1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 26 using namespace llvm; 27 28 static const char *BTFKindStr[] = { 29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 30 #include "BTF.def" 31 }; 32 33 /// Emit a BTF common type. 34 void BTFTypeBase::emitType(MCStreamer &OS) { 35 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 36 ")"); 37 OS.emitInt32(BTFType.NameOff); 38 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 39 OS.emitInt32(BTFType.Info); 40 OS.emitInt32(BTFType.Size); 41 } 42 43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 44 bool NeedsFixup) 45 : DTy(DTy), NeedsFixup(NeedsFixup) { 46 switch (Tag) { 47 case dwarf::DW_TAG_pointer_type: 48 Kind = BTF::BTF_KIND_PTR; 49 break; 50 case dwarf::DW_TAG_const_type: 51 Kind = BTF::BTF_KIND_CONST; 52 break; 53 case dwarf::DW_TAG_volatile_type: 54 Kind = BTF::BTF_KIND_VOLATILE; 55 break; 56 case dwarf::DW_TAG_typedef: 57 Kind = BTF::BTF_KIND_TYPEDEF; 58 break; 59 case dwarf::DW_TAG_restrict_type: 60 Kind = BTF::BTF_KIND_RESTRICT; 61 break; 62 default: 63 llvm_unreachable("Unknown DIDerivedType Tag"); 64 } 65 BTFType.Info = Kind << 24; 66 } 67 68 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 69 if (IsCompleted) 70 return; 71 IsCompleted = true; 72 73 BTFType.NameOff = BDebug.addString(DTy->getName()); 74 75 if (NeedsFixup) 76 return; 77 78 // The base type for PTR/CONST/VOLATILE could be void. 79 const DIType *ResolvedType = DTy->getBaseType(); 80 if (!ResolvedType) { 81 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 82 Kind == BTF::BTF_KIND_VOLATILE) && 83 "Invalid null basetype"); 84 BTFType.Type = 0; 85 } else { 86 BTFType.Type = BDebug.getTypeId(ResolvedType); 87 } 88 } 89 90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 91 92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 93 BTFType.Type = PointeeType; 94 } 95 96 /// Represent a struct/union forward declaration. 97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 98 Kind = BTF::BTF_KIND_FWD; 99 BTFType.Info = IsUnion << 31 | Kind << 24; 100 BTFType.Type = 0; 101 } 102 103 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 104 if (IsCompleted) 105 return; 106 IsCompleted = true; 107 108 BTFType.NameOff = BDebug.addString(Name); 109 } 110 111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 112 113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 114 uint32_t OffsetInBits, StringRef TypeName) 115 : Name(TypeName) { 116 // Translate IR int encoding to BTF int encoding. 117 uint8_t BTFEncoding; 118 switch (Encoding) { 119 case dwarf::DW_ATE_boolean: 120 BTFEncoding = BTF::INT_BOOL; 121 break; 122 case dwarf::DW_ATE_signed: 123 case dwarf::DW_ATE_signed_char: 124 BTFEncoding = BTF::INT_SIGNED; 125 break; 126 case dwarf::DW_ATE_unsigned: 127 case dwarf::DW_ATE_unsigned_char: 128 BTFEncoding = 0; 129 break; 130 default: 131 llvm_unreachable("Unknown BTFTypeInt Encoding"); 132 } 133 134 Kind = BTF::BTF_KIND_INT; 135 BTFType.Info = Kind << 24; 136 BTFType.Size = roundupToBytes(SizeInBits); 137 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 138 } 139 140 void BTFTypeInt::completeType(BTFDebug &BDebug) { 141 if (IsCompleted) 142 return; 143 IsCompleted = true; 144 145 BTFType.NameOff = BDebug.addString(Name); 146 } 147 148 void BTFTypeInt::emitType(MCStreamer &OS) { 149 BTFTypeBase::emitType(OS); 150 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 151 OS.emitInt32(IntVal); 152 } 153 154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 155 Kind = BTF::BTF_KIND_ENUM; 156 BTFType.Info = Kind << 24 | VLen; 157 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 158 } 159 160 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 161 if (IsCompleted) 162 return; 163 IsCompleted = true; 164 165 BTFType.NameOff = BDebug.addString(ETy->getName()); 166 167 DINodeArray Elements = ETy->getElements(); 168 for (const auto Element : Elements) { 169 const auto *Enum = cast<DIEnumerator>(Element); 170 171 struct BTF::BTFEnum BTFEnum; 172 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 173 // BTF enum value is 32bit, enforce it. 174 uint32_t Value; 175 if (Enum->isUnsigned()) 176 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 177 else 178 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 179 BTFEnum.Val = Value; 180 EnumValues.push_back(BTFEnum); 181 } 182 } 183 184 void BTFTypeEnum::emitType(MCStreamer &OS) { 185 BTFTypeBase::emitType(OS); 186 for (const auto &Enum : EnumValues) { 187 OS.emitInt32(Enum.NameOff); 188 OS.emitInt32(Enum.Val); 189 } 190 } 191 192 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 193 Kind = BTF::BTF_KIND_ARRAY; 194 BTFType.NameOff = 0; 195 BTFType.Info = Kind << 24; 196 BTFType.Size = 0; 197 198 ArrayInfo.ElemType = ElemTypeId; 199 ArrayInfo.Nelems = NumElems; 200 } 201 202 /// Represent a BTF array. 203 void BTFTypeArray::completeType(BTFDebug &BDebug) { 204 if (IsCompleted) 205 return; 206 IsCompleted = true; 207 208 // The IR does not really have a type for the index. 209 // A special type for array index should have been 210 // created during initial type traversal. Just 211 // retrieve that type id. 212 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 213 } 214 215 void BTFTypeArray::emitType(MCStreamer &OS) { 216 BTFTypeBase::emitType(OS); 217 OS.emitInt32(ArrayInfo.ElemType); 218 OS.emitInt32(ArrayInfo.IndexType); 219 OS.emitInt32(ArrayInfo.Nelems); 220 } 221 222 /// Represent either a struct or a union. 223 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 224 bool HasBitField, uint32_t Vlen) 225 : STy(STy), HasBitField(HasBitField) { 226 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 227 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 228 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 229 } 230 231 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 232 if (IsCompleted) 233 return; 234 IsCompleted = true; 235 236 BTFType.NameOff = BDebug.addString(STy->getName()); 237 238 // Add struct/union members. 239 const DINodeArray Elements = STy->getElements(); 240 for (const auto *Element : Elements) { 241 struct BTF::BTFMember BTFMember; 242 const auto *DDTy = cast<DIDerivedType>(Element); 243 244 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 245 if (HasBitField) { 246 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 247 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 248 } else { 249 BTFMember.Offset = DDTy->getOffsetInBits(); 250 } 251 const auto *BaseTy = DDTy->getBaseType(); 252 BTFMember.Type = BDebug.getTypeId(BaseTy); 253 Members.push_back(BTFMember); 254 } 255 } 256 257 void BTFTypeStruct::emitType(MCStreamer &OS) { 258 BTFTypeBase::emitType(OS); 259 for (const auto &Member : Members) { 260 OS.emitInt32(Member.NameOff); 261 OS.emitInt32(Member.Type); 262 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 263 OS.emitInt32(Member.Offset); 264 } 265 } 266 267 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 268 269 /// The Func kind represents both subprogram and pointee of function 270 /// pointers. If the FuncName is empty, it represents a pointee of function 271 /// pointer. Otherwise, it represents a subprogram. The func arg names 272 /// are empty for pointee of function pointer case, and are valid names 273 /// for subprogram. 274 BTFTypeFuncProto::BTFTypeFuncProto( 275 const DISubroutineType *STy, uint32_t VLen, 276 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 277 : STy(STy), FuncArgNames(FuncArgNames) { 278 Kind = BTF::BTF_KIND_FUNC_PROTO; 279 BTFType.Info = (Kind << 24) | VLen; 280 } 281 282 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 283 if (IsCompleted) 284 return; 285 IsCompleted = true; 286 287 DITypeRefArray Elements = STy->getTypeArray(); 288 auto RetType = Elements[0]; 289 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 290 BTFType.NameOff = 0; 291 292 // For null parameter which is typically the last one 293 // to represent the vararg, encode the NameOff/Type to be 0. 294 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 295 struct BTF::BTFParam Param; 296 auto Element = Elements[I]; 297 if (Element) { 298 Param.NameOff = BDebug.addString(FuncArgNames[I]); 299 Param.Type = BDebug.getTypeId(Element); 300 } else { 301 Param.NameOff = 0; 302 Param.Type = 0; 303 } 304 Parameters.push_back(Param); 305 } 306 } 307 308 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 309 BTFTypeBase::emitType(OS); 310 for (const auto &Param : Parameters) { 311 OS.emitInt32(Param.NameOff); 312 OS.emitInt32(Param.Type); 313 } 314 } 315 316 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 317 uint32_t Scope) 318 : Name(FuncName) { 319 Kind = BTF::BTF_KIND_FUNC; 320 BTFType.Info = (Kind << 24) | Scope; 321 BTFType.Type = ProtoTypeId; 322 } 323 324 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 325 if (IsCompleted) 326 return; 327 IsCompleted = true; 328 329 BTFType.NameOff = BDebug.addString(Name); 330 } 331 332 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 333 334 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 335 : Name(VarName) { 336 Kind = BTF::BTF_KIND_VAR; 337 BTFType.Info = Kind << 24; 338 BTFType.Type = TypeId; 339 Info = VarInfo; 340 } 341 342 void BTFKindVar::completeType(BTFDebug &BDebug) { 343 BTFType.NameOff = BDebug.addString(Name); 344 } 345 346 void BTFKindVar::emitType(MCStreamer &OS) { 347 BTFTypeBase::emitType(OS); 348 OS.emitInt32(Info); 349 } 350 351 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 352 : Asm(AsmPrt), Name(SecName) { 353 Kind = BTF::BTF_KIND_DATASEC; 354 BTFType.Info = Kind << 24; 355 BTFType.Size = 0; 356 } 357 358 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 359 BTFType.NameOff = BDebug.addString(Name); 360 BTFType.Info |= Vars.size(); 361 } 362 363 void BTFKindDataSec::emitType(MCStreamer &OS) { 364 BTFTypeBase::emitType(OS); 365 366 for (const auto &V : Vars) { 367 OS.emitInt32(std::get<0>(V)); 368 Asm->emitLabelReference(std::get<1>(V), 4); 369 OS.emitInt32(std::get<2>(V)); 370 } 371 } 372 373 uint32_t BTFStringTable::addString(StringRef S) { 374 // Check whether the string already exists. 375 for (auto &OffsetM : OffsetToIdMap) { 376 if (Table[OffsetM.second] == S) 377 return OffsetM.first; 378 } 379 // Not find, add to the string table. 380 uint32_t Offset = Size; 381 OffsetToIdMap[Offset] = Table.size(); 382 Table.push_back(std::string(S)); 383 Size += S.size() + 1; 384 return Offset; 385 } 386 387 BTFDebug::BTFDebug(AsmPrinter *AP) 388 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 389 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 390 MapDefNotCollected(true) { 391 addString("\0"); 392 } 393 394 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 395 const DIType *Ty) { 396 TypeEntry->setId(TypeEntries.size() + 1); 397 uint32_t Id = TypeEntry->getId(); 398 DIToIdMap[Ty] = Id; 399 TypeEntries.push_back(std::move(TypeEntry)); 400 return Id; 401 } 402 403 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 404 TypeEntry->setId(TypeEntries.size() + 1); 405 uint32_t Id = TypeEntry->getId(); 406 TypeEntries.push_back(std::move(TypeEntry)); 407 return Id; 408 } 409 410 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 411 // Only int types are supported in BTF. 412 uint32_t Encoding = BTy->getEncoding(); 413 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && 414 Encoding != dwarf::DW_ATE_signed_char && 415 Encoding != dwarf::DW_ATE_unsigned && 416 Encoding != dwarf::DW_ATE_unsigned_char) 417 return; 418 419 // Create a BTF type instance for this DIBasicType and put it into 420 // DIToIdMap for cross-type reference check. 421 auto TypeEntry = std::make_unique<BTFTypeInt>( 422 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 423 TypeId = addType(std::move(TypeEntry), BTy); 424 } 425 426 /// Handle subprogram or subroutine types. 427 void BTFDebug::visitSubroutineType( 428 const DISubroutineType *STy, bool ForSubprog, 429 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 430 uint32_t &TypeId) { 431 DITypeRefArray Elements = STy->getTypeArray(); 432 uint32_t VLen = Elements.size() - 1; 433 if (VLen > BTF::MAX_VLEN) 434 return; 435 436 // Subprogram has a valid non-zero-length name, and the pointee of 437 // a function pointer has an empty name. The subprogram type will 438 // not be added to DIToIdMap as it should not be referenced by 439 // any other types. 440 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 441 if (ForSubprog) 442 TypeId = addType(std::move(TypeEntry)); // For subprogram 443 else 444 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 445 446 // Visit return type and func arg types. 447 for (const auto Element : Elements) { 448 visitTypeEntry(Element); 449 } 450 } 451 452 /// Handle structure/union types. 453 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 454 uint32_t &TypeId) { 455 const DINodeArray Elements = CTy->getElements(); 456 uint32_t VLen = Elements.size(); 457 if (VLen > BTF::MAX_VLEN) 458 return; 459 460 // Check whether we have any bitfield members or not 461 bool HasBitField = false; 462 for (const auto *Element : Elements) { 463 auto E = cast<DIDerivedType>(Element); 464 if (E->isBitField()) { 465 HasBitField = true; 466 break; 467 } 468 } 469 470 auto TypeEntry = 471 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 472 StructTypes.push_back(TypeEntry.get()); 473 TypeId = addType(std::move(TypeEntry), CTy); 474 475 // Visit all struct members. 476 for (const auto *Element : Elements) 477 visitTypeEntry(cast<DIDerivedType>(Element)); 478 } 479 480 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 481 // Visit array element type. 482 uint32_t ElemTypeId; 483 const DIType *ElemType = CTy->getBaseType(); 484 visitTypeEntry(ElemType, ElemTypeId, false, false); 485 486 // Visit array dimensions. 487 DINodeArray Elements = CTy->getElements(); 488 for (int I = Elements.size() - 1; I >= 0; --I) { 489 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 490 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 491 const DISubrange *SR = cast<DISubrange>(Element); 492 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 493 int64_t Count = CI->getSExtValue(); 494 495 // For struct s { int b; char c[]; }, the c[] will be represented 496 // as an array with Count = -1. 497 auto TypeEntry = 498 std::make_unique<BTFTypeArray>(ElemTypeId, 499 Count >= 0 ? Count : 0); 500 if (I == 0) 501 ElemTypeId = addType(std::move(TypeEntry), CTy); 502 else 503 ElemTypeId = addType(std::move(TypeEntry)); 504 } 505 } 506 507 // The array TypeId is the type id of the outermost dimension. 508 TypeId = ElemTypeId; 509 510 // The IR does not have a type for array index while BTF wants one. 511 // So create an array index type if there is none. 512 if (!ArrayIndexTypeId) { 513 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 514 0, "__ARRAY_SIZE_TYPE__"); 515 ArrayIndexTypeId = addType(std::move(TypeEntry)); 516 } 517 } 518 519 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 520 DINodeArray Elements = CTy->getElements(); 521 uint32_t VLen = Elements.size(); 522 if (VLen > BTF::MAX_VLEN) 523 return; 524 525 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 526 TypeId = addType(std::move(TypeEntry), CTy); 527 // No need to visit base type as BTF does not encode it. 528 } 529 530 /// Handle structure/union forward declarations. 531 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 532 uint32_t &TypeId) { 533 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 534 TypeId = addType(std::move(TypeEntry), CTy); 535 } 536 537 /// Handle structure, union, array and enumeration types. 538 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 539 uint32_t &TypeId) { 540 auto Tag = CTy->getTag(); 541 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 542 // Handle forward declaration differently as it does not have members. 543 if (CTy->isForwardDecl()) 544 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 545 else 546 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 547 } else if (Tag == dwarf::DW_TAG_array_type) 548 visitArrayType(CTy, TypeId); 549 else if (Tag == dwarf::DW_TAG_enumeration_type) 550 visitEnumType(CTy, TypeId); 551 } 552 553 /// Handle pointer, typedef, const, volatile, restrict and member types. 554 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 555 bool CheckPointer, bool SeenPointer) { 556 unsigned Tag = DTy->getTag(); 557 558 /// Try to avoid chasing pointees, esp. structure pointees which may 559 /// unnecessary bring in a lot of types. 560 if (CheckPointer && !SeenPointer) { 561 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 562 } 563 564 if (CheckPointer && SeenPointer) { 565 const DIType *Base = DTy->getBaseType(); 566 if (Base) { 567 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 568 auto CTag = CTy->getTag(); 569 if ((CTag == dwarf::DW_TAG_structure_type || 570 CTag == dwarf::DW_TAG_union_type) && 571 !CTy->isForwardDecl()) { 572 /// Find a candidate, generate a fixup. Later on the struct/union 573 /// pointee type will be replaced with either a real type or 574 /// a forward declaration. 575 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 576 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 577 Fixup.first = CTag == dwarf::DW_TAG_union_type; 578 Fixup.second.push_back(TypeEntry.get()); 579 TypeId = addType(std::move(TypeEntry), DTy); 580 return; 581 } 582 } 583 } 584 } 585 586 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 587 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 588 Tag == dwarf::DW_TAG_restrict_type) { 589 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 590 TypeId = addType(std::move(TypeEntry), DTy); 591 } else if (Tag != dwarf::DW_TAG_member) { 592 return; 593 } 594 595 // Visit base type of pointer, typedef, const, volatile, restrict or 596 // struct/union member. 597 uint32_t TempTypeId = 0; 598 if (Tag == dwarf::DW_TAG_member) 599 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 600 else 601 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 602 } 603 604 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 605 bool CheckPointer, bool SeenPointer) { 606 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 607 TypeId = DIToIdMap[Ty]; 608 609 // To handle the case like the following: 610 // struct t; 611 // typedef struct t _t; 612 // struct s1 { _t *c; }; 613 // int test1(struct s1 *arg) { ... } 614 // 615 // struct t { int a; int b; }; 616 // struct s2 { _t c; } 617 // int test2(struct s2 *arg) { ... } 618 // 619 // During traversing test1() argument, "_t" is recorded 620 // in DIToIdMap and a forward declaration fixup is created 621 // for "struct t" to avoid pointee type traversal. 622 // 623 // During traversing test2() argument, even if we see "_t" is 624 // already defined, we should keep moving to eventually 625 // bring in types for "struct t". Otherwise, the "struct s2" 626 // definition won't be correct. 627 if (Ty && (!CheckPointer || !SeenPointer)) { 628 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 629 unsigned Tag = DTy->getTag(); 630 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 631 Tag == dwarf::DW_TAG_volatile_type || 632 Tag == dwarf::DW_TAG_restrict_type) { 633 uint32_t TmpTypeId; 634 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 635 SeenPointer); 636 } 637 } 638 } 639 640 return; 641 } 642 643 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 644 visitBasicType(BTy, TypeId); 645 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 646 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 647 TypeId); 648 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 649 visitCompositeType(CTy, TypeId); 650 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 651 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 652 else 653 llvm_unreachable("Unknown DIType"); 654 } 655 656 void BTFDebug::visitTypeEntry(const DIType *Ty) { 657 uint32_t TypeId; 658 visitTypeEntry(Ty, TypeId, false, false); 659 } 660 661 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 662 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 663 TypeId = DIToIdMap[Ty]; 664 return; 665 } 666 667 // MapDef type is a struct type 668 const auto *CTy = dyn_cast<DICompositeType>(Ty); 669 if (!CTy) 670 return; 671 672 auto Tag = CTy->getTag(); 673 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 674 return; 675 676 // Record this type 677 const DINodeArray Elements = CTy->getElements(); 678 bool HasBitField = false; 679 for (const auto *Element : Elements) { 680 auto E = cast<DIDerivedType>(Element); 681 if (E->isBitField()) { 682 HasBitField = true; 683 break; 684 } 685 } 686 687 auto TypeEntry = 688 std::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size()); 689 StructTypes.push_back(TypeEntry.get()); 690 TypeId = addType(std::move(TypeEntry), CTy); 691 692 // Visit all struct members 693 for (const auto *Element : Elements) { 694 const auto *MemberType = cast<DIDerivedType>(Element); 695 visitTypeEntry(MemberType->getBaseType()); 696 } 697 } 698 699 /// Read file contents from the actual file or from the source 700 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 701 auto File = SP->getFile(); 702 std::string FileName; 703 704 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 705 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 706 else 707 FileName = std::string(File->getFilename()); 708 709 // No need to populate the contends if it has been populated! 710 if (FileContent.find(FileName) != FileContent.end()) 711 return FileName; 712 713 std::vector<std::string> Content; 714 std::string Line; 715 Content.push_back(Line); // Line 0 for empty string 716 717 std::unique_ptr<MemoryBuffer> Buf; 718 auto Source = File->getSource(); 719 if (Source) 720 Buf = MemoryBuffer::getMemBufferCopy(*Source); 721 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 722 MemoryBuffer::getFile(FileName)) 723 Buf = std::move(*BufOrErr); 724 if (Buf) 725 for (line_iterator I(*Buf, false), E; I != E; ++I) 726 Content.push_back(std::string(*I)); 727 728 FileContent[FileName] = Content; 729 return FileName; 730 } 731 732 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 733 uint32_t Line, uint32_t Column) { 734 std::string FileName = populateFileContent(SP); 735 BTFLineInfo LineInfo; 736 737 LineInfo.Label = Label; 738 LineInfo.FileNameOff = addString(FileName); 739 // If file content is not available, let LineOff = 0. 740 if (Line < FileContent[FileName].size()) 741 LineInfo.LineOff = addString(FileContent[FileName][Line]); 742 else 743 LineInfo.LineOff = 0; 744 LineInfo.LineNum = Line; 745 LineInfo.ColumnNum = Column; 746 LineInfoTable[SecNameOff].push_back(LineInfo); 747 } 748 749 void BTFDebug::emitCommonHeader() { 750 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 751 OS.emitIntValue(BTF::MAGIC, 2); 752 OS.emitInt8(BTF::VERSION); 753 OS.emitInt8(0); 754 } 755 756 void BTFDebug::emitBTFSection() { 757 // Do not emit section if no types and only "" string. 758 if (!TypeEntries.size() && StringTable.getSize() == 1) 759 return; 760 761 MCContext &Ctx = OS.getContext(); 762 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 763 764 // Emit header. 765 emitCommonHeader(); 766 OS.emitInt32(BTF::HeaderSize); 767 768 uint32_t TypeLen = 0, StrLen; 769 for (const auto &TypeEntry : TypeEntries) 770 TypeLen += TypeEntry->getSize(); 771 StrLen = StringTable.getSize(); 772 773 OS.emitInt32(0); 774 OS.emitInt32(TypeLen); 775 OS.emitInt32(TypeLen); 776 OS.emitInt32(StrLen); 777 778 // Emit type table. 779 for (const auto &TypeEntry : TypeEntries) 780 TypeEntry->emitType(OS); 781 782 // Emit string table. 783 uint32_t StringOffset = 0; 784 for (const auto &S : StringTable.getTable()) { 785 OS.AddComment("string offset=" + std::to_string(StringOffset)); 786 OS.emitBytes(S); 787 OS.emitBytes(StringRef("\0", 1)); 788 StringOffset += S.size() + 1; 789 } 790 } 791 792 void BTFDebug::emitBTFExtSection() { 793 // Do not emit section if empty FuncInfoTable and LineInfoTable 794 // and FieldRelocTable. 795 if (!FuncInfoTable.size() && !LineInfoTable.size() && 796 !FieldRelocTable.size()) 797 return; 798 799 MCContext &Ctx = OS.getContext(); 800 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 801 802 // Emit header. 803 emitCommonHeader(); 804 OS.emitInt32(BTF::ExtHeaderSize); 805 806 // Account for FuncInfo/LineInfo record size as well. 807 uint32_t FuncLen = 4, LineLen = 4; 808 // Do not account for optional FieldReloc. 809 uint32_t FieldRelocLen = 0; 810 for (const auto &FuncSec : FuncInfoTable) { 811 FuncLen += BTF::SecFuncInfoSize; 812 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 813 } 814 for (const auto &LineSec : LineInfoTable) { 815 LineLen += BTF::SecLineInfoSize; 816 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 817 } 818 for (const auto &FieldRelocSec : FieldRelocTable) { 819 FieldRelocLen += BTF::SecFieldRelocSize; 820 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 821 } 822 823 if (FieldRelocLen) 824 FieldRelocLen += 4; 825 826 OS.emitInt32(0); 827 OS.emitInt32(FuncLen); 828 OS.emitInt32(FuncLen); 829 OS.emitInt32(LineLen); 830 OS.emitInt32(FuncLen + LineLen); 831 OS.emitInt32(FieldRelocLen); 832 833 // Emit func_info table. 834 OS.AddComment("FuncInfo"); 835 OS.emitInt32(BTF::BPFFuncInfoSize); 836 for (const auto &FuncSec : FuncInfoTable) { 837 OS.AddComment("FuncInfo section string offset=" + 838 std::to_string(FuncSec.first)); 839 OS.emitInt32(FuncSec.first); 840 OS.emitInt32(FuncSec.second.size()); 841 for (const auto &FuncInfo : FuncSec.second) { 842 Asm->emitLabelReference(FuncInfo.Label, 4); 843 OS.emitInt32(FuncInfo.TypeId); 844 } 845 } 846 847 // Emit line_info table. 848 OS.AddComment("LineInfo"); 849 OS.emitInt32(BTF::BPFLineInfoSize); 850 for (const auto &LineSec : LineInfoTable) { 851 OS.AddComment("LineInfo section string offset=" + 852 std::to_string(LineSec.first)); 853 OS.emitInt32(LineSec.first); 854 OS.emitInt32(LineSec.second.size()); 855 for (const auto &LineInfo : LineSec.second) { 856 Asm->emitLabelReference(LineInfo.Label, 4); 857 OS.emitInt32(LineInfo.FileNameOff); 858 OS.emitInt32(LineInfo.LineOff); 859 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 860 std::to_string(LineInfo.ColumnNum)); 861 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 862 } 863 } 864 865 // Emit field reloc table. 866 if (FieldRelocLen) { 867 OS.AddComment("FieldReloc"); 868 OS.emitInt32(BTF::BPFFieldRelocSize); 869 for (const auto &FieldRelocSec : FieldRelocTable) { 870 OS.AddComment("Field reloc section string offset=" + 871 std::to_string(FieldRelocSec.first)); 872 OS.emitInt32(FieldRelocSec.first); 873 OS.emitInt32(FieldRelocSec.second.size()); 874 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 875 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 876 OS.emitInt32(FieldRelocInfo.TypeID); 877 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 878 OS.emitInt32(FieldRelocInfo.RelocKind); 879 } 880 } 881 } 882 } 883 884 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 885 auto *SP = MF->getFunction().getSubprogram(); 886 auto *Unit = SP->getUnit(); 887 888 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 889 SkipInstruction = true; 890 return; 891 } 892 SkipInstruction = false; 893 894 // Collect MapDef types. Map definition needs to collect 895 // pointee types. Do it first. Otherwise, for the following 896 // case: 897 // struct m { ...}; 898 // struct t { 899 // struct m *key; 900 // }; 901 // foo(struct t *arg); 902 // 903 // struct mapdef { 904 // ... 905 // struct m *key; 906 // ... 907 // } __attribute__((section(".maps"))) hash_map; 908 // 909 // If subroutine foo is traversed first, a type chain 910 // "ptr->struct m(fwd)" will be created and later on 911 // when traversing mapdef, since "ptr->struct m" exists, 912 // the traversal of "struct m" will be omitted. 913 if (MapDefNotCollected) { 914 processGlobals(true); 915 MapDefNotCollected = false; 916 } 917 918 // Collect all types locally referenced in this function. 919 // Use RetainedNodes so we can collect all argument names 920 // even if the argument is not used. 921 std::unordered_map<uint32_t, StringRef> FuncArgNames; 922 for (const DINode *DN : SP->getRetainedNodes()) { 923 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 924 // Collect function arguments for subprogram func type. 925 uint32_t Arg = DV->getArg(); 926 if (Arg) { 927 visitTypeEntry(DV->getType()); 928 FuncArgNames[Arg] = DV->getName(); 929 } 930 } 931 } 932 933 // Construct subprogram func proto type. 934 uint32_t ProtoTypeId; 935 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 936 937 // Construct subprogram func type 938 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 939 auto FuncTypeEntry = 940 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 941 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 942 943 for (const auto &TypeEntry : TypeEntries) 944 TypeEntry->completeType(*this); 945 946 // Construct funcinfo and the first lineinfo for the function. 947 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 948 BTFFuncInfo FuncInfo; 949 FuncInfo.Label = FuncLabel; 950 FuncInfo.TypeId = FuncTypeId; 951 if (FuncLabel->isInSection()) { 952 MCSection &Section = FuncLabel->getSection(); 953 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 954 assert(SectionELF && "Null section for Function Label"); 955 SecNameOff = addString(SectionELF->getName()); 956 } else { 957 SecNameOff = addString(".text"); 958 } 959 FuncInfoTable[SecNameOff].push_back(FuncInfo); 960 } 961 962 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 963 SkipInstruction = false; 964 LineInfoGenerated = false; 965 SecNameOff = 0; 966 } 967 968 /// On-demand populate types as requested from abstract member 969 /// accessing or preserve debuginfo type. 970 unsigned BTFDebug::populateType(const DIType *Ty) { 971 unsigned Id; 972 visitTypeEntry(Ty, Id, false, false); 973 for (const auto &TypeEntry : TypeEntries) 974 TypeEntry->completeType(*this); 975 return Id; 976 } 977 978 /// Generate a struct member field relocation. 979 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 980 const GlobalVariable *GVar, bool IsAma) { 981 BTFFieldReloc FieldReloc; 982 FieldReloc.Label = ORSym; 983 FieldReloc.TypeID = RootId; 984 985 StringRef AccessPattern = GVar->getName(); 986 size_t FirstDollar = AccessPattern.find_first_of('$'); 987 if (IsAma) { 988 size_t FirstColon = AccessPattern.find_first_of(':'); 989 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 990 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 991 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 992 SecondColon - FirstColon); 993 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 994 FirstDollar - SecondColon); 995 996 FieldReloc.OffsetNameOff = addString(IndexPattern); 997 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 998 PatchImms[GVar] = std::stoul(std::string(PatchImmStr)); 999 } else { 1000 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1001 FieldReloc.OffsetNameOff = addString("0"); 1002 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1003 PatchImms[GVar] = RootId; 1004 } 1005 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1006 } 1007 1008 void BTFDebug::processReloc(const MachineOperand &MO) { 1009 // check whether this is a candidate or not 1010 if (MO.isGlobal()) { 1011 const GlobalValue *GVal = MO.getGlobal(); 1012 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1013 if (!GVar) 1014 return; 1015 1016 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1017 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1018 return; 1019 1020 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1021 OS.emitLabel(ORSym); 1022 1023 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1024 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1025 generatePatchImmReloc(ORSym, RootId, GVar, 1026 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1027 } 1028 } 1029 1030 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1031 DebugHandlerBase::beginInstruction(MI); 1032 1033 if (SkipInstruction || MI->isMetaInstruction() || 1034 MI->getFlag(MachineInstr::FrameSetup)) 1035 return; 1036 1037 if (MI->isInlineAsm()) { 1038 // Count the number of register definitions to find the asm string. 1039 unsigned NumDefs = 0; 1040 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1041 ++NumDefs) 1042 ; 1043 1044 // Skip this inline asm instruction if the asmstr is empty. 1045 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1046 if (AsmStr[0] == 0) 1047 return; 1048 } 1049 1050 if (MI->getOpcode() == BPF::LD_imm64) { 1051 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1052 // add this insn into the .BTF.ext FieldReloc subsection. 1053 // Relocation looks like: 1054 // . SecName: 1055 // . InstOffset 1056 // . TypeID 1057 // . OffSetNameOff 1058 // . RelocType 1059 // Later, the insn is replaced with "r2 = <offset>" 1060 // where "<offset>" equals to the offset based on current 1061 // type definitions. 1062 // 1063 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1064 // The LD_imm64 result will be replaced with a btf type id. 1065 processReloc(MI->getOperand(1)); 1066 } else if (MI->getOpcode() == BPF::CORE_MEM || 1067 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1068 MI->getOpcode() == BPF::CORE_SHIFT) { 1069 // relocation insn is a load, store or shift insn. 1070 processReloc(MI->getOperand(3)); 1071 } else if (MI->getOpcode() == BPF::JAL) { 1072 // check extern function references 1073 const MachineOperand &MO = MI->getOperand(0); 1074 if (MO.isGlobal()) { 1075 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1076 } 1077 } 1078 1079 // Skip this instruction if no DebugLoc or the DebugLoc 1080 // is the same as the previous instruction. 1081 const DebugLoc &DL = MI->getDebugLoc(); 1082 if (!DL || PrevInstLoc == DL) { 1083 // This instruction will be skipped, no LineInfo has 1084 // been generated, construct one based on function signature. 1085 if (LineInfoGenerated == false) { 1086 auto *S = MI->getMF()->getFunction().getSubprogram(); 1087 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1088 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1089 LineInfoGenerated = true; 1090 } 1091 1092 return; 1093 } 1094 1095 // Create a temporary label to remember the insn for lineinfo. 1096 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1097 OS.emitLabel(LineSym); 1098 1099 // Construct the lineinfo. 1100 auto SP = DL.get()->getScope()->getSubprogram(); 1101 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1102 1103 LineInfoGenerated = true; 1104 PrevInstLoc = DL; 1105 } 1106 1107 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1108 // Collect all types referenced by globals. 1109 const Module *M = MMI->getModule(); 1110 for (const GlobalVariable &Global : M->globals()) { 1111 // Decide the section name. 1112 StringRef SecName; 1113 if (Global.hasSection()) { 1114 SecName = Global.getSection(); 1115 } else if (Global.hasInitializer()) { 1116 // data, bss, or readonly sections 1117 if (Global.isConstant()) 1118 SecName = ".rodata"; 1119 else 1120 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1121 } else { 1122 // extern variables without explicit section, 1123 // put them into ".extern" section. 1124 SecName = ".extern"; 1125 } 1126 1127 if (ProcessingMapDef != SecName.startswith(".maps")) 1128 continue; 1129 1130 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1131 Global.getDebugInfo(GVs); 1132 1133 // No type information, mostly internal, skip it. 1134 if (GVs.size() == 0) 1135 continue; 1136 1137 uint32_t GVTypeId = 0; 1138 for (auto *GVE : GVs) { 1139 if (SecName.startswith(".maps")) 1140 visitMapDefType(GVE->getVariable()->getType(), GVTypeId); 1141 else 1142 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false); 1143 break; 1144 } 1145 1146 // Only support the following globals: 1147 // . static variables 1148 // . non-static weak or non-weak global variables 1149 // . weak or non-weak extern global variables 1150 // Whether DataSec is readonly or not can be found from corresponding ELF 1151 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1152 // can be found from the corresponding ELF symbol table. 1153 auto Linkage = Global.getLinkage(); 1154 if (Linkage != GlobalValue::InternalLinkage && 1155 Linkage != GlobalValue::ExternalLinkage && 1156 Linkage != GlobalValue::WeakAnyLinkage && 1157 Linkage != GlobalValue::ExternalWeakLinkage) 1158 continue; 1159 1160 uint32_t GVarInfo; 1161 if (Linkage == GlobalValue::InternalLinkage) { 1162 GVarInfo = BTF::VAR_STATIC; 1163 } else if (Global.hasInitializer()) { 1164 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1165 } else { 1166 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1167 } 1168 1169 auto VarEntry = 1170 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1171 uint32_t VarId = addType(std::move(VarEntry)); 1172 1173 assert(!SecName.empty()); 1174 1175 // Find or create a DataSec 1176 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1177 DataSecEntries[std::string(SecName)] = 1178 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1179 } 1180 1181 // Calculate symbol size 1182 const DataLayout &DL = Global.getParent()->getDataLayout(); 1183 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1184 1185 DataSecEntries[std::string(SecName)]->addVar(VarId, Asm->getSymbol(&Global), 1186 Size); 1187 } 1188 } 1189 1190 /// Emit proper patchable instructions. 1191 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1192 if (MI->getOpcode() == BPF::LD_imm64) { 1193 const MachineOperand &MO = MI->getOperand(1); 1194 if (MO.isGlobal()) { 1195 const GlobalValue *GVal = MO.getGlobal(); 1196 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1197 if (GVar) { 1198 // Emit "mov ri, <imm>" 1199 uint32_t Imm; 1200 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1201 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1202 Imm = PatchImms[GVar]; 1203 else 1204 return false; 1205 1206 OutMI.setOpcode(BPF::MOV_ri); 1207 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1208 OutMI.addOperand(MCOperand::createImm(Imm)); 1209 return true; 1210 } 1211 } 1212 } else if (MI->getOpcode() == BPF::CORE_MEM || 1213 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1214 MI->getOpcode() == BPF::CORE_SHIFT) { 1215 const MachineOperand &MO = MI->getOperand(3); 1216 if (MO.isGlobal()) { 1217 const GlobalValue *GVal = MO.getGlobal(); 1218 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1219 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1220 uint32_t Imm = PatchImms[GVar]; 1221 OutMI.setOpcode(MI->getOperand(1).getImm()); 1222 if (MI->getOperand(0).isImm()) 1223 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1224 else 1225 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1226 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1227 OutMI.addOperand(MCOperand::createImm(Imm)); 1228 return true; 1229 } 1230 } 1231 } 1232 return false; 1233 } 1234 1235 void BTFDebug::processFuncPrototypes(const Function *F) { 1236 if (!F) 1237 return; 1238 1239 const DISubprogram *SP = F->getSubprogram(); 1240 if (!SP || SP->isDefinition()) 1241 return; 1242 1243 // Do not emit again if already emitted. 1244 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1245 return; 1246 ProtoFunctions.insert(F); 1247 1248 uint32_t ProtoTypeId; 1249 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1250 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1251 1252 uint8_t Scope = BTF::FUNC_EXTERN; 1253 auto FuncTypeEntry = 1254 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1255 addType(std::move(FuncTypeEntry)); 1256 } 1257 1258 void BTFDebug::endModule() { 1259 // Collect MapDef globals if not collected yet. 1260 if (MapDefNotCollected) { 1261 processGlobals(true); 1262 MapDefNotCollected = false; 1263 } 1264 1265 // Collect global types/variables except MapDef globals. 1266 processGlobals(false); 1267 1268 for (auto &DataSec : DataSecEntries) 1269 addType(std::move(DataSec.second)); 1270 1271 // Fixups 1272 for (auto &Fixup : FixupDerivedTypes) { 1273 StringRef TypeName = Fixup.first; 1274 bool IsUnion = Fixup.second.first; 1275 1276 // Search through struct types 1277 uint32_t StructTypeId = 0; 1278 for (const auto &StructType : StructTypes) { 1279 if (StructType->getName() == TypeName) { 1280 StructTypeId = StructType->getId(); 1281 break; 1282 } 1283 } 1284 1285 if (StructTypeId == 0) { 1286 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1287 StructTypeId = addType(std::move(FwdTypeEntry)); 1288 } 1289 1290 for (auto &DType : Fixup.second.second) { 1291 DType->setPointeeType(StructTypeId); 1292 } 1293 } 1294 1295 // Complete BTF type cross refereences. 1296 for (const auto &TypeEntry : TypeEntries) 1297 TypeEntry->completeType(*this); 1298 1299 // Emit BTF sections. 1300 emitBTFSection(); 1301 emitBTFExtSection(); 1302 } 1303