1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "llvm/BinaryFormat/ELF.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineModuleInfo.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCObjectFileInfo.h" 19 #include "llvm/MC/MCSectionELF.h" 20 #include "llvm/MC/MCStreamer.h" 21 #include <fstream> 22 #include <sstream> 23 24 using namespace llvm; 25 26 static const char *BTFKindStr[] = { 27 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 28 #include "BTF.def" 29 }; 30 31 /// Emit a BTF common type. 32 void BTFTypeBase::emitType(MCStreamer &OS) { 33 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 34 ")"); 35 OS.EmitIntValue(BTFType.NameOff, 4); 36 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 37 OS.EmitIntValue(BTFType.Info, 4); 38 OS.EmitIntValue(BTFType.Size, 4); 39 } 40 41 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag) 42 : DTy(DTy) { 43 switch (Tag) { 44 case dwarf::DW_TAG_pointer_type: 45 Kind = BTF::BTF_KIND_PTR; 46 break; 47 case dwarf::DW_TAG_const_type: 48 Kind = BTF::BTF_KIND_CONST; 49 break; 50 case dwarf::DW_TAG_volatile_type: 51 Kind = BTF::BTF_KIND_VOLATILE; 52 break; 53 case dwarf::DW_TAG_typedef: 54 Kind = BTF::BTF_KIND_TYPEDEF; 55 break; 56 case dwarf::DW_TAG_restrict_type: 57 Kind = BTF::BTF_KIND_RESTRICT; 58 break; 59 default: 60 llvm_unreachable("Unknown DIDerivedType Tag"); 61 } 62 BTFType.Info = Kind << 24; 63 } 64 65 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 66 BTFType.NameOff = BDebug.addString(DTy->getName()); 67 68 // The base type for PTR/CONST/VOLATILE could be void. 69 const DIType *ResolvedType = DTy->getBaseType().resolve(); 70 if (!ResolvedType) { 71 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 72 Kind == BTF::BTF_KIND_VOLATILE) && 73 "Invalid null basetype"); 74 BTFType.Type = 0; 75 } else { 76 BTFType.Type = BDebug.getTypeId(ResolvedType); 77 } 78 } 79 80 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 81 82 /// Represent a struct/union forward declaration. 83 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 84 Kind = BTF::BTF_KIND_FWD; 85 BTFType.Info = IsUnion << 31 | Kind << 24; 86 BTFType.Type = 0; 87 } 88 89 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 90 BTFType.NameOff = BDebug.addString(Name); 91 } 92 93 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 94 95 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 96 uint32_t OffsetInBits, StringRef TypeName) 97 : Name(TypeName) { 98 // Translate IR int encoding to BTF int encoding. 99 uint8_t BTFEncoding; 100 switch (Encoding) { 101 case dwarf::DW_ATE_boolean: 102 BTFEncoding = BTF::INT_BOOL; 103 break; 104 case dwarf::DW_ATE_signed: 105 case dwarf::DW_ATE_signed_char: 106 BTFEncoding = BTF::INT_SIGNED; 107 break; 108 case dwarf::DW_ATE_unsigned: 109 case dwarf::DW_ATE_unsigned_char: 110 BTFEncoding = 0; 111 break; 112 default: 113 llvm_unreachable("Unknown BTFTypeInt Encoding"); 114 } 115 116 Kind = BTF::BTF_KIND_INT; 117 BTFType.Info = Kind << 24; 118 BTFType.Size = roundupToBytes(SizeInBits); 119 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 120 } 121 122 void BTFTypeInt::completeType(BTFDebug &BDebug) { 123 BTFType.NameOff = BDebug.addString(Name); 124 } 125 126 void BTFTypeInt::emitType(MCStreamer &OS) { 127 BTFTypeBase::emitType(OS); 128 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 129 OS.EmitIntValue(IntVal, 4); 130 } 131 132 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 133 Kind = BTF::BTF_KIND_ENUM; 134 BTFType.Info = Kind << 24 | VLen; 135 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 136 } 137 138 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 139 BTFType.NameOff = BDebug.addString(ETy->getName()); 140 141 DINodeArray Elements = ETy->getElements(); 142 for (const auto Element : Elements) { 143 const auto *Enum = cast<DIEnumerator>(Element); 144 145 struct BTF::BTFEnum BTFEnum; 146 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 147 // BTF enum value is 32bit, enforce it. 148 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue()); 149 EnumValues.push_back(BTFEnum); 150 } 151 } 152 153 void BTFTypeEnum::emitType(MCStreamer &OS) { 154 BTFTypeBase::emitType(OS); 155 for (const auto &Enum : EnumValues) { 156 OS.EmitIntValue(Enum.NameOff, 4); 157 OS.EmitIntValue(Enum.Val, 4); 158 } 159 } 160 161 BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) { 162 Kind = BTF::BTF_KIND_ARRAY; 163 BTFType.Info = Kind << 24; 164 } 165 166 /// Represent a BTF array. BTF does not record array dimensions, 167 /// so conceptually a BTF array is a one-dimensional array. 168 void BTFTypeArray::completeType(BTFDebug &BDebug) { 169 BTFType.NameOff = BDebug.addString(ATy->getName()); 170 BTFType.Size = 0; 171 172 auto *BaseType = ATy->getBaseType().resolve(); 173 ArrayInfo.ElemType = BDebug.getTypeId(BaseType); 174 175 // The IR does not really have a type for the index. 176 // A special type for array index should have been 177 // created during initial type traversal. Just 178 // retrieve that type id. 179 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 180 181 // Get the number of array elements. 182 // If the array size is 0, set the number of elements as 0. 183 // Otherwise, recursively traverse the base types to 184 // find the element size. The number of elements is 185 // the totoal array size in bits divided by 186 // element size in bits. 187 uint64_t ArraySizeInBits = ATy->getSizeInBits(); 188 if (!ArraySizeInBits) { 189 ArrayInfo.Nelems = 0; 190 } else { 191 uint32_t BaseTypeSize = BaseType->getSizeInBits(); 192 while (!BaseTypeSize) { 193 const auto *DDTy = cast<DIDerivedType>(BaseType); 194 BaseType = DDTy->getBaseType().resolve(); 195 assert(BaseType); 196 BaseTypeSize = BaseType->getSizeInBits(); 197 } 198 ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize; 199 } 200 } 201 202 void BTFTypeArray::emitType(MCStreamer &OS) { 203 BTFTypeBase::emitType(OS); 204 OS.EmitIntValue(ArrayInfo.ElemType, 4); 205 OS.EmitIntValue(ArrayInfo.IndexType, 4); 206 OS.EmitIntValue(ArrayInfo.Nelems, 4); 207 } 208 209 /// Represent either a struct or a union. 210 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 211 bool HasBitField, uint32_t Vlen) 212 : STy(STy), HasBitField(HasBitField) { 213 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 214 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 215 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 216 } 217 218 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 219 BTFType.NameOff = BDebug.addString(STy->getName()); 220 221 // Add struct/union members. 222 const DINodeArray Elements = STy->getElements(); 223 for (const auto *Element : Elements) { 224 struct BTF::BTFMember BTFMember; 225 const auto *DDTy = cast<DIDerivedType>(Element); 226 227 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 228 if (HasBitField) { 229 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 230 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 231 } else { 232 BTFMember.Offset = DDTy->getOffsetInBits(); 233 } 234 BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType().resolve()); 235 Members.push_back(BTFMember); 236 } 237 } 238 239 void BTFTypeStruct::emitType(MCStreamer &OS) { 240 BTFTypeBase::emitType(OS); 241 for (const auto &Member : Members) { 242 OS.EmitIntValue(Member.NameOff, 4); 243 OS.EmitIntValue(Member.Type, 4); 244 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 245 OS.EmitIntValue(Member.Offset, 4); 246 } 247 } 248 249 /// The Func kind represents both subprogram and pointee of function 250 /// pointers. If the FuncName is empty, it represents a pointee of function 251 /// pointer. Otherwise, it represents a subprogram. The func arg names 252 /// are empty for pointee of function pointer case, and are valid names 253 /// for subprogram. 254 BTFTypeFuncProto::BTFTypeFuncProto( 255 const DISubroutineType *STy, uint32_t VLen, 256 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 257 : STy(STy), FuncArgNames(FuncArgNames) { 258 Kind = BTF::BTF_KIND_FUNC_PROTO; 259 BTFType.Info = (Kind << 24) | VLen; 260 } 261 262 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 263 DITypeRefArray Elements = STy->getTypeArray(); 264 auto RetType = Elements[0].resolve(); 265 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 266 BTFType.NameOff = 0; 267 268 // For null parameter which is typically the last one 269 // to represent the vararg, encode the NameOff/Type to be 0. 270 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 271 struct BTF::BTFParam Param; 272 auto Element = Elements[I].resolve(); 273 if (Element) { 274 Param.NameOff = BDebug.addString(FuncArgNames[I]); 275 Param.Type = BDebug.getTypeId(Element); 276 } else { 277 Param.NameOff = 0; 278 Param.Type = 0; 279 } 280 Parameters.push_back(Param); 281 } 282 } 283 284 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 285 BTFTypeBase::emitType(OS); 286 for (const auto &Param : Parameters) { 287 OS.EmitIntValue(Param.NameOff, 4); 288 OS.EmitIntValue(Param.Type, 4); 289 } 290 } 291 292 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId) 293 : Name(FuncName) { 294 Kind = BTF::BTF_KIND_FUNC; 295 BTFType.Info = Kind << 24; 296 BTFType.Type = ProtoTypeId; 297 } 298 299 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 300 BTFType.NameOff = BDebug.addString(Name); 301 } 302 303 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 304 305 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 306 : Name(VarName) { 307 Kind = BTF::BTF_KIND_VAR; 308 BTFType.Info = Kind << 24; 309 BTFType.Type = TypeId; 310 Info = VarInfo; 311 } 312 313 void BTFKindVar::completeType(BTFDebug &BDebug) { 314 BTFType.NameOff = BDebug.addString(Name); 315 } 316 317 void BTFKindVar::emitType(MCStreamer &OS) { 318 BTFTypeBase::emitType(OS); 319 OS.EmitIntValue(Info, 4); 320 } 321 322 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 323 : Asm(AsmPrt), Name(SecName) { 324 Kind = BTF::BTF_KIND_DATASEC; 325 BTFType.Info = Kind << 24; 326 BTFType.Size = 0; 327 } 328 329 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 330 BTFType.NameOff = BDebug.addString(Name); 331 BTFType.Info |= Vars.size(); 332 } 333 334 void BTFKindDataSec::emitType(MCStreamer &OS) { 335 BTFTypeBase::emitType(OS); 336 337 for (const auto &V : Vars) { 338 OS.EmitIntValue(std::get<0>(V), 4); 339 Asm->EmitLabelReference(std::get<1>(V), 4); 340 OS.EmitIntValue(std::get<2>(V), 4); 341 } 342 } 343 344 uint32_t BTFStringTable::addString(StringRef S) { 345 // Check whether the string already exists. 346 for (auto &OffsetM : OffsetToIdMap) { 347 if (Table[OffsetM.second] == S) 348 return OffsetM.first; 349 } 350 // Not find, add to the string table. 351 uint32_t Offset = Size; 352 OffsetToIdMap[Offset] = Table.size(); 353 Table.push_back(S); 354 Size += S.size() + 1; 355 return Offset; 356 } 357 358 BTFDebug::BTFDebug(AsmPrinter *AP) 359 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 360 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0) { 361 addString("\0"); 362 } 363 364 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 365 const DIType *Ty) { 366 TypeEntry->setId(TypeEntries.size() + 1); 367 uint32_t Id = TypeEntry->getId(); 368 DIToIdMap[Ty] = Id; 369 TypeEntries.push_back(std::move(TypeEntry)); 370 return Id; 371 } 372 373 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 374 TypeEntry->setId(TypeEntries.size() + 1); 375 uint32_t Id = TypeEntry->getId(); 376 TypeEntries.push_back(std::move(TypeEntry)); 377 return Id; 378 } 379 380 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 381 // Only int types are supported in BTF. 382 uint32_t Encoding = BTy->getEncoding(); 383 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && 384 Encoding != dwarf::DW_ATE_signed_char && 385 Encoding != dwarf::DW_ATE_unsigned && 386 Encoding != dwarf::DW_ATE_unsigned_char) 387 return; 388 389 // Create a BTF type instance for this DIBasicType and put it into 390 // DIToIdMap for cross-type reference check. 391 auto TypeEntry = llvm::make_unique<BTFTypeInt>( 392 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 393 TypeId = addType(std::move(TypeEntry), BTy); 394 } 395 396 /// Handle subprogram or subroutine types. 397 void BTFDebug::visitSubroutineType( 398 const DISubroutineType *STy, bool ForSubprog, 399 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 400 uint32_t &TypeId) { 401 DITypeRefArray Elements = STy->getTypeArray(); 402 uint32_t VLen = Elements.size() - 1; 403 if (VLen > BTF::MAX_VLEN) 404 return; 405 406 // Subprogram has a valid non-zero-length name, and the pointee of 407 // a function pointer has an empty name. The subprogram type will 408 // not be added to DIToIdMap as it should not be referenced by 409 // any other types. 410 auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 411 if (ForSubprog) 412 TypeId = addType(std::move(TypeEntry)); // For subprogram 413 else 414 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 415 416 // Visit return type and func arg types. 417 for (const auto Element : Elements) { 418 visitTypeEntry(Element.resolve()); 419 } 420 } 421 422 /// Handle structure/union types. 423 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 424 uint32_t &TypeId) { 425 const DINodeArray Elements = CTy->getElements(); 426 uint32_t VLen = Elements.size(); 427 if (VLen > BTF::MAX_VLEN) 428 return; 429 430 // Check whether we have any bitfield members or not 431 bool HasBitField = false; 432 for (const auto *Element : Elements) { 433 auto E = cast<DIDerivedType>(Element); 434 if (E->isBitField()) { 435 HasBitField = true; 436 break; 437 } 438 } 439 440 auto TypeEntry = 441 llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 442 TypeId = addType(std::move(TypeEntry), CTy); 443 444 // Visit all struct members. 445 for (const auto *Element : Elements) 446 visitTypeEntry(cast<DIDerivedType>(Element)); 447 } 448 449 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 450 auto TypeEntry = llvm::make_unique<BTFTypeArray>(CTy); 451 TypeId = addType(std::move(TypeEntry), CTy); 452 453 // The IR does not have a type for array index while BTF wants one. 454 // So create an array index type if there is none. 455 if (!ArrayIndexTypeId) { 456 auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 457 0, "__ARRAY_SIZE_TYPE__"); 458 ArrayIndexTypeId = addType(std::move(TypeEntry)); 459 } 460 461 // Visit array element type. 462 visitTypeEntry(CTy->getBaseType().resolve()); 463 } 464 465 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 466 DINodeArray Elements = CTy->getElements(); 467 uint32_t VLen = Elements.size(); 468 if (VLen > BTF::MAX_VLEN) 469 return; 470 471 auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen); 472 TypeId = addType(std::move(TypeEntry), CTy); 473 // No need to visit base type as BTF does not encode it. 474 } 475 476 /// Handle structure/union forward declarations. 477 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 478 uint32_t &TypeId) { 479 auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 480 TypeId = addType(std::move(TypeEntry), CTy); 481 } 482 483 /// Handle structure, union, array and enumeration types. 484 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 485 uint32_t &TypeId) { 486 auto Tag = CTy->getTag(); 487 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 488 // Handle forward declaration differently as it does not have members. 489 if (CTy->isForwardDecl()) 490 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 491 else 492 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 493 } else if (Tag == dwarf::DW_TAG_array_type) 494 visitArrayType(CTy, TypeId); 495 else if (Tag == dwarf::DW_TAG_enumeration_type) 496 visitEnumType(CTy, TypeId); 497 } 498 499 /// Handle pointer, typedef, const, volatile, restrict and member types. 500 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId) { 501 unsigned Tag = DTy->getTag(); 502 503 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 504 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 505 Tag == dwarf::DW_TAG_restrict_type) { 506 auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag); 507 TypeId = addType(std::move(TypeEntry), DTy); 508 } else if (Tag != dwarf::DW_TAG_member) { 509 return; 510 } 511 512 // Visit base type of pointer, typedef, const, volatile, restrict or 513 // struct/union member. 514 uint32_t TempTypeId = 0; 515 visitTypeEntry(DTy->getBaseType().resolve(), TempTypeId); 516 } 517 518 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId) { 519 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 520 TypeId = DIToIdMap[Ty]; 521 return; 522 } 523 524 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 525 visitBasicType(BTy, TypeId); 526 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 527 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 528 TypeId); 529 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 530 visitCompositeType(CTy, TypeId); 531 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 532 visitDerivedType(DTy, TypeId); 533 else 534 llvm_unreachable("Unknown DIType"); 535 } 536 537 void BTFDebug::visitTypeEntry(const DIType *Ty) { 538 uint32_t TypeId; 539 visitTypeEntry(Ty, TypeId); 540 } 541 542 /// Read file contents from the actual file or from the source 543 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 544 auto File = SP->getFile(); 545 std::string FileName; 546 547 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 548 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 549 else 550 FileName = File->getFilename(); 551 552 // No need to populate the contends if it has been populated! 553 if (FileContent.find(FileName) != FileContent.end()) 554 return FileName; 555 556 std::vector<std::string> Content; 557 std::string Line; 558 Content.push_back(Line); // Line 0 for empty string 559 560 auto Source = File->getSource(); 561 if (Source) { 562 std::istringstream InputString(Source.getValue()); 563 while (std::getline(InputString, Line)) 564 Content.push_back(Line); 565 } else { 566 std::ifstream InputFile(FileName); 567 while (std::getline(InputFile, Line)) 568 Content.push_back(Line); 569 } 570 571 FileContent[FileName] = Content; 572 return FileName; 573 } 574 575 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 576 uint32_t Line, uint32_t Column) { 577 std::string FileName = populateFileContent(SP); 578 BTFLineInfo LineInfo; 579 580 LineInfo.Label = Label; 581 LineInfo.FileNameOff = addString(FileName); 582 // If file content is not available, let LineOff = 0. 583 if (Line < FileContent[FileName].size()) 584 LineInfo.LineOff = addString(FileContent[FileName][Line]); 585 else 586 LineInfo.LineOff = 0; 587 LineInfo.LineNum = Line; 588 LineInfo.ColumnNum = Column; 589 LineInfoTable[SecNameOff].push_back(LineInfo); 590 } 591 592 void BTFDebug::emitCommonHeader() { 593 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 594 OS.EmitIntValue(BTF::MAGIC, 2); 595 OS.EmitIntValue(BTF::VERSION, 1); 596 OS.EmitIntValue(0, 1); 597 } 598 599 void BTFDebug::emitBTFSection() { 600 // Do not emit section if no types and only "" string. 601 if (!TypeEntries.size() && StringTable.getSize() == 1) 602 return; 603 604 MCContext &Ctx = OS.getContext(); 605 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 606 607 // Emit header. 608 emitCommonHeader(); 609 OS.EmitIntValue(BTF::HeaderSize, 4); 610 611 uint32_t TypeLen = 0, StrLen; 612 for (const auto &TypeEntry : TypeEntries) 613 TypeLen += TypeEntry->getSize(); 614 StrLen = StringTable.getSize(); 615 616 OS.EmitIntValue(0, 4); 617 OS.EmitIntValue(TypeLen, 4); 618 OS.EmitIntValue(TypeLen, 4); 619 OS.EmitIntValue(StrLen, 4); 620 621 // Emit type table. 622 for (const auto &TypeEntry : TypeEntries) 623 TypeEntry->emitType(OS); 624 625 // Emit string table. 626 uint32_t StringOffset = 0; 627 for (const auto &S : StringTable.getTable()) { 628 OS.AddComment("string offset=" + std::to_string(StringOffset)); 629 OS.EmitBytes(S); 630 OS.EmitBytes(StringRef("\0", 1)); 631 StringOffset += S.size() + 1; 632 } 633 } 634 635 void BTFDebug::emitBTFExtSection() { 636 // Do not emit section if empty FuncInfoTable and LineInfoTable. 637 if (!FuncInfoTable.size() && !LineInfoTable.size()) 638 return; 639 640 MCContext &Ctx = OS.getContext(); 641 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 642 643 // Emit header. 644 emitCommonHeader(); 645 OS.EmitIntValue(BTF::ExtHeaderSize, 4); 646 647 // Account for FuncInfo/LineInfo record size as well. 648 uint32_t FuncLen = 4, LineLen = 4; 649 for (const auto &FuncSec : FuncInfoTable) { 650 FuncLen += BTF::SecFuncInfoSize; 651 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 652 } 653 for (const auto &LineSec : LineInfoTable) { 654 LineLen += BTF::SecLineInfoSize; 655 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 656 } 657 658 OS.EmitIntValue(0, 4); 659 OS.EmitIntValue(FuncLen, 4); 660 OS.EmitIntValue(FuncLen, 4); 661 OS.EmitIntValue(LineLen, 4); 662 663 // Emit func_info table. 664 OS.AddComment("FuncInfo"); 665 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4); 666 for (const auto &FuncSec : FuncInfoTable) { 667 OS.AddComment("FuncInfo section string offset=" + 668 std::to_string(FuncSec.first)); 669 OS.EmitIntValue(FuncSec.first, 4); 670 OS.EmitIntValue(FuncSec.second.size(), 4); 671 for (const auto &FuncInfo : FuncSec.second) { 672 Asm->EmitLabelReference(FuncInfo.Label, 4); 673 OS.EmitIntValue(FuncInfo.TypeId, 4); 674 } 675 } 676 677 // Emit line_info table. 678 OS.AddComment("LineInfo"); 679 OS.EmitIntValue(BTF::BPFLineInfoSize, 4); 680 for (const auto &LineSec : LineInfoTable) { 681 OS.AddComment("LineInfo section string offset=" + 682 std::to_string(LineSec.first)); 683 OS.EmitIntValue(LineSec.first, 4); 684 OS.EmitIntValue(LineSec.second.size(), 4); 685 for (const auto &LineInfo : LineSec.second) { 686 Asm->EmitLabelReference(LineInfo.Label, 4); 687 OS.EmitIntValue(LineInfo.FileNameOff, 4); 688 OS.EmitIntValue(LineInfo.LineOff, 4); 689 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 690 std::to_string(LineInfo.ColumnNum)); 691 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4); 692 } 693 } 694 } 695 696 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 697 auto *SP = MF->getFunction().getSubprogram(); 698 auto *Unit = SP->getUnit(); 699 700 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 701 SkipInstruction = true; 702 return; 703 } 704 SkipInstruction = false; 705 706 // Collect all types locally referenced in this function. 707 // Use RetainedNodes so we can collect all argument names 708 // even if the argument is not used. 709 std::unordered_map<uint32_t, StringRef> FuncArgNames; 710 for (const DINode *DN : SP->getRetainedNodes()) { 711 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 712 // Collect function arguments for subprogram func type. 713 uint32_t Arg = DV->getArg(); 714 if (Arg) { 715 visitTypeEntry(DV->getType().resolve()); 716 FuncArgNames[Arg] = DV->getName(); 717 } 718 } 719 } 720 721 // Construct subprogram func proto type. 722 uint32_t ProtoTypeId; 723 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 724 725 // Construct subprogram func type 726 auto FuncTypeEntry = 727 llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId); 728 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 729 730 // Construct funcinfo and the first lineinfo for the function. 731 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 732 BTFFuncInfo FuncInfo; 733 FuncInfo.Label = FuncLabel; 734 FuncInfo.TypeId = FuncTypeId; 735 if (FuncLabel->isInSection()) { 736 MCSection &Section = FuncLabel->getSection(); 737 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 738 assert(SectionELF && "Null section for Function Label"); 739 SecNameOff = addString(SectionELF->getSectionName()); 740 } else { 741 SecNameOff = addString(".text"); 742 } 743 FuncInfoTable[SecNameOff].push_back(FuncInfo); 744 } 745 746 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 747 SkipInstruction = false; 748 LineInfoGenerated = false; 749 SecNameOff = 0; 750 } 751 752 void BTFDebug::beginInstruction(const MachineInstr *MI) { 753 DebugHandlerBase::beginInstruction(MI); 754 755 if (SkipInstruction || MI->isMetaInstruction() || 756 MI->getFlag(MachineInstr::FrameSetup)) 757 return; 758 759 if (MI->isInlineAsm()) { 760 // Count the number of register definitions to find the asm string. 761 unsigned NumDefs = 0; 762 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 763 ++NumDefs) 764 ; 765 766 // Skip this inline asm instruction if the asmstr is empty. 767 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 768 if (AsmStr[0] == 0) 769 return; 770 } 771 772 // Skip this instruction if no DebugLoc or the DebugLoc 773 // is the same as the previous instruction. 774 const DebugLoc &DL = MI->getDebugLoc(); 775 if (!DL || PrevInstLoc == DL) { 776 // This instruction will be skipped, no LineInfo has 777 // been generated, construct one based on function signature. 778 if (LineInfoGenerated == false) { 779 auto *S = MI->getMF()->getFunction().getSubprogram(); 780 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 781 constructLineInfo(S, FuncLabel, S->getLine(), 0); 782 LineInfoGenerated = true; 783 } 784 785 return; 786 } 787 788 // Create a temporary label to remember the insn for lineinfo. 789 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 790 OS.EmitLabel(LineSym); 791 792 // Construct the lineinfo. 793 auto SP = DL.get()->getScope()->getSubprogram(); 794 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 795 796 LineInfoGenerated = true; 797 PrevInstLoc = DL; 798 } 799 800 void BTFDebug::processGlobals() { 801 // Collect all types referenced by globals. 802 const Module *M = MMI->getModule(); 803 for (const GlobalVariable &Global : M->globals()) { 804 // Ignore external globals for now. 805 if (!Global.hasInitializer() && Global.hasExternalLinkage()) 806 continue; 807 808 SmallVector<DIGlobalVariableExpression *, 1> GVs; 809 Global.getDebugInfo(GVs); 810 uint32_t GVTypeId = 0; 811 for (auto *GVE : GVs) { 812 visitTypeEntry(GVE->getVariable()->getType().resolve(), GVTypeId); 813 break; 814 } 815 816 // Only support the following globals: 817 // . static variables 818 // . non-static global variables with section attributes 819 // Essentially means: 820 // . .bcc/.data/.rodata DataSec entities only contain static data 821 // . Other DataSec entities contain static or initialized global data. 822 // Initialized global data are mostly used for finding map key/value type 823 // id's. Whether DataSec is readonly or not can be found from 824 // corresponding ELF section flags. 825 auto Linkage = Global.getLinkage(); 826 if (Linkage != GlobalValue::InternalLinkage && 827 (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection())) 828 continue; 829 830 uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage 831 ? BTF::VAR_GLOBAL_ALLOCATED 832 : BTF::VAR_STATIC; 833 auto VarEntry = 834 llvm::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 835 uint32_t VarId = addType(std::move(VarEntry)); 836 837 // Decide the section name. 838 std::string SecName; 839 if (Global.hasSection()) { 840 SecName = Global.getSection().str(); 841 } else { 842 // data, bss, or readonly sections 843 if (Global.isConstant()) 844 SecName += ".rodata"; 845 else 846 SecName += Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 847 } 848 849 // Find or create a DataSec 850 if (DataSecEntries.find(SecName) == DataSecEntries.end()) { 851 DataSecEntries[SecName] = llvm::make_unique<BTFKindDataSec>(Asm, SecName); 852 } 853 854 // Calculate symbol size 855 const DataLayout &DL = Global.getParent()->getDataLayout(); 856 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 857 858 DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size); 859 } 860 861 for (auto &DataSec : DataSecEntries) 862 addType(std::move(DataSec.second)); 863 } 864 865 void BTFDebug::endModule() { 866 // Collect all global types/variables. 867 processGlobals(); 868 869 // Complete BTF type cross refereences. 870 for (const auto &TypeEntry : TypeEntries) 871 TypeEntry->completeType(*this); 872 873 // Emit BTF sections. 874 emitBTFSection(); 875 emitBTFExtSection(); 876 } 877