1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27
28 using namespace llvm;
29
30 static const char *BTFKindStr[] = {
31 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
32 #include "BTF.def"
33 };
34
35 /// Emit a BTF common type.
emitType(MCStreamer & OS)36 void BTFTypeBase::emitType(MCStreamer &OS) {
37 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
38 ")");
39 OS.emitInt32(BTFType.NameOff);
40 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
41 OS.emitInt32(BTFType.Info);
42 OS.emitInt32(BTFType.Size);
43 }
44
BTFTypeDerived(const DIDerivedType * DTy,unsigned Tag,bool NeedsFixup)45 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
46 bool NeedsFixup)
47 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) {
48 switch (Tag) {
49 case dwarf::DW_TAG_pointer_type:
50 Kind = BTF::BTF_KIND_PTR;
51 break;
52 case dwarf::DW_TAG_const_type:
53 Kind = BTF::BTF_KIND_CONST;
54 break;
55 case dwarf::DW_TAG_volatile_type:
56 Kind = BTF::BTF_KIND_VOLATILE;
57 break;
58 case dwarf::DW_TAG_typedef:
59 Kind = BTF::BTF_KIND_TYPEDEF;
60 break;
61 case dwarf::DW_TAG_restrict_type:
62 Kind = BTF::BTF_KIND_RESTRICT;
63 break;
64 default:
65 llvm_unreachable("Unknown DIDerivedType Tag");
66 }
67 BTFType.Info = Kind << 24;
68 }
69
70 /// Used by DW_TAG_pointer_type only.
BTFTypeDerived(unsigned NextTypeId,unsigned Tag,StringRef Name)71 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag,
72 StringRef Name)
73 : DTy(nullptr), NeedsFixup(false), Name(Name) {
74 Kind = BTF::BTF_KIND_PTR;
75 BTFType.Info = Kind << 24;
76 BTFType.Type = NextTypeId;
77 }
78
completeType(BTFDebug & BDebug)79 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
80 if (IsCompleted)
81 return;
82 IsCompleted = true;
83
84 BTFType.NameOff = BDebug.addString(Name);
85
86 if (NeedsFixup || !DTy)
87 return;
88
89 // The base type for PTR/CONST/VOLATILE could be void.
90 const DIType *ResolvedType = DTy->getBaseType();
91 if (!ResolvedType) {
92 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
93 Kind == BTF::BTF_KIND_VOLATILE) &&
94 "Invalid null basetype");
95 BTFType.Type = 0;
96 } else {
97 BTFType.Type = BDebug.getTypeId(ResolvedType);
98 }
99 }
100
emitType(MCStreamer & OS)101 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
102
setPointeeType(uint32_t PointeeType)103 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
104 BTFType.Type = PointeeType;
105 }
106
107 /// Represent a struct/union forward declaration.
BTFTypeFwd(StringRef Name,bool IsUnion)108 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
109 Kind = BTF::BTF_KIND_FWD;
110 BTFType.Info = IsUnion << 31 | Kind << 24;
111 BTFType.Type = 0;
112 }
113
completeType(BTFDebug & BDebug)114 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
115 if (IsCompleted)
116 return;
117 IsCompleted = true;
118
119 BTFType.NameOff = BDebug.addString(Name);
120 }
121
emitType(MCStreamer & OS)122 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
123
BTFTypeInt(uint32_t Encoding,uint32_t SizeInBits,uint32_t OffsetInBits,StringRef TypeName)124 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
125 uint32_t OffsetInBits, StringRef TypeName)
126 : Name(TypeName) {
127 // Translate IR int encoding to BTF int encoding.
128 uint8_t BTFEncoding;
129 switch (Encoding) {
130 case dwarf::DW_ATE_boolean:
131 BTFEncoding = BTF::INT_BOOL;
132 break;
133 case dwarf::DW_ATE_signed:
134 case dwarf::DW_ATE_signed_char:
135 BTFEncoding = BTF::INT_SIGNED;
136 break;
137 case dwarf::DW_ATE_unsigned:
138 case dwarf::DW_ATE_unsigned_char:
139 BTFEncoding = 0;
140 break;
141 default:
142 llvm_unreachable("Unknown BTFTypeInt Encoding");
143 }
144
145 Kind = BTF::BTF_KIND_INT;
146 BTFType.Info = Kind << 24;
147 BTFType.Size = roundupToBytes(SizeInBits);
148 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
149 }
150
completeType(BTFDebug & BDebug)151 void BTFTypeInt::completeType(BTFDebug &BDebug) {
152 if (IsCompleted)
153 return;
154 IsCompleted = true;
155
156 BTFType.NameOff = BDebug.addString(Name);
157 }
158
emitType(MCStreamer & OS)159 void BTFTypeInt::emitType(MCStreamer &OS) {
160 BTFTypeBase::emitType(OS);
161 OS.AddComment("0x" + Twine::utohexstr(IntVal));
162 OS.emitInt32(IntVal);
163 }
164
BTFTypeEnum(const DICompositeType * ETy,uint32_t VLen,bool IsSigned)165 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen,
166 bool IsSigned) : ETy(ETy) {
167 Kind = BTF::BTF_KIND_ENUM;
168 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen;
169 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
170 }
171
completeType(BTFDebug & BDebug)172 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
173 if (IsCompleted)
174 return;
175 IsCompleted = true;
176
177 BTFType.NameOff = BDebug.addString(ETy->getName());
178
179 DINodeArray Elements = ETy->getElements();
180 for (const auto Element : Elements) {
181 const auto *Enum = cast<DIEnumerator>(Element);
182
183 struct BTF::BTFEnum BTFEnum;
184 BTFEnum.NameOff = BDebug.addString(Enum->getName());
185 // BTF enum value is 32bit, enforce it.
186 uint32_t Value;
187 if (Enum->isUnsigned())
188 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue());
189 else
190 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue());
191 BTFEnum.Val = Value;
192 EnumValues.push_back(BTFEnum);
193 }
194 }
195
emitType(MCStreamer & OS)196 void BTFTypeEnum::emitType(MCStreamer &OS) {
197 BTFTypeBase::emitType(OS);
198 for (const auto &Enum : EnumValues) {
199 OS.emitInt32(Enum.NameOff);
200 OS.emitInt32(Enum.Val);
201 }
202 }
203
BTFTypeEnum64(const DICompositeType * ETy,uint32_t VLen,bool IsSigned)204 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen,
205 bool IsSigned) : ETy(ETy) {
206 Kind = BTF::BTF_KIND_ENUM64;
207 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen;
208 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
209 }
210
completeType(BTFDebug & BDebug)211 void BTFTypeEnum64::completeType(BTFDebug &BDebug) {
212 if (IsCompleted)
213 return;
214 IsCompleted = true;
215
216 BTFType.NameOff = BDebug.addString(ETy->getName());
217
218 DINodeArray Elements = ETy->getElements();
219 for (const auto Element : Elements) {
220 const auto *Enum = cast<DIEnumerator>(Element);
221
222 struct BTF::BTFEnum64 BTFEnum;
223 BTFEnum.NameOff = BDebug.addString(Enum->getName());
224 uint64_t Value;
225 if (Enum->isUnsigned())
226 Value = static_cast<uint64_t>(Enum->getValue().getZExtValue());
227 else
228 Value = static_cast<uint64_t>(Enum->getValue().getSExtValue());
229 BTFEnum.Val_Lo32 = Value;
230 BTFEnum.Val_Hi32 = Value >> 32;
231 EnumValues.push_back(BTFEnum);
232 }
233 }
234
emitType(MCStreamer & OS)235 void BTFTypeEnum64::emitType(MCStreamer &OS) {
236 BTFTypeBase::emitType(OS);
237 for (const auto &Enum : EnumValues) {
238 OS.emitInt32(Enum.NameOff);
239 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32));
240 OS.emitInt32(Enum.Val_Lo32);
241 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32));
242 OS.emitInt32(Enum.Val_Hi32);
243 }
244 }
245
BTFTypeArray(uint32_t ElemTypeId,uint32_t NumElems)246 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
247 Kind = BTF::BTF_KIND_ARRAY;
248 BTFType.NameOff = 0;
249 BTFType.Info = Kind << 24;
250 BTFType.Size = 0;
251
252 ArrayInfo.ElemType = ElemTypeId;
253 ArrayInfo.Nelems = NumElems;
254 }
255
256 /// Represent a BTF array.
completeType(BTFDebug & BDebug)257 void BTFTypeArray::completeType(BTFDebug &BDebug) {
258 if (IsCompleted)
259 return;
260 IsCompleted = true;
261
262 // The IR does not really have a type for the index.
263 // A special type for array index should have been
264 // created during initial type traversal. Just
265 // retrieve that type id.
266 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
267 }
268
emitType(MCStreamer & OS)269 void BTFTypeArray::emitType(MCStreamer &OS) {
270 BTFTypeBase::emitType(OS);
271 OS.emitInt32(ArrayInfo.ElemType);
272 OS.emitInt32(ArrayInfo.IndexType);
273 OS.emitInt32(ArrayInfo.Nelems);
274 }
275
276 /// Represent either a struct or a union.
BTFTypeStruct(const DICompositeType * STy,bool IsStruct,bool HasBitField,uint32_t Vlen)277 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
278 bool HasBitField, uint32_t Vlen)
279 : STy(STy), HasBitField(HasBitField) {
280 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
281 BTFType.Size = roundupToBytes(STy->getSizeInBits());
282 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
283 }
284
completeType(BTFDebug & BDebug)285 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
286 if (IsCompleted)
287 return;
288 IsCompleted = true;
289
290 BTFType.NameOff = BDebug.addString(STy->getName());
291
292 // Add struct/union members.
293 const DINodeArray Elements = STy->getElements();
294 for (const auto *Element : Elements) {
295 struct BTF::BTFMember BTFMember;
296 const auto *DDTy = cast<DIDerivedType>(Element);
297
298 BTFMember.NameOff = BDebug.addString(DDTy->getName());
299 if (HasBitField) {
300 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
301 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
302 } else {
303 BTFMember.Offset = DDTy->getOffsetInBits();
304 }
305 const auto *BaseTy = DDTy->getBaseType();
306 BTFMember.Type = BDebug.getTypeId(BaseTy);
307 Members.push_back(BTFMember);
308 }
309 }
310
emitType(MCStreamer & OS)311 void BTFTypeStruct::emitType(MCStreamer &OS) {
312 BTFTypeBase::emitType(OS);
313 for (const auto &Member : Members) {
314 OS.emitInt32(Member.NameOff);
315 OS.emitInt32(Member.Type);
316 OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
317 OS.emitInt32(Member.Offset);
318 }
319 }
320
getName()321 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); }
322
323 /// The Func kind represents both subprogram and pointee of function
324 /// pointers. If the FuncName is empty, it represents a pointee of function
325 /// pointer. Otherwise, it represents a subprogram. The func arg names
326 /// are empty for pointee of function pointer case, and are valid names
327 /// for subprogram.
BTFTypeFuncProto(const DISubroutineType * STy,uint32_t VLen,const std::unordered_map<uint32_t,StringRef> & FuncArgNames)328 BTFTypeFuncProto::BTFTypeFuncProto(
329 const DISubroutineType *STy, uint32_t VLen,
330 const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
331 : STy(STy), FuncArgNames(FuncArgNames) {
332 Kind = BTF::BTF_KIND_FUNC_PROTO;
333 BTFType.Info = (Kind << 24) | VLen;
334 }
335
completeType(BTFDebug & BDebug)336 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
337 if (IsCompleted)
338 return;
339 IsCompleted = true;
340
341 DITypeRefArray Elements = STy->getTypeArray();
342 auto RetType = Elements[0];
343 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
344 BTFType.NameOff = 0;
345
346 // For null parameter which is typically the last one
347 // to represent the vararg, encode the NameOff/Type to be 0.
348 for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
349 struct BTF::BTFParam Param;
350 auto Element = Elements[I];
351 if (Element) {
352 Param.NameOff = BDebug.addString(FuncArgNames[I]);
353 Param.Type = BDebug.getTypeId(Element);
354 } else {
355 Param.NameOff = 0;
356 Param.Type = 0;
357 }
358 Parameters.push_back(Param);
359 }
360 }
361
emitType(MCStreamer & OS)362 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
363 BTFTypeBase::emitType(OS);
364 for (const auto &Param : Parameters) {
365 OS.emitInt32(Param.NameOff);
366 OS.emitInt32(Param.Type);
367 }
368 }
369
BTFTypeFunc(StringRef FuncName,uint32_t ProtoTypeId,uint32_t Scope)370 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
371 uint32_t Scope)
372 : Name(FuncName) {
373 Kind = BTF::BTF_KIND_FUNC;
374 BTFType.Info = (Kind << 24) | Scope;
375 BTFType.Type = ProtoTypeId;
376 }
377
completeType(BTFDebug & BDebug)378 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
379 if (IsCompleted)
380 return;
381 IsCompleted = true;
382
383 BTFType.NameOff = BDebug.addString(Name);
384 }
385
emitType(MCStreamer & OS)386 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
387
BTFKindVar(StringRef VarName,uint32_t TypeId,uint32_t VarInfo)388 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
389 : Name(VarName) {
390 Kind = BTF::BTF_KIND_VAR;
391 BTFType.Info = Kind << 24;
392 BTFType.Type = TypeId;
393 Info = VarInfo;
394 }
395
completeType(BTFDebug & BDebug)396 void BTFKindVar::completeType(BTFDebug &BDebug) {
397 BTFType.NameOff = BDebug.addString(Name);
398 }
399
emitType(MCStreamer & OS)400 void BTFKindVar::emitType(MCStreamer &OS) {
401 BTFTypeBase::emitType(OS);
402 OS.emitInt32(Info);
403 }
404
BTFKindDataSec(AsmPrinter * AsmPrt,std::string SecName)405 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
406 : Asm(AsmPrt), Name(SecName) {
407 Kind = BTF::BTF_KIND_DATASEC;
408 BTFType.Info = Kind << 24;
409 BTFType.Size = 0;
410 }
411
completeType(BTFDebug & BDebug)412 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
413 BTFType.NameOff = BDebug.addString(Name);
414 BTFType.Info |= Vars.size();
415 }
416
emitType(MCStreamer & OS)417 void BTFKindDataSec::emitType(MCStreamer &OS) {
418 BTFTypeBase::emitType(OS);
419
420 for (const auto &V : Vars) {
421 OS.emitInt32(std::get<0>(V));
422 Asm->emitLabelReference(std::get<1>(V), 4);
423 OS.emitInt32(std::get<2>(V));
424 }
425 }
426
BTFTypeFloat(uint32_t SizeInBits,StringRef TypeName)427 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName)
428 : Name(TypeName) {
429 Kind = BTF::BTF_KIND_FLOAT;
430 BTFType.Info = Kind << 24;
431 BTFType.Size = roundupToBytes(SizeInBits);
432 }
433
completeType(BTFDebug & BDebug)434 void BTFTypeFloat::completeType(BTFDebug &BDebug) {
435 if (IsCompleted)
436 return;
437 IsCompleted = true;
438
439 BTFType.NameOff = BDebug.addString(Name);
440 }
441
BTFTypeDeclTag(uint32_t BaseTypeId,int ComponentIdx,StringRef Tag)442 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx,
443 StringRef Tag)
444 : Tag(Tag) {
445 Kind = BTF::BTF_KIND_DECL_TAG;
446 BTFType.Info = Kind << 24;
447 BTFType.Type = BaseTypeId;
448 Info = ComponentIdx;
449 }
450
completeType(BTFDebug & BDebug)451 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) {
452 if (IsCompleted)
453 return;
454 IsCompleted = true;
455
456 BTFType.NameOff = BDebug.addString(Tag);
457 }
458
emitType(MCStreamer & OS)459 void BTFTypeDeclTag::emitType(MCStreamer &OS) {
460 BTFTypeBase::emitType(OS);
461 OS.emitInt32(Info);
462 }
463
BTFTypeTypeTag(uint32_t NextTypeId,StringRef Tag)464 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag)
465 : DTy(nullptr), Tag(Tag) {
466 Kind = BTF::BTF_KIND_TYPE_TAG;
467 BTFType.Info = Kind << 24;
468 BTFType.Type = NextTypeId;
469 }
470
BTFTypeTypeTag(const DIDerivedType * DTy,StringRef Tag)471 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag)
472 : DTy(DTy), Tag(Tag) {
473 Kind = BTF::BTF_KIND_TYPE_TAG;
474 BTFType.Info = Kind << 24;
475 }
476
completeType(BTFDebug & BDebug)477 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) {
478 if (IsCompleted)
479 return;
480 IsCompleted = true;
481 BTFType.NameOff = BDebug.addString(Tag);
482 if (DTy) {
483 const DIType *ResolvedType = DTy->getBaseType();
484 if (!ResolvedType)
485 BTFType.Type = 0;
486 else
487 BTFType.Type = BDebug.getTypeId(ResolvedType);
488 }
489 }
490
addString(StringRef S)491 uint32_t BTFStringTable::addString(StringRef S) {
492 // Check whether the string already exists.
493 for (auto &OffsetM : OffsetToIdMap) {
494 if (Table[OffsetM.second] == S)
495 return OffsetM.first;
496 }
497 // Not find, add to the string table.
498 uint32_t Offset = Size;
499 OffsetToIdMap[Offset] = Table.size();
500 Table.push_back(std::string(S));
501 Size += S.size() + 1;
502 return Offset;
503 }
504
BTFDebug(AsmPrinter * AP)505 BTFDebug::BTFDebug(AsmPrinter *AP)
506 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
507 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
508 MapDefNotCollected(true) {
509 addString("\0");
510 }
511
addType(std::unique_ptr<BTFTypeBase> TypeEntry,const DIType * Ty)512 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
513 const DIType *Ty) {
514 TypeEntry->setId(TypeEntries.size() + 1);
515 uint32_t Id = TypeEntry->getId();
516 DIToIdMap[Ty] = Id;
517 TypeEntries.push_back(std::move(TypeEntry));
518 return Id;
519 }
520
addType(std::unique_ptr<BTFTypeBase> TypeEntry)521 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
522 TypeEntry->setId(TypeEntries.size() + 1);
523 uint32_t Id = TypeEntry->getId();
524 TypeEntries.push_back(std::move(TypeEntry));
525 return Id;
526 }
527
visitBasicType(const DIBasicType * BTy,uint32_t & TypeId)528 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
529 // Only int and binary floating point types are supported in BTF.
530 uint32_t Encoding = BTy->getEncoding();
531 std::unique_ptr<BTFTypeBase> TypeEntry;
532 switch (Encoding) {
533 case dwarf::DW_ATE_boolean:
534 case dwarf::DW_ATE_signed:
535 case dwarf::DW_ATE_signed_char:
536 case dwarf::DW_ATE_unsigned:
537 case dwarf::DW_ATE_unsigned_char:
538 // Create a BTF type instance for this DIBasicType and put it into
539 // DIToIdMap for cross-type reference check.
540 TypeEntry = std::make_unique<BTFTypeInt>(
541 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
542 break;
543 case dwarf::DW_ATE_float:
544 TypeEntry =
545 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName());
546 break;
547 default:
548 return;
549 }
550
551 TypeId = addType(std::move(TypeEntry), BTy);
552 }
553
554 /// Handle subprogram or subroutine types.
visitSubroutineType(const DISubroutineType * STy,bool ForSubprog,const std::unordered_map<uint32_t,StringRef> & FuncArgNames,uint32_t & TypeId)555 void BTFDebug::visitSubroutineType(
556 const DISubroutineType *STy, bool ForSubprog,
557 const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
558 uint32_t &TypeId) {
559 DITypeRefArray Elements = STy->getTypeArray();
560 uint32_t VLen = Elements.size() - 1;
561 if (VLen > BTF::MAX_VLEN)
562 return;
563
564 // Subprogram has a valid non-zero-length name, and the pointee of
565 // a function pointer has an empty name. The subprogram type will
566 // not be added to DIToIdMap as it should not be referenced by
567 // any other types.
568 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
569 if (ForSubprog)
570 TypeId = addType(std::move(TypeEntry)); // For subprogram
571 else
572 TypeId = addType(std::move(TypeEntry), STy); // For func ptr
573
574 // Visit return type and func arg types.
575 for (const auto Element : Elements) {
576 visitTypeEntry(Element);
577 }
578 }
579
processDeclAnnotations(DINodeArray Annotations,uint32_t BaseTypeId,int ComponentIdx)580 void BTFDebug::processDeclAnnotations(DINodeArray Annotations,
581 uint32_t BaseTypeId,
582 int ComponentIdx) {
583 if (!Annotations)
584 return;
585
586 for (const Metadata *Annotation : Annotations->operands()) {
587 const MDNode *MD = cast<MDNode>(Annotation);
588 const MDString *Name = cast<MDString>(MD->getOperand(0));
589 if (!Name->getString().equals("btf_decl_tag"))
590 continue;
591
592 const MDString *Value = cast<MDString>(MD->getOperand(1));
593 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx,
594 Value->getString());
595 addType(std::move(TypeEntry));
596 }
597 }
598
599 /// Generate btf_type_tag chains.
genBTFTypeTags(const DIDerivedType * DTy,int BaseTypeId)600 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) {
601 SmallVector<const MDString *, 4> MDStrs;
602 DINodeArray Annots = DTy->getAnnotations();
603 if (Annots) {
604 // For type with "int __tag1 __tag2 *p", the MDStrs will have
605 // content: [__tag1, __tag2].
606 for (const Metadata *Annotations : Annots->operands()) {
607 const MDNode *MD = cast<MDNode>(Annotations);
608 const MDString *Name = cast<MDString>(MD->getOperand(0));
609 if (!Name->getString().equals("btf_type_tag"))
610 continue;
611 MDStrs.push_back(cast<MDString>(MD->getOperand(1)));
612 }
613 }
614
615 if (MDStrs.size() == 0)
616 return -1;
617
618 // With MDStrs [__tag1, __tag2], the output type chain looks like
619 // PTR -> __tag2 -> __tag1 -> BaseType
620 // In the below, we construct BTF types with the order of __tag1, __tag2
621 // and PTR.
622 unsigned TmpTypeId;
623 std::unique_ptr<BTFTypeTypeTag> TypeEntry;
624 if (BaseTypeId >= 0)
625 TypeEntry =
626 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString());
627 else
628 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString());
629 TmpTypeId = addType(std::move(TypeEntry));
630
631 for (unsigned I = 1; I < MDStrs.size(); I++) {
632 const MDString *Value = MDStrs[I];
633 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString());
634 TmpTypeId = addType(std::move(TypeEntry));
635 }
636 return TmpTypeId;
637 }
638
639 /// Handle structure/union types.
visitStructType(const DICompositeType * CTy,bool IsStruct,uint32_t & TypeId)640 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
641 uint32_t &TypeId) {
642 const DINodeArray Elements = CTy->getElements();
643 uint32_t VLen = Elements.size();
644 if (VLen > BTF::MAX_VLEN)
645 return;
646
647 // Check whether we have any bitfield members or not
648 bool HasBitField = false;
649 for (const auto *Element : Elements) {
650 auto E = cast<DIDerivedType>(Element);
651 if (E->isBitField()) {
652 HasBitField = true;
653 break;
654 }
655 }
656
657 auto TypeEntry =
658 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
659 StructTypes.push_back(TypeEntry.get());
660 TypeId = addType(std::move(TypeEntry), CTy);
661
662 // Check struct/union annotations
663 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1);
664
665 // Visit all struct members.
666 int FieldNo = 0;
667 for (const auto *Element : Elements) {
668 const auto Elem = cast<DIDerivedType>(Element);
669 visitTypeEntry(Elem);
670 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo);
671 FieldNo++;
672 }
673 }
674
visitArrayType(const DICompositeType * CTy,uint32_t & TypeId)675 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
676 // Visit array element type.
677 uint32_t ElemTypeId;
678 const DIType *ElemType = CTy->getBaseType();
679 visitTypeEntry(ElemType, ElemTypeId, false, false);
680
681 // Visit array dimensions.
682 DINodeArray Elements = CTy->getElements();
683 for (int I = Elements.size() - 1; I >= 0; --I) {
684 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
685 if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
686 const DISubrange *SR = cast<DISubrange>(Element);
687 auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
688 int64_t Count = CI->getSExtValue();
689
690 // For struct s { int b; char c[]; }, the c[] will be represented
691 // as an array with Count = -1.
692 auto TypeEntry =
693 std::make_unique<BTFTypeArray>(ElemTypeId,
694 Count >= 0 ? Count : 0);
695 if (I == 0)
696 ElemTypeId = addType(std::move(TypeEntry), CTy);
697 else
698 ElemTypeId = addType(std::move(TypeEntry));
699 }
700 }
701
702 // The array TypeId is the type id of the outermost dimension.
703 TypeId = ElemTypeId;
704
705 // The IR does not have a type for array index while BTF wants one.
706 // So create an array index type if there is none.
707 if (!ArrayIndexTypeId) {
708 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
709 0, "__ARRAY_SIZE_TYPE__");
710 ArrayIndexTypeId = addType(std::move(TypeEntry));
711 }
712 }
713
visitEnumType(const DICompositeType * CTy,uint32_t & TypeId)714 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
715 DINodeArray Elements = CTy->getElements();
716 uint32_t VLen = Elements.size();
717 if (VLen > BTF::MAX_VLEN)
718 return;
719
720 bool IsSigned = false;
721 unsigned NumBits = 32;
722 // No BaseType implies forward declaration in which case a
723 // BTFTypeEnum with Vlen = 0 is emitted.
724 if (CTy->getBaseType() != nullptr) {
725 const auto *BTy = cast<DIBasicType>(CTy->getBaseType());
726 IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed ||
727 BTy->getEncoding() == dwarf::DW_ATE_signed_char;
728 NumBits = BTy->getSizeInBits();
729 }
730
731 if (NumBits <= 32) {
732 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned);
733 TypeId = addType(std::move(TypeEntry), CTy);
734 } else {
735 assert(NumBits == 64);
736 auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned);
737 TypeId = addType(std::move(TypeEntry), CTy);
738 }
739 // No need to visit base type as BTF does not encode it.
740 }
741
742 /// Handle structure/union forward declarations.
visitFwdDeclType(const DICompositeType * CTy,bool IsUnion,uint32_t & TypeId)743 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
744 uint32_t &TypeId) {
745 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
746 TypeId = addType(std::move(TypeEntry), CTy);
747 }
748
749 /// Handle structure, union, array and enumeration types.
visitCompositeType(const DICompositeType * CTy,uint32_t & TypeId)750 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
751 uint32_t &TypeId) {
752 auto Tag = CTy->getTag();
753 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
754 // Handle forward declaration differently as it does not have members.
755 if (CTy->isForwardDecl())
756 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
757 else
758 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
759 } else if (Tag == dwarf::DW_TAG_array_type)
760 visitArrayType(CTy, TypeId);
761 else if (Tag == dwarf::DW_TAG_enumeration_type)
762 visitEnumType(CTy, TypeId);
763 }
764
765 /// Handle pointer, typedef, const, volatile, restrict and member types.
visitDerivedType(const DIDerivedType * DTy,uint32_t & TypeId,bool CheckPointer,bool SeenPointer)766 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
767 bool CheckPointer, bool SeenPointer) {
768 unsigned Tag = DTy->getTag();
769
770 /// Try to avoid chasing pointees, esp. structure pointees which may
771 /// unnecessary bring in a lot of types.
772 if (CheckPointer && !SeenPointer) {
773 SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
774 }
775
776 if (CheckPointer && SeenPointer) {
777 const DIType *Base = DTy->getBaseType();
778 if (Base) {
779 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
780 auto CTag = CTy->getTag();
781 if ((CTag == dwarf::DW_TAG_structure_type ||
782 CTag == dwarf::DW_TAG_union_type) &&
783 !CTy->getName().empty() && !CTy->isForwardDecl()) {
784 /// Find a candidate, generate a fixup. Later on the struct/union
785 /// pointee type will be replaced with either a real type or
786 /// a forward declaration.
787 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
788 auto &Fixup = FixupDerivedTypes[CTy];
789 Fixup.push_back(std::make_pair(DTy, TypeEntry.get()));
790 TypeId = addType(std::move(TypeEntry), DTy);
791 return;
792 }
793 }
794 }
795 }
796
797 if (Tag == dwarf::DW_TAG_pointer_type) {
798 int TmpTypeId = genBTFTypeTags(DTy, -1);
799 if (TmpTypeId >= 0) {
800 auto TypeDEntry =
801 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName());
802 TypeId = addType(std::move(TypeDEntry), DTy);
803 } else {
804 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
805 TypeId = addType(std::move(TypeEntry), DTy);
806 }
807 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
808 Tag == dwarf::DW_TAG_volatile_type ||
809 Tag == dwarf::DW_TAG_restrict_type) {
810 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
811 TypeId = addType(std::move(TypeEntry), DTy);
812 if (Tag == dwarf::DW_TAG_typedef)
813 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1);
814 } else if (Tag != dwarf::DW_TAG_member) {
815 return;
816 }
817
818 // Visit base type of pointer, typedef, const, volatile, restrict or
819 // struct/union member.
820 uint32_t TempTypeId = 0;
821 if (Tag == dwarf::DW_TAG_member)
822 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
823 else
824 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
825 }
826
visitTypeEntry(const DIType * Ty,uint32_t & TypeId,bool CheckPointer,bool SeenPointer)827 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
828 bool CheckPointer, bool SeenPointer) {
829 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
830 TypeId = DIToIdMap[Ty];
831
832 // To handle the case like the following:
833 // struct t;
834 // typedef struct t _t;
835 // struct s1 { _t *c; };
836 // int test1(struct s1 *arg) { ... }
837 //
838 // struct t { int a; int b; };
839 // struct s2 { _t c; }
840 // int test2(struct s2 *arg) { ... }
841 //
842 // During traversing test1() argument, "_t" is recorded
843 // in DIToIdMap and a forward declaration fixup is created
844 // for "struct t" to avoid pointee type traversal.
845 //
846 // During traversing test2() argument, even if we see "_t" is
847 // already defined, we should keep moving to eventually
848 // bring in types for "struct t". Otherwise, the "struct s2"
849 // definition won't be correct.
850 //
851 // In the above, we have following debuginfo:
852 // {ptr, struct_member} -> typedef -> struct
853 // and BTF type for 'typedef' is generated while 'struct' may
854 // be in FixUp. But let us generalize the above to handle
855 // {different types} -> [various derived types]+ -> another type.
856 // For example,
857 // {func_param, struct_member} -> const -> ptr -> volatile -> struct
858 // We will traverse const/ptr/volatile which already have corresponding
859 // BTF types and generate type for 'struct' which might be in Fixup
860 // state.
861 if (Ty && (!CheckPointer || !SeenPointer)) {
862 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
863 while (DTy) {
864 const DIType *BaseTy = DTy->getBaseType();
865 if (!BaseTy)
866 break;
867
868 if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) {
869 DTy = dyn_cast<DIDerivedType>(BaseTy);
870 } else {
871 uint32_t TmpTypeId;
872 visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer);
873 break;
874 }
875 }
876 }
877 }
878
879 return;
880 }
881
882 if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
883 visitBasicType(BTy, TypeId);
884 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
885 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
886 TypeId);
887 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
888 visitCompositeType(CTy, TypeId);
889 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
890 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
891 else
892 llvm_unreachable("Unknown DIType");
893 }
894
visitTypeEntry(const DIType * Ty)895 void BTFDebug::visitTypeEntry(const DIType *Ty) {
896 uint32_t TypeId;
897 visitTypeEntry(Ty, TypeId, false, false);
898 }
899
visitMapDefType(const DIType * Ty,uint32_t & TypeId)900 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
901 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
902 TypeId = DIToIdMap[Ty];
903 return;
904 }
905
906 // MapDef type may be a struct type or a non-pointer derived type
907 const DIType *OrigTy = Ty;
908 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
909 auto Tag = DTy->getTag();
910 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
911 Tag != dwarf::DW_TAG_volatile_type &&
912 Tag != dwarf::DW_TAG_restrict_type)
913 break;
914 Ty = DTy->getBaseType();
915 }
916
917 const auto *CTy = dyn_cast<DICompositeType>(Ty);
918 if (!CTy)
919 return;
920
921 auto Tag = CTy->getTag();
922 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
923 return;
924
925 // Visit all struct members to ensure pointee type is visited
926 const DINodeArray Elements = CTy->getElements();
927 for (const auto *Element : Elements) {
928 const auto *MemberType = cast<DIDerivedType>(Element);
929 visitTypeEntry(MemberType->getBaseType());
930 }
931
932 // Visit this type, struct or a const/typedef/volatile/restrict type
933 visitTypeEntry(OrigTy, TypeId, false, false);
934 }
935
936 /// Read file contents from the actual file or from the source
populateFileContent(const DISubprogram * SP)937 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
938 auto File = SP->getFile();
939 std::string FileName;
940
941 if (!File->getFilename().startswith("/") && File->getDirectory().size())
942 FileName = File->getDirectory().str() + "/" + File->getFilename().str();
943 else
944 FileName = std::string(File->getFilename());
945
946 // No need to populate the contends if it has been populated!
947 if (FileContent.find(FileName) != FileContent.end())
948 return FileName;
949
950 std::vector<std::string> Content;
951 std::string Line;
952 Content.push_back(Line); // Line 0 for empty string
953
954 std::unique_ptr<MemoryBuffer> Buf;
955 auto Source = File->getSource();
956 if (Source)
957 Buf = MemoryBuffer::getMemBufferCopy(*Source);
958 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
959 MemoryBuffer::getFile(FileName))
960 Buf = std::move(*BufOrErr);
961 if (Buf)
962 for (line_iterator I(*Buf, false), E; I != E; ++I)
963 Content.push_back(std::string(*I));
964
965 FileContent[FileName] = Content;
966 return FileName;
967 }
968
constructLineInfo(const DISubprogram * SP,MCSymbol * Label,uint32_t Line,uint32_t Column)969 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
970 uint32_t Line, uint32_t Column) {
971 std::string FileName = populateFileContent(SP);
972 BTFLineInfo LineInfo;
973
974 LineInfo.Label = Label;
975 LineInfo.FileNameOff = addString(FileName);
976 // If file content is not available, let LineOff = 0.
977 if (Line < FileContent[FileName].size())
978 LineInfo.LineOff = addString(FileContent[FileName][Line]);
979 else
980 LineInfo.LineOff = 0;
981 LineInfo.LineNum = Line;
982 LineInfo.ColumnNum = Column;
983 LineInfoTable[SecNameOff].push_back(LineInfo);
984 }
985
emitCommonHeader()986 void BTFDebug::emitCommonHeader() {
987 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
988 OS.emitIntValue(BTF::MAGIC, 2);
989 OS.emitInt8(BTF::VERSION);
990 OS.emitInt8(0);
991 }
992
emitBTFSection()993 void BTFDebug::emitBTFSection() {
994 // Do not emit section if no types and only "" string.
995 if (!TypeEntries.size() && StringTable.getSize() == 1)
996 return;
997
998 MCContext &Ctx = OS.getContext();
999 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0);
1000 Sec->setAlignment(Align(4));
1001 OS.switchSection(Sec);
1002
1003 // Emit header.
1004 emitCommonHeader();
1005 OS.emitInt32(BTF::HeaderSize);
1006
1007 uint32_t TypeLen = 0, StrLen;
1008 for (const auto &TypeEntry : TypeEntries)
1009 TypeLen += TypeEntry->getSize();
1010 StrLen = StringTable.getSize();
1011
1012 OS.emitInt32(0);
1013 OS.emitInt32(TypeLen);
1014 OS.emitInt32(TypeLen);
1015 OS.emitInt32(StrLen);
1016
1017 // Emit type table.
1018 for (const auto &TypeEntry : TypeEntries)
1019 TypeEntry->emitType(OS);
1020
1021 // Emit string table.
1022 uint32_t StringOffset = 0;
1023 for (const auto &S : StringTable.getTable()) {
1024 OS.AddComment("string offset=" + std::to_string(StringOffset));
1025 OS.emitBytes(S);
1026 OS.emitBytes(StringRef("\0", 1));
1027 StringOffset += S.size() + 1;
1028 }
1029 }
1030
emitBTFExtSection()1031 void BTFDebug::emitBTFExtSection() {
1032 // Do not emit section if empty FuncInfoTable and LineInfoTable
1033 // and FieldRelocTable.
1034 if (!FuncInfoTable.size() && !LineInfoTable.size() &&
1035 !FieldRelocTable.size())
1036 return;
1037
1038 MCContext &Ctx = OS.getContext();
1039 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0);
1040 Sec->setAlignment(Align(4));
1041 OS.switchSection(Sec);
1042
1043 // Emit header.
1044 emitCommonHeader();
1045 OS.emitInt32(BTF::ExtHeaderSize);
1046
1047 // Account for FuncInfo/LineInfo record size as well.
1048 uint32_t FuncLen = 4, LineLen = 4;
1049 // Do not account for optional FieldReloc.
1050 uint32_t FieldRelocLen = 0;
1051 for (const auto &FuncSec : FuncInfoTable) {
1052 FuncLen += BTF::SecFuncInfoSize;
1053 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
1054 }
1055 for (const auto &LineSec : LineInfoTable) {
1056 LineLen += BTF::SecLineInfoSize;
1057 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
1058 }
1059 for (const auto &FieldRelocSec : FieldRelocTable) {
1060 FieldRelocLen += BTF::SecFieldRelocSize;
1061 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
1062 }
1063
1064 if (FieldRelocLen)
1065 FieldRelocLen += 4;
1066
1067 OS.emitInt32(0);
1068 OS.emitInt32(FuncLen);
1069 OS.emitInt32(FuncLen);
1070 OS.emitInt32(LineLen);
1071 OS.emitInt32(FuncLen + LineLen);
1072 OS.emitInt32(FieldRelocLen);
1073
1074 // Emit func_info table.
1075 OS.AddComment("FuncInfo");
1076 OS.emitInt32(BTF::BPFFuncInfoSize);
1077 for (const auto &FuncSec : FuncInfoTable) {
1078 OS.AddComment("FuncInfo section string offset=" +
1079 std::to_string(FuncSec.first));
1080 OS.emitInt32(FuncSec.first);
1081 OS.emitInt32(FuncSec.second.size());
1082 for (const auto &FuncInfo : FuncSec.second) {
1083 Asm->emitLabelReference(FuncInfo.Label, 4);
1084 OS.emitInt32(FuncInfo.TypeId);
1085 }
1086 }
1087
1088 // Emit line_info table.
1089 OS.AddComment("LineInfo");
1090 OS.emitInt32(BTF::BPFLineInfoSize);
1091 for (const auto &LineSec : LineInfoTable) {
1092 OS.AddComment("LineInfo section string offset=" +
1093 std::to_string(LineSec.first));
1094 OS.emitInt32(LineSec.first);
1095 OS.emitInt32(LineSec.second.size());
1096 for (const auto &LineInfo : LineSec.second) {
1097 Asm->emitLabelReference(LineInfo.Label, 4);
1098 OS.emitInt32(LineInfo.FileNameOff);
1099 OS.emitInt32(LineInfo.LineOff);
1100 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
1101 std::to_string(LineInfo.ColumnNum));
1102 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum);
1103 }
1104 }
1105
1106 // Emit field reloc table.
1107 if (FieldRelocLen) {
1108 OS.AddComment("FieldReloc");
1109 OS.emitInt32(BTF::BPFFieldRelocSize);
1110 for (const auto &FieldRelocSec : FieldRelocTable) {
1111 OS.AddComment("Field reloc section string offset=" +
1112 std::to_string(FieldRelocSec.first));
1113 OS.emitInt32(FieldRelocSec.first);
1114 OS.emitInt32(FieldRelocSec.second.size());
1115 for (const auto &FieldRelocInfo : FieldRelocSec.second) {
1116 Asm->emitLabelReference(FieldRelocInfo.Label, 4);
1117 OS.emitInt32(FieldRelocInfo.TypeID);
1118 OS.emitInt32(FieldRelocInfo.OffsetNameOff);
1119 OS.emitInt32(FieldRelocInfo.RelocKind);
1120 }
1121 }
1122 }
1123 }
1124
beginFunctionImpl(const MachineFunction * MF)1125 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
1126 auto *SP = MF->getFunction().getSubprogram();
1127 auto *Unit = SP->getUnit();
1128
1129 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
1130 SkipInstruction = true;
1131 return;
1132 }
1133 SkipInstruction = false;
1134
1135 // Collect MapDef types. Map definition needs to collect
1136 // pointee types. Do it first. Otherwise, for the following
1137 // case:
1138 // struct m { ...};
1139 // struct t {
1140 // struct m *key;
1141 // };
1142 // foo(struct t *arg);
1143 //
1144 // struct mapdef {
1145 // ...
1146 // struct m *key;
1147 // ...
1148 // } __attribute__((section(".maps"))) hash_map;
1149 //
1150 // If subroutine foo is traversed first, a type chain
1151 // "ptr->struct m(fwd)" will be created and later on
1152 // when traversing mapdef, since "ptr->struct m" exists,
1153 // the traversal of "struct m" will be omitted.
1154 if (MapDefNotCollected) {
1155 processGlobals(true);
1156 MapDefNotCollected = false;
1157 }
1158
1159 // Collect all types locally referenced in this function.
1160 // Use RetainedNodes so we can collect all argument names
1161 // even if the argument is not used.
1162 std::unordered_map<uint32_t, StringRef> FuncArgNames;
1163 for (const DINode *DN : SP->getRetainedNodes()) {
1164 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
1165 // Collect function arguments for subprogram func type.
1166 uint32_t Arg = DV->getArg();
1167 if (Arg) {
1168 visitTypeEntry(DV->getType());
1169 FuncArgNames[Arg] = DV->getName();
1170 }
1171 }
1172 }
1173
1174 // Construct subprogram func proto type.
1175 uint32_t ProtoTypeId;
1176 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
1177
1178 // Construct subprogram func type
1179 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
1180 auto FuncTypeEntry =
1181 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
1182 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
1183
1184 // Process argument annotations.
1185 for (const DINode *DN : SP->getRetainedNodes()) {
1186 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
1187 uint32_t Arg = DV->getArg();
1188 if (Arg)
1189 processDeclAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1);
1190 }
1191 }
1192
1193 processDeclAnnotations(SP->getAnnotations(), FuncTypeId, -1);
1194
1195 for (const auto &TypeEntry : TypeEntries)
1196 TypeEntry->completeType(*this);
1197
1198 // Construct funcinfo and the first lineinfo for the function.
1199 MCSymbol *FuncLabel = Asm->getFunctionBegin();
1200 BTFFuncInfo FuncInfo;
1201 FuncInfo.Label = FuncLabel;
1202 FuncInfo.TypeId = FuncTypeId;
1203 if (FuncLabel->isInSection()) {
1204 MCSection &Section = FuncLabel->getSection();
1205 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
1206 assert(SectionELF && "Null section for Function Label");
1207 SecNameOff = addString(SectionELF->getName());
1208 } else {
1209 SecNameOff = addString(".text");
1210 }
1211 FuncInfoTable[SecNameOff].push_back(FuncInfo);
1212 }
1213
endFunctionImpl(const MachineFunction * MF)1214 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
1215 SkipInstruction = false;
1216 LineInfoGenerated = false;
1217 SecNameOff = 0;
1218 }
1219
1220 /// On-demand populate types as requested from abstract member
1221 /// accessing or preserve debuginfo type.
populateType(const DIType * Ty)1222 unsigned BTFDebug::populateType(const DIType *Ty) {
1223 unsigned Id;
1224 visitTypeEntry(Ty, Id, false, false);
1225 for (const auto &TypeEntry : TypeEntries)
1226 TypeEntry->completeType(*this);
1227 return Id;
1228 }
1229
1230 /// Generate a struct member field relocation.
generatePatchImmReloc(const MCSymbol * ORSym,uint32_t RootId,const GlobalVariable * GVar,bool IsAma)1231 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId,
1232 const GlobalVariable *GVar, bool IsAma) {
1233 BTFFieldReloc FieldReloc;
1234 FieldReloc.Label = ORSym;
1235 FieldReloc.TypeID = RootId;
1236
1237 StringRef AccessPattern = GVar->getName();
1238 size_t FirstDollar = AccessPattern.find_first_of('$');
1239 if (IsAma) {
1240 size_t FirstColon = AccessPattern.find_first_of(':');
1241 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
1242 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
1243 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
1244 SecondColon - FirstColon);
1245 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
1246 FirstDollar - SecondColon);
1247
1248 FieldReloc.OffsetNameOff = addString(IndexPattern);
1249 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr));
1250 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)),
1251 FieldReloc.RelocKind);
1252 } else {
1253 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1);
1254 FieldReloc.OffsetNameOff = addString("0");
1255 FieldReloc.RelocKind = std::stoull(std::string(RelocStr));
1256 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind);
1257 }
1258 FieldRelocTable[SecNameOff].push_back(FieldReloc);
1259 }
1260
processGlobalValue(const MachineOperand & MO)1261 void BTFDebug::processGlobalValue(const MachineOperand &MO) {
1262 // check whether this is a candidate or not
1263 if (MO.isGlobal()) {
1264 const GlobalValue *GVal = MO.getGlobal();
1265 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1266 if (!GVar) {
1267 // Not a global variable. Maybe an extern function reference.
1268 processFuncPrototypes(dyn_cast<Function>(GVal));
1269 return;
1270 }
1271
1272 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) &&
1273 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
1274 return;
1275
1276 MCSymbol *ORSym = OS.getContext().createTempSymbol();
1277 OS.emitLabel(ORSym);
1278
1279 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1280 uint32_t RootId = populateType(dyn_cast<DIType>(MDN));
1281 generatePatchImmReloc(ORSym, RootId, GVar,
1282 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr));
1283 }
1284 }
1285
beginInstruction(const MachineInstr * MI)1286 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1287 DebugHandlerBase::beginInstruction(MI);
1288
1289 if (SkipInstruction || MI->isMetaInstruction() ||
1290 MI->getFlag(MachineInstr::FrameSetup))
1291 return;
1292
1293 if (MI->isInlineAsm()) {
1294 // Count the number of register definitions to find the asm string.
1295 unsigned NumDefs = 0;
1296 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1297 ++NumDefs)
1298 ;
1299
1300 // Skip this inline asm instruction if the asmstr is empty.
1301 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1302 if (AsmStr[0] == 0)
1303 return;
1304 }
1305
1306 if (MI->getOpcode() == BPF::LD_imm64) {
1307 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
1308 // add this insn into the .BTF.ext FieldReloc subsection.
1309 // Relocation looks like:
1310 // . SecName:
1311 // . InstOffset
1312 // . TypeID
1313 // . OffSetNameOff
1314 // . RelocType
1315 // Later, the insn is replaced with "r2 = <offset>"
1316 // where "<offset>" equals to the offset based on current
1317 // type definitions.
1318 //
1319 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>",
1320 // The LD_imm64 result will be replaced with a btf type id.
1321 processGlobalValue(MI->getOperand(1));
1322 } else if (MI->getOpcode() == BPF::CORE_MEM ||
1323 MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1324 MI->getOpcode() == BPF::CORE_SHIFT) {
1325 // relocation insn is a load, store or shift insn.
1326 processGlobalValue(MI->getOperand(3));
1327 } else if (MI->getOpcode() == BPF::JAL) {
1328 // check extern function references
1329 const MachineOperand &MO = MI->getOperand(0);
1330 if (MO.isGlobal()) {
1331 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
1332 }
1333 }
1334
1335 if (!CurMI) // no debug info
1336 return;
1337
1338 // Skip this instruction if no DebugLoc or the DebugLoc
1339 // is the same as the previous instruction.
1340 const DebugLoc &DL = MI->getDebugLoc();
1341 if (!DL || PrevInstLoc == DL) {
1342 // This instruction will be skipped, no LineInfo has
1343 // been generated, construct one based on function signature.
1344 if (LineInfoGenerated == false) {
1345 auto *S = MI->getMF()->getFunction().getSubprogram();
1346 MCSymbol *FuncLabel = Asm->getFunctionBegin();
1347 constructLineInfo(S, FuncLabel, S->getLine(), 0);
1348 LineInfoGenerated = true;
1349 }
1350
1351 return;
1352 }
1353
1354 // Create a temporary label to remember the insn for lineinfo.
1355 MCSymbol *LineSym = OS.getContext().createTempSymbol();
1356 OS.emitLabel(LineSym);
1357
1358 // Construct the lineinfo.
1359 auto SP = DL.get()->getScope()->getSubprogram();
1360 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1361
1362 LineInfoGenerated = true;
1363 PrevInstLoc = DL;
1364 }
1365
processGlobals(bool ProcessingMapDef)1366 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1367 // Collect all types referenced by globals.
1368 const Module *M = MMI->getModule();
1369 for (const GlobalVariable &Global : M->globals()) {
1370 // Decide the section name.
1371 StringRef SecName;
1372 if (Global.hasSection()) {
1373 SecName = Global.getSection();
1374 } else if (Global.hasInitializer()) {
1375 // data, bss, or readonly sections
1376 if (Global.isConstant())
1377 SecName = ".rodata";
1378 else
1379 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1380 }
1381
1382 if (ProcessingMapDef != SecName.startswith(".maps"))
1383 continue;
1384
1385 // Create a .rodata datasec if the global variable is an initialized
1386 // constant with private linkage and if it won't be in .rodata.str<#>
1387 // and .rodata.cst<#> sections.
1388 if (SecName == ".rodata" && Global.hasPrivateLinkage() &&
1389 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1390 SectionKind GVKind =
1391 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM);
1392 // skip .rodata.str<#> and .rodata.cst<#> sections
1393 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) {
1394 DataSecEntries[std::string(SecName)] =
1395 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1396 }
1397 }
1398
1399 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1400 Global.getDebugInfo(GVs);
1401
1402 // No type information, mostly internal, skip it.
1403 if (GVs.size() == 0)
1404 continue;
1405
1406 uint32_t GVTypeId = 0;
1407 DIGlobalVariable *DIGlobal = nullptr;
1408 for (auto *GVE : GVs) {
1409 DIGlobal = GVE->getVariable();
1410 if (SecName.startswith(".maps"))
1411 visitMapDefType(DIGlobal->getType(), GVTypeId);
1412 else
1413 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false);
1414 break;
1415 }
1416
1417 // Only support the following globals:
1418 // . static variables
1419 // . non-static weak or non-weak global variables
1420 // . weak or non-weak extern global variables
1421 // Whether DataSec is readonly or not can be found from corresponding ELF
1422 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
1423 // can be found from the corresponding ELF symbol table.
1424 auto Linkage = Global.getLinkage();
1425 if (Linkage != GlobalValue::InternalLinkage &&
1426 Linkage != GlobalValue::ExternalLinkage &&
1427 Linkage != GlobalValue::WeakAnyLinkage &&
1428 Linkage != GlobalValue::WeakODRLinkage &&
1429 Linkage != GlobalValue::ExternalWeakLinkage)
1430 continue;
1431
1432 uint32_t GVarInfo;
1433 if (Linkage == GlobalValue::InternalLinkage) {
1434 GVarInfo = BTF::VAR_STATIC;
1435 } else if (Global.hasInitializer()) {
1436 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
1437 } else {
1438 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
1439 }
1440
1441 auto VarEntry =
1442 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1443 uint32_t VarId = addType(std::move(VarEntry));
1444
1445 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1);
1446
1447 // An empty SecName means an extern variable without section attribute.
1448 if (SecName.empty())
1449 continue;
1450
1451 // Find or create a DataSec
1452 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1453 DataSecEntries[std::string(SecName)] =
1454 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1455 }
1456
1457 // Calculate symbol size
1458 const DataLayout &DL = Global.getParent()->getDataLayout();
1459 uint32_t Size = DL.getTypeAllocSize(Global.getValueType());
1460
1461 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId,
1462 Asm->getSymbol(&Global), Size);
1463 }
1464 }
1465
1466 /// Emit proper patchable instructions.
InstLower(const MachineInstr * MI,MCInst & OutMI)1467 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1468 if (MI->getOpcode() == BPF::LD_imm64) {
1469 const MachineOperand &MO = MI->getOperand(1);
1470 if (MO.isGlobal()) {
1471 const GlobalValue *GVal = MO.getGlobal();
1472 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1473 if (GVar) {
1474 // Emit "mov ri, <imm>"
1475 int64_t Imm;
1476 uint32_t Reloc;
1477 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
1478 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) {
1479 Imm = PatchImms[GVar].first;
1480 Reloc = PatchImms[GVar].second;
1481 } else {
1482 return false;
1483 }
1484
1485 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE ||
1486 Reloc == BPFCoreSharedInfo::ENUM_VALUE ||
1487 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL ||
1488 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE)
1489 OutMI.setOpcode(BPF::LD_imm64);
1490 else
1491 OutMI.setOpcode(BPF::MOV_ri);
1492 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1493 OutMI.addOperand(MCOperand::createImm(Imm));
1494 return true;
1495 }
1496 }
1497 } else if (MI->getOpcode() == BPF::CORE_MEM ||
1498 MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1499 MI->getOpcode() == BPF::CORE_SHIFT) {
1500 const MachineOperand &MO = MI->getOperand(3);
1501 if (MO.isGlobal()) {
1502 const GlobalValue *GVal = MO.getGlobal();
1503 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1504 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1505 uint32_t Imm = PatchImms[GVar].first;
1506 OutMI.setOpcode(MI->getOperand(1).getImm());
1507 if (MI->getOperand(0).isImm())
1508 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
1509 else
1510 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1511 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
1512 OutMI.addOperand(MCOperand::createImm(Imm));
1513 return true;
1514 }
1515 }
1516 }
1517 return false;
1518 }
1519
processFuncPrototypes(const Function * F)1520 void BTFDebug::processFuncPrototypes(const Function *F) {
1521 if (!F)
1522 return;
1523
1524 const DISubprogram *SP = F->getSubprogram();
1525 if (!SP || SP->isDefinition())
1526 return;
1527
1528 // Do not emit again if already emitted.
1529 if (!ProtoFunctions.insert(F).second)
1530 return;
1531
1532 uint32_t ProtoTypeId;
1533 const std::unordered_map<uint32_t, StringRef> FuncArgNames;
1534 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);
1535
1536 uint8_t Scope = BTF::FUNC_EXTERN;
1537 auto FuncTypeEntry =
1538 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
1539 uint32_t FuncId = addType(std::move(FuncTypeEntry));
1540
1541 processDeclAnnotations(SP->getAnnotations(), FuncId, -1);
1542
1543 if (F->hasSection()) {
1544 StringRef SecName = F->getSection();
1545
1546 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1547 DataSecEntries[std::string(SecName)] =
1548 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1549 }
1550
1551 // We really don't know func size, set it to 0.
1552 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId,
1553 Asm->getSymbol(F), 0);
1554 }
1555 }
1556
endModule()1557 void BTFDebug::endModule() {
1558 // Collect MapDef globals if not collected yet.
1559 if (MapDefNotCollected) {
1560 processGlobals(true);
1561 MapDefNotCollected = false;
1562 }
1563
1564 // Collect global types/variables except MapDef globals.
1565 processGlobals(false);
1566
1567 for (auto &DataSec : DataSecEntries)
1568 addType(std::move(DataSec.second));
1569
1570 // Fixups
1571 for (auto &Fixup : FixupDerivedTypes) {
1572 const DICompositeType *CTy = Fixup.first;
1573 StringRef TypeName = CTy->getName();
1574 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type;
1575
1576 // Search through struct types
1577 uint32_t StructTypeId = 0;
1578 for (const auto &StructType : StructTypes) {
1579 if (StructType->getName() == TypeName) {
1580 StructTypeId = StructType->getId();
1581 break;
1582 }
1583 }
1584
1585 if (StructTypeId == 0) {
1586 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1587 StructTypeId = addType(std::move(FwdTypeEntry));
1588 }
1589
1590 for (auto &TypeInfo : Fixup.second) {
1591 const DIDerivedType *DTy = TypeInfo.first;
1592 BTFTypeDerived *BDType = TypeInfo.second;
1593
1594 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId);
1595 if (TmpTypeId >= 0)
1596 BDType->setPointeeType(TmpTypeId);
1597 else
1598 BDType->setPointeeType(StructTypeId);
1599 }
1600 }
1601
1602 // Complete BTF type cross refereences.
1603 for (const auto &TypeEntry : TypeEntries)
1604 TypeEntry->completeType(*this);
1605
1606 // Emit BTF sections.
1607 emitBTFSection();
1608 emitBTFExtSection();
1609 }
1610