deallocframe", so we need to make
827 // sure that we don't add an extra one.
828 bool NeedsDeallocframe = true;
829 if (!MBB.empty() && InsertPt != MBB.begin()) {
830 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
831 unsigned COpc = PrevIt->getOpcode();
832 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
833 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
834 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
835 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
836 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
837 NeedsDeallocframe = false;
838 }
839
840 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
841 !MF.getFunction().isVarArg()) {
842 if (!NeedsDeallocframe)
843 return;
844 // If the returning instruction is PS_jmpret, replace it with
845 // dealloc_return, otherwise just add deallocframe. The function
846 // could be returning via a tail call.
847 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
848 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
849 .addDef(Hexagon::D15)
850 .addReg(Hexagon::R30);
851 return;
852 }
853 unsigned NewOpc = Hexagon::L4_return;
854 MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
855 .addDef(Hexagon::D15)
856 .addReg(Hexagon::R30);
857 // Transfer the function live-out registers.
858 NewI->copyImplicitOps(MF, *RetI);
859 MBB.erase(RetI);
860 } else {
861 // L2_deallocframe instruction after it.
862 // Calculate the size of register saved area.
863 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
864 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
865 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
866
867 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
868 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
869 : std::prev(Term);
870 if (I == MBB.end() ||
871 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
872 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
873 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
874 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
875 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
876 .addDef(Hexagon::D15)
877 .addReg(Hexagon::R30);
878 if (RegisterSavedAreaSizePlusPadding != 0)
879 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
880 .addReg(SP)
881 .addImm(RegisterSavedAreaSizePlusPadding);
882 }
883 }
884
insertAllocframe(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,unsigned NumBytes) const885 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
886 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
887 MachineFunction &MF = *MBB.getParent();
888 auto &HST = MF.getSubtarget<HexagonSubtarget>();
889 auto &HII = *HST.getInstrInfo();
890 auto &HRI = *HST.getRegisterInfo();
891
892 // Check for overflow.
893 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
894 const unsigned int ALLOCFRAME_MAX = 16384;
895
896 // Create a dummy memory operand to avoid allocframe from being treated as
897 // a volatile memory reference.
898 auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
899 MachineMemOperand::MOStore, 4, Align(4));
900
901 DebugLoc dl = MBB.findDebugLoc(InsertPt);
902 unsigned SP = HRI.getStackRegister();
903
904 if (NumBytes >= ALLOCFRAME_MAX) {
905 // Emit allocframe(#0).
906 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
907 .addDef(SP)
908 .addReg(SP)
909 .addImm(0)
910 .addMemOperand(MMO);
911
912 // Subtract the size from the stack pointer.
913 unsigned SP = HRI.getStackRegister();
914 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
915 .addReg(SP)
916 .addImm(-int(NumBytes));
917 } else {
918 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
919 .addDef(SP)
920 .addReg(SP)
921 .addImm(NumBytes)
922 .addMemOperand(MMO);
923 }
924 }
925
updateEntryPaths(MachineFunction & MF,MachineBasicBlock & SaveB) const926 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
927 MachineBasicBlock &SaveB) const {
928 SetVector<unsigned> Worklist;
929
930 MachineBasicBlock &EntryB = MF.front();
931 Worklist.insert(EntryB.getNumber());
932
933 unsigned SaveN = SaveB.getNumber();
934 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
935
936 for (unsigned i = 0; i < Worklist.size(); ++i) {
937 unsigned BN = Worklist[i];
938 MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
939 for (auto &R : CSI)
940 if (!MBB.isLiveIn(R.getReg()))
941 MBB.addLiveIn(R.getReg());
942 if (BN != SaveN)
943 for (auto &SB : MBB.successors())
944 Worklist.insert(SB->getNumber());
945 }
946 }
947
updateExitPaths(MachineBasicBlock & MBB,MachineBasicBlock & RestoreB,BitVector & DoneT,BitVector & DoneF,BitVector & Path) const948 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
949 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
950 BitVector &Path) const {
951 assert(MBB.getNumber() >= 0);
952 unsigned BN = MBB.getNumber();
953 if (Path[BN] || DoneF[BN])
954 return false;
955 if (DoneT[BN])
956 return true;
957
958 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
959
960 Path[BN] = true;
961 bool ReachedExit = false;
962 for (auto &SB : MBB.successors())
963 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
964
965 if (!MBB.empty() && MBB.back().isReturn()) {
966 // Add implicit uses of all callee-saved registers to the reached
967 // return instructions. This is to prevent the anti-dependency breaker
968 // from renaming these registers.
969 MachineInstr &RetI = MBB.back();
970 if (!isRestoreCall(RetI.getOpcode()))
971 for (auto &R : CSI)
972 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
973 ReachedExit = true;
974 }
975
976 // We don't want to add unnecessary live-ins to the restore block: since
977 // the callee-saved registers are being defined in it, the entry of the
978 // restore block cannot be on the path from the definitions to any exit.
979 if (ReachedExit && &MBB != &RestoreB) {
980 for (auto &R : CSI)
981 if (!MBB.isLiveIn(R.getReg()))
982 MBB.addLiveIn(R.getReg());
983 DoneT[BN] = true;
984 }
985 if (!ReachedExit)
986 DoneF[BN] = true;
987
988 Path[BN] = false;
989 return ReachedExit;
990 }
991
992 static Optional<MachineBasicBlock::iterator>
findCFILocation(MachineBasicBlock & B)993 findCFILocation(MachineBasicBlock &B) {
994 // The CFI instructions need to be inserted right after allocframe.
995 // An exception to this is a situation where allocframe is bundled
996 // with a call: then the CFI instructions need to be inserted before
997 // the packet with the allocframe+call (in case the call throws an
998 // exception).
999 auto End = B.instr_end();
1000
1001 for (MachineInstr &I : B) {
1002 MachineBasicBlock::iterator It = I.getIterator();
1003 if (!I.isBundle()) {
1004 if (I.getOpcode() == Hexagon::S2_allocframe)
1005 return std::next(It);
1006 continue;
1007 }
1008 // I is a bundle.
1009 bool HasCall = false, HasAllocFrame = false;
1010 auto T = It.getInstrIterator();
1011 while (++T != End && T->isBundled()) {
1012 if (T->getOpcode() == Hexagon::S2_allocframe)
1013 HasAllocFrame = true;
1014 else if (T->isCall())
1015 HasCall = true;
1016 }
1017 if (HasAllocFrame)
1018 return HasCall ? It : std::next(It);
1019 }
1020 return None;
1021 }
1022
insertCFIInstructions(MachineFunction & MF) const1023 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1024 for (auto &B : MF) {
1025 auto At = findCFILocation(B);
1026 if (At)
1027 insertCFIInstructionsAt(B, At.value());
1028 }
1029 }
1030
insertCFIInstructionsAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator At) const1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1032 MachineBasicBlock::iterator At) const {
1033 MachineFunction &MF = *MBB.getParent();
1034 MachineFrameInfo &MFI = MF.getFrameInfo();
1035 MachineModuleInfo &MMI = MF.getMMI();
1036 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1037 auto &HII = *HST.getInstrInfo();
1038 auto &HRI = *HST.getRegisterInfo();
1039
1040 // If CFI instructions have debug information attached, something goes
1041 // wrong with the final assembly generation: the prolog_end is placed
1042 // in a wrong location.
1043 DebugLoc DL;
1044 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1045
1046 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1047 bool HasFP = hasFP(MF);
1048
1049 if (HasFP) {
1050 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1051 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1052
1053 // Define CFA via an offset from the value of FP.
1054 //
1055 // -8 -4 0 (SP)
1056 // --+----+----+---------------------
1057 // | FP | LR | increasing addresses -->
1058 // --+----+----+---------------------
1059 // | +-- Old SP (before allocframe)
1060 // +-- New FP (after allocframe)
1061 //
1062 // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1063 // MCCFIInstruction::createOffset takes the offset without sign change.
1064 auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1065 BuildMI(MBB, At, DL, CFID)
1066 .addCFIIndex(MF.addFrameInst(DefCfa));
1067 // R31 (return addr) = CFA - 4
1068 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1069 BuildMI(MBB, At, DL, CFID)
1070 .addCFIIndex(MF.addFrameInst(OffR31));
1071 // R30 (frame ptr) = CFA - 8
1072 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1073 BuildMI(MBB, At, DL, CFID)
1074 .addCFIIndex(MF.addFrameInst(OffR30));
1075 }
1076
1077 static unsigned int RegsToMove[] = {
1078 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
1079 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1080 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1081 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1082 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
1083 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1084 Hexagon::NoRegister
1085 };
1086
1087 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1088
1089 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1090 unsigned Reg = RegsToMove[i];
1091 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1092 return C.getReg() == Reg;
1093 };
1094 auto F = find_if(CSI, IfR);
1095 if (F == CSI.end())
1096 continue;
1097
1098 int64_t Offset;
1099 if (HasFP) {
1100 // If the function has a frame pointer (i.e. has an allocframe),
1101 // then the CFA has been defined in terms of FP. Any offsets in
1102 // the following CFI instructions have to be defined relative
1103 // to FP, which points to the bottom of the stack frame.
1104 // The function getFrameIndexReference can still choose to use SP
1105 // for the offset calculation, so we cannot simply call it here.
1106 // Instead, get the offset (relative to the FP) directly.
1107 Offset = MFI.getObjectOffset(F->getFrameIdx());
1108 } else {
1109 Register FrameReg;
1110 Offset =
1111 getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1112 }
1113 // Subtract 8 to make room for R30 and R31, which are added above.
1114 Offset -= 8;
1115
1116 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1117 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1118 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1119 Offset);
1120 BuildMI(MBB, At, DL, CFID)
1121 .addCFIIndex(MF.addFrameInst(OffReg));
1122 } else {
1123 // Split the double regs into subregs, and generate appropriate
1124 // cfi_offsets.
1125 // The only reason, we are split double regs is, llvm-mc does not
1126 // understand paired registers for cfi_offset.
1127 // Eg .cfi_offset r1:0, -64
1128
1129 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1130 Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1131 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1132 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1133 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1134 Offset+4);
1135 BuildMI(MBB, At, DL, CFID)
1136 .addCFIIndex(MF.addFrameInst(OffHi));
1137 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1138 Offset);
1139 BuildMI(MBB, At, DL, CFID)
1140 .addCFIIndex(MF.addFrameInst(OffLo));
1141 }
1142 }
1143 }
1144
hasFP(const MachineFunction & MF) const1145 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1146 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1147 return false;
1148
1149 auto &MFI = MF.getFrameInfo();
1150 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1151 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1152 bool HasAlloca = MFI.hasVarSizedObjects();
1153
1154 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
1155 // that this shouldn't be required, but doing so now because gcc does and
1156 // gdb can't break at the start of the function without it. Will remove if
1157 // this turns out to be a gdb bug.
1158 //
1159 if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1160 return true;
1161
1162 // By default we want to use SP (since it's always there). FP requires
1163 // some setup (i.e. ALLOCFRAME).
1164 // Both, alloca and stack alignment modify the stack pointer by an
1165 // undetermined value, so we need to save it at the entry to the function
1166 // (i.e. use allocframe).
1167 if (HasAlloca || HasExtraAlign)
1168 return true;
1169
1170 if (MFI.getStackSize() > 0) {
1171 // If FP-elimination is disabled, we have to use FP at this point.
1172 const TargetMachine &TM = MF.getTarget();
1173 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1174 return true;
1175 if (EnableStackOVFSanitizer)
1176 return true;
1177 }
1178
1179 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1180 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1181 return true;
1182
1183 return false;
1184 }
1185
1186 enum SpillKind {
1187 SK_ToMem,
1188 SK_FromMem,
1189 SK_FromMemTailcall
1190 };
1191
getSpillFunctionFor(unsigned MaxReg,SpillKind SpillType,bool Stkchk=false)1192 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1193 bool Stkchk = false) {
1194 const char * V4SpillToMemoryFunctions[] = {
1195 "__save_r16_through_r17",
1196 "__save_r16_through_r19",
1197 "__save_r16_through_r21",
1198 "__save_r16_through_r23",
1199 "__save_r16_through_r25",
1200 "__save_r16_through_r27" };
1201
1202 const char * V4SpillToMemoryStkchkFunctions[] = {
1203 "__save_r16_through_r17_stkchk",
1204 "__save_r16_through_r19_stkchk",
1205 "__save_r16_through_r21_stkchk",
1206 "__save_r16_through_r23_stkchk",
1207 "__save_r16_through_r25_stkchk",
1208 "__save_r16_through_r27_stkchk" };
1209
1210 const char * V4SpillFromMemoryFunctions[] = {
1211 "__restore_r16_through_r17_and_deallocframe",
1212 "__restore_r16_through_r19_and_deallocframe",
1213 "__restore_r16_through_r21_and_deallocframe",
1214 "__restore_r16_through_r23_and_deallocframe",
1215 "__restore_r16_through_r25_and_deallocframe",
1216 "__restore_r16_through_r27_and_deallocframe" };
1217
1218 const char * V4SpillFromMemoryTailcallFunctions[] = {
1219 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1220 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1221 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1222 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1223 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1224 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1225 };
1226
1227 const char **SpillFunc = nullptr;
1228
1229 switch(SpillType) {
1230 case SK_ToMem:
1231 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1232 : V4SpillToMemoryFunctions;
1233 break;
1234 case SK_FromMem:
1235 SpillFunc = V4SpillFromMemoryFunctions;
1236 break;
1237 case SK_FromMemTailcall:
1238 SpillFunc = V4SpillFromMemoryTailcallFunctions;
1239 break;
1240 }
1241 assert(SpillFunc && "Unknown spill kind");
1242
1243 // Spill all callee-saved registers up to the highest register used.
1244 switch (MaxReg) {
1245 case Hexagon::R17:
1246 return SpillFunc[0];
1247 case Hexagon::R19:
1248 return SpillFunc[1];
1249 case Hexagon::R21:
1250 return SpillFunc[2];
1251 case Hexagon::R23:
1252 return SpillFunc[3];
1253 case Hexagon::R25:
1254 return SpillFunc[4];
1255 case Hexagon::R27:
1256 return SpillFunc[5];
1257 default:
1258 llvm_unreachable("Unhandled maximum callee save register");
1259 }
1260 return nullptr;
1261 }
1262
1263 StackOffset
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const1264 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1265 Register &FrameReg) const {
1266 auto &MFI = MF.getFrameInfo();
1267 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1268
1269 int Offset = MFI.getObjectOffset(FI);
1270 bool HasAlloca = MFI.hasVarSizedObjects();
1271 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1272 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1273
1274 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1275 unsigned FrameSize = MFI.getStackSize();
1276 Register SP = HRI.getStackRegister();
1277 Register FP = HRI.getFrameRegister();
1278 Register AP = HMFI.getStackAlignBasePhysReg();
1279 // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1280 // is true. HasExtraAlign may be set because of vector spills, without
1281 // aligned locals or aligned outgoing function arguments. Since vector
1282 // spills will ultimately be "unaligned", it is safe to use FP as the
1283 // base register.
1284 // In fact, in such a scenario the stack is actually not required to be
1285 // aligned, although it may end up being aligned anyway, since this
1286 // particular case is not easily detectable. The alignment will be
1287 // unnecessary, but not incorrect.
1288 // Unfortunately there is no quick way to verify that the above is
1289 // indeed the case (and that it's not a result of an error), so just
1290 // assume that missing AP will be replaced by FP.
1291 // (A better fix would be to rematerialize AP from FP and always align
1292 // vector spills.)
1293 if (AP == 0)
1294 AP = FP;
1295
1296 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
1297 // Use FP at -O0, except when there are objects with extra alignment.
1298 // That additional alignment requirement may cause a pad to be inserted,
1299 // which will make it impossible to use FP to access objects located
1300 // past the pad.
1301 if (NoOpt && !HasExtraAlign)
1302 UseFP = true;
1303 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1304 // Fixed and preallocated objects will be located before any padding
1305 // so FP must be used to access them.
1306 UseFP |= (HasAlloca || HasExtraAlign);
1307 } else {
1308 if (HasAlloca) {
1309 if (HasExtraAlign)
1310 UseAP = true;
1311 else
1312 UseFP = true;
1313 }
1314 }
1315
1316 // If FP was picked, then there had better be FP.
1317 bool HasFP = hasFP(MF);
1318 assert((HasFP || !UseFP) && "This function must have frame pointer");
1319
1320 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1321 // FP/LR. If the base register is used to access an object across these
1322 // 8 bytes, then the offset will need to be adjusted by 8.
1323 //
1324 // After allocframe:
1325 // HexagonISelLowering adds 8 to ---+
1326 // the offsets of all stack-based |
1327 // arguments (*) |
1328 // |
1329 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1330 // ------------------------+-----+------------------------> increasing
1331 // <local objects> |FP/LR| <input arguments> addresses
1332 // -----------------+------+-----+------------------------>
1333 // | |
1334 // SP/AP point --+ +-- FP points here (**)
1335 // somewhere on
1336 // this side of FP/LR
1337 //
1338 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1339 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1340
1341 // The lowering assumes that FP/LR is present, and so the offsets of
1342 // the formal arguments start at 8. If FP/LR is not there we need to
1343 // reduce the offset by 8.
1344 if (Offset > 0 && !HasFP)
1345 Offset -= 8;
1346
1347 if (UseFP)
1348 FrameReg = FP;
1349 else if (UseAP)
1350 FrameReg = AP;
1351 else
1352 FrameReg = SP;
1353
1354 // Calculate the actual offset in the instruction. If there is no FP
1355 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1356 // there will be no SP -= FrameSize), so the frame size should not be
1357 // added to the calculated offset.
1358 int RealOffset = Offset;
1359 if (!UseFP && !UseAP)
1360 RealOffset = FrameSize+Offset;
1361 return StackOffset::getFixed(RealOffset);
1362 }
1363
insertCSRSpillsInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI,bool & PrologueStubs) const1364 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1365 const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1366 bool &PrologueStubs) const {
1367 if (CSI.empty())
1368 return true;
1369
1370 MachineBasicBlock::iterator MI = MBB.begin();
1371 PrologueStubs = false;
1372 MachineFunction &MF = *MBB.getParent();
1373 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1374 auto &HII = *HST.getInstrInfo();
1375
1376 if (useSpillFunction(MF, CSI)) {
1377 PrologueStubs = true;
1378 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1379 bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1380 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1381 StkOvrFlowEnabled);
1382 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1383 bool IsPIC = HTM.isPositionIndependent();
1384 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1385
1386 // Call spill function.
1387 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1388 unsigned SpillOpc;
1389 if (StkOvrFlowEnabled) {
1390 if (LongCalls)
1391 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1392 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1393 else
1394 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1395 : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1396 } else {
1397 if (LongCalls)
1398 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1399 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1400 else
1401 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1402 : Hexagon::SAVE_REGISTERS_CALL_V4;
1403 }
1404
1405 MachineInstr *SaveRegsCall =
1406 BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1407 .addExternalSymbol(SpillFun);
1408
1409 // Add callee-saved registers as use.
1410 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1411 // Add live in registers.
1412 for (const CalleeSavedInfo &I : CSI)
1413 MBB.addLiveIn(I.getReg());
1414 return true;
1415 }
1416
1417 for (const CalleeSavedInfo &I : CSI) {
1418 Register Reg = I.getReg();
1419 // Add live in registers. We treat eh_return callee saved register r0 - r3
1420 // specially. They are not really callee saved registers as they are not
1421 // supposed to be killed.
1422 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1423 int FI = I.getFrameIdx();
1424 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1425 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1426 if (IsKill)
1427 MBB.addLiveIn(Reg);
1428 }
1429 return true;
1430 }
1431
insertCSRRestoresInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI) const1432 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1433 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1434 if (CSI.empty())
1435 return false;
1436
1437 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1438 MachineFunction &MF = *MBB.getParent();
1439 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1440 auto &HII = *HST.getInstrInfo();
1441
1442 if (useRestoreFunction(MF, CSI)) {
1443 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1444 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1445 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1446 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1447 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1448 bool IsPIC = HTM.isPositionIndependent();
1449 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1450
1451 // Call spill function.
1452 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1453 : MBB.findDebugLoc(MBB.end());
1454 MachineInstr *DeallocCall = nullptr;
1455
1456 if (HasTC) {
1457 unsigned RetOpc;
1458 if (LongCalls)
1459 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1460 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1461 else
1462 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1463 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1464 DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1465 .addExternalSymbol(RestoreFn);
1466 } else {
1467 // The block has a return.
1468 MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1469 assert(It->isReturn() && std::next(It) == MBB.end());
1470 unsigned RetOpc;
1471 if (LongCalls)
1472 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1473 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1474 else
1475 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1476 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1477 DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1478 .addExternalSymbol(RestoreFn);
1479 // Transfer the function live-out registers.
1480 DeallocCall->copyImplicitOps(MF, *It);
1481 }
1482 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1483 return true;
1484 }
1485
1486 for (const CalleeSavedInfo &I : CSI) {
1487 Register Reg = I.getReg();
1488 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1489 int FI = I.getFrameIdx();
1490 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1491 }
1492
1493 return true;
1494 }
1495
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const1496 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1497 MachineFunction &MF, MachineBasicBlock &MBB,
1498 MachineBasicBlock::iterator I) const {
1499 MachineInstr &MI = *I;
1500 unsigned Opc = MI.getOpcode();
1501 (void)Opc; // Silence compiler warning.
1502 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1503 "Cannot handle this call frame pseudo instruction");
1504 return MBB.erase(I);
1505 }
1506
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const1507 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1508 MachineFunction &MF, RegScavenger *RS) const {
1509 // If this function has uses aligned stack and also has variable sized stack
1510 // objects, then we need to map all spill slots to fixed positions, so that
1511 // they can be accessed through FP. Otherwise they would have to be accessed
1512 // via AP, which may not be available at the particular place in the program.
1513 MachineFrameInfo &MFI = MF.getFrameInfo();
1514 bool HasAlloca = MFI.hasVarSizedObjects();
1515 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1516
1517 if (!HasAlloca || !NeedsAlign)
1518 return;
1519
1520 SmallSet<int, 4> DealignSlots;
1521 unsigned LFS = MFI.getLocalFrameSize();
1522 for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1523 if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1524 continue;
1525 unsigned S = MFI.getObjectSize(i);
1526 // Reduce the alignment to at most 8. This will require unaligned vector
1527 // stores if they happen here.
1528 Align A = std::max(MFI.getObjectAlign(i), Align(8));
1529 MFI.setObjectAlignment(i, Align(8));
1530 LFS = alignTo(LFS+S, A);
1531 MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1532 DealignSlots.insert(i);
1533 }
1534
1535 MFI.setLocalFrameSize(LFS);
1536 Align A = MFI.getLocalFrameMaxAlign();
1537 assert(A <= 8 && "Unexpected local frame alignment");
1538 if (A == 1)
1539 MFI.setLocalFrameMaxAlign(Align(8));
1540 MFI.setUseLocalStackAllocationBlock(true);
1541
1542 // Go over all MachineMemOperands in the code, and change the ones that
1543 // refer to the dealigned stack slots to reflect the new alignment.
1544 if (!DealignSlots.empty()) {
1545 for (MachineBasicBlock &BB : MF) {
1546 for (MachineInstr &MI : BB) {
1547 bool KeepOld = true;
1548 ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1549 SmallVector<MachineMemOperand*,1> new_memops;
1550 for (MachineMemOperand *MMO : memops) {
1551 auto *PV = MMO->getPseudoValue();
1552 if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1553 int FI = FS->getFrameIndex();
1554 if (DealignSlots.count(FI)) {
1555 auto *NewMMO = MF.getMachineMemOperand(
1556 MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1557 MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1558 MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
1559 MMO->getFailureOrdering());
1560 new_memops.push_back(NewMMO);
1561 KeepOld = false;
1562 continue;
1563 }
1564 }
1565 new_memops.push_back(MMO);
1566 }
1567 if (!KeepOld)
1568 MI.setMemRefs(MF, new_memops);
1569 }
1570 }
1571 }
1572
1573 // Set the physical aligned-stack base address register.
1574 unsigned AP = 0;
1575 if (const MachineInstr *AI = getAlignaInstr(MF))
1576 AP = AI->getOperand(0).getReg();
1577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1578 HMFI.setStackAlignBasePhysReg(AP);
1579 }
1580
1581 /// Returns true if there are no caller-saved registers available in class RC.
needToReserveScavengingSpillSlots(MachineFunction & MF,const HexagonRegisterInfo & HRI,const TargetRegisterClass * RC)1582 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1583 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1584 MachineRegisterInfo &MRI = MF.getRegInfo();
1585
1586 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1587 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1588 if (MRI.isPhysRegUsed(*AI))
1589 return true;
1590 return false;
1591 };
1592
1593 // Check for an unused caller-saved register. Callee-saved registers
1594 // have become pristine by now.
1595 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1596 if (!IsUsed(*P))
1597 return false;
1598
1599 // All caller-saved registers are used.
1600 return true;
1601 }
1602
1603 #ifndef NDEBUG
dump_registers(BitVector & Regs,const TargetRegisterInfo & TRI)1604 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1605 dbgs() << '{';
1606 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1607 unsigned R = x;
1608 dbgs() << ' ' << printReg(R, &TRI);
1609 }
1610 dbgs() << " }";
1611 }
1612 #endif
1613
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1614 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1615 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1616 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1617 MachineFrameInfo &MFI = MF.getFrameInfo();
1618 BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1619
1620 // Generate a set of unique, callee-saved registers (SRegs), where each
1621 // register in the set is maximal in terms of sub-/super-register relation,
1622 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1623
1624 // (1) For each callee-saved register, add that register and all of its
1625 // sub-registers to SRegs.
1626 LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1627 for (const CalleeSavedInfo &I : CSI) {
1628 Register R = I.getReg();
1629 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1630 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1631 SRegs[*SR] = true;
1632 }
1633 LLVM_DEBUG(dbgs() << " }\n");
1634 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1635 dbgs() << "\n");
1636
1637 // (2) For each reserved register, remove that register and all of its
1638 // sub- and super-registers from SRegs.
1639 BitVector Reserved = TRI->getReservedRegs(MF);
1640 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1641 unsigned R = x;
1642 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1643 SRegs[*SR] = false;
1644 }
1645 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI);
1646 dbgs() << "\n");
1647 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1648 dbgs() << "\n");
1649
1650 // (3) Collect all registers that have at least one sub-register in SRegs,
1651 // and also have no sub-registers that are reserved. These will be the can-
1652 // didates for saving as a whole instead of their individual sub-registers.
1653 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1654 BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1655 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1656 unsigned R = x;
1657 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1658 TmpSup[*SR] = true;
1659 }
1660 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1661 unsigned R = x;
1662 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1663 if (!Reserved[*SR])
1664 continue;
1665 TmpSup[R] = false;
1666 break;
1667 }
1668 }
1669 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI);
1670 dbgs() << "\n");
1671
1672 // (4) Include all super-registers found in (3) into SRegs.
1673 SRegs |= TmpSup;
1674 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1675 dbgs() << "\n");
1676
1677 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1678 // remove R from SRegs.
1679 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1680 unsigned R = x;
1681 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1682 if (!SRegs[*SR])
1683 continue;
1684 SRegs[R] = false;
1685 break;
1686 }
1687 }
1688 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1689 dbgs() << "\n");
1690
1691 // Now, for each register that has a fixed stack slot, create the stack
1692 // object for it.
1693 CSI.clear();
1694
1695 using SpillSlot = TargetFrameLowering::SpillSlot;
1696
1697 unsigned NumFixed;
1698 int MinOffset = 0; // CS offsets are negative.
1699 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1700 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1701 if (!SRegs[S->Reg])
1702 continue;
1703 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1704 int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1705 MinOffset = std::min(MinOffset, S->Offset);
1706 CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1707 SRegs[S->Reg] = false;
1708 }
1709
1710 // There can be some registers that don't have fixed slots. For example,
1711 // we need to store R0-R3 in functions with exception handling. For each
1712 // such register, create a non-fixed stack object.
1713 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1714 unsigned R = x;
1715 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1716 unsigned Size = TRI->getSpillSize(*RC);
1717 int Off = MinOffset - Size;
1718 Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1719 Off &= -Alignment.value();
1720 int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1721 MinOffset = std::min(MinOffset, Off);
1722 CSI.push_back(CalleeSavedInfo(R, FI));
1723 SRegs[R] = false;
1724 }
1725
1726 LLVM_DEBUG({
1727 dbgs() << "CS information: {";
1728 for (const CalleeSavedInfo &I : CSI) {
1729 int FI = I.getFrameIdx();
1730 int Off = MFI.getObjectOffset(FI);
1731 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1732 if (Off >= 0)
1733 dbgs() << '+';
1734 dbgs() << Off;
1735 }
1736 dbgs() << " }\n";
1737 });
1738
1739 #ifndef NDEBUG
1740 // Verify that all registers were handled.
1741 bool MissedReg = false;
1742 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1743 unsigned R = x;
1744 dbgs() << printReg(R, TRI) << ' ';
1745 MissedReg = true;
1746 }
1747 if (MissedReg)
1748 llvm_unreachable("...there are unhandled callee-saved registers!");
1749 #endif
1750
1751 return true;
1752 }
1753
expandCopy(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1754 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1755 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1756 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1757 MachineInstr *MI = &*It;
1758 DebugLoc DL = MI->getDebugLoc();
1759 Register DstR = MI->getOperand(0).getReg();
1760 Register SrcR = MI->getOperand(1).getReg();
1761 if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1762 !Hexagon::ModRegsRegClass.contains(SrcR))
1763 return false;
1764
1765 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1766 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1767 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1768 .addReg(TmpR, RegState::Kill);
1769
1770 NewRegs.push_back(TmpR);
1771 B.erase(It);
1772 return true;
1773 }
1774
expandStoreInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1775 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1776 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1777 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1778 MachineInstr *MI = &*It;
1779 if (!MI->getOperand(0).isFI())
1780 return false;
1781
1782 DebugLoc DL = MI->getDebugLoc();
1783 unsigned Opc = MI->getOpcode();
1784 Register SrcR = MI->getOperand(2).getReg();
1785 bool IsKill = MI->getOperand(2).isKill();
1786 int FI = MI->getOperand(0).getIndex();
1787
1788 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1789 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1790 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1791 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1792 : Hexagon::A2_tfrcrr;
1793 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1794 .addReg(SrcR, getKillRegState(IsKill));
1795
1796 // S2_storeri_io FI, 0, TmpR
1797 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1798 .addFrameIndex(FI)
1799 .addImm(0)
1800 .addReg(TmpR, RegState::Kill)
1801 .cloneMemRefs(*MI);
1802
1803 NewRegs.push_back(TmpR);
1804 B.erase(It);
1805 return true;
1806 }
1807
expandLoadInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1808 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1809 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1810 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1811 MachineInstr *MI = &*It;
1812 if (!MI->getOperand(1).isFI())
1813 return false;
1814
1815 DebugLoc DL = MI->getDebugLoc();
1816 unsigned Opc = MI->getOpcode();
1817 Register DstR = MI->getOperand(0).getReg();
1818 int FI = MI->getOperand(1).getIndex();
1819
1820 // TmpR = L2_loadri_io FI, 0
1821 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1822 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1823 .addFrameIndex(FI)
1824 .addImm(0)
1825 .cloneMemRefs(*MI);
1826
1827 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1828 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1829 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1830 : Hexagon::A2_tfrrcr;
1831 BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1832 .addReg(TmpR, RegState::Kill);
1833
1834 NewRegs.push_back(TmpR);
1835 B.erase(It);
1836 return true;
1837 }
1838
expandStoreVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1839 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1840 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1841 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1842 MachineInstr *MI = &*It;
1843 if (!MI->getOperand(0).isFI())
1844 return false;
1845
1846 DebugLoc DL = MI->getDebugLoc();
1847 Register SrcR = MI->getOperand(2).getReg();
1848 bool IsKill = MI->getOperand(2).isKill();
1849 int FI = MI->getOperand(0).getIndex();
1850 auto *RC = &Hexagon::HvxVRRegClass;
1851
1852 // Insert transfer to general vector register.
1853 // TmpR0 = A2_tfrsi 0x01010101
1854 // TmpR1 = V6_vandqrt Qx, TmpR0
1855 // store FI, 0, TmpR1
1856 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1857 Register TmpR1 = MRI.createVirtualRegister(RC);
1858
1859 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1860 .addImm(0x01010101);
1861
1862 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1863 .addReg(SrcR, getKillRegState(IsKill))
1864 .addReg(TmpR0, RegState::Kill);
1865
1866 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1867 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1868 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1869
1870 NewRegs.push_back(TmpR0);
1871 NewRegs.push_back(TmpR1);
1872 B.erase(It);
1873 return true;
1874 }
1875
expandLoadVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1876 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1877 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1878 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1879 MachineInstr *MI = &*It;
1880 if (!MI->getOperand(1).isFI())
1881 return false;
1882
1883 DebugLoc DL = MI->getDebugLoc();
1884 Register DstR = MI->getOperand(0).getReg();
1885 int FI = MI->getOperand(1).getIndex();
1886 auto *RC = &Hexagon::HvxVRRegClass;
1887
1888 // TmpR0 = A2_tfrsi 0x01010101
1889 // TmpR1 = load FI, 0
1890 // DstR = V6_vandvrt TmpR1, TmpR0
1891 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1892 Register TmpR1 = MRI.createVirtualRegister(RC);
1893
1894 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1895 .addImm(0x01010101);
1896 MachineFunction &MF = *B.getParent();
1897 auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1898 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1899 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1900
1901 BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1902 .addReg(TmpR1, RegState::Kill)
1903 .addReg(TmpR0, RegState::Kill);
1904
1905 NewRegs.push_back(TmpR0);
1906 NewRegs.push_back(TmpR1);
1907 B.erase(It);
1908 return true;
1909 }
1910
expandStoreVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1911 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1912 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1913 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1914 MachineFunction &MF = *B.getParent();
1915 auto &MFI = MF.getFrameInfo();
1916 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1917 MachineInstr *MI = &*It;
1918 if (!MI->getOperand(0).isFI())
1919 return false;
1920
1921 // It is possible that the double vector being stored is only partially
1922 // defined. From the point of view of the liveness tracking, it is ok to
1923 // store it as a whole, but if we break it up we may end up storing a
1924 // register that is entirely undefined.
1925 LivePhysRegs LPR(HRI);
1926 LPR.addLiveIns(B);
1927 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1928 for (auto R = B.begin(); R != It; ++R) {
1929 Clobbers.clear();
1930 LPR.stepForward(*R, Clobbers);
1931 }
1932
1933 DebugLoc DL = MI->getDebugLoc();
1934 Register SrcR = MI->getOperand(2).getReg();
1935 Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1936 Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1937 bool IsKill = MI->getOperand(2).isKill();
1938 int FI = MI->getOperand(0).getIndex();
1939 bool NeedsAligna = needsAligna(MF);
1940
1941 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1942 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1943 Align HasAlign = MFI.getObjectAlign(FI);
1944 unsigned StoreOpc;
1945
1946 auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1947 return !NeedsAligna && (NeedAlign <= HasAlign);
1948 };
1949
1950 // Store low part.
1951 if (LPR.contains(SrcLo)) {
1952 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1953 : Hexagon::V6_vS32Ub_ai;
1954 BuildMI(B, It, DL, HII.get(StoreOpc))
1955 .addFrameIndex(FI)
1956 .addImm(0)
1957 .addReg(SrcLo, getKillRegState(IsKill))
1958 .cloneMemRefs(*MI);
1959 }
1960
1961 // Store high part.
1962 if (LPR.contains(SrcHi)) {
1963 StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1964 : Hexagon::V6_vS32Ub_ai;
1965 BuildMI(B, It, DL, HII.get(StoreOpc))
1966 .addFrameIndex(FI)
1967 .addImm(Size)
1968 .addReg(SrcHi, getKillRegState(IsKill))
1969 .cloneMemRefs(*MI);
1970 }
1971
1972 B.erase(It);
1973 return true;
1974 }
1975
expandLoadVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1976 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1977 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1978 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1979 MachineFunction &MF = *B.getParent();
1980 auto &MFI = MF.getFrameInfo();
1981 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1982 MachineInstr *MI = &*It;
1983 if (!MI->getOperand(1).isFI())
1984 return false;
1985
1986 DebugLoc DL = MI->getDebugLoc();
1987 Register DstR = MI->getOperand(0).getReg();
1988 Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1989 Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1990 int FI = MI->getOperand(1).getIndex();
1991 bool NeedsAligna = needsAligna(MF);
1992
1993 unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1994 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1995 Align HasAlign = MFI.getObjectAlign(FI);
1996 unsigned LoadOpc;
1997
1998 auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1999 return !NeedsAligna && (NeedAlign <= HasAlign);
2000 };
2001
2002 // Load low part.
2003 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2004 : Hexagon::V6_vL32Ub_ai;
2005 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2006 .addFrameIndex(FI)
2007 .addImm(0)
2008 .cloneMemRefs(*MI);
2009
2010 // Load high part.
2011 LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2012 : Hexagon::V6_vL32Ub_ai;
2013 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2014 .addFrameIndex(FI)
2015 .addImm(Size)
2016 .cloneMemRefs(*MI);
2017
2018 B.erase(It);
2019 return true;
2020 }
2021
expandStoreVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const2022 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2023 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2024 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2025 MachineFunction &MF = *B.getParent();
2026 auto &MFI = MF.getFrameInfo();
2027 MachineInstr *MI = &*It;
2028 if (!MI->getOperand(0).isFI())
2029 return false;
2030
2031 bool NeedsAligna = needsAligna(MF);
2032 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2033 DebugLoc DL = MI->getDebugLoc();
2034 Register SrcR = MI->getOperand(2).getReg();
2035 bool IsKill = MI->getOperand(2).isKill();
2036 int FI = MI->getOperand(0).getIndex();
2037
2038 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2039 Align HasAlign = MFI.getObjectAlign(FI);
2040 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2041 unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2042 : Hexagon::V6_vS32Ub_ai;
2043 BuildMI(B, It, DL, HII.get(StoreOpc))
2044 .addFrameIndex(FI)
2045 .addImm(0)
2046 .addReg(SrcR, getKillRegState(IsKill))
2047 .cloneMemRefs(*MI);
2048
2049 B.erase(It);
2050 return true;
2051 }
2052
expandLoadVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const2053 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2054 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2055 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2056 MachineFunction &MF = *B.getParent();
2057 auto &MFI = MF.getFrameInfo();
2058 MachineInstr *MI = &*It;
2059 if (!MI->getOperand(1).isFI())
2060 return false;
2061
2062 bool NeedsAligna = needsAligna(MF);
2063 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2064 DebugLoc DL = MI->getDebugLoc();
2065 Register DstR = MI->getOperand(0).getReg();
2066 int FI = MI->getOperand(1).getIndex();
2067
2068 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2069 Align HasAlign = MFI.getObjectAlign(FI);
2070 bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2071 unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2072 : Hexagon::V6_vL32Ub_ai;
2073 BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2074 .addFrameIndex(FI)
2075 .addImm(0)
2076 .cloneMemRefs(*MI);
2077
2078 B.erase(It);
2079 return true;
2080 }
2081
expandSpillMacros(MachineFunction & MF,SmallVectorImpl<unsigned> & NewRegs) const2082 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2083 SmallVectorImpl<unsigned> &NewRegs) const {
2084 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2085 MachineRegisterInfo &MRI = MF.getRegInfo();
2086 bool Changed = false;
2087
2088 for (auto &B : MF) {
2089 // Traverse the basic block.
2090 MachineBasicBlock::iterator NextI;
2091 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2092 MachineInstr *MI = &*I;
2093 NextI = std::next(I);
2094 unsigned Opc = MI->getOpcode();
2095
2096 switch (Opc) {
2097 case TargetOpcode::COPY:
2098 Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2099 break;
2100 case Hexagon::STriw_pred:
2101 case Hexagon::STriw_ctr:
2102 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2103 break;
2104 case Hexagon::LDriw_pred:
2105 case Hexagon::LDriw_ctr:
2106 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2107 break;
2108 case Hexagon::PS_vstorerq_ai:
2109 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2110 break;
2111 case Hexagon::PS_vloadrq_ai:
2112 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2113 break;
2114 case Hexagon::PS_vloadrw_ai:
2115 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2116 break;
2117 case Hexagon::PS_vstorerw_ai:
2118 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2119 break;
2120 }
2121 }
2122 }
2123
2124 return Changed;
2125 }
2126
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2127 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2128 BitVector &SavedRegs,
2129 RegScavenger *RS) const {
2130 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2131
2132 SavedRegs.resize(HRI.getNumRegs());
2133
2134 // If we have a function containing __builtin_eh_return we want to spill and
2135 // restore all callee saved registers. Pretend that they are used.
2136 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2137 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2138 SavedRegs.set(*R);
2139
2140 // Replace predicate register pseudo spill code.
2141 SmallVector<unsigned,8> NewRegs;
2142 expandSpillMacros(MF, NewRegs);
2143 if (OptimizeSpillSlots && !isOptNone(MF))
2144 optimizeSpillSlots(MF, NewRegs);
2145
2146 // We need to reserve a spill slot if scavenging could potentially require
2147 // spilling a scavenged register.
2148 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2149 MachineFrameInfo &MFI = MF.getFrameInfo();
2150 MachineRegisterInfo &MRI = MF.getRegInfo();
2151 SetVector<const TargetRegisterClass*> SpillRCs;
2152 // Reserve an int register in any case, because it could be used to hold
2153 // the stack offset in case it does not fit into a spill instruction.
2154 SpillRCs.insert(&Hexagon::IntRegsRegClass);
2155
2156 for (unsigned VR : NewRegs)
2157 SpillRCs.insert(MRI.getRegClass(VR));
2158
2159 for (auto *RC : SpillRCs) {
2160 if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2161 continue;
2162 unsigned Num = 1;
2163 switch (RC->getID()) {
2164 case Hexagon::IntRegsRegClassID:
2165 Num = NumberScavengerSlots;
2166 break;
2167 case Hexagon::HvxQRRegClassID:
2168 Num = 2; // Vector predicate spills also need a vector register.
2169 break;
2170 }
2171 unsigned S = HRI.getSpillSize(*RC);
2172 Align A = HRI.getSpillAlign(*RC);
2173 for (unsigned i = 0; i < Num; i++) {
2174 int NewFI = MFI.CreateSpillStackObject(S, A);
2175 RS->addScavengingFrameIndex(NewFI);
2176 }
2177 }
2178 }
2179
2180 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2181 }
2182
findPhysReg(MachineFunction & MF,HexagonBlockRanges::IndexRange & FIR,HexagonBlockRanges::InstrIndexMap & IndexMap,HexagonBlockRanges::RegToRangeMap & DeadMap,const TargetRegisterClass * RC) const2183 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2184 HexagonBlockRanges::IndexRange &FIR,
2185 HexagonBlockRanges::InstrIndexMap &IndexMap,
2186 HexagonBlockRanges::RegToRangeMap &DeadMap,
2187 const TargetRegisterClass *RC) const {
2188 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2189 auto &MRI = MF.getRegInfo();
2190
2191 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2192 auto F = DeadMap.find({Reg,0});
2193 if (F == DeadMap.end())
2194 return false;
2195 for (auto &DR : F->second)
2196 if (DR.contains(FIR))
2197 return true;
2198 return false;
2199 };
2200
2201 for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2202 bool Dead = true;
2203 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2204 if (isDead(R.Reg))
2205 continue;
2206 Dead = false;
2207 break;
2208 }
2209 if (Dead)
2210 return Reg;
2211 }
2212 return 0;
2213 }
2214
optimizeSpillSlots(MachineFunction & MF,SmallVectorImpl<unsigned> & VRegs) const2215 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2216 SmallVectorImpl<unsigned> &VRegs) const {
2217 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2218 auto &HII = *HST.getInstrInfo();
2219 auto &HRI = *HST.getRegisterInfo();
2220 auto &MRI = MF.getRegInfo();
2221 HexagonBlockRanges HBR(MF);
2222
2223 using BlockIndexMap =
2224 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2225 using BlockRangeMap =
2226 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2227 using IndexType = HexagonBlockRanges::IndexType;
2228
2229 struct SlotInfo {
2230 BlockRangeMap Map;
2231 unsigned Size = 0;
2232 const TargetRegisterClass *RC = nullptr;
2233
2234 SlotInfo() = default;
2235 };
2236
2237 BlockIndexMap BlockIndexes;
2238 SmallSet<int,4> BadFIs;
2239 std::map<int,SlotInfo> FIRangeMap;
2240
2241 // Accumulate register classes: get a common class for a pre-existing
2242 // class HaveRC and a new class NewRC. Return nullptr if a common class
2243 // cannot be found, otherwise return the resulting class. If HaveRC is
2244 // nullptr, assume that it is still unset.
2245 auto getCommonRC =
2246 [](const TargetRegisterClass *HaveRC,
2247 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2248 if (HaveRC == nullptr || HaveRC == NewRC)
2249 return NewRC;
2250 // Different classes, both non-null. Pick the more general one.
2251 if (HaveRC->hasSubClassEq(NewRC))
2252 return HaveRC;
2253 if (NewRC->hasSubClassEq(HaveRC))
2254 return NewRC;
2255 return nullptr;
2256 };
2257
2258 // Scan all blocks in the function. Check all occurrences of frame indexes,
2259 // and collect relevant information.
2260 for (auto &B : MF) {
2261 std::map<int,IndexType> LastStore, LastLoad;
2262 // Emplace appears not to be supported in gcc 4.7.2-4.
2263 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2264 auto P = BlockIndexes.insert(
2265 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2266 auto &IndexMap = P.first->second;
2267 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2268 << IndexMap << '\n');
2269
2270 for (auto &In : B) {
2271 int LFI, SFI;
2272 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2273 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2274 if (Load && Store) {
2275 // If it's both a load and a store, then we won't handle it.
2276 BadFIs.insert(LFI);
2277 BadFIs.insert(SFI);
2278 continue;
2279 }
2280 // Check for register classes of the register used as the source for
2281 // the store, and the register used as the destination for the load.
2282 // Also, only accept base+imm_offset addressing modes. Other addressing
2283 // modes can have side-effects (post-increments, etc.). For stack
2284 // slots they are very unlikely, so there is not much loss due to
2285 // this restriction.
2286 if (Load || Store) {
2287 int TFI = Load ? LFI : SFI;
2288 unsigned AM = HII.getAddrMode(In);
2289 SlotInfo &SI = FIRangeMap[TFI];
2290 bool Bad = (AM != HexagonII::BaseImmOffset);
2291 if (!Bad) {
2292 // If the addressing mode is ok, check the register class.
2293 unsigned OpNum = Load ? 0 : 2;
2294 auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2295 RC = getCommonRC(SI.RC, RC);
2296 if (RC == nullptr)
2297 Bad = true;
2298 else
2299 SI.RC = RC;
2300 }
2301 if (!Bad) {
2302 // Check sizes.
2303 unsigned S = HII.getMemAccessSize(In);
2304 if (SI.Size != 0 && SI.Size != S)
2305 Bad = true;
2306 else
2307 SI.Size = S;
2308 }
2309 if (!Bad) {
2310 for (auto *Mo : In.memoperands()) {
2311 if (!Mo->isVolatile() && !Mo->isAtomic())
2312 continue;
2313 Bad = true;
2314 break;
2315 }
2316 }
2317 if (Bad)
2318 BadFIs.insert(TFI);
2319 }
2320
2321 // Locate uses of frame indices.
2322 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2323 const MachineOperand &Op = In.getOperand(i);
2324 if (!Op.isFI())
2325 continue;
2326 int FI = Op.getIndex();
2327 // Make sure that the following operand is an immediate and that
2328 // it is 0. This is the offset in the stack object.
2329 if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2330 In.getOperand(i+1).getImm() != 0)
2331 BadFIs.insert(FI);
2332 if (BadFIs.count(FI))
2333 continue;
2334
2335 IndexType Index = IndexMap.getIndex(&In);
2336 if (Load) {
2337 if (LastStore[FI] == IndexType::None)
2338 LastStore[FI] = IndexType::Entry;
2339 LastLoad[FI] = Index;
2340 } else if (Store) {
2341 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2342 if (LastStore[FI] != IndexType::None)
2343 RL.add(LastStore[FI], LastLoad[FI], false, false);
2344 else if (LastLoad[FI] != IndexType::None)
2345 RL.add(IndexType::Entry, LastLoad[FI], false, false);
2346 LastLoad[FI] = IndexType::None;
2347 LastStore[FI] = Index;
2348 } else {
2349 BadFIs.insert(FI);
2350 }
2351 }
2352 }
2353
2354 for (auto &I : LastLoad) {
2355 IndexType LL = I.second;
2356 if (LL == IndexType::None)
2357 continue;
2358 auto &RL = FIRangeMap[I.first].Map[&B];
2359 IndexType &LS = LastStore[I.first];
2360 if (LS != IndexType::None)
2361 RL.add(LS, LL, false, false);
2362 else
2363 RL.add(IndexType::Entry, LL, false, false);
2364 LS = IndexType::None;
2365 }
2366 for (auto &I : LastStore) {
2367 IndexType LS = I.second;
2368 if (LS == IndexType::None)
2369 continue;
2370 auto &RL = FIRangeMap[I.first].Map[&B];
2371 RL.add(LS, IndexType::None, false, false);
2372 }
2373 }
2374
2375 LLVM_DEBUG({
2376 for (auto &P : FIRangeMap) {
2377 dbgs() << "fi#" << P.first;
2378 if (BadFIs.count(P.first))
2379 dbgs() << " (bad)";
2380 dbgs() << " RC: ";
2381 if (P.second.RC != nullptr)
2382 dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2383 else
2384 dbgs() << "<null>\n";
2385 for (auto &R : P.second.Map)
2386 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second
2387 << "}\n";
2388 }
2389 });
2390
2391 // When a slot is loaded from in a block without being stored to in the
2392 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2393 // consider this slot to be live-on-exit from all blocks.
2394 SmallSet<int,4> LoxFIs;
2395
2396 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2397
2398 for (auto &P : FIRangeMap) {
2399 // P = pair(FI, map: BB->RangeList)
2400 if (BadFIs.count(P.first))
2401 continue;
2402 for (auto &B : MF) {
2403 auto F = P.second.Map.find(&B);
2404 // F = pair(BB, RangeList)
2405 if (F == P.second.Map.end() || F->second.empty())
2406 continue;
2407 HexagonBlockRanges::IndexRange &IR = F->second.front();
2408 if (IR.start() == IndexType::Entry)
2409 LoxFIs.insert(P.first);
2410 BlockFIMap[&B].push_back(P.first);
2411 }
2412 }
2413
2414 LLVM_DEBUG({
2415 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2416 for (auto &P : BlockFIMap) {
2417 auto &FIs = P.second;
2418 if (FIs.empty())
2419 continue;
2420 dbgs() << " " << printMBBReference(*P.first) << ": {";
2421 for (auto I : FIs) {
2422 dbgs() << " fi#" << I;
2423 if (LoxFIs.count(I))
2424 dbgs() << '*';
2425 }
2426 dbgs() << " }\n";
2427 }
2428 });
2429
2430 #ifndef NDEBUG
2431 bool HasOptLimit = SpillOptMax.getPosition();
2432 #endif
2433
2434 // eliminate loads, when all loads eliminated, eliminate all stores.
2435 for (auto &B : MF) {
2436 auto F = BlockIndexes.find(&B);
2437 assert(F != BlockIndexes.end());
2438 HexagonBlockRanges::InstrIndexMap &IM = F->second;
2439 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2440 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2441 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2442 << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2443
2444 for (auto FI : BlockFIMap[&B]) {
2445 if (BadFIs.count(FI))
2446 continue;
2447 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2448 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2449 for (auto &Range : RL) {
2450 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2451 if (!IndexType::isInstr(Range.start()) ||
2452 !IndexType::isInstr(Range.end()))
2453 continue;
2454 MachineInstr &SI = *IM.getInstr(Range.start());
2455 MachineInstr &EI = *IM.getInstr(Range.end());
2456 assert(SI.mayStore() && "Unexpected start instruction");
2457 assert(EI.mayLoad() && "Unexpected end instruction");
2458 MachineOperand &SrcOp = SI.getOperand(2);
2459
2460 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2461 SrcOp.getSubReg() };
2462 auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2463 // The this-> is needed to unconfuse MSVC.
2464 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2465 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2466 << '\n');
2467 if (FoundR == 0)
2468 continue;
2469 #ifndef NDEBUG
2470 if (HasOptLimit) {
2471 if (SpillOptCount >= SpillOptMax)
2472 return;
2473 SpillOptCount++;
2474 }
2475 #endif
2476
2477 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2478 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2479 MachineInstr *CopyIn = nullptr;
2480 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2481 const DebugLoc &DL = SI.getDebugLoc();
2482 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2483 .add(SrcOp);
2484 }
2485
2486 ++StartIt;
2487 // Check if this is a last store and the FI is live-on-exit.
2488 if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2489 // Update store's source register.
2490 if (unsigned SR = SrcOp.getSubReg())
2491 SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2492 else
2493 SrcOp.setReg(FoundR);
2494 SrcOp.setSubReg(0);
2495 // We are keeping this register live.
2496 SrcOp.setIsKill(false);
2497 } else {
2498 B.erase(&SI);
2499 IM.replaceInstr(&SI, CopyIn);
2500 }
2501
2502 auto EndIt = std::next(EI.getIterator());
2503 for (auto It = StartIt; It != EndIt; It = NextIt) {
2504 MachineInstr &MI = *It;
2505 NextIt = std::next(It);
2506 int TFI;
2507 if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2508 continue;
2509 Register DstR = MI.getOperand(0).getReg();
2510 assert(MI.getOperand(0).getSubReg() == 0);
2511 MachineInstr *CopyOut = nullptr;
2512 if (DstR != FoundR) {
2513 DebugLoc DL = MI.getDebugLoc();
2514 unsigned MemSize = HII.getMemAccessSize(MI);
2515 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2516 unsigned CopyOpc = TargetOpcode::COPY;
2517 if (HII.isSignExtendingLoad(MI))
2518 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2519 else if (HII.isZeroExtendingLoad(MI))
2520 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2521 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2522 .addReg(FoundR, getKillRegState(&MI == &EI));
2523 }
2524 IM.replaceInstr(&MI, CopyOut);
2525 B.erase(It);
2526 }
2527
2528 // Update the dead map.
2529 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2530 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2531 DM[RR].subtract(Range);
2532 } // for Range in range list
2533 }
2534 }
2535 }
2536
expandAlloca(MachineInstr * AI,const HexagonInstrInfo & HII,unsigned SP,unsigned CF) const2537 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2538 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2539 MachineBasicBlock &MB = *AI->getParent();
2540 DebugLoc DL = AI->getDebugLoc();
2541 unsigned A = AI->getOperand(2).getImm();
2542
2543 // Have
2544 // Rd = alloca Rs, #A
2545 //
2546 // If Rs and Rd are different registers, use this sequence:
2547 // Rd = sub(r29, Rs)
2548 // r29 = sub(r29, Rs)
2549 // Rd = and(Rd, #-A) ; if necessary
2550 // r29 = and(r29, #-A) ; if necessary
2551 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2552 // otherwise, do
2553 // Rd = sub(r29, Rs)
2554 // Rd = and(Rd, #-A) ; if necessary
2555 // r29 = Rd
2556 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2557
2558 MachineOperand &RdOp = AI->getOperand(0);
2559 MachineOperand &RsOp = AI->getOperand(1);
2560 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2561
2562 // Rd = sub(r29, Rs)
2563 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2564 .addReg(SP)
2565 .addReg(Rs);
2566 if (Rs != Rd) {
2567 // r29 = sub(r29, Rs)
2568 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2569 .addReg(SP)
2570 .addReg(Rs);
2571 }
2572 if (A > 8) {
2573 // Rd = and(Rd, #-A)
2574 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2575 .addReg(Rd)
2576 .addImm(-int64_t(A));
2577 if (Rs != Rd)
2578 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2579 .addReg(SP)
2580 .addImm(-int64_t(A));
2581 }
2582 if (Rs == Rd) {
2583 // r29 = Rd
2584 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2585 .addReg(Rd);
2586 }
2587 if (CF > 0) {
2588 // Rd = add(Rd, #CF)
2589 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2590 .addReg(Rd)
2591 .addImm(CF);
2592 }
2593 }
2594
needsAligna(const MachineFunction & MF) const2595 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2596 const MachineFrameInfo &MFI = MF.getFrameInfo();
2597 if (!MFI.hasVarSizedObjects())
2598 return false;
2599 // Do not check for max stack object alignment here, because the stack
2600 // may not be complete yet. Assume that we will need PS_aligna if there
2601 // are variable-sized objects.
2602 return true;
2603 }
2604
getAlignaInstr(const MachineFunction & MF) const2605 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2606 const MachineFunction &MF) const {
2607 for (auto &B : MF)
2608 for (auto &I : B)
2609 if (I.getOpcode() == Hexagon::PS_aligna)
2610 return &I;
2611 return nullptr;
2612 }
2613
2614 /// Adds all callee-saved registers as implicit uses or defs to the
2615 /// instruction.
addCalleeSaveRegistersAsImpOperand(MachineInstr * MI,const CSIVect & CSI,bool IsDef,bool IsKill) const2616 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2617 const CSIVect &CSI, bool IsDef, bool IsKill) const {
2618 // Add the callee-saved registers as implicit uses.
2619 for (auto &R : CSI)
2620 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2621 }
2622
2623 /// Determine whether the callee-saved register saves and restores should
2624 /// be generated via inline code. If this function returns "true", inline
2625 /// code will be generated. If this function returns "false", additional
2626 /// checks are performed, which may still lead to the inline code.
shouldInlineCSR(const MachineFunction & MF,const CSIVect & CSI) const2627 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2628 const CSIVect &CSI) const {
2629 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2630 return true;
2631 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2632 return true;
2633 if (!hasFP(MF))
2634 return true;
2635 if (!isOptSize(MF) && !isMinSize(MF))
2636 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2637 return true;
2638
2639 // Check if CSI only has double registers, and if the registers form
2640 // a contiguous block starting from D8.
2641 BitVector Regs(Hexagon::NUM_TARGET_REGS);
2642 for (const CalleeSavedInfo &I : CSI) {
2643 Register R = I.getReg();
2644 if (!Hexagon::DoubleRegsRegClass.contains(R))
2645 return true;
2646 Regs[R] = true;
2647 }
2648 int F = Regs.find_first();
2649 if (F != Hexagon::D8)
2650 return true;
2651 while (F >= 0) {
2652 int N = Regs.find_next(F);
2653 if (N >= 0 && N != F+1)
2654 return true;
2655 F = N;
2656 }
2657
2658 return false;
2659 }
2660
useSpillFunction(const MachineFunction & MF,const CSIVect & CSI) const2661 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2662 const CSIVect &CSI) const {
2663 if (shouldInlineCSR(MF, CSI))
2664 return false;
2665 unsigned NumCSI = CSI.size();
2666 if (NumCSI <= 1)
2667 return false;
2668
2669 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2670 : SpillFuncThreshold;
2671 return Threshold < NumCSI;
2672 }
2673
useRestoreFunction(const MachineFunction & MF,const CSIVect & CSI) const2674 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2675 const CSIVect &CSI) const {
2676 if (shouldInlineCSR(MF, CSI))
2677 return false;
2678 // The restore functions do a bit more than just restoring registers.
2679 // The non-returning versions will go back directly to the caller's
2680 // caller, others will clean up the stack frame in preparation for
2681 // a tail call. Using them can still save code size even if only one
2682 // register is getting restores. Make the decision based on -Oz:
2683 // using -Os will use inline restore for a single register.
2684 if (isMinSize(MF))
2685 return true;
2686 unsigned NumCSI = CSI.size();
2687 if (NumCSI <= 1)
2688 return false;
2689
2690 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2691 : SpillFuncThreshold;
2692 return Threshold < NumCSI;
2693 }
2694
mayOverflowFrameOffset(MachineFunction & MF) const2695 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2696 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2697 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2698 // A fairly simplistic guess as to whether a potential load/store to a
2699 // stack location could require an extra register.
2700 if (HST.useHVXOps() && StackSize > 256)
2701 return true;
2702
2703 // Check if the function has store-immediate instructions that access
2704 // the stack. Since the offset field is not extendable, if the stack
2705 // size exceeds the offset limit (6 bits, shifted), the stores will
2706 // require a new base register.
2707 bool HasImmStack = false;
2708 unsigned MinLS = ~0u; // Log_2 of the memory access size.
2709
2710 for (const MachineBasicBlock &B : MF) {
2711 for (const MachineInstr &MI : B) {
2712 unsigned LS = 0;
2713 switch (MI.getOpcode()) {
2714 case Hexagon::S4_storeirit_io:
2715 case Hexagon::S4_storeirif_io:
2716 case Hexagon::S4_storeiri_io:
2717 ++LS;
2718 LLVM_FALLTHROUGH;
2719 case Hexagon::S4_storeirht_io:
2720 case Hexagon::S4_storeirhf_io:
2721 case Hexagon::S4_storeirh_io:
2722 ++LS;
2723 LLVM_FALLTHROUGH;
2724 case Hexagon::S4_storeirbt_io:
2725 case Hexagon::S4_storeirbf_io:
2726 case Hexagon::S4_storeirb_io:
2727 if (MI.getOperand(0).isFI())
2728 HasImmStack = true;
2729 MinLS = std::min(MinLS, LS);
2730 break;
2731 }
2732 }
2733 }
2734
2735 if (HasImmStack)
2736 return !isUInt<6>(StackSize >> MinLS);
2737
2738 return false;
2739 }
2740