1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 70 if (IsCompleted) 71 return; 72 IsCompleted = true; 73 74 BTFType.NameOff = BDebug.addString(DTy->getName()); 75 76 if (NeedsFixup) 77 return; 78 79 // The base type for PTR/CONST/VOLATILE could be void. 80 const DIType *ResolvedType = DTy->getBaseType(); 81 if (!ResolvedType) { 82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 83 Kind == BTF::BTF_KIND_VOLATILE) && 84 "Invalid null basetype"); 85 BTFType.Type = 0; 86 } else { 87 BTFType.Type = BDebug.getTypeId(ResolvedType); 88 } 89 } 90 91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 92 93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 94 BTFType.Type = PointeeType; 95 } 96 97 /// Represent a struct/union forward declaration. 98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 99 Kind = BTF::BTF_KIND_FWD; 100 BTFType.Info = IsUnion << 31 | Kind << 24; 101 BTFType.Type = 0; 102 } 103 104 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 105 if (IsCompleted) 106 return; 107 IsCompleted = true; 108 109 BTFType.NameOff = BDebug.addString(Name); 110 } 111 112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 113 114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 115 uint32_t OffsetInBits, StringRef TypeName) 116 : Name(TypeName) { 117 // Translate IR int encoding to BTF int encoding. 118 uint8_t BTFEncoding; 119 switch (Encoding) { 120 case dwarf::DW_ATE_boolean: 121 BTFEncoding = BTF::INT_BOOL; 122 break; 123 case dwarf::DW_ATE_signed: 124 case dwarf::DW_ATE_signed_char: 125 BTFEncoding = BTF::INT_SIGNED; 126 break; 127 case dwarf::DW_ATE_unsigned: 128 case dwarf::DW_ATE_unsigned_char: 129 BTFEncoding = 0; 130 break; 131 default: 132 llvm_unreachable("Unknown BTFTypeInt Encoding"); 133 } 134 135 Kind = BTF::BTF_KIND_INT; 136 BTFType.Info = Kind << 24; 137 BTFType.Size = roundupToBytes(SizeInBits); 138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 139 } 140 141 void BTFTypeInt::completeType(BTFDebug &BDebug) { 142 if (IsCompleted) 143 return; 144 IsCompleted = true; 145 146 BTFType.NameOff = BDebug.addString(Name); 147 } 148 149 void BTFTypeInt::emitType(MCStreamer &OS) { 150 BTFTypeBase::emitType(OS); 151 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 152 OS.emitInt32(IntVal); 153 } 154 155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 156 Kind = BTF::BTF_KIND_ENUM; 157 BTFType.Info = Kind << 24 | VLen; 158 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 159 } 160 161 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 162 if (IsCompleted) 163 return; 164 IsCompleted = true; 165 166 BTFType.NameOff = BDebug.addString(ETy->getName()); 167 168 DINodeArray Elements = ETy->getElements(); 169 for (const auto Element : Elements) { 170 const auto *Enum = cast<DIEnumerator>(Element); 171 172 struct BTF::BTFEnum BTFEnum; 173 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 174 // BTF enum value is 32bit, enforce it. 175 uint32_t Value; 176 if (Enum->isUnsigned()) 177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 178 else 179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 180 BTFEnum.Val = Value; 181 EnumValues.push_back(BTFEnum); 182 } 183 } 184 185 void BTFTypeEnum::emitType(MCStreamer &OS) { 186 BTFTypeBase::emitType(OS); 187 for (const auto &Enum : EnumValues) { 188 OS.emitInt32(Enum.NameOff); 189 OS.emitInt32(Enum.Val); 190 } 191 } 192 193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 194 Kind = BTF::BTF_KIND_ARRAY; 195 BTFType.NameOff = 0; 196 BTFType.Info = Kind << 24; 197 BTFType.Size = 0; 198 199 ArrayInfo.ElemType = ElemTypeId; 200 ArrayInfo.Nelems = NumElems; 201 } 202 203 /// Represent a BTF array. 204 void BTFTypeArray::completeType(BTFDebug &BDebug) { 205 if (IsCompleted) 206 return; 207 IsCompleted = true; 208 209 // The IR does not really have a type for the index. 210 // A special type for array index should have been 211 // created during initial type traversal. Just 212 // retrieve that type id. 213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 214 } 215 216 void BTFTypeArray::emitType(MCStreamer &OS) { 217 BTFTypeBase::emitType(OS); 218 OS.emitInt32(ArrayInfo.ElemType); 219 OS.emitInt32(ArrayInfo.IndexType); 220 OS.emitInt32(ArrayInfo.Nelems); 221 } 222 223 /// Represent either a struct or a union. 224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 225 bool HasBitField, uint32_t Vlen) 226 : STy(STy), HasBitField(HasBitField) { 227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 228 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 230 } 231 232 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 233 if (IsCompleted) 234 return; 235 IsCompleted = true; 236 237 BTFType.NameOff = BDebug.addString(STy->getName()); 238 239 // Add struct/union members. 240 const DINodeArray Elements = STy->getElements(); 241 for (const auto *Element : Elements) { 242 struct BTF::BTFMember BTFMember; 243 const auto *DDTy = cast<DIDerivedType>(Element); 244 245 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 246 if (HasBitField) { 247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 249 } else { 250 BTFMember.Offset = DDTy->getOffsetInBits(); 251 } 252 const auto *BaseTy = DDTy->getBaseType(); 253 BTFMember.Type = BDebug.getTypeId(BaseTy); 254 Members.push_back(BTFMember); 255 } 256 } 257 258 void BTFTypeStruct::emitType(MCStreamer &OS) { 259 BTFTypeBase::emitType(OS); 260 for (const auto &Member : Members) { 261 OS.emitInt32(Member.NameOff); 262 OS.emitInt32(Member.Type); 263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 264 OS.emitInt32(Member.Offset); 265 } 266 } 267 268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 269 270 /// The Func kind represents both subprogram and pointee of function 271 /// pointers. If the FuncName is empty, it represents a pointee of function 272 /// pointer. Otherwise, it represents a subprogram. The func arg names 273 /// are empty for pointee of function pointer case, and are valid names 274 /// for subprogram. 275 BTFTypeFuncProto::BTFTypeFuncProto( 276 const DISubroutineType *STy, uint32_t VLen, 277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 278 : STy(STy), FuncArgNames(FuncArgNames) { 279 Kind = BTF::BTF_KIND_FUNC_PROTO; 280 BTFType.Info = (Kind << 24) | VLen; 281 } 282 283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 284 if (IsCompleted) 285 return; 286 IsCompleted = true; 287 288 DITypeRefArray Elements = STy->getTypeArray(); 289 auto RetType = Elements[0]; 290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 291 BTFType.NameOff = 0; 292 293 // For null parameter which is typically the last one 294 // to represent the vararg, encode the NameOff/Type to be 0. 295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 296 struct BTF::BTFParam Param; 297 auto Element = Elements[I]; 298 if (Element) { 299 Param.NameOff = BDebug.addString(FuncArgNames[I]); 300 Param.Type = BDebug.getTypeId(Element); 301 } else { 302 Param.NameOff = 0; 303 Param.Type = 0; 304 } 305 Parameters.push_back(Param); 306 } 307 } 308 309 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 310 BTFTypeBase::emitType(OS); 311 for (const auto &Param : Parameters) { 312 OS.emitInt32(Param.NameOff); 313 OS.emitInt32(Param.Type); 314 } 315 } 316 317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 318 uint32_t Scope) 319 : Name(FuncName) { 320 Kind = BTF::BTF_KIND_FUNC; 321 BTFType.Info = (Kind << 24) | Scope; 322 BTFType.Type = ProtoTypeId; 323 } 324 325 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 326 if (IsCompleted) 327 return; 328 IsCompleted = true; 329 330 BTFType.NameOff = BDebug.addString(Name); 331 } 332 333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 334 335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 336 : Name(VarName) { 337 Kind = BTF::BTF_KIND_VAR; 338 BTFType.Info = Kind << 24; 339 BTFType.Type = TypeId; 340 Info = VarInfo; 341 } 342 343 void BTFKindVar::completeType(BTFDebug &BDebug) { 344 BTFType.NameOff = BDebug.addString(Name); 345 } 346 347 void BTFKindVar::emitType(MCStreamer &OS) { 348 BTFTypeBase::emitType(OS); 349 OS.emitInt32(Info); 350 } 351 352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 353 : Asm(AsmPrt), Name(SecName) { 354 Kind = BTF::BTF_KIND_DATASEC; 355 BTFType.Info = Kind << 24; 356 BTFType.Size = 0; 357 } 358 359 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 360 BTFType.NameOff = BDebug.addString(Name); 361 BTFType.Info |= Vars.size(); 362 } 363 364 void BTFKindDataSec::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 367 for (const auto &V : Vars) { 368 OS.emitInt32(std::get<0>(V)); 369 Asm->emitLabelReference(std::get<1>(V), 4); 370 OS.emitInt32(std::get<2>(V)); 371 } 372 } 373 374 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 375 : Name(TypeName) { 376 Kind = BTF::BTF_KIND_FLOAT; 377 BTFType.Info = Kind << 24; 378 BTFType.Size = roundupToBytes(SizeInBits); 379 } 380 381 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 382 if (IsCompleted) 383 return; 384 IsCompleted = true; 385 386 BTFType.NameOff = BDebug.addString(Name); 387 } 388 389 BTFTypeTag::BTFTypeTag(uint32_t BaseTypeId, int ComponentId, StringRef Tag) 390 : Tag(Tag) { 391 Kind = BTF::BTF_KIND_TAG; 392 BTFType.Info = ((ComponentId < 0) << 31) | (Kind << 24); 393 BTFType.Type = BaseTypeId; 394 Info = ComponentId < 0 ? 0 : ComponentId; 395 } 396 397 void BTFTypeTag::completeType(BTFDebug &BDebug) { 398 if (IsCompleted) 399 return; 400 IsCompleted = true; 401 402 BTFType.NameOff = BDebug.addString(Tag); 403 } 404 405 void BTFTypeTag::emitType(MCStreamer &OS) { 406 BTFTypeBase::emitType(OS); 407 OS.emitInt32(Info); 408 } 409 410 uint32_t BTFStringTable::addString(StringRef S) { 411 // Check whether the string already exists. 412 for (auto &OffsetM : OffsetToIdMap) { 413 if (Table[OffsetM.second] == S) 414 return OffsetM.first; 415 } 416 // Not find, add to the string table. 417 uint32_t Offset = Size; 418 OffsetToIdMap[Offset] = Table.size(); 419 Table.push_back(std::string(S)); 420 Size += S.size() + 1; 421 return Offset; 422 } 423 424 BTFDebug::BTFDebug(AsmPrinter *AP) 425 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 426 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 427 MapDefNotCollected(true) { 428 addString("\0"); 429 } 430 431 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 432 const DIType *Ty) { 433 TypeEntry->setId(TypeEntries.size() + 1); 434 uint32_t Id = TypeEntry->getId(); 435 DIToIdMap[Ty] = Id; 436 TypeEntries.push_back(std::move(TypeEntry)); 437 return Id; 438 } 439 440 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 441 TypeEntry->setId(TypeEntries.size() + 1); 442 uint32_t Id = TypeEntry->getId(); 443 TypeEntries.push_back(std::move(TypeEntry)); 444 return Id; 445 } 446 447 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 448 // Only int and binary floating point types are supported in BTF. 449 uint32_t Encoding = BTy->getEncoding(); 450 std::unique_ptr<BTFTypeBase> TypeEntry; 451 switch (Encoding) { 452 case dwarf::DW_ATE_boolean: 453 case dwarf::DW_ATE_signed: 454 case dwarf::DW_ATE_signed_char: 455 case dwarf::DW_ATE_unsigned: 456 case dwarf::DW_ATE_unsigned_char: 457 // Create a BTF type instance for this DIBasicType and put it into 458 // DIToIdMap for cross-type reference check. 459 TypeEntry = std::make_unique<BTFTypeInt>( 460 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 461 break; 462 case dwarf::DW_ATE_float: 463 TypeEntry = 464 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 465 break; 466 default: 467 return; 468 } 469 470 TypeId = addType(std::move(TypeEntry), BTy); 471 } 472 473 /// Handle subprogram or subroutine types. 474 void BTFDebug::visitSubroutineType( 475 const DISubroutineType *STy, bool ForSubprog, 476 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 477 uint32_t &TypeId) { 478 DITypeRefArray Elements = STy->getTypeArray(); 479 uint32_t VLen = Elements.size() - 1; 480 if (VLen > BTF::MAX_VLEN) 481 return; 482 483 // Subprogram has a valid non-zero-length name, and the pointee of 484 // a function pointer has an empty name. The subprogram type will 485 // not be added to DIToIdMap as it should not be referenced by 486 // any other types. 487 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 488 if (ForSubprog) 489 TypeId = addType(std::move(TypeEntry)); // For subprogram 490 else 491 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 492 493 // Visit return type and func arg types. 494 for (const auto Element : Elements) { 495 visitTypeEntry(Element); 496 } 497 } 498 499 void BTFDebug::processAnnotations(DINodeArray Annotations, uint32_t BaseTypeId, 500 int ComponentId) { 501 if (!Annotations) 502 return; 503 504 for (const Metadata *Annotation : Annotations->operands()) { 505 const MDNode *MD = cast<MDNode>(Annotation); 506 const MDString *Name = cast<MDString>(MD->getOperand(0)); 507 if (!Name->getString().equals("btf_tag")) 508 continue; 509 510 const MDString *Value = cast<MDString>(MD->getOperand(1)); 511 auto TypeEntry = std::make_unique<BTFTypeTag>(BaseTypeId, ComponentId, 512 Value->getString()); 513 addType(std::move(TypeEntry)); 514 } 515 } 516 517 /// Handle structure/union types. 518 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 519 uint32_t &TypeId) { 520 const DINodeArray Elements = CTy->getElements(); 521 uint32_t VLen = Elements.size(); 522 if (VLen > BTF::MAX_VLEN) 523 return; 524 525 // Check whether we have any bitfield members or not 526 bool HasBitField = false; 527 for (const auto *Element : Elements) { 528 auto E = cast<DIDerivedType>(Element); 529 if (E->isBitField()) { 530 HasBitField = true; 531 break; 532 } 533 } 534 535 auto TypeEntry = 536 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 537 StructTypes.push_back(TypeEntry.get()); 538 TypeId = addType(std::move(TypeEntry), CTy); 539 540 // Check struct/union annotations 541 processAnnotations(CTy->getAnnotations(), TypeId, -1); 542 543 // Visit all struct members. 544 int FieldNo = 0; 545 for (const auto *Element : Elements) { 546 const auto Elem = cast<DIDerivedType>(Element); 547 visitTypeEntry(Elem); 548 processAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 549 FieldNo++; 550 } 551 } 552 553 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 554 // Visit array element type. 555 uint32_t ElemTypeId; 556 const DIType *ElemType = CTy->getBaseType(); 557 visitTypeEntry(ElemType, ElemTypeId, false, false); 558 559 // Visit array dimensions. 560 DINodeArray Elements = CTy->getElements(); 561 for (int I = Elements.size() - 1; I >= 0; --I) { 562 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 563 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 564 const DISubrange *SR = cast<DISubrange>(Element); 565 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 566 int64_t Count = CI->getSExtValue(); 567 568 // For struct s { int b; char c[]; }, the c[] will be represented 569 // as an array with Count = -1. 570 auto TypeEntry = 571 std::make_unique<BTFTypeArray>(ElemTypeId, 572 Count >= 0 ? Count : 0); 573 if (I == 0) 574 ElemTypeId = addType(std::move(TypeEntry), CTy); 575 else 576 ElemTypeId = addType(std::move(TypeEntry)); 577 } 578 } 579 580 // The array TypeId is the type id of the outermost dimension. 581 TypeId = ElemTypeId; 582 583 // The IR does not have a type for array index while BTF wants one. 584 // So create an array index type if there is none. 585 if (!ArrayIndexTypeId) { 586 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 587 0, "__ARRAY_SIZE_TYPE__"); 588 ArrayIndexTypeId = addType(std::move(TypeEntry)); 589 } 590 } 591 592 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 593 DINodeArray Elements = CTy->getElements(); 594 uint32_t VLen = Elements.size(); 595 if (VLen > BTF::MAX_VLEN) 596 return; 597 598 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 599 TypeId = addType(std::move(TypeEntry), CTy); 600 // No need to visit base type as BTF does not encode it. 601 } 602 603 /// Handle structure/union forward declarations. 604 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 605 uint32_t &TypeId) { 606 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 607 TypeId = addType(std::move(TypeEntry), CTy); 608 } 609 610 /// Handle structure, union, array and enumeration types. 611 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 612 uint32_t &TypeId) { 613 auto Tag = CTy->getTag(); 614 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 615 // Handle forward declaration differently as it does not have members. 616 if (CTy->isForwardDecl()) 617 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 618 else 619 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 620 } else if (Tag == dwarf::DW_TAG_array_type) 621 visitArrayType(CTy, TypeId); 622 else if (Tag == dwarf::DW_TAG_enumeration_type) 623 visitEnumType(CTy, TypeId); 624 } 625 626 /// Handle pointer, typedef, const, volatile, restrict and member types. 627 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 628 bool CheckPointer, bool SeenPointer) { 629 unsigned Tag = DTy->getTag(); 630 631 /// Try to avoid chasing pointees, esp. structure pointees which may 632 /// unnecessary bring in a lot of types. 633 if (CheckPointer && !SeenPointer) { 634 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 635 } 636 637 if (CheckPointer && SeenPointer) { 638 const DIType *Base = DTy->getBaseType(); 639 if (Base) { 640 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 641 auto CTag = CTy->getTag(); 642 if ((CTag == dwarf::DW_TAG_structure_type || 643 CTag == dwarf::DW_TAG_union_type) && 644 !CTy->getName().empty() && !CTy->isForwardDecl()) { 645 /// Find a candidate, generate a fixup. Later on the struct/union 646 /// pointee type will be replaced with either a real type or 647 /// a forward declaration. 648 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 649 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 650 Fixup.first = CTag == dwarf::DW_TAG_union_type; 651 Fixup.second.push_back(TypeEntry.get()); 652 TypeId = addType(std::move(TypeEntry), DTy); 653 return; 654 } 655 } 656 } 657 } 658 659 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 660 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 661 Tag == dwarf::DW_TAG_restrict_type) { 662 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 663 TypeId = addType(std::move(TypeEntry), DTy); 664 } else if (Tag != dwarf::DW_TAG_member) { 665 return; 666 } 667 668 // Visit base type of pointer, typedef, const, volatile, restrict or 669 // struct/union member. 670 uint32_t TempTypeId = 0; 671 if (Tag == dwarf::DW_TAG_member) 672 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 673 else 674 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 675 } 676 677 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 678 bool CheckPointer, bool SeenPointer) { 679 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 680 TypeId = DIToIdMap[Ty]; 681 682 // To handle the case like the following: 683 // struct t; 684 // typedef struct t _t; 685 // struct s1 { _t *c; }; 686 // int test1(struct s1 *arg) { ... } 687 // 688 // struct t { int a; int b; }; 689 // struct s2 { _t c; } 690 // int test2(struct s2 *arg) { ... } 691 // 692 // During traversing test1() argument, "_t" is recorded 693 // in DIToIdMap and a forward declaration fixup is created 694 // for "struct t" to avoid pointee type traversal. 695 // 696 // During traversing test2() argument, even if we see "_t" is 697 // already defined, we should keep moving to eventually 698 // bring in types for "struct t". Otherwise, the "struct s2" 699 // definition won't be correct. 700 if (Ty && (!CheckPointer || !SeenPointer)) { 701 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 702 unsigned Tag = DTy->getTag(); 703 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 704 Tag == dwarf::DW_TAG_volatile_type || 705 Tag == dwarf::DW_TAG_restrict_type) { 706 uint32_t TmpTypeId; 707 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 708 SeenPointer); 709 } 710 } 711 } 712 713 return; 714 } 715 716 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 717 visitBasicType(BTy, TypeId); 718 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 719 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 720 TypeId); 721 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 722 visitCompositeType(CTy, TypeId); 723 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 724 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 725 else 726 llvm_unreachable("Unknown DIType"); 727 } 728 729 void BTFDebug::visitTypeEntry(const DIType *Ty) { 730 uint32_t TypeId; 731 visitTypeEntry(Ty, TypeId, false, false); 732 } 733 734 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 735 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 736 TypeId = DIToIdMap[Ty]; 737 return; 738 } 739 740 // MapDef type may be a struct type or a non-pointer derived type 741 const DIType *OrigTy = Ty; 742 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 743 auto Tag = DTy->getTag(); 744 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 745 Tag != dwarf::DW_TAG_volatile_type && 746 Tag != dwarf::DW_TAG_restrict_type) 747 break; 748 Ty = DTy->getBaseType(); 749 } 750 751 const auto *CTy = dyn_cast<DICompositeType>(Ty); 752 if (!CTy) 753 return; 754 755 auto Tag = CTy->getTag(); 756 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 757 return; 758 759 // Visit all struct members to ensure pointee type is visited 760 const DINodeArray Elements = CTy->getElements(); 761 for (const auto *Element : Elements) { 762 const auto *MemberType = cast<DIDerivedType>(Element); 763 visitTypeEntry(MemberType->getBaseType()); 764 } 765 766 // Visit this type, struct or a const/typedef/volatile/restrict type 767 visitTypeEntry(OrigTy, TypeId, false, false); 768 } 769 770 /// Read file contents from the actual file or from the source 771 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 772 auto File = SP->getFile(); 773 std::string FileName; 774 775 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 776 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 777 else 778 FileName = std::string(File->getFilename()); 779 780 // No need to populate the contends if it has been populated! 781 if (FileContent.find(FileName) != FileContent.end()) 782 return FileName; 783 784 std::vector<std::string> Content; 785 std::string Line; 786 Content.push_back(Line); // Line 0 for empty string 787 788 std::unique_ptr<MemoryBuffer> Buf; 789 auto Source = File->getSource(); 790 if (Source) 791 Buf = MemoryBuffer::getMemBufferCopy(*Source); 792 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 793 MemoryBuffer::getFile(FileName)) 794 Buf = std::move(*BufOrErr); 795 if (Buf) 796 for (line_iterator I(*Buf, false), E; I != E; ++I) 797 Content.push_back(std::string(*I)); 798 799 FileContent[FileName] = Content; 800 return FileName; 801 } 802 803 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 804 uint32_t Line, uint32_t Column) { 805 std::string FileName = populateFileContent(SP); 806 BTFLineInfo LineInfo; 807 808 LineInfo.Label = Label; 809 LineInfo.FileNameOff = addString(FileName); 810 // If file content is not available, let LineOff = 0. 811 if (Line < FileContent[FileName].size()) 812 LineInfo.LineOff = addString(FileContent[FileName][Line]); 813 else 814 LineInfo.LineOff = 0; 815 LineInfo.LineNum = Line; 816 LineInfo.ColumnNum = Column; 817 LineInfoTable[SecNameOff].push_back(LineInfo); 818 } 819 820 void BTFDebug::emitCommonHeader() { 821 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 822 OS.emitIntValue(BTF::MAGIC, 2); 823 OS.emitInt8(BTF::VERSION); 824 OS.emitInt8(0); 825 } 826 827 void BTFDebug::emitBTFSection() { 828 // Do not emit section if no types and only "" string. 829 if (!TypeEntries.size() && StringTable.getSize() == 1) 830 return; 831 832 MCContext &Ctx = OS.getContext(); 833 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 834 835 // Emit header. 836 emitCommonHeader(); 837 OS.emitInt32(BTF::HeaderSize); 838 839 uint32_t TypeLen = 0, StrLen; 840 for (const auto &TypeEntry : TypeEntries) 841 TypeLen += TypeEntry->getSize(); 842 StrLen = StringTable.getSize(); 843 844 OS.emitInt32(0); 845 OS.emitInt32(TypeLen); 846 OS.emitInt32(TypeLen); 847 OS.emitInt32(StrLen); 848 849 // Emit type table. 850 for (const auto &TypeEntry : TypeEntries) 851 TypeEntry->emitType(OS); 852 853 // Emit string table. 854 uint32_t StringOffset = 0; 855 for (const auto &S : StringTable.getTable()) { 856 OS.AddComment("string offset=" + std::to_string(StringOffset)); 857 OS.emitBytes(S); 858 OS.emitBytes(StringRef("\0", 1)); 859 StringOffset += S.size() + 1; 860 } 861 } 862 863 void BTFDebug::emitBTFExtSection() { 864 // Do not emit section if empty FuncInfoTable and LineInfoTable 865 // and FieldRelocTable. 866 if (!FuncInfoTable.size() && !LineInfoTable.size() && 867 !FieldRelocTable.size()) 868 return; 869 870 MCContext &Ctx = OS.getContext(); 871 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 872 873 // Emit header. 874 emitCommonHeader(); 875 OS.emitInt32(BTF::ExtHeaderSize); 876 877 // Account for FuncInfo/LineInfo record size as well. 878 uint32_t FuncLen = 4, LineLen = 4; 879 // Do not account for optional FieldReloc. 880 uint32_t FieldRelocLen = 0; 881 for (const auto &FuncSec : FuncInfoTable) { 882 FuncLen += BTF::SecFuncInfoSize; 883 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 884 } 885 for (const auto &LineSec : LineInfoTable) { 886 LineLen += BTF::SecLineInfoSize; 887 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 888 } 889 for (const auto &FieldRelocSec : FieldRelocTable) { 890 FieldRelocLen += BTF::SecFieldRelocSize; 891 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 892 } 893 894 if (FieldRelocLen) 895 FieldRelocLen += 4; 896 897 OS.emitInt32(0); 898 OS.emitInt32(FuncLen); 899 OS.emitInt32(FuncLen); 900 OS.emitInt32(LineLen); 901 OS.emitInt32(FuncLen + LineLen); 902 OS.emitInt32(FieldRelocLen); 903 904 // Emit func_info table. 905 OS.AddComment("FuncInfo"); 906 OS.emitInt32(BTF::BPFFuncInfoSize); 907 for (const auto &FuncSec : FuncInfoTable) { 908 OS.AddComment("FuncInfo section string offset=" + 909 std::to_string(FuncSec.first)); 910 OS.emitInt32(FuncSec.first); 911 OS.emitInt32(FuncSec.second.size()); 912 for (const auto &FuncInfo : FuncSec.second) { 913 Asm->emitLabelReference(FuncInfo.Label, 4); 914 OS.emitInt32(FuncInfo.TypeId); 915 } 916 } 917 918 // Emit line_info table. 919 OS.AddComment("LineInfo"); 920 OS.emitInt32(BTF::BPFLineInfoSize); 921 for (const auto &LineSec : LineInfoTable) { 922 OS.AddComment("LineInfo section string offset=" + 923 std::to_string(LineSec.first)); 924 OS.emitInt32(LineSec.first); 925 OS.emitInt32(LineSec.second.size()); 926 for (const auto &LineInfo : LineSec.second) { 927 Asm->emitLabelReference(LineInfo.Label, 4); 928 OS.emitInt32(LineInfo.FileNameOff); 929 OS.emitInt32(LineInfo.LineOff); 930 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 931 std::to_string(LineInfo.ColumnNum)); 932 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 933 } 934 } 935 936 // Emit field reloc table. 937 if (FieldRelocLen) { 938 OS.AddComment("FieldReloc"); 939 OS.emitInt32(BTF::BPFFieldRelocSize); 940 for (const auto &FieldRelocSec : FieldRelocTable) { 941 OS.AddComment("Field reloc section string offset=" + 942 std::to_string(FieldRelocSec.first)); 943 OS.emitInt32(FieldRelocSec.first); 944 OS.emitInt32(FieldRelocSec.second.size()); 945 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 946 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 947 OS.emitInt32(FieldRelocInfo.TypeID); 948 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 949 OS.emitInt32(FieldRelocInfo.RelocKind); 950 } 951 } 952 } 953 } 954 955 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 956 auto *SP = MF->getFunction().getSubprogram(); 957 auto *Unit = SP->getUnit(); 958 959 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 960 SkipInstruction = true; 961 return; 962 } 963 SkipInstruction = false; 964 965 // Collect MapDef types. Map definition needs to collect 966 // pointee types. Do it first. Otherwise, for the following 967 // case: 968 // struct m { ...}; 969 // struct t { 970 // struct m *key; 971 // }; 972 // foo(struct t *arg); 973 // 974 // struct mapdef { 975 // ... 976 // struct m *key; 977 // ... 978 // } __attribute__((section(".maps"))) hash_map; 979 // 980 // If subroutine foo is traversed first, a type chain 981 // "ptr->struct m(fwd)" will be created and later on 982 // when traversing mapdef, since "ptr->struct m" exists, 983 // the traversal of "struct m" will be omitted. 984 if (MapDefNotCollected) { 985 processGlobals(true); 986 MapDefNotCollected = false; 987 } 988 989 // Collect all types locally referenced in this function. 990 // Use RetainedNodes so we can collect all argument names 991 // even if the argument is not used. 992 std::unordered_map<uint32_t, StringRef> FuncArgNames; 993 for (const DINode *DN : SP->getRetainedNodes()) { 994 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 995 // Collect function arguments for subprogram func type. 996 uint32_t Arg = DV->getArg(); 997 if (Arg) { 998 visitTypeEntry(DV->getType()); 999 FuncArgNames[Arg] = DV->getName(); 1000 } 1001 } 1002 } 1003 1004 // Construct subprogram func proto type. 1005 uint32_t ProtoTypeId; 1006 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1007 1008 // Construct subprogram func type 1009 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1010 auto FuncTypeEntry = 1011 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1012 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1013 1014 // Process argument annotations. 1015 for (const DINode *DN : SP->getRetainedNodes()) { 1016 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1017 uint32_t Arg = DV->getArg(); 1018 if (Arg) 1019 processAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1020 } 1021 } 1022 1023 processAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1024 1025 for (const auto &TypeEntry : TypeEntries) 1026 TypeEntry->completeType(*this); 1027 1028 // Construct funcinfo and the first lineinfo for the function. 1029 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1030 BTFFuncInfo FuncInfo; 1031 FuncInfo.Label = FuncLabel; 1032 FuncInfo.TypeId = FuncTypeId; 1033 if (FuncLabel->isInSection()) { 1034 MCSection &Section = FuncLabel->getSection(); 1035 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1036 assert(SectionELF && "Null section for Function Label"); 1037 SecNameOff = addString(SectionELF->getName()); 1038 } else { 1039 SecNameOff = addString(".text"); 1040 } 1041 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1042 } 1043 1044 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1045 SkipInstruction = false; 1046 LineInfoGenerated = false; 1047 SecNameOff = 0; 1048 } 1049 1050 /// On-demand populate types as requested from abstract member 1051 /// accessing or preserve debuginfo type. 1052 unsigned BTFDebug::populateType(const DIType *Ty) { 1053 unsigned Id; 1054 visitTypeEntry(Ty, Id, false, false); 1055 for (const auto &TypeEntry : TypeEntries) 1056 TypeEntry->completeType(*this); 1057 return Id; 1058 } 1059 1060 /// Generate a struct member field relocation. 1061 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1062 const GlobalVariable *GVar, bool IsAma) { 1063 BTFFieldReloc FieldReloc; 1064 FieldReloc.Label = ORSym; 1065 FieldReloc.TypeID = RootId; 1066 1067 StringRef AccessPattern = GVar->getName(); 1068 size_t FirstDollar = AccessPattern.find_first_of('$'); 1069 if (IsAma) { 1070 size_t FirstColon = AccessPattern.find_first_of(':'); 1071 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1072 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1073 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1074 SecondColon - FirstColon); 1075 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1076 FirstDollar - SecondColon); 1077 1078 FieldReloc.OffsetNameOff = addString(IndexPattern); 1079 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1080 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1081 FieldReloc.RelocKind); 1082 } else { 1083 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1084 FieldReloc.OffsetNameOff = addString("0"); 1085 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1086 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1087 } 1088 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1089 } 1090 1091 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1092 // check whether this is a candidate or not 1093 if (MO.isGlobal()) { 1094 const GlobalValue *GVal = MO.getGlobal(); 1095 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1096 if (!GVar) { 1097 // Not a global variable. Maybe an extern function reference. 1098 processFuncPrototypes(dyn_cast<Function>(GVal)); 1099 return; 1100 } 1101 1102 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1103 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1104 return; 1105 1106 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1107 OS.emitLabel(ORSym); 1108 1109 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1110 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1111 generatePatchImmReloc(ORSym, RootId, GVar, 1112 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1113 } 1114 } 1115 1116 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1117 DebugHandlerBase::beginInstruction(MI); 1118 1119 if (SkipInstruction || MI->isMetaInstruction() || 1120 MI->getFlag(MachineInstr::FrameSetup)) 1121 return; 1122 1123 if (MI->isInlineAsm()) { 1124 // Count the number of register definitions to find the asm string. 1125 unsigned NumDefs = 0; 1126 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1127 ++NumDefs) 1128 ; 1129 1130 // Skip this inline asm instruction if the asmstr is empty. 1131 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1132 if (AsmStr[0] == 0) 1133 return; 1134 } 1135 1136 if (MI->getOpcode() == BPF::LD_imm64) { 1137 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1138 // add this insn into the .BTF.ext FieldReloc subsection. 1139 // Relocation looks like: 1140 // . SecName: 1141 // . InstOffset 1142 // . TypeID 1143 // . OffSetNameOff 1144 // . RelocType 1145 // Later, the insn is replaced with "r2 = <offset>" 1146 // where "<offset>" equals to the offset based on current 1147 // type definitions. 1148 // 1149 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1150 // The LD_imm64 result will be replaced with a btf type id. 1151 processGlobalValue(MI->getOperand(1)); 1152 } else if (MI->getOpcode() == BPF::CORE_MEM || 1153 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1154 MI->getOpcode() == BPF::CORE_SHIFT) { 1155 // relocation insn is a load, store or shift insn. 1156 processGlobalValue(MI->getOperand(3)); 1157 } else if (MI->getOpcode() == BPF::JAL) { 1158 // check extern function references 1159 const MachineOperand &MO = MI->getOperand(0); 1160 if (MO.isGlobal()) { 1161 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1162 } 1163 } 1164 1165 if (!CurMI) // no debug info 1166 return; 1167 1168 // Skip this instruction if no DebugLoc or the DebugLoc 1169 // is the same as the previous instruction. 1170 const DebugLoc &DL = MI->getDebugLoc(); 1171 if (!DL || PrevInstLoc == DL) { 1172 // This instruction will be skipped, no LineInfo has 1173 // been generated, construct one based on function signature. 1174 if (LineInfoGenerated == false) { 1175 auto *S = MI->getMF()->getFunction().getSubprogram(); 1176 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1177 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1178 LineInfoGenerated = true; 1179 } 1180 1181 return; 1182 } 1183 1184 // Create a temporary label to remember the insn for lineinfo. 1185 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1186 OS.emitLabel(LineSym); 1187 1188 // Construct the lineinfo. 1189 auto SP = DL.get()->getScope()->getSubprogram(); 1190 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1191 1192 LineInfoGenerated = true; 1193 PrevInstLoc = DL; 1194 } 1195 1196 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1197 // Collect all types referenced by globals. 1198 const Module *M = MMI->getModule(); 1199 for (const GlobalVariable &Global : M->globals()) { 1200 // Decide the section name. 1201 StringRef SecName; 1202 if (Global.hasSection()) { 1203 SecName = Global.getSection(); 1204 } else if (Global.hasInitializer()) { 1205 // data, bss, or readonly sections 1206 if (Global.isConstant()) 1207 SecName = ".rodata"; 1208 else 1209 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1210 } 1211 1212 if (ProcessingMapDef != SecName.startswith(".maps")) 1213 continue; 1214 1215 // Create a .rodata datasec if the global variable is an initialized 1216 // constant with private linkage and if it won't be in .rodata.str<#> 1217 // and .rodata.cst<#> sections. 1218 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1219 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1220 SectionKind GVKind = 1221 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1222 // skip .rodata.str<#> and .rodata.cst<#> sections 1223 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1224 DataSecEntries[std::string(SecName)] = 1225 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1226 } 1227 } 1228 1229 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1230 Global.getDebugInfo(GVs); 1231 1232 // No type information, mostly internal, skip it. 1233 if (GVs.size() == 0) 1234 continue; 1235 1236 uint32_t GVTypeId = 0; 1237 DIGlobalVariable *DIGlobal = nullptr; 1238 for (auto *GVE : GVs) { 1239 DIGlobal = GVE->getVariable(); 1240 if (SecName.startswith(".maps")) 1241 visitMapDefType(DIGlobal->getType(), GVTypeId); 1242 else 1243 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1244 break; 1245 } 1246 1247 // Only support the following globals: 1248 // . static variables 1249 // . non-static weak or non-weak global variables 1250 // . weak or non-weak extern global variables 1251 // Whether DataSec is readonly or not can be found from corresponding ELF 1252 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1253 // can be found from the corresponding ELF symbol table. 1254 auto Linkage = Global.getLinkage(); 1255 if (Linkage != GlobalValue::InternalLinkage && 1256 Linkage != GlobalValue::ExternalLinkage && 1257 Linkage != GlobalValue::WeakAnyLinkage && 1258 Linkage != GlobalValue::WeakODRLinkage && 1259 Linkage != GlobalValue::ExternalWeakLinkage) 1260 continue; 1261 1262 uint32_t GVarInfo; 1263 if (Linkage == GlobalValue::InternalLinkage) { 1264 GVarInfo = BTF::VAR_STATIC; 1265 } else if (Global.hasInitializer()) { 1266 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1267 } else { 1268 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1269 } 1270 1271 auto VarEntry = 1272 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1273 uint32_t VarId = addType(std::move(VarEntry)); 1274 1275 processAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1276 1277 // An empty SecName means an extern variable without section attribute. 1278 if (SecName.empty()) 1279 continue; 1280 1281 // Find or create a DataSec 1282 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1283 DataSecEntries[std::string(SecName)] = 1284 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1285 } 1286 1287 // Calculate symbol size 1288 const DataLayout &DL = Global.getParent()->getDataLayout(); 1289 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1290 1291 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1292 Asm->getSymbol(&Global), Size); 1293 } 1294 } 1295 1296 /// Emit proper patchable instructions. 1297 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1298 if (MI->getOpcode() == BPF::LD_imm64) { 1299 const MachineOperand &MO = MI->getOperand(1); 1300 if (MO.isGlobal()) { 1301 const GlobalValue *GVal = MO.getGlobal(); 1302 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1303 if (GVar) { 1304 // Emit "mov ri, <imm>" 1305 int64_t Imm; 1306 uint32_t Reloc; 1307 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1308 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1309 Imm = PatchImms[GVar].first; 1310 Reloc = PatchImms[GVar].second; 1311 } else { 1312 return false; 1313 } 1314 1315 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1316 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1317 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1318 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1319 OutMI.setOpcode(BPF::LD_imm64); 1320 else 1321 OutMI.setOpcode(BPF::MOV_ri); 1322 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1323 OutMI.addOperand(MCOperand::createImm(Imm)); 1324 return true; 1325 } 1326 } 1327 } else if (MI->getOpcode() == BPF::CORE_MEM || 1328 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1329 MI->getOpcode() == BPF::CORE_SHIFT) { 1330 const MachineOperand &MO = MI->getOperand(3); 1331 if (MO.isGlobal()) { 1332 const GlobalValue *GVal = MO.getGlobal(); 1333 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1334 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1335 uint32_t Imm = PatchImms[GVar].first; 1336 OutMI.setOpcode(MI->getOperand(1).getImm()); 1337 if (MI->getOperand(0).isImm()) 1338 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1339 else 1340 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1341 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1342 OutMI.addOperand(MCOperand::createImm(Imm)); 1343 return true; 1344 } 1345 } 1346 } 1347 return false; 1348 } 1349 1350 void BTFDebug::processFuncPrototypes(const Function *F) { 1351 if (!F) 1352 return; 1353 1354 const DISubprogram *SP = F->getSubprogram(); 1355 if (!SP || SP->isDefinition()) 1356 return; 1357 1358 // Do not emit again if already emitted. 1359 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1360 return; 1361 ProtoFunctions.insert(F); 1362 1363 uint32_t ProtoTypeId; 1364 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1365 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1366 1367 uint8_t Scope = BTF::FUNC_EXTERN; 1368 auto FuncTypeEntry = 1369 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1370 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1371 1372 processAnnotations(SP->getAnnotations(), FuncId, -1); 1373 1374 if (F->hasSection()) { 1375 StringRef SecName = F->getSection(); 1376 1377 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1378 DataSecEntries[std::string(SecName)] = 1379 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1380 } 1381 1382 // We really don't know func size, set it to 0. 1383 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1384 Asm->getSymbol(F), 0); 1385 } 1386 } 1387 1388 void BTFDebug::endModule() { 1389 // Collect MapDef globals if not collected yet. 1390 if (MapDefNotCollected) { 1391 processGlobals(true); 1392 MapDefNotCollected = false; 1393 } 1394 1395 // Collect global types/variables except MapDef globals. 1396 processGlobals(false); 1397 1398 for (auto &DataSec : DataSecEntries) 1399 addType(std::move(DataSec.second)); 1400 1401 // Fixups 1402 for (auto &Fixup : FixupDerivedTypes) { 1403 StringRef TypeName = Fixup.first; 1404 bool IsUnion = Fixup.second.first; 1405 1406 // Search through struct types 1407 uint32_t StructTypeId = 0; 1408 for (const auto &StructType : StructTypes) { 1409 if (StructType->getName() == TypeName) { 1410 StructTypeId = StructType->getId(); 1411 break; 1412 } 1413 } 1414 1415 if (StructTypeId == 0) { 1416 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1417 StructTypeId = addType(std::move(FwdTypeEntry)); 1418 } 1419 1420 for (auto &DType : Fixup.second.second) { 1421 DType->setPointeeType(StructTypeId); 1422 } 1423 } 1424 1425 // Complete BTF type cross refereences. 1426 for (const auto &TypeEntry : TypeEntries) 1427 TypeEntry->completeType(*this); 1428 1429 // Emit BTF sections. 1430 emitBTFSection(); 1431 emitBTFExtSection(); 1432 } 1433