1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 70 if (IsCompleted) 71 return; 72 IsCompleted = true; 73 74 BTFType.NameOff = BDebug.addString(DTy->getName()); 75 76 if (NeedsFixup) 77 return; 78 79 // The base type for PTR/CONST/VOLATILE could be void. 80 const DIType *ResolvedType = DTy->getBaseType(); 81 if (!ResolvedType) { 82 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 83 Kind == BTF::BTF_KIND_VOLATILE) && 84 "Invalid null basetype"); 85 BTFType.Type = 0; 86 } else { 87 BTFType.Type = BDebug.getTypeId(ResolvedType); 88 } 89 } 90 91 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 92 93 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 94 BTFType.Type = PointeeType; 95 } 96 97 /// Represent a struct/union forward declaration. 98 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 99 Kind = BTF::BTF_KIND_FWD; 100 BTFType.Info = IsUnion << 31 | Kind << 24; 101 BTFType.Type = 0; 102 } 103 104 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 105 if (IsCompleted) 106 return; 107 IsCompleted = true; 108 109 BTFType.NameOff = BDebug.addString(Name); 110 } 111 112 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 113 114 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 115 uint32_t OffsetInBits, StringRef TypeName) 116 : Name(TypeName) { 117 // Translate IR int encoding to BTF int encoding. 118 uint8_t BTFEncoding; 119 switch (Encoding) { 120 case dwarf::DW_ATE_boolean: 121 BTFEncoding = BTF::INT_BOOL; 122 break; 123 case dwarf::DW_ATE_signed: 124 case dwarf::DW_ATE_signed_char: 125 BTFEncoding = BTF::INT_SIGNED; 126 break; 127 case dwarf::DW_ATE_unsigned: 128 case dwarf::DW_ATE_unsigned_char: 129 BTFEncoding = 0; 130 break; 131 default: 132 llvm_unreachable("Unknown BTFTypeInt Encoding"); 133 } 134 135 Kind = BTF::BTF_KIND_INT; 136 BTFType.Info = Kind << 24; 137 BTFType.Size = roundupToBytes(SizeInBits); 138 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 139 } 140 141 void BTFTypeInt::completeType(BTFDebug &BDebug) { 142 if (IsCompleted) 143 return; 144 IsCompleted = true; 145 146 BTFType.NameOff = BDebug.addString(Name); 147 } 148 149 void BTFTypeInt::emitType(MCStreamer &OS) { 150 BTFTypeBase::emitType(OS); 151 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 152 OS.emitInt32(IntVal); 153 } 154 155 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 156 Kind = BTF::BTF_KIND_ENUM; 157 BTFType.Info = Kind << 24 | VLen; 158 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 159 } 160 161 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 162 if (IsCompleted) 163 return; 164 IsCompleted = true; 165 166 BTFType.NameOff = BDebug.addString(ETy->getName()); 167 168 DINodeArray Elements = ETy->getElements(); 169 for (const auto Element : Elements) { 170 const auto *Enum = cast<DIEnumerator>(Element); 171 172 struct BTF::BTFEnum BTFEnum; 173 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 174 // BTF enum value is 32bit, enforce it. 175 uint32_t Value; 176 if (Enum->isUnsigned()) 177 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 178 else 179 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 180 BTFEnum.Val = Value; 181 EnumValues.push_back(BTFEnum); 182 } 183 } 184 185 void BTFTypeEnum::emitType(MCStreamer &OS) { 186 BTFTypeBase::emitType(OS); 187 for (const auto &Enum : EnumValues) { 188 OS.emitInt32(Enum.NameOff); 189 OS.emitInt32(Enum.Val); 190 } 191 } 192 193 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 194 Kind = BTF::BTF_KIND_ARRAY; 195 BTFType.NameOff = 0; 196 BTFType.Info = Kind << 24; 197 BTFType.Size = 0; 198 199 ArrayInfo.ElemType = ElemTypeId; 200 ArrayInfo.Nelems = NumElems; 201 } 202 203 /// Represent a BTF array. 204 void BTFTypeArray::completeType(BTFDebug &BDebug) { 205 if (IsCompleted) 206 return; 207 IsCompleted = true; 208 209 // The IR does not really have a type for the index. 210 // A special type for array index should have been 211 // created during initial type traversal. Just 212 // retrieve that type id. 213 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 214 } 215 216 void BTFTypeArray::emitType(MCStreamer &OS) { 217 BTFTypeBase::emitType(OS); 218 OS.emitInt32(ArrayInfo.ElemType); 219 OS.emitInt32(ArrayInfo.IndexType); 220 OS.emitInt32(ArrayInfo.Nelems); 221 } 222 223 /// Represent either a struct or a union. 224 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 225 bool HasBitField, uint32_t Vlen) 226 : STy(STy), HasBitField(HasBitField) { 227 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 228 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 229 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 230 } 231 232 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 233 if (IsCompleted) 234 return; 235 IsCompleted = true; 236 237 BTFType.NameOff = BDebug.addString(STy->getName()); 238 239 // Add struct/union members. 240 const DINodeArray Elements = STy->getElements(); 241 for (const auto *Element : Elements) { 242 struct BTF::BTFMember BTFMember; 243 const auto *DDTy = cast<DIDerivedType>(Element); 244 245 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 246 if (HasBitField) { 247 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 248 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 249 } else { 250 BTFMember.Offset = DDTy->getOffsetInBits(); 251 } 252 const auto *BaseTy = DDTy->getBaseType(); 253 BTFMember.Type = BDebug.getTypeId(BaseTy); 254 Members.push_back(BTFMember); 255 } 256 } 257 258 void BTFTypeStruct::emitType(MCStreamer &OS) { 259 BTFTypeBase::emitType(OS); 260 for (const auto &Member : Members) { 261 OS.emitInt32(Member.NameOff); 262 OS.emitInt32(Member.Type); 263 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 264 OS.emitInt32(Member.Offset); 265 } 266 } 267 268 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 269 270 /// The Func kind represents both subprogram and pointee of function 271 /// pointers. If the FuncName is empty, it represents a pointee of function 272 /// pointer. Otherwise, it represents a subprogram. The func arg names 273 /// are empty for pointee of function pointer case, and are valid names 274 /// for subprogram. 275 BTFTypeFuncProto::BTFTypeFuncProto( 276 const DISubroutineType *STy, uint32_t VLen, 277 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 278 : STy(STy), FuncArgNames(FuncArgNames) { 279 Kind = BTF::BTF_KIND_FUNC_PROTO; 280 BTFType.Info = (Kind << 24) | VLen; 281 } 282 283 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 284 if (IsCompleted) 285 return; 286 IsCompleted = true; 287 288 DITypeRefArray Elements = STy->getTypeArray(); 289 auto RetType = Elements[0]; 290 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 291 BTFType.NameOff = 0; 292 293 // For null parameter which is typically the last one 294 // to represent the vararg, encode the NameOff/Type to be 0. 295 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 296 struct BTF::BTFParam Param; 297 auto Element = Elements[I]; 298 if (Element) { 299 Param.NameOff = BDebug.addString(FuncArgNames[I]); 300 Param.Type = BDebug.getTypeId(Element); 301 } else { 302 Param.NameOff = 0; 303 Param.Type = 0; 304 } 305 Parameters.push_back(Param); 306 } 307 } 308 309 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 310 BTFTypeBase::emitType(OS); 311 for (const auto &Param : Parameters) { 312 OS.emitInt32(Param.NameOff); 313 OS.emitInt32(Param.Type); 314 } 315 } 316 317 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 318 uint32_t Scope) 319 : Name(FuncName) { 320 Kind = BTF::BTF_KIND_FUNC; 321 BTFType.Info = (Kind << 24) | Scope; 322 BTFType.Type = ProtoTypeId; 323 } 324 325 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 326 if (IsCompleted) 327 return; 328 IsCompleted = true; 329 330 BTFType.NameOff = BDebug.addString(Name); 331 } 332 333 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 334 335 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 336 : Name(VarName) { 337 Kind = BTF::BTF_KIND_VAR; 338 BTFType.Info = Kind << 24; 339 BTFType.Type = TypeId; 340 Info = VarInfo; 341 } 342 343 void BTFKindVar::completeType(BTFDebug &BDebug) { 344 BTFType.NameOff = BDebug.addString(Name); 345 } 346 347 void BTFKindVar::emitType(MCStreamer &OS) { 348 BTFTypeBase::emitType(OS); 349 OS.emitInt32(Info); 350 } 351 352 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 353 : Asm(AsmPrt), Name(SecName) { 354 Kind = BTF::BTF_KIND_DATASEC; 355 BTFType.Info = Kind << 24; 356 BTFType.Size = 0; 357 } 358 359 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 360 BTFType.NameOff = BDebug.addString(Name); 361 BTFType.Info |= Vars.size(); 362 } 363 364 void BTFKindDataSec::emitType(MCStreamer &OS) { 365 BTFTypeBase::emitType(OS); 366 367 for (const auto &V : Vars) { 368 OS.emitInt32(std::get<0>(V)); 369 Asm->emitLabelReference(std::get<1>(V), 4); 370 OS.emitInt32(std::get<2>(V)); 371 } 372 } 373 374 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 375 : Name(TypeName) { 376 Kind = BTF::BTF_KIND_FLOAT; 377 BTFType.Info = Kind << 24; 378 BTFType.Size = roundupToBytes(SizeInBits); 379 } 380 381 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 382 if (IsCompleted) 383 return; 384 IsCompleted = true; 385 386 BTFType.NameOff = BDebug.addString(Name); 387 } 388 389 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 390 StringRef Tag) 391 : Tag(Tag) { 392 Kind = BTF::BTF_KIND_DECL_TAG; 393 BTFType.Info = Kind << 24; 394 BTFType.Type = BaseTypeId; 395 Info = ComponentIdx; 396 } 397 398 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 399 if (IsCompleted) 400 return; 401 IsCompleted = true; 402 403 BTFType.NameOff = BDebug.addString(Tag); 404 } 405 406 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 407 BTFTypeBase::emitType(OS); 408 OS.emitInt32(Info); 409 } 410 411 uint32_t BTFStringTable::addString(StringRef S) { 412 // Check whether the string already exists. 413 for (auto &OffsetM : OffsetToIdMap) { 414 if (Table[OffsetM.second] == S) 415 return OffsetM.first; 416 } 417 // Not find, add to the string table. 418 uint32_t Offset = Size; 419 OffsetToIdMap[Offset] = Table.size(); 420 Table.push_back(std::string(S)); 421 Size += S.size() + 1; 422 return Offset; 423 } 424 425 BTFDebug::BTFDebug(AsmPrinter *AP) 426 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 427 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 428 MapDefNotCollected(true) { 429 addString("\0"); 430 } 431 432 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 433 const DIType *Ty) { 434 TypeEntry->setId(TypeEntries.size() + 1); 435 uint32_t Id = TypeEntry->getId(); 436 DIToIdMap[Ty] = Id; 437 TypeEntries.push_back(std::move(TypeEntry)); 438 return Id; 439 } 440 441 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 442 TypeEntry->setId(TypeEntries.size() + 1); 443 uint32_t Id = TypeEntry->getId(); 444 TypeEntries.push_back(std::move(TypeEntry)); 445 return Id; 446 } 447 448 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 449 // Only int and binary floating point types are supported in BTF. 450 uint32_t Encoding = BTy->getEncoding(); 451 std::unique_ptr<BTFTypeBase> TypeEntry; 452 switch (Encoding) { 453 case dwarf::DW_ATE_boolean: 454 case dwarf::DW_ATE_signed: 455 case dwarf::DW_ATE_signed_char: 456 case dwarf::DW_ATE_unsigned: 457 case dwarf::DW_ATE_unsigned_char: 458 // Create a BTF type instance for this DIBasicType and put it into 459 // DIToIdMap for cross-type reference check. 460 TypeEntry = std::make_unique<BTFTypeInt>( 461 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 462 break; 463 case dwarf::DW_ATE_float: 464 TypeEntry = 465 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 466 break; 467 default: 468 return; 469 } 470 471 TypeId = addType(std::move(TypeEntry), BTy); 472 } 473 474 /// Handle subprogram or subroutine types. 475 void BTFDebug::visitSubroutineType( 476 const DISubroutineType *STy, bool ForSubprog, 477 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 478 uint32_t &TypeId) { 479 DITypeRefArray Elements = STy->getTypeArray(); 480 uint32_t VLen = Elements.size() - 1; 481 if (VLen > BTF::MAX_VLEN) 482 return; 483 484 // Subprogram has a valid non-zero-length name, and the pointee of 485 // a function pointer has an empty name. The subprogram type will 486 // not be added to DIToIdMap as it should not be referenced by 487 // any other types. 488 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 489 if (ForSubprog) 490 TypeId = addType(std::move(TypeEntry)); // For subprogram 491 else 492 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 493 494 // Visit return type and func arg types. 495 for (const auto Element : Elements) { 496 visitTypeEntry(Element); 497 } 498 } 499 500 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 501 uint32_t BaseTypeId, 502 int ComponentIdx) { 503 if (!Annotations) 504 return; 505 506 for (const Metadata *Annotation : Annotations->operands()) { 507 const MDNode *MD = cast<MDNode>(Annotation); 508 const MDString *Name = cast<MDString>(MD->getOperand(0)); 509 if (!Name->getString().equals("btf_decl_tag")) 510 continue; 511 512 const MDString *Value = cast<MDString>(MD->getOperand(1)); 513 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 514 Value->getString()); 515 addType(std::move(TypeEntry)); 516 } 517 } 518 519 /// Handle structure/union types. 520 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 521 uint32_t &TypeId) { 522 const DINodeArray Elements = CTy->getElements(); 523 uint32_t VLen = Elements.size(); 524 if (VLen > BTF::MAX_VLEN) 525 return; 526 527 // Check whether we have any bitfield members or not 528 bool HasBitField = false; 529 for (const auto *Element : Elements) { 530 auto E = cast<DIDerivedType>(Element); 531 if (E->isBitField()) { 532 HasBitField = true; 533 break; 534 } 535 } 536 537 auto TypeEntry = 538 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 539 StructTypes.push_back(TypeEntry.get()); 540 TypeId = addType(std::move(TypeEntry), CTy); 541 542 // Check struct/union annotations 543 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 544 545 // Visit all struct members. 546 int FieldNo = 0; 547 for (const auto *Element : Elements) { 548 const auto Elem = cast<DIDerivedType>(Element); 549 visitTypeEntry(Elem); 550 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 551 FieldNo++; 552 } 553 } 554 555 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 556 // Visit array element type. 557 uint32_t ElemTypeId; 558 const DIType *ElemType = CTy->getBaseType(); 559 visitTypeEntry(ElemType, ElemTypeId, false, false); 560 561 // Visit array dimensions. 562 DINodeArray Elements = CTy->getElements(); 563 for (int I = Elements.size() - 1; I >= 0; --I) { 564 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 565 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 566 const DISubrange *SR = cast<DISubrange>(Element); 567 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 568 int64_t Count = CI->getSExtValue(); 569 570 // For struct s { int b; char c[]; }, the c[] will be represented 571 // as an array with Count = -1. 572 auto TypeEntry = 573 std::make_unique<BTFTypeArray>(ElemTypeId, 574 Count >= 0 ? Count : 0); 575 if (I == 0) 576 ElemTypeId = addType(std::move(TypeEntry), CTy); 577 else 578 ElemTypeId = addType(std::move(TypeEntry)); 579 } 580 } 581 582 // The array TypeId is the type id of the outermost dimension. 583 TypeId = ElemTypeId; 584 585 // The IR does not have a type for array index while BTF wants one. 586 // So create an array index type if there is none. 587 if (!ArrayIndexTypeId) { 588 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 589 0, "__ARRAY_SIZE_TYPE__"); 590 ArrayIndexTypeId = addType(std::move(TypeEntry)); 591 } 592 } 593 594 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 595 DINodeArray Elements = CTy->getElements(); 596 uint32_t VLen = Elements.size(); 597 if (VLen > BTF::MAX_VLEN) 598 return; 599 600 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 601 TypeId = addType(std::move(TypeEntry), CTy); 602 // No need to visit base type as BTF does not encode it. 603 } 604 605 /// Handle structure/union forward declarations. 606 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 607 uint32_t &TypeId) { 608 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 609 TypeId = addType(std::move(TypeEntry), CTy); 610 } 611 612 /// Handle structure, union, array and enumeration types. 613 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 614 uint32_t &TypeId) { 615 auto Tag = CTy->getTag(); 616 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 617 // Handle forward declaration differently as it does not have members. 618 if (CTy->isForwardDecl()) 619 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 620 else 621 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 622 } else if (Tag == dwarf::DW_TAG_array_type) 623 visitArrayType(CTy, TypeId); 624 else if (Tag == dwarf::DW_TAG_enumeration_type) 625 visitEnumType(CTy, TypeId); 626 } 627 628 /// Handle pointer, typedef, const, volatile, restrict and member types. 629 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 630 bool CheckPointer, bool SeenPointer) { 631 unsigned Tag = DTy->getTag(); 632 633 /// Try to avoid chasing pointees, esp. structure pointees which may 634 /// unnecessary bring in a lot of types. 635 if (CheckPointer && !SeenPointer) { 636 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 637 } 638 639 if (CheckPointer && SeenPointer) { 640 const DIType *Base = DTy->getBaseType(); 641 if (Base) { 642 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 643 auto CTag = CTy->getTag(); 644 if ((CTag == dwarf::DW_TAG_structure_type || 645 CTag == dwarf::DW_TAG_union_type) && 646 !CTy->getName().empty() && !CTy->isForwardDecl()) { 647 /// Find a candidate, generate a fixup. Later on the struct/union 648 /// pointee type will be replaced with either a real type or 649 /// a forward declaration. 650 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 651 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 652 Fixup.first = CTag == dwarf::DW_TAG_union_type; 653 Fixup.second.push_back(TypeEntry.get()); 654 TypeId = addType(std::move(TypeEntry), DTy); 655 return; 656 } 657 } 658 } 659 } 660 661 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 662 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 663 Tag == dwarf::DW_TAG_restrict_type) { 664 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 665 TypeId = addType(std::move(TypeEntry), DTy); 666 } else if (Tag != dwarf::DW_TAG_member) { 667 return; 668 } 669 670 // Visit base type of pointer, typedef, const, volatile, restrict or 671 // struct/union member. 672 uint32_t TempTypeId = 0; 673 if (Tag == dwarf::DW_TAG_member) 674 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 675 else 676 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 677 } 678 679 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 680 bool CheckPointer, bool SeenPointer) { 681 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 682 TypeId = DIToIdMap[Ty]; 683 684 // To handle the case like the following: 685 // struct t; 686 // typedef struct t _t; 687 // struct s1 { _t *c; }; 688 // int test1(struct s1 *arg) { ... } 689 // 690 // struct t { int a; int b; }; 691 // struct s2 { _t c; } 692 // int test2(struct s2 *arg) { ... } 693 // 694 // During traversing test1() argument, "_t" is recorded 695 // in DIToIdMap and a forward declaration fixup is created 696 // for "struct t" to avoid pointee type traversal. 697 // 698 // During traversing test2() argument, even if we see "_t" is 699 // already defined, we should keep moving to eventually 700 // bring in types for "struct t". Otherwise, the "struct s2" 701 // definition won't be correct. 702 if (Ty && (!CheckPointer || !SeenPointer)) { 703 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 704 unsigned Tag = DTy->getTag(); 705 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 706 Tag == dwarf::DW_TAG_volatile_type || 707 Tag == dwarf::DW_TAG_restrict_type) { 708 uint32_t TmpTypeId; 709 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 710 SeenPointer); 711 } 712 } 713 } 714 715 return; 716 } 717 718 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 719 visitBasicType(BTy, TypeId); 720 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 721 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 722 TypeId); 723 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 724 visitCompositeType(CTy, TypeId); 725 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 726 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 727 else 728 llvm_unreachable("Unknown DIType"); 729 } 730 731 void BTFDebug::visitTypeEntry(const DIType *Ty) { 732 uint32_t TypeId; 733 visitTypeEntry(Ty, TypeId, false, false); 734 } 735 736 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 737 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 738 TypeId = DIToIdMap[Ty]; 739 return; 740 } 741 742 // MapDef type may be a struct type or a non-pointer derived type 743 const DIType *OrigTy = Ty; 744 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 745 auto Tag = DTy->getTag(); 746 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 747 Tag != dwarf::DW_TAG_volatile_type && 748 Tag != dwarf::DW_TAG_restrict_type) 749 break; 750 Ty = DTy->getBaseType(); 751 } 752 753 const auto *CTy = dyn_cast<DICompositeType>(Ty); 754 if (!CTy) 755 return; 756 757 auto Tag = CTy->getTag(); 758 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 759 return; 760 761 // Visit all struct members to ensure pointee type is visited 762 const DINodeArray Elements = CTy->getElements(); 763 for (const auto *Element : Elements) { 764 const auto *MemberType = cast<DIDerivedType>(Element); 765 visitTypeEntry(MemberType->getBaseType()); 766 } 767 768 // Visit this type, struct or a const/typedef/volatile/restrict type 769 visitTypeEntry(OrigTy, TypeId, false, false); 770 } 771 772 /// Read file contents from the actual file or from the source 773 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 774 auto File = SP->getFile(); 775 std::string FileName; 776 777 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 778 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 779 else 780 FileName = std::string(File->getFilename()); 781 782 // No need to populate the contends if it has been populated! 783 if (FileContent.find(FileName) != FileContent.end()) 784 return FileName; 785 786 std::vector<std::string> Content; 787 std::string Line; 788 Content.push_back(Line); // Line 0 for empty string 789 790 std::unique_ptr<MemoryBuffer> Buf; 791 auto Source = File->getSource(); 792 if (Source) 793 Buf = MemoryBuffer::getMemBufferCopy(*Source); 794 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 795 MemoryBuffer::getFile(FileName)) 796 Buf = std::move(*BufOrErr); 797 if (Buf) 798 for (line_iterator I(*Buf, false), E; I != E; ++I) 799 Content.push_back(std::string(*I)); 800 801 FileContent[FileName] = Content; 802 return FileName; 803 } 804 805 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 806 uint32_t Line, uint32_t Column) { 807 std::string FileName = populateFileContent(SP); 808 BTFLineInfo LineInfo; 809 810 LineInfo.Label = Label; 811 LineInfo.FileNameOff = addString(FileName); 812 // If file content is not available, let LineOff = 0. 813 if (Line < FileContent[FileName].size()) 814 LineInfo.LineOff = addString(FileContent[FileName][Line]); 815 else 816 LineInfo.LineOff = 0; 817 LineInfo.LineNum = Line; 818 LineInfo.ColumnNum = Column; 819 LineInfoTable[SecNameOff].push_back(LineInfo); 820 } 821 822 void BTFDebug::emitCommonHeader() { 823 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 824 OS.emitIntValue(BTF::MAGIC, 2); 825 OS.emitInt8(BTF::VERSION); 826 OS.emitInt8(0); 827 } 828 829 void BTFDebug::emitBTFSection() { 830 // Do not emit section if no types and only "" string. 831 if (!TypeEntries.size() && StringTable.getSize() == 1) 832 return; 833 834 MCContext &Ctx = OS.getContext(); 835 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 836 837 // Emit header. 838 emitCommonHeader(); 839 OS.emitInt32(BTF::HeaderSize); 840 841 uint32_t TypeLen = 0, StrLen; 842 for (const auto &TypeEntry : TypeEntries) 843 TypeLen += TypeEntry->getSize(); 844 StrLen = StringTable.getSize(); 845 846 OS.emitInt32(0); 847 OS.emitInt32(TypeLen); 848 OS.emitInt32(TypeLen); 849 OS.emitInt32(StrLen); 850 851 // Emit type table. 852 for (const auto &TypeEntry : TypeEntries) 853 TypeEntry->emitType(OS); 854 855 // Emit string table. 856 uint32_t StringOffset = 0; 857 for (const auto &S : StringTable.getTable()) { 858 OS.AddComment("string offset=" + std::to_string(StringOffset)); 859 OS.emitBytes(S); 860 OS.emitBytes(StringRef("\0", 1)); 861 StringOffset += S.size() + 1; 862 } 863 } 864 865 void BTFDebug::emitBTFExtSection() { 866 // Do not emit section if empty FuncInfoTable and LineInfoTable 867 // and FieldRelocTable. 868 if (!FuncInfoTable.size() && !LineInfoTable.size() && 869 !FieldRelocTable.size()) 870 return; 871 872 MCContext &Ctx = OS.getContext(); 873 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 874 875 // Emit header. 876 emitCommonHeader(); 877 OS.emitInt32(BTF::ExtHeaderSize); 878 879 // Account for FuncInfo/LineInfo record size as well. 880 uint32_t FuncLen = 4, LineLen = 4; 881 // Do not account for optional FieldReloc. 882 uint32_t FieldRelocLen = 0; 883 for (const auto &FuncSec : FuncInfoTable) { 884 FuncLen += BTF::SecFuncInfoSize; 885 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 886 } 887 for (const auto &LineSec : LineInfoTable) { 888 LineLen += BTF::SecLineInfoSize; 889 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 890 } 891 for (const auto &FieldRelocSec : FieldRelocTable) { 892 FieldRelocLen += BTF::SecFieldRelocSize; 893 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 894 } 895 896 if (FieldRelocLen) 897 FieldRelocLen += 4; 898 899 OS.emitInt32(0); 900 OS.emitInt32(FuncLen); 901 OS.emitInt32(FuncLen); 902 OS.emitInt32(LineLen); 903 OS.emitInt32(FuncLen + LineLen); 904 OS.emitInt32(FieldRelocLen); 905 906 // Emit func_info table. 907 OS.AddComment("FuncInfo"); 908 OS.emitInt32(BTF::BPFFuncInfoSize); 909 for (const auto &FuncSec : FuncInfoTable) { 910 OS.AddComment("FuncInfo section string offset=" + 911 std::to_string(FuncSec.first)); 912 OS.emitInt32(FuncSec.first); 913 OS.emitInt32(FuncSec.second.size()); 914 for (const auto &FuncInfo : FuncSec.second) { 915 Asm->emitLabelReference(FuncInfo.Label, 4); 916 OS.emitInt32(FuncInfo.TypeId); 917 } 918 } 919 920 // Emit line_info table. 921 OS.AddComment("LineInfo"); 922 OS.emitInt32(BTF::BPFLineInfoSize); 923 for (const auto &LineSec : LineInfoTable) { 924 OS.AddComment("LineInfo section string offset=" + 925 std::to_string(LineSec.first)); 926 OS.emitInt32(LineSec.first); 927 OS.emitInt32(LineSec.second.size()); 928 for (const auto &LineInfo : LineSec.second) { 929 Asm->emitLabelReference(LineInfo.Label, 4); 930 OS.emitInt32(LineInfo.FileNameOff); 931 OS.emitInt32(LineInfo.LineOff); 932 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 933 std::to_string(LineInfo.ColumnNum)); 934 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 935 } 936 } 937 938 // Emit field reloc table. 939 if (FieldRelocLen) { 940 OS.AddComment("FieldReloc"); 941 OS.emitInt32(BTF::BPFFieldRelocSize); 942 for (const auto &FieldRelocSec : FieldRelocTable) { 943 OS.AddComment("Field reloc section string offset=" + 944 std::to_string(FieldRelocSec.first)); 945 OS.emitInt32(FieldRelocSec.first); 946 OS.emitInt32(FieldRelocSec.second.size()); 947 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 948 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 949 OS.emitInt32(FieldRelocInfo.TypeID); 950 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 951 OS.emitInt32(FieldRelocInfo.RelocKind); 952 } 953 } 954 } 955 } 956 957 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 958 auto *SP = MF->getFunction().getSubprogram(); 959 auto *Unit = SP->getUnit(); 960 961 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 962 SkipInstruction = true; 963 return; 964 } 965 SkipInstruction = false; 966 967 // Collect MapDef types. Map definition needs to collect 968 // pointee types. Do it first. Otherwise, for the following 969 // case: 970 // struct m { ...}; 971 // struct t { 972 // struct m *key; 973 // }; 974 // foo(struct t *arg); 975 // 976 // struct mapdef { 977 // ... 978 // struct m *key; 979 // ... 980 // } __attribute__((section(".maps"))) hash_map; 981 // 982 // If subroutine foo is traversed first, a type chain 983 // "ptr->struct m(fwd)" will be created and later on 984 // when traversing mapdef, since "ptr->struct m" exists, 985 // the traversal of "struct m" will be omitted. 986 if (MapDefNotCollected) { 987 processGlobals(true); 988 MapDefNotCollected = false; 989 } 990 991 // Collect all types locally referenced in this function. 992 // Use RetainedNodes so we can collect all argument names 993 // even if the argument is not used. 994 std::unordered_map<uint32_t, StringRef> FuncArgNames; 995 for (const DINode *DN : SP->getRetainedNodes()) { 996 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 997 // Collect function arguments for subprogram func type. 998 uint32_t Arg = DV->getArg(); 999 if (Arg) { 1000 visitTypeEntry(DV->getType()); 1001 FuncArgNames[Arg] = DV->getName(); 1002 } 1003 } 1004 } 1005 1006 // Construct subprogram func proto type. 1007 uint32_t ProtoTypeId; 1008 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1009 1010 // Construct subprogram func type 1011 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1012 auto FuncTypeEntry = 1013 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1014 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1015 1016 // Process argument annotations. 1017 for (const DINode *DN : SP->getRetainedNodes()) { 1018 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1019 uint32_t Arg = DV->getArg(); 1020 if (Arg) 1021 processDeclAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1022 } 1023 } 1024 1025 processDeclAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1026 1027 for (const auto &TypeEntry : TypeEntries) 1028 TypeEntry->completeType(*this); 1029 1030 // Construct funcinfo and the first lineinfo for the function. 1031 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1032 BTFFuncInfo FuncInfo; 1033 FuncInfo.Label = FuncLabel; 1034 FuncInfo.TypeId = FuncTypeId; 1035 if (FuncLabel->isInSection()) { 1036 MCSection &Section = FuncLabel->getSection(); 1037 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1038 assert(SectionELF && "Null section for Function Label"); 1039 SecNameOff = addString(SectionELF->getName()); 1040 } else { 1041 SecNameOff = addString(".text"); 1042 } 1043 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1044 } 1045 1046 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1047 SkipInstruction = false; 1048 LineInfoGenerated = false; 1049 SecNameOff = 0; 1050 } 1051 1052 /// On-demand populate types as requested from abstract member 1053 /// accessing or preserve debuginfo type. 1054 unsigned BTFDebug::populateType(const DIType *Ty) { 1055 unsigned Id; 1056 visitTypeEntry(Ty, Id, false, false); 1057 for (const auto &TypeEntry : TypeEntries) 1058 TypeEntry->completeType(*this); 1059 return Id; 1060 } 1061 1062 /// Generate a struct member field relocation. 1063 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1064 const GlobalVariable *GVar, bool IsAma) { 1065 BTFFieldReloc FieldReloc; 1066 FieldReloc.Label = ORSym; 1067 FieldReloc.TypeID = RootId; 1068 1069 StringRef AccessPattern = GVar->getName(); 1070 size_t FirstDollar = AccessPattern.find_first_of('$'); 1071 if (IsAma) { 1072 size_t FirstColon = AccessPattern.find_first_of(':'); 1073 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1074 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1075 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1076 SecondColon - FirstColon); 1077 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1078 FirstDollar - SecondColon); 1079 1080 FieldReloc.OffsetNameOff = addString(IndexPattern); 1081 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1082 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1083 FieldReloc.RelocKind); 1084 } else { 1085 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1086 FieldReloc.OffsetNameOff = addString("0"); 1087 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1088 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1089 } 1090 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1091 } 1092 1093 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1094 // check whether this is a candidate or not 1095 if (MO.isGlobal()) { 1096 const GlobalValue *GVal = MO.getGlobal(); 1097 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1098 if (!GVar) { 1099 // Not a global variable. Maybe an extern function reference. 1100 processFuncPrototypes(dyn_cast<Function>(GVal)); 1101 return; 1102 } 1103 1104 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1105 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1106 return; 1107 1108 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1109 OS.emitLabel(ORSym); 1110 1111 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1112 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1113 generatePatchImmReloc(ORSym, RootId, GVar, 1114 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1115 } 1116 } 1117 1118 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1119 DebugHandlerBase::beginInstruction(MI); 1120 1121 if (SkipInstruction || MI->isMetaInstruction() || 1122 MI->getFlag(MachineInstr::FrameSetup)) 1123 return; 1124 1125 if (MI->isInlineAsm()) { 1126 // Count the number of register definitions to find the asm string. 1127 unsigned NumDefs = 0; 1128 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1129 ++NumDefs) 1130 ; 1131 1132 // Skip this inline asm instruction if the asmstr is empty. 1133 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1134 if (AsmStr[0] == 0) 1135 return; 1136 } 1137 1138 if (MI->getOpcode() == BPF::LD_imm64) { 1139 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1140 // add this insn into the .BTF.ext FieldReloc subsection. 1141 // Relocation looks like: 1142 // . SecName: 1143 // . InstOffset 1144 // . TypeID 1145 // . OffSetNameOff 1146 // . RelocType 1147 // Later, the insn is replaced with "r2 = <offset>" 1148 // where "<offset>" equals to the offset based on current 1149 // type definitions. 1150 // 1151 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1152 // The LD_imm64 result will be replaced with a btf type id. 1153 processGlobalValue(MI->getOperand(1)); 1154 } else if (MI->getOpcode() == BPF::CORE_MEM || 1155 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1156 MI->getOpcode() == BPF::CORE_SHIFT) { 1157 // relocation insn is a load, store or shift insn. 1158 processGlobalValue(MI->getOperand(3)); 1159 } else if (MI->getOpcode() == BPF::JAL) { 1160 // check extern function references 1161 const MachineOperand &MO = MI->getOperand(0); 1162 if (MO.isGlobal()) { 1163 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1164 } 1165 } 1166 1167 if (!CurMI) // no debug info 1168 return; 1169 1170 // Skip this instruction if no DebugLoc or the DebugLoc 1171 // is the same as the previous instruction. 1172 const DebugLoc &DL = MI->getDebugLoc(); 1173 if (!DL || PrevInstLoc == DL) { 1174 // This instruction will be skipped, no LineInfo has 1175 // been generated, construct one based on function signature. 1176 if (LineInfoGenerated == false) { 1177 auto *S = MI->getMF()->getFunction().getSubprogram(); 1178 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1179 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1180 LineInfoGenerated = true; 1181 } 1182 1183 return; 1184 } 1185 1186 // Create a temporary label to remember the insn for lineinfo. 1187 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1188 OS.emitLabel(LineSym); 1189 1190 // Construct the lineinfo. 1191 auto SP = DL.get()->getScope()->getSubprogram(); 1192 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1193 1194 LineInfoGenerated = true; 1195 PrevInstLoc = DL; 1196 } 1197 1198 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1199 // Collect all types referenced by globals. 1200 const Module *M = MMI->getModule(); 1201 for (const GlobalVariable &Global : M->globals()) { 1202 // Decide the section name. 1203 StringRef SecName; 1204 if (Global.hasSection()) { 1205 SecName = Global.getSection(); 1206 } else if (Global.hasInitializer()) { 1207 // data, bss, or readonly sections 1208 if (Global.isConstant()) 1209 SecName = ".rodata"; 1210 else 1211 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1212 } 1213 1214 if (ProcessingMapDef != SecName.startswith(".maps")) 1215 continue; 1216 1217 // Create a .rodata datasec if the global variable is an initialized 1218 // constant with private linkage and if it won't be in .rodata.str<#> 1219 // and .rodata.cst<#> sections. 1220 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1221 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1222 SectionKind GVKind = 1223 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1224 // skip .rodata.str<#> and .rodata.cst<#> sections 1225 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1226 DataSecEntries[std::string(SecName)] = 1227 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1228 } 1229 } 1230 1231 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1232 Global.getDebugInfo(GVs); 1233 1234 // No type information, mostly internal, skip it. 1235 if (GVs.size() == 0) 1236 continue; 1237 1238 uint32_t GVTypeId = 0; 1239 DIGlobalVariable *DIGlobal = nullptr; 1240 for (auto *GVE : GVs) { 1241 DIGlobal = GVE->getVariable(); 1242 if (SecName.startswith(".maps")) 1243 visitMapDefType(DIGlobal->getType(), GVTypeId); 1244 else 1245 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1246 break; 1247 } 1248 1249 // Only support the following globals: 1250 // . static variables 1251 // . non-static weak or non-weak global variables 1252 // . weak or non-weak extern global variables 1253 // Whether DataSec is readonly or not can be found from corresponding ELF 1254 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1255 // can be found from the corresponding ELF symbol table. 1256 auto Linkage = Global.getLinkage(); 1257 if (Linkage != GlobalValue::InternalLinkage && 1258 Linkage != GlobalValue::ExternalLinkage && 1259 Linkage != GlobalValue::WeakAnyLinkage && 1260 Linkage != GlobalValue::WeakODRLinkage && 1261 Linkage != GlobalValue::ExternalWeakLinkage) 1262 continue; 1263 1264 uint32_t GVarInfo; 1265 if (Linkage == GlobalValue::InternalLinkage) { 1266 GVarInfo = BTF::VAR_STATIC; 1267 } else if (Global.hasInitializer()) { 1268 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1269 } else { 1270 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1271 } 1272 1273 auto VarEntry = 1274 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1275 uint32_t VarId = addType(std::move(VarEntry)); 1276 1277 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1278 1279 // An empty SecName means an extern variable without section attribute. 1280 if (SecName.empty()) 1281 continue; 1282 1283 // Find or create a DataSec 1284 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1285 DataSecEntries[std::string(SecName)] = 1286 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1287 } 1288 1289 // Calculate symbol size 1290 const DataLayout &DL = Global.getParent()->getDataLayout(); 1291 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1292 1293 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1294 Asm->getSymbol(&Global), Size); 1295 } 1296 } 1297 1298 /// Emit proper patchable instructions. 1299 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1300 if (MI->getOpcode() == BPF::LD_imm64) { 1301 const MachineOperand &MO = MI->getOperand(1); 1302 if (MO.isGlobal()) { 1303 const GlobalValue *GVal = MO.getGlobal(); 1304 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1305 if (GVar) { 1306 // Emit "mov ri, <imm>" 1307 int64_t Imm; 1308 uint32_t Reloc; 1309 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1310 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1311 Imm = PatchImms[GVar].first; 1312 Reloc = PatchImms[GVar].second; 1313 } else { 1314 return false; 1315 } 1316 1317 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1318 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1319 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1320 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1321 OutMI.setOpcode(BPF::LD_imm64); 1322 else 1323 OutMI.setOpcode(BPF::MOV_ri); 1324 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1325 OutMI.addOperand(MCOperand::createImm(Imm)); 1326 return true; 1327 } 1328 } 1329 } else if (MI->getOpcode() == BPF::CORE_MEM || 1330 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1331 MI->getOpcode() == BPF::CORE_SHIFT) { 1332 const MachineOperand &MO = MI->getOperand(3); 1333 if (MO.isGlobal()) { 1334 const GlobalValue *GVal = MO.getGlobal(); 1335 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1336 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1337 uint32_t Imm = PatchImms[GVar].first; 1338 OutMI.setOpcode(MI->getOperand(1).getImm()); 1339 if (MI->getOperand(0).isImm()) 1340 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1341 else 1342 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1343 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1344 OutMI.addOperand(MCOperand::createImm(Imm)); 1345 return true; 1346 } 1347 } 1348 } 1349 return false; 1350 } 1351 1352 void BTFDebug::processFuncPrototypes(const Function *F) { 1353 if (!F) 1354 return; 1355 1356 const DISubprogram *SP = F->getSubprogram(); 1357 if (!SP || SP->isDefinition()) 1358 return; 1359 1360 // Do not emit again if already emitted. 1361 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1362 return; 1363 ProtoFunctions.insert(F); 1364 1365 uint32_t ProtoTypeId; 1366 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1367 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1368 1369 uint8_t Scope = BTF::FUNC_EXTERN; 1370 auto FuncTypeEntry = 1371 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1372 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1373 1374 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 1375 1376 if (F->hasSection()) { 1377 StringRef SecName = F->getSection(); 1378 1379 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1380 DataSecEntries[std::string(SecName)] = 1381 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1382 } 1383 1384 // We really don't know func size, set it to 0. 1385 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1386 Asm->getSymbol(F), 0); 1387 } 1388 } 1389 1390 void BTFDebug::endModule() { 1391 // Collect MapDef globals if not collected yet. 1392 if (MapDefNotCollected) { 1393 processGlobals(true); 1394 MapDefNotCollected = false; 1395 } 1396 1397 // Collect global types/variables except MapDef globals. 1398 processGlobals(false); 1399 1400 for (auto &DataSec : DataSecEntries) 1401 addType(std::move(DataSec.second)); 1402 1403 // Fixups 1404 for (auto &Fixup : FixupDerivedTypes) { 1405 StringRef TypeName = Fixup.first; 1406 bool IsUnion = Fixup.second.first; 1407 1408 // Search through struct types 1409 uint32_t StructTypeId = 0; 1410 for (const auto &StructType : StructTypes) { 1411 if (StructType->getName() == TypeName) { 1412 StructTypeId = StructType->getId(); 1413 break; 1414 } 1415 } 1416 1417 if (StructTypeId == 0) { 1418 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1419 StructTypeId = addType(std::move(FwdTypeEntry)); 1420 } 1421 1422 for (auto &DType : Fixup.second.second) { 1423 DType->setPointeeType(StructTypeId); 1424 } 1425 } 1426 1427 // Complete BTF type cross refereences. 1428 for (const auto &TypeEntry : TypeEntries) 1429 TypeEntry->completeType(*this); 1430 1431 // Emit BTF sections. 1432 emitBTFSection(); 1433 emitBTFExtSection(); 1434 } 1435