1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 70 if (IsCompleted) 71 return; 72 IsCompleted = true; 73 74 BTFType.NameOff = BDebug.addString(DTy->getName()); 75 76 if (NeedsFixup) 77 return; 78 79 // The base type for PTR/CONST/VOLATILE could be void. 80 const DIType *ResolvedType = DTy->getBaseType(); 81 if (!ResolvedType) { 82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 83 Kind == BTF::BTF_KIND_VOLATILE) && 84 "Invalid null basetype"); 85 BTFType.Type = 0; 86 } else { 87 BTFType.Type = BDebug.getTypeId(ResolvedType); 88 } 89 } 90 91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 92 93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 94 BTFType.Type = PointeeType; 95 } 96 97 /// Represent a struct/union forward declaration. 98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 99 Kind = BTF::BTF_KIND_FWD; 100 BTFType.Info = IsUnion << 31 | Kind << 24; 101 BTFType.Type = 0; 102 } 103 104 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 105 if (IsCompleted) 106 return; 107 IsCompleted = true; 108 109 BTFType.NameOff = BDebug.addString(Name); 110 } 111 112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 113 114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 115 uint32_t OffsetInBits, StringRef TypeName) 116 : Name(TypeName) { 117 // Translate IR int encoding to BTF int encoding. 118 uint8_t BTFEncoding; 119 switch (Encoding) { 120 case dwarf::DW_ATE_boolean: 121 BTFEncoding = BTF::INT_BOOL; 122 break; 123 case dwarf::DW_ATE_signed: 124 case dwarf::DW_ATE_signed_char: 125 BTFEncoding = BTF::INT_SIGNED; 126 break; 127 case dwarf::DW_ATE_unsigned: 128 case dwarf::DW_ATE_unsigned_char: 129 BTFEncoding = 0; 130 break; 131 default: 132 llvm_unreachable("Unknown BTFTypeInt Encoding"); 133 } 134 135 Kind = BTF::BTF_KIND_INT; 136 BTFType.Info = Kind << 24; 137 BTFType.Size = roundupToBytes(SizeInBits); 138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 139 } 140 141 void BTFTypeInt::completeType(BTFDebug &BDebug) { 142 if (IsCompleted) 143 return; 144 IsCompleted = true; 145 146 BTFType.NameOff = BDebug.addString(Name); 147 } 148 149 void BTFTypeInt::emitType(MCStreamer &OS) { 150 BTFTypeBase::emitType(OS); 151 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 152 OS.emitInt32(IntVal); 153 } 154 155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 156 Kind = BTF::BTF_KIND_ENUM; 157 BTFType.Info = Kind << 24 | VLen; 158 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 159 } 160 161 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 162 if (IsCompleted) 163 return; 164 IsCompleted = true; 165 166 BTFType.NameOff = BDebug.addString(ETy->getName()); 167 168 DINodeArray Elements = ETy->getElements(); 169 for (const auto Element : Elements) { 170 const auto *Enum = cast<DIEnumerator>(Element); 171 172 struct BTF::BTFEnum BTFEnum; 173 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 174 // BTF enum value is 32bit, enforce it. 175 uint32_t Value; 176 if (Enum->isUnsigned()) 177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 178 else 179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 180 BTFEnum.Val = Value; 181 EnumValues.push_back(BTFEnum); 182 } 183 } 184 185 void BTFTypeEnum::emitType(MCStreamer &OS) { 186 BTFTypeBase::emitType(OS); 187 for (const auto &Enum : EnumValues) { 188 OS.emitInt32(Enum.NameOff); 189 OS.emitInt32(Enum.Val); 190 } 191 } 192 193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 194 Kind = BTF::BTF_KIND_ARRAY; 195 BTFType.NameOff = 0; 196 BTFType.Info = Kind << 24; 197 BTFType.Size = 0; 198 199 ArrayInfo.ElemType = ElemTypeId; 200 ArrayInfo.Nelems = NumElems; 201 } 202 203 /// Represent a BTF array. 204 void BTFTypeArray::completeType(BTFDebug &BDebug) { 205 if (IsCompleted) 206 return; 207 IsCompleted = true; 208 209 // The IR does not really have a type for the index. 210 // A special type for array index should have been 211 // created during initial type traversal. Just 212 // retrieve that type id. 213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 214 } 215 216 void BTFTypeArray::emitType(MCStreamer &OS) { 217 BTFTypeBase::emitType(OS); 218 OS.emitInt32(ArrayInfo.ElemType); 219 OS.emitInt32(ArrayInfo.IndexType); 220 OS.emitInt32(ArrayInfo.Nelems); 221 } 222 223 /// Represent either a struct or a union. 224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 225 bool HasBitField, uint32_t Vlen) 226 : STy(STy), HasBitField(HasBitField) { 227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 228 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 230 } 231 232 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 233 if (IsCompleted) 234 return; 235 IsCompleted = true; 236 237 BTFType.NameOff = BDebug.addString(STy->getName()); 238 239 // Add struct/union members. 240 const DINodeArray Elements = STy->getElements(); 241 for (const auto *Element : Elements) { 242 struct BTF::BTFMember BTFMember; 243 const auto *DDTy = cast<DIDerivedType>(Element); 244 245 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 246 if (HasBitField) { 247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 249 } else { 250 BTFMember.Offset = DDTy->getOffsetInBits(); 251 } 252 const auto *BaseTy = DDTy->getBaseType(); 253 BTFMember.Type = BDebug.getTypeId(BaseTy); 254 Members.push_back(BTFMember); 255 } 256 } 257 258 void BTFTypeStruct::emitType(MCStreamer &OS) { 259 BTFTypeBase::emitType(OS); 260 for (const auto &Member : Members) { 261 OS.emitInt32(Member.NameOff); 262 OS.emitInt32(Member.Type); 263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 264 OS.emitInt32(Member.Offset); 265 } 266 } 267 268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 269 270 /// The Func kind represents both subprogram and pointee of function 271 /// pointers. If the FuncName is empty, it represents a pointee of function 272 /// pointer. Otherwise, it represents a subprogram. The func arg names 273 /// are empty for pointee of function pointer case, and are valid names 274 /// for subprogram. 275 BTFTypeFuncProto::BTFTypeFuncProto( 276 const DISubroutineType *STy, uint32_t VLen, 277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 278 : STy(STy), FuncArgNames(FuncArgNames) { 279 Kind = BTF::BTF_KIND_FUNC_PROTO; 280 BTFType.Info = (Kind << 24) | VLen; 281 } 282 283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 284 if (IsCompleted) 285 return; 286 IsCompleted = true; 287 288 DITypeRefArray Elements = STy->getTypeArray(); 289 auto RetType = Elements[0]; 290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 291 BTFType.NameOff = 0; 292 293 // For null parameter which is typically the last one 294 // to represent the vararg, encode the NameOff/Type to be 0. 295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 296 struct BTF::BTFParam Param; 297 auto Element = Elements[I]; 298 if (Element) { 299 Param.NameOff = BDebug.addString(FuncArgNames[I]); 300 Param.Type = BDebug.getTypeId(Element); 301 } else { 302 Param.NameOff = 0; 303 Param.Type = 0; 304 } 305 Parameters.push_back(Param); 306 } 307 } 308 309 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 310 BTFTypeBase::emitType(OS); 311 for (const auto &Param : Parameters) { 312 OS.emitInt32(Param.NameOff); 313 OS.emitInt32(Param.Type); 314 } 315 } 316 317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 318 uint32_t Scope) 319 : Name(FuncName) { 320 Kind = BTF::BTF_KIND_FUNC; 321 BTFType.Info = (Kind << 24) | Scope; 322 BTFType.Type = ProtoTypeId; 323 } 324 325 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 326 if (IsCompleted) 327 return; 328 IsCompleted = true; 329 330 BTFType.NameOff = BDebug.addString(Name); 331 } 332 333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 334 335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 336 : Name(VarName) { 337 Kind = BTF::BTF_KIND_VAR; 338 BTFType.Info = Kind << 24; 339 BTFType.Type = TypeId; 340 Info = VarInfo; 341 } 342 343 void BTFKindVar::completeType(BTFDebug &BDebug) { 344 BTFType.NameOff = BDebug.addString(Name); 345 } 346 347 void BTFKindVar::emitType(MCStreamer &OS) { 348 BTFTypeBase::emitType(OS); 349 OS.emitInt32(Info); 350 } 351 352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 353 : Asm(AsmPrt), Name(SecName) { 354 Kind = BTF::BTF_KIND_DATASEC; 355 BTFType.Info = Kind << 24; 356 BTFType.Size = 0; 357 } 358 359 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 360 BTFType.NameOff = BDebug.addString(Name); 361 BTFType.Info |= Vars.size(); 362 } 363 364 void BTFKindDataSec::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 367 for (const auto &V : Vars) { 368 OS.emitInt32(std::get<0>(V)); 369 Asm->emitLabelReference(std::get<1>(V), 4); 370 OS.emitInt32(std::get<2>(V)); 371 } 372 } 373 374 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 375 : Name(TypeName) { 376 Kind = BTF::BTF_KIND_FLOAT; 377 BTFType.Info = Kind << 24; 378 BTFType.Size = roundupToBytes(SizeInBits); 379 } 380 381 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 382 if (IsCompleted) 383 return; 384 IsCompleted = true; 385 386 BTFType.NameOff = BDebug.addString(Name); 387 } 388 389 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 390 StringRef Tag) 391 : Tag(Tag) { 392 Kind = BTF::BTF_KIND_DECL_TAG; 393 BTFType.Info = Kind << 24; 394 BTFType.Type = BaseTypeId; 395 Info = ComponentIdx; 396 } 397 398 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 399 if (IsCompleted) 400 return; 401 IsCompleted = true; 402 403 BTFType.NameOff = BDebug.addString(Tag); 404 } 405 406 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 407 BTFTypeBase::emitType(OS); 408 OS.emitInt32(Info); 409 } 410 411 uint32_t BTFStringTable::addString(StringRef S) { 412 // Check whether the string already exists. 413 for (auto &OffsetM : OffsetToIdMap) { 414 if (Table[OffsetM.second] == S) 415 return OffsetM.first; 416 } 417 // Not find, add to the string table. 418 uint32_t Offset = Size; 419 OffsetToIdMap[Offset] = Table.size(); 420 Table.push_back(std::string(S)); 421 Size += S.size() + 1; 422 return Offset; 423 } 424 425 BTFDebug::BTFDebug(AsmPrinter *AP) 426 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 427 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 428 MapDefNotCollected(true) { 429 addString("\0"); 430 } 431 432 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 433 const DIType *Ty) { 434 TypeEntry->setId(TypeEntries.size() + 1); 435 uint32_t Id = TypeEntry->getId(); 436 DIToIdMap[Ty] = Id; 437 TypeEntries.push_back(std::move(TypeEntry)); 438 return Id; 439 } 440 441 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 442 TypeEntry->setId(TypeEntries.size() + 1); 443 uint32_t Id = TypeEntry->getId(); 444 TypeEntries.push_back(std::move(TypeEntry)); 445 return Id; 446 } 447 448 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 449 // Only int and binary floating point types are supported in BTF. 450 uint32_t Encoding = BTy->getEncoding(); 451 std::unique_ptr<BTFTypeBase> TypeEntry; 452 switch (Encoding) { 453 case dwarf::DW_ATE_boolean: 454 case dwarf::DW_ATE_signed: 455 case dwarf::DW_ATE_signed_char: 456 case dwarf::DW_ATE_unsigned: 457 case dwarf::DW_ATE_unsigned_char: 458 // Create a BTF type instance for this DIBasicType and put it into 459 // DIToIdMap for cross-type reference check. 460 TypeEntry = std::make_unique<BTFTypeInt>( 461 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 462 break; 463 case dwarf::DW_ATE_float: 464 TypeEntry = 465 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 466 break; 467 default: 468 return; 469 } 470 471 TypeId = addType(std::move(TypeEntry), BTy); 472 } 473 474 /// Handle subprogram or subroutine types. 475 void BTFDebug::visitSubroutineType( 476 const DISubroutineType *STy, bool ForSubprog, 477 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 478 uint32_t &TypeId) { 479 DITypeRefArray Elements = STy->getTypeArray(); 480 uint32_t VLen = Elements.size() - 1; 481 if (VLen > BTF::MAX_VLEN) 482 return; 483 484 // Subprogram has a valid non-zero-length name, and the pointee of 485 // a function pointer has an empty name. The subprogram type will 486 // not be added to DIToIdMap as it should not be referenced by 487 // any other types. 488 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 489 if (ForSubprog) 490 TypeId = addType(std::move(TypeEntry)); // For subprogram 491 else 492 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 493 494 // Visit return type and func arg types. 495 for (const auto Element : Elements) { 496 visitTypeEntry(Element); 497 } 498 } 499 500 void BTFDebug::processAnnotations(DINodeArray Annotations, uint32_t BaseTypeId, 501 int ComponentIdx) { 502 if (!Annotations) 503 return; 504 505 for (const Metadata *Annotation : Annotations->operands()) { 506 const MDNode *MD = cast<MDNode>(Annotation); 507 const MDString *Name = cast<MDString>(MD->getOperand(0)); 508 if (!Name->getString().equals("btf_decl_tag")) 509 continue; 510 511 const MDString *Value = cast<MDString>(MD->getOperand(1)); 512 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 513 Value->getString()); 514 addType(std::move(TypeEntry)); 515 } 516 } 517 518 /// Handle structure/union types. 519 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 520 uint32_t &TypeId) { 521 const DINodeArray Elements = CTy->getElements(); 522 uint32_t VLen = Elements.size(); 523 if (VLen > BTF::MAX_VLEN) 524 return; 525 526 // Check whether we have any bitfield members or not 527 bool HasBitField = false; 528 for (const auto *Element : Elements) { 529 auto E = cast<DIDerivedType>(Element); 530 if (E->isBitField()) { 531 HasBitField = true; 532 break; 533 } 534 } 535 536 auto TypeEntry = 537 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 538 StructTypes.push_back(TypeEntry.get()); 539 TypeId = addType(std::move(TypeEntry), CTy); 540 541 // Check struct/union annotations 542 processAnnotations(CTy->getAnnotations(), TypeId, -1); 543 544 // Visit all struct members. 545 int FieldNo = 0; 546 for (const auto *Element : Elements) { 547 const auto Elem = cast<DIDerivedType>(Element); 548 visitTypeEntry(Elem); 549 processAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 550 FieldNo++; 551 } 552 } 553 554 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 555 // Visit array element type. 556 uint32_t ElemTypeId; 557 const DIType *ElemType = CTy->getBaseType(); 558 visitTypeEntry(ElemType, ElemTypeId, false, false); 559 560 // Visit array dimensions. 561 DINodeArray Elements = CTy->getElements(); 562 for (int I = Elements.size() - 1; I >= 0; --I) { 563 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 564 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 565 const DISubrange *SR = cast<DISubrange>(Element); 566 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 567 int64_t Count = CI->getSExtValue(); 568 569 // For struct s { int b; char c[]; }, the c[] will be represented 570 // as an array with Count = -1. 571 auto TypeEntry = 572 std::make_unique<BTFTypeArray>(ElemTypeId, 573 Count >= 0 ? Count : 0); 574 if (I == 0) 575 ElemTypeId = addType(std::move(TypeEntry), CTy); 576 else 577 ElemTypeId = addType(std::move(TypeEntry)); 578 } 579 } 580 581 // The array TypeId is the type id of the outermost dimension. 582 TypeId = ElemTypeId; 583 584 // The IR does not have a type for array index while BTF wants one. 585 // So create an array index type if there is none. 586 if (!ArrayIndexTypeId) { 587 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 588 0, "__ARRAY_SIZE_TYPE__"); 589 ArrayIndexTypeId = addType(std::move(TypeEntry)); 590 } 591 } 592 593 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 594 DINodeArray Elements = CTy->getElements(); 595 uint32_t VLen = Elements.size(); 596 if (VLen > BTF::MAX_VLEN) 597 return; 598 599 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 600 TypeId = addType(std::move(TypeEntry), CTy); 601 // No need to visit base type as BTF does not encode it. 602 } 603 604 /// Handle structure/union forward declarations. 605 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 606 uint32_t &TypeId) { 607 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 608 TypeId = addType(std::move(TypeEntry), CTy); 609 } 610 611 /// Handle structure, union, array and enumeration types. 612 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 613 uint32_t &TypeId) { 614 auto Tag = CTy->getTag(); 615 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 616 // Handle forward declaration differently as it does not have members. 617 if (CTy->isForwardDecl()) 618 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 619 else 620 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 621 } else if (Tag == dwarf::DW_TAG_array_type) 622 visitArrayType(CTy, TypeId); 623 else if (Tag == dwarf::DW_TAG_enumeration_type) 624 visitEnumType(CTy, TypeId); 625 } 626 627 /// Handle pointer, typedef, const, volatile, restrict and member types. 628 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 629 bool CheckPointer, bool SeenPointer) { 630 unsigned Tag = DTy->getTag(); 631 632 /// Try to avoid chasing pointees, esp. structure pointees which may 633 /// unnecessary bring in a lot of types. 634 if (CheckPointer && !SeenPointer) { 635 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 636 } 637 638 if (CheckPointer && SeenPointer) { 639 const DIType *Base = DTy->getBaseType(); 640 if (Base) { 641 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 642 auto CTag = CTy->getTag(); 643 if ((CTag == dwarf::DW_TAG_structure_type || 644 CTag == dwarf::DW_TAG_union_type) && 645 !CTy->getName().empty() && !CTy->isForwardDecl()) { 646 /// Find a candidate, generate a fixup. Later on the struct/union 647 /// pointee type will be replaced with either a real type or 648 /// a forward declaration. 649 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 650 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 651 Fixup.first = CTag == dwarf::DW_TAG_union_type; 652 Fixup.second.push_back(TypeEntry.get()); 653 TypeId = addType(std::move(TypeEntry), DTy); 654 return; 655 } 656 } 657 } 658 } 659 660 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 661 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 662 Tag == dwarf::DW_TAG_restrict_type) { 663 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 664 TypeId = addType(std::move(TypeEntry), DTy); 665 } else if (Tag != dwarf::DW_TAG_member) { 666 return; 667 } 668 669 // Visit base type of pointer, typedef, const, volatile, restrict or 670 // struct/union member. 671 uint32_t TempTypeId = 0; 672 if (Tag == dwarf::DW_TAG_member) 673 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 674 else 675 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 676 } 677 678 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 679 bool CheckPointer, bool SeenPointer) { 680 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 681 TypeId = DIToIdMap[Ty]; 682 683 // To handle the case like the following: 684 // struct t; 685 // typedef struct t _t; 686 // struct s1 { _t *c; }; 687 // int test1(struct s1 *arg) { ... } 688 // 689 // struct t { int a; int b; }; 690 // struct s2 { _t c; } 691 // int test2(struct s2 *arg) { ... } 692 // 693 // During traversing test1() argument, "_t" is recorded 694 // in DIToIdMap and a forward declaration fixup is created 695 // for "struct t" to avoid pointee type traversal. 696 // 697 // During traversing test2() argument, even if we see "_t" is 698 // already defined, we should keep moving to eventually 699 // bring in types for "struct t". Otherwise, the "struct s2" 700 // definition won't be correct. 701 if (Ty && (!CheckPointer || !SeenPointer)) { 702 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 703 unsigned Tag = DTy->getTag(); 704 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 705 Tag == dwarf::DW_TAG_volatile_type || 706 Tag == dwarf::DW_TAG_restrict_type) { 707 uint32_t TmpTypeId; 708 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 709 SeenPointer); 710 } 711 } 712 } 713 714 return; 715 } 716 717 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 718 visitBasicType(BTy, TypeId); 719 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 720 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 721 TypeId); 722 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 723 visitCompositeType(CTy, TypeId); 724 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 725 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 726 else 727 llvm_unreachable("Unknown DIType"); 728 } 729 730 void BTFDebug::visitTypeEntry(const DIType *Ty) { 731 uint32_t TypeId; 732 visitTypeEntry(Ty, TypeId, false, false); 733 } 734 735 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 736 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 737 TypeId = DIToIdMap[Ty]; 738 return; 739 } 740 741 // MapDef type may be a struct type or a non-pointer derived type 742 const DIType *OrigTy = Ty; 743 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 744 auto Tag = DTy->getTag(); 745 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 746 Tag != dwarf::DW_TAG_volatile_type && 747 Tag != dwarf::DW_TAG_restrict_type) 748 break; 749 Ty = DTy->getBaseType(); 750 } 751 752 const auto *CTy = dyn_cast<DICompositeType>(Ty); 753 if (!CTy) 754 return; 755 756 auto Tag = CTy->getTag(); 757 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 758 return; 759 760 // Visit all struct members to ensure pointee type is visited 761 const DINodeArray Elements = CTy->getElements(); 762 for (const auto *Element : Elements) { 763 const auto *MemberType = cast<DIDerivedType>(Element); 764 visitTypeEntry(MemberType->getBaseType()); 765 } 766 767 // Visit this type, struct or a const/typedef/volatile/restrict type 768 visitTypeEntry(OrigTy, TypeId, false, false); 769 } 770 771 /// Read file contents from the actual file or from the source 772 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 773 auto File = SP->getFile(); 774 std::string FileName; 775 776 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 777 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 778 else 779 FileName = std::string(File->getFilename()); 780 781 // No need to populate the contends if it has been populated! 782 if (FileContent.find(FileName) != FileContent.end()) 783 return FileName; 784 785 std::vector<std::string> Content; 786 std::string Line; 787 Content.push_back(Line); // Line 0 for empty string 788 789 std::unique_ptr<MemoryBuffer> Buf; 790 auto Source = File->getSource(); 791 if (Source) 792 Buf = MemoryBuffer::getMemBufferCopy(*Source); 793 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 794 MemoryBuffer::getFile(FileName)) 795 Buf = std::move(*BufOrErr); 796 if (Buf) 797 for (line_iterator I(*Buf, false), E; I != E; ++I) 798 Content.push_back(std::string(*I)); 799 800 FileContent[FileName] = Content; 801 return FileName; 802 } 803 804 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 805 uint32_t Line, uint32_t Column) { 806 std::string FileName = populateFileContent(SP); 807 BTFLineInfo LineInfo; 808 809 LineInfo.Label = Label; 810 LineInfo.FileNameOff = addString(FileName); 811 // If file content is not available, let LineOff = 0. 812 if (Line < FileContent[FileName].size()) 813 LineInfo.LineOff = addString(FileContent[FileName][Line]); 814 else 815 LineInfo.LineOff = 0; 816 LineInfo.LineNum = Line; 817 LineInfo.ColumnNum = Column; 818 LineInfoTable[SecNameOff].push_back(LineInfo); 819 } 820 821 void BTFDebug::emitCommonHeader() { 822 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 823 OS.emitIntValue(BTF::MAGIC, 2); 824 OS.emitInt8(BTF::VERSION); 825 OS.emitInt8(0); 826 } 827 828 void BTFDebug::emitBTFSection() { 829 // Do not emit section if no types and only "" string. 830 if (!TypeEntries.size() && StringTable.getSize() == 1) 831 return; 832 833 MCContext &Ctx = OS.getContext(); 834 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 835 836 // Emit header. 837 emitCommonHeader(); 838 OS.emitInt32(BTF::HeaderSize); 839 840 uint32_t TypeLen = 0, StrLen; 841 for (const auto &TypeEntry : TypeEntries) 842 TypeLen += TypeEntry->getSize(); 843 StrLen = StringTable.getSize(); 844 845 OS.emitInt32(0); 846 OS.emitInt32(TypeLen); 847 OS.emitInt32(TypeLen); 848 OS.emitInt32(StrLen); 849 850 // Emit type table. 851 for (const auto &TypeEntry : TypeEntries) 852 TypeEntry->emitType(OS); 853 854 // Emit string table. 855 uint32_t StringOffset = 0; 856 for (const auto &S : StringTable.getTable()) { 857 OS.AddComment("string offset=" + std::to_string(StringOffset)); 858 OS.emitBytes(S); 859 OS.emitBytes(StringRef("\0", 1)); 860 StringOffset += S.size() + 1; 861 } 862 } 863 864 void BTFDebug::emitBTFExtSection() { 865 // Do not emit section if empty FuncInfoTable and LineInfoTable 866 // and FieldRelocTable. 867 if (!FuncInfoTable.size() && !LineInfoTable.size() && 868 !FieldRelocTable.size()) 869 return; 870 871 MCContext &Ctx = OS.getContext(); 872 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 873 874 // Emit header. 875 emitCommonHeader(); 876 OS.emitInt32(BTF::ExtHeaderSize); 877 878 // Account for FuncInfo/LineInfo record size as well. 879 uint32_t FuncLen = 4, LineLen = 4; 880 // Do not account for optional FieldReloc. 881 uint32_t FieldRelocLen = 0; 882 for (const auto &FuncSec : FuncInfoTable) { 883 FuncLen += BTF::SecFuncInfoSize; 884 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 885 } 886 for (const auto &LineSec : LineInfoTable) { 887 LineLen += BTF::SecLineInfoSize; 888 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 889 } 890 for (const auto &FieldRelocSec : FieldRelocTable) { 891 FieldRelocLen += BTF::SecFieldRelocSize; 892 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 893 } 894 895 if (FieldRelocLen) 896 FieldRelocLen += 4; 897 898 OS.emitInt32(0); 899 OS.emitInt32(FuncLen); 900 OS.emitInt32(FuncLen); 901 OS.emitInt32(LineLen); 902 OS.emitInt32(FuncLen + LineLen); 903 OS.emitInt32(FieldRelocLen); 904 905 // Emit func_info table. 906 OS.AddComment("FuncInfo"); 907 OS.emitInt32(BTF::BPFFuncInfoSize); 908 for (const auto &FuncSec : FuncInfoTable) { 909 OS.AddComment("FuncInfo section string offset=" + 910 std::to_string(FuncSec.first)); 911 OS.emitInt32(FuncSec.first); 912 OS.emitInt32(FuncSec.second.size()); 913 for (const auto &FuncInfo : FuncSec.second) { 914 Asm->emitLabelReference(FuncInfo.Label, 4); 915 OS.emitInt32(FuncInfo.TypeId); 916 } 917 } 918 919 // Emit line_info table. 920 OS.AddComment("LineInfo"); 921 OS.emitInt32(BTF::BPFLineInfoSize); 922 for (const auto &LineSec : LineInfoTable) { 923 OS.AddComment("LineInfo section string offset=" + 924 std::to_string(LineSec.first)); 925 OS.emitInt32(LineSec.first); 926 OS.emitInt32(LineSec.second.size()); 927 for (const auto &LineInfo : LineSec.second) { 928 Asm->emitLabelReference(LineInfo.Label, 4); 929 OS.emitInt32(LineInfo.FileNameOff); 930 OS.emitInt32(LineInfo.LineOff); 931 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 932 std::to_string(LineInfo.ColumnNum)); 933 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 934 } 935 } 936 937 // Emit field reloc table. 938 if (FieldRelocLen) { 939 OS.AddComment("FieldReloc"); 940 OS.emitInt32(BTF::BPFFieldRelocSize); 941 for (const auto &FieldRelocSec : FieldRelocTable) { 942 OS.AddComment("Field reloc section string offset=" + 943 std::to_string(FieldRelocSec.first)); 944 OS.emitInt32(FieldRelocSec.first); 945 OS.emitInt32(FieldRelocSec.second.size()); 946 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 947 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 948 OS.emitInt32(FieldRelocInfo.TypeID); 949 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 950 OS.emitInt32(FieldRelocInfo.RelocKind); 951 } 952 } 953 } 954 } 955 956 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 957 auto *SP = MF->getFunction().getSubprogram(); 958 auto *Unit = SP->getUnit(); 959 960 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 961 SkipInstruction = true; 962 return; 963 } 964 SkipInstruction = false; 965 966 // Collect MapDef types. Map definition needs to collect 967 // pointee types. Do it first. Otherwise, for the following 968 // case: 969 // struct m { ...}; 970 // struct t { 971 // struct m *key; 972 // }; 973 // foo(struct t *arg); 974 // 975 // struct mapdef { 976 // ... 977 // struct m *key; 978 // ... 979 // } __attribute__((section(".maps"))) hash_map; 980 // 981 // If subroutine foo is traversed first, a type chain 982 // "ptr->struct m(fwd)" will be created and later on 983 // when traversing mapdef, since "ptr->struct m" exists, 984 // the traversal of "struct m" will be omitted. 985 if (MapDefNotCollected) { 986 processGlobals(true); 987 MapDefNotCollected = false; 988 } 989 990 // Collect all types locally referenced in this function. 991 // Use RetainedNodes so we can collect all argument names 992 // even if the argument is not used. 993 std::unordered_map<uint32_t, StringRef> FuncArgNames; 994 for (const DINode *DN : SP->getRetainedNodes()) { 995 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 996 // Collect function arguments for subprogram func type. 997 uint32_t Arg = DV->getArg(); 998 if (Arg) { 999 visitTypeEntry(DV->getType()); 1000 FuncArgNames[Arg] = DV->getName(); 1001 } 1002 } 1003 } 1004 1005 // Construct subprogram func proto type. 1006 uint32_t ProtoTypeId; 1007 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1008 1009 // Construct subprogram func type 1010 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1011 auto FuncTypeEntry = 1012 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1013 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1014 1015 // Process argument annotations. 1016 for (const DINode *DN : SP->getRetainedNodes()) { 1017 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1018 uint32_t Arg = DV->getArg(); 1019 if (Arg) 1020 processAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1021 } 1022 } 1023 1024 processAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1025 1026 for (const auto &TypeEntry : TypeEntries) 1027 TypeEntry->completeType(*this); 1028 1029 // Construct funcinfo and the first lineinfo for the function. 1030 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1031 BTFFuncInfo FuncInfo; 1032 FuncInfo.Label = FuncLabel; 1033 FuncInfo.TypeId = FuncTypeId; 1034 if (FuncLabel->isInSection()) { 1035 MCSection &Section = FuncLabel->getSection(); 1036 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1037 assert(SectionELF && "Null section for Function Label"); 1038 SecNameOff = addString(SectionELF->getName()); 1039 } else { 1040 SecNameOff = addString(".text"); 1041 } 1042 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1043 } 1044 1045 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1046 SkipInstruction = false; 1047 LineInfoGenerated = false; 1048 SecNameOff = 0; 1049 } 1050 1051 /// On-demand populate types as requested from abstract member 1052 /// accessing or preserve debuginfo type. 1053 unsigned BTFDebug::populateType(const DIType *Ty) { 1054 unsigned Id; 1055 visitTypeEntry(Ty, Id, false, false); 1056 for (const auto &TypeEntry : TypeEntries) 1057 TypeEntry->completeType(*this); 1058 return Id; 1059 } 1060 1061 /// Generate a struct member field relocation. 1062 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1063 const GlobalVariable *GVar, bool IsAma) { 1064 BTFFieldReloc FieldReloc; 1065 FieldReloc.Label = ORSym; 1066 FieldReloc.TypeID = RootId; 1067 1068 StringRef AccessPattern = GVar->getName(); 1069 size_t FirstDollar = AccessPattern.find_first_of('$'); 1070 if (IsAma) { 1071 size_t FirstColon = AccessPattern.find_first_of(':'); 1072 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1073 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1074 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1075 SecondColon - FirstColon); 1076 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1077 FirstDollar - SecondColon); 1078 1079 FieldReloc.OffsetNameOff = addString(IndexPattern); 1080 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1081 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1082 FieldReloc.RelocKind); 1083 } else { 1084 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1085 FieldReloc.OffsetNameOff = addString("0"); 1086 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1087 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1088 } 1089 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1090 } 1091 1092 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1093 // check whether this is a candidate or not 1094 if (MO.isGlobal()) { 1095 const GlobalValue *GVal = MO.getGlobal(); 1096 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1097 if (!GVar) { 1098 // Not a global variable. Maybe an extern function reference. 1099 processFuncPrototypes(dyn_cast<Function>(GVal)); 1100 return; 1101 } 1102 1103 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1104 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1105 return; 1106 1107 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1108 OS.emitLabel(ORSym); 1109 1110 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1111 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1112 generatePatchImmReloc(ORSym, RootId, GVar, 1113 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1114 } 1115 } 1116 1117 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1118 DebugHandlerBase::beginInstruction(MI); 1119 1120 if (SkipInstruction || MI->isMetaInstruction() || 1121 MI->getFlag(MachineInstr::FrameSetup)) 1122 return; 1123 1124 if (MI->isInlineAsm()) { 1125 // Count the number of register definitions to find the asm string. 1126 unsigned NumDefs = 0; 1127 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1128 ++NumDefs) 1129 ; 1130 1131 // Skip this inline asm instruction if the asmstr is empty. 1132 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1133 if (AsmStr[0] == 0) 1134 return; 1135 } 1136 1137 if (MI->getOpcode() == BPF::LD_imm64) { 1138 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1139 // add this insn into the .BTF.ext FieldReloc subsection. 1140 // Relocation looks like: 1141 // . SecName: 1142 // . InstOffset 1143 // . TypeID 1144 // . OffSetNameOff 1145 // . RelocType 1146 // Later, the insn is replaced with "r2 = <offset>" 1147 // where "<offset>" equals to the offset based on current 1148 // type definitions. 1149 // 1150 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1151 // The LD_imm64 result will be replaced with a btf type id. 1152 processGlobalValue(MI->getOperand(1)); 1153 } else if (MI->getOpcode() == BPF::CORE_MEM || 1154 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1155 MI->getOpcode() == BPF::CORE_SHIFT) { 1156 // relocation insn is a load, store or shift insn. 1157 processGlobalValue(MI->getOperand(3)); 1158 } else if (MI->getOpcode() == BPF::JAL) { 1159 // check extern function references 1160 const MachineOperand &MO = MI->getOperand(0); 1161 if (MO.isGlobal()) { 1162 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1163 } 1164 } 1165 1166 if (!CurMI) // no debug info 1167 return; 1168 1169 // Skip this instruction if no DebugLoc or the DebugLoc 1170 // is the same as the previous instruction. 1171 const DebugLoc &DL = MI->getDebugLoc(); 1172 if (!DL || PrevInstLoc == DL) { 1173 // This instruction will be skipped, no LineInfo has 1174 // been generated, construct one based on function signature. 1175 if (LineInfoGenerated == false) { 1176 auto *S = MI->getMF()->getFunction().getSubprogram(); 1177 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1178 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1179 LineInfoGenerated = true; 1180 } 1181 1182 return; 1183 } 1184 1185 // Create a temporary label to remember the insn for lineinfo. 1186 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1187 OS.emitLabel(LineSym); 1188 1189 // Construct the lineinfo. 1190 auto SP = DL.get()->getScope()->getSubprogram(); 1191 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1192 1193 LineInfoGenerated = true; 1194 PrevInstLoc = DL; 1195 } 1196 1197 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1198 // Collect all types referenced by globals. 1199 const Module *M = MMI->getModule(); 1200 for (const GlobalVariable &Global : M->globals()) { 1201 // Decide the section name. 1202 StringRef SecName; 1203 if (Global.hasSection()) { 1204 SecName = Global.getSection(); 1205 } else if (Global.hasInitializer()) { 1206 // data, bss, or readonly sections 1207 if (Global.isConstant()) 1208 SecName = ".rodata"; 1209 else 1210 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1211 } 1212 1213 if (ProcessingMapDef != SecName.startswith(".maps")) 1214 continue; 1215 1216 // Create a .rodata datasec if the global variable is an initialized 1217 // constant with private linkage and if it won't be in .rodata.str<#> 1218 // and .rodata.cst<#> sections. 1219 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1220 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1221 SectionKind GVKind = 1222 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1223 // skip .rodata.str<#> and .rodata.cst<#> sections 1224 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1225 DataSecEntries[std::string(SecName)] = 1226 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1227 } 1228 } 1229 1230 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1231 Global.getDebugInfo(GVs); 1232 1233 // No type information, mostly internal, skip it. 1234 if (GVs.size() == 0) 1235 continue; 1236 1237 uint32_t GVTypeId = 0; 1238 DIGlobalVariable *DIGlobal = nullptr; 1239 for (auto *GVE : GVs) { 1240 DIGlobal = GVE->getVariable(); 1241 if (SecName.startswith(".maps")) 1242 visitMapDefType(DIGlobal->getType(), GVTypeId); 1243 else 1244 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1245 break; 1246 } 1247 1248 // Only support the following globals: 1249 // . static variables 1250 // . non-static weak or non-weak global variables 1251 // . weak or non-weak extern global variables 1252 // Whether DataSec is readonly or not can be found from corresponding ELF 1253 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1254 // can be found from the corresponding ELF symbol table. 1255 auto Linkage = Global.getLinkage(); 1256 if (Linkage != GlobalValue::InternalLinkage && 1257 Linkage != GlobalValue::ExternalLinkage && 1258 Linkage != GlobalValue::WeakAnyLinkage && 1259 Linkage != GlobalValue::WeakODRLinkage && 1260 Linkage != GlobalValue::ExternalWeakLinkage) 1261 continue; 1262 1263 uint32_t GVarInfo; 1264 if (Linkage == GlobalValue::InternalLinkage) { 1265 GVarInfo = BTF::VAR_STATIC; 1266 } else if (Global.hasInitializer()) { 1267 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1268 } else { 1269 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1270 } 1271 1272 auto VarEntry = 1273 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1274 uint32_t VarId = addType(std::move(VarEntry)); 1275 1276 processAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1277 1278 // An empty SecName means an extern variable without section attribute. 1279 if (SecName.empty()) 1280 continue; 1281 1282 // Find or create a DataSec 1283 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1284 DataSecEntries[std::string(SecName)] = 1285 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1286 } 1287 1288 // Calculate symbol size 1289 const DataLayout &DL = Global.getParent()->getDataLayout(); 1290 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1291 1292 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1293 Asm->getSymbol(&Global), Size); 1294 } 1295 } 1296 1297 /// Emit proper patchable instructions. 1298 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1299 if (MI->getOpcode() == BPF::LD_imm64) { 1300 const MachineOperand &MO = MI->getOperand(1); 1301 if (MO.isGlobal()) { 1302 const GlobalValue *GVal = MO.getGlobal(); 1303 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1304 if (GVar) { 1305 // Emit "mov ri, <imm>" 1306 int64_t Imm; 1307 uint32_t Reloc; 1308 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1309 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1310 Imm = PatchImms[GVar].first; 1311 Reloc = PatchImms[GVar].second; 1312 } else { 1313 return false; 1314 } 1315 1316 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1317 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1318 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1319 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1320 OutMI.setOpcode(BPF::LD_imm64); 1321 else 1322 OutMI.setOpcode(BPF::MOV_ri); 1323 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1324 OutMI.addOperand(MCOperand::createImm(Imm)); 1325 return true; 1326 } 1327 } 1328 } else if (MI->getOpcode() == BPF::CORE_MEM || 1329 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1330 MI->getOpcode() == BPF::CORE_SHIFT) { 1331 const MachineOperand &MO = MI->getOperand(3); 1332 if (MO.isGlobal()) { 1333 const GlobalValue *GVal = MO.getGlobal(); 1334 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1335 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1336 uint32_t Imm = PatchImms[GVar].first; 1337 OutMI.setOpcode(MI->getOperand(1).getImm()); 1338 if (MI->getOperand(0).isImm()) 1339 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1340 else 1341 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1342 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1343 OutMI.addOperand(MCOperand::createImm(Imm)); 1344 return true; 1345 } 1346 } 1347 } 1348 return false; 1349 } 1350 1351 void BTFDebug::processFuncPrototypes(const Function *F) { 1352 if (!F) 1353 return; 1354 1355 const DISubprogram *SP = F->getSubprogram(); 1356 if (!SP || SP->isDefinition()) 1357 return; 1358 1359 // Do not emit again if already emitted. 1360 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1361 return; 1362 ProtoFunctions.insert(F); 1363 1364 uint32_t ProtoTypeId; 1365 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1366 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1367 1368 uint8_t Scope = BTF::FUNC_EXTERN; 1369 auto FuncTypeEntry = 1370 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1371 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1372 1373 processAnnotations(SP->getAnnotations(), FuncId, -1); 1374 1375 if (F->hasSection()) { 1376 StringRef SecName = F->getSection(); 1377 1378 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1379 DataSecEntries[std::string(SecName)] = 1380 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1381 } 1382 1383 // We really don't know func size, set it to 0. 1384 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1385 Asm->getSymbol(F), 0); 1386 } 1387 } 1388 1389 void BTFDebug::endModule() { 1390 // Collect MapDef globals if not collected yet. 1391 if (MapDefNotCollected) { 1392 processGlobals(true); 1393 MapDefNotCollected = false; 1394 } 1395 1396 // Collect global types/variables except MapDef globals. 1397 processGlobals(false); 1398 1399 for (auto &DataSec : DataSecEntries) 1400 addType(std::move(DataSec.second)); 1401 1402 // Fixups 1403 for (auto &Fixup : FixupDerivedTypes) { 1404 StringRef TypeName = Fixup.first; 1405 bool IsUnion = Fixup.second.first; 1406 1407 // Search through struct types 1408 uint32_t StructTypeId = 0; 1409 for (const auto &StructType : StructTypes) { 1410 if (StructType->getName() == TypeName) { 1411 StructTypeId = StructType->getId(); 1412 break; 1413 } 1414 } 1415 1416 if (StructTypeId == 0) { 1417 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1418 StructTypeId = addType(std::move(FwdTypeEntry)); 1419 } 1420 1421 for (auto &DType : Fixup.second.second) { 1422 DType->setPointeeType(StructTypeId); 1423 } 1424 } 1425 1426 // Complete BTF type cross refereences. 1427 for (const auto &TypeEntry : TypeEntries) 1428 TypeEntry->completeType(*this); 1429 1430 // Emit BTF sections. 1431 emitBTFSection(); 1432 emitBTFExtSection(); 1433 } 1434