1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
25 
26 using namespace llvm;
27 
28 static const char *BTFKindStr[] = {
29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
30 #include "BTF.def"
31 };
32 
33 /// Emit a BTF common type.
34 void BTFTypeBase::emitType(MCStreamer &OS) {
35   OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
36                 ")");
37   OS.EmitIntValue(BTFType.NameOff, 4);
38   OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
39   OS.EmitIntValue(BTFType.Info, 4);
40   OS.EmitIntValue(BTFType.Size, 4);
41 }
42 
43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
44                                bool NeedsFixup)
45     : DTy(DTy), NeedsFixup(NeedsFixup) {
46   switch (Tag) {
47   case dwarf::DW_TAG_pointer_type:
48     Kind = BTF::BTF_KIND_PTR;
49     break;
50   case dwarf::DW_TAG_const_type:
51     Kind = BTF::BTF_KIND_CONST;
52     break;
53   case dwarf::DW_TAG_volatile_type:
54     Kind = BTF::BTF_KIND_VOLATILE;
55     break;
56   case dwarf::DW_TAG_typedef:
57     Kind = BTF::BTF_KIND_TYPEDEF;
58     break;
59   case dwarf::DW_TAG_restrict_type:
60     Kind = BTF::BTF_KIND_RESTRICT;
61     break;
62   default:
63     llvm_unreachable("Unknown DIDerivedType Tag");
64   }
65   BTFType.Info = Kind << 24;
66 }
67 
68 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
69   if (IsCompleted)
70     return;
71   IsCompleted = true;
72 
73   BTFType.NameOff = BDebug.addString(DTy->getName());
74 
75   if (NeedsFixup)
76     return;
77 
78   // The base type for PTR/CONST/VOLATILE could be void.
79   const DIType *ResolvedType = DTy->getBaseType();
80   if (!ResolvedType) {
81     assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
82             Kind == BTF::BTF_KIND_VOLATILE) &&
83            "Invalid null basetype");
84     BTFType.Type = 0;
85   } else {
86     BTFType.Type = BDebug.getTypeId(ResolvedType);
87   }
88 }
89 
90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
91 
92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
93   BTFType.Type = PointeeType;
94 }
95 
96 /// Represent a struct/union forward declaration.
97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
98   Kind = BTF::BTF_KIND_FWD;
99   BTFType.Info = IsUnion << 31 | Kind << 24;
100   BTFType.Type = 0;
101 }
102 
103 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
104   if (IsCompleted)
105     return;
106   IsCompleted = true;
107 
108   BTFType.NameOff = BDebug.addString(Name);
109 }
110 
111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
112 
113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
114                        uint32_t OffsetInBits, StringRef TypeName)
115     : Name(TypeName) {
116   // Translate IR int encoding to BTF int encoding.
117   uint8_t BTFEncoding;
118   switch (Encoding) {
119   case dwarf::DW_ATE_boolean:
120     BTFEncoding = BTF::INT_BOOL;
121     break;
122   case dwarf::DW_ATE_signed:
123   case dwarf::DW_ATE_signed_char:
124     BTFEncoding = BTF::INT_SIGNED;
125     break;
126   case dwarf::DW_ATE_unsigned:
127   case dwarf::DW_ATE_unsigned_char:
128     BTFEncoding = 0;
129     break;
130   default:
131     llvm_unreachable("Unknown BTFTypeInt Encoding");
132   }
133 
134   Kind = BTF::BTF_KIND_INT;
135   BTFType.Info = Kind << 24;
136   BTFType.Size = roundupToBytes(SizeInBits);
137   IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
138 }
139 
140 void BTFTypeInt::completeType(BTFDebug &BDebug) {
141   if (IsCompleted)
142     return;
143   IsCompleted = true;
144 
145   BTFType.NameOff = BDebug.addString(Name);
146 }
147 
148 void BTFTypeInt::emitType(MCStreamer &OS) {
149   BTFTypeBase::emitType(OS);
150   OS.AddComment("0x" + Twine::utohexstr(IntVal));
151   OS.EmitIntValue(IntVal, 4);
152 }
153 
154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
155   Kind = BTF::BTF_KIND_ENUM;
156   BTFType.Info = Kind << 24 | VLen;
157   BTFType.Size = roundupToBytes(ETy->getSizeInBits());
158 }
159 
160 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
161   if (IsCompleted)
162     return;
163   IsCompleted = true;
164 
165   BTFType.NameOff = BDebug.addString(ETy->getName());
166 
167   DINodeArray Elements = ETy->getElements();
168   for (const auto Element : Elements) {
169     const auto *Enum = cast<DIEnumerator>(Element);
170 
171     struct BTF::BTFEnum BTFEnum;
172     BTFEnum.NameOff = BDebug.addString(Enum->getName());
173     // BTF enum value is 32bit, enforce it.
174     BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
175     EnumValues.push_back(BTFEnum);
176   }
177 }
178 
179 void BTFTypeEnum::emitType(MCStreamer &OS) {
180   BTFTypeBase::emitType(OS);
181   for (const auto &Enum : EnumValues) {
182     OS.EmitIntValue(Enum.NameOff, 4);
183     OS.EmitIntValue(Enum.Val, 4);
184   }
185 }
186 
187 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
188   Kind = BTF::BTF_KIND_ARRAY;
189   BTFType.NameOff = 0;
190   BTFType.Info = Kind << 24;
191   BTFType.Size = 0;
192 
193   ArrayInfo.ElemType = ElemTypeId;
194   ArrayInfo.Nelems = NumElems;
195 }
196 
197 /// Represent a BTF array.
198 void BTFTypeArray::completeType(BTFDebug &BDebug) {
199   if (IsCompleted)
200     return;
201   IsCompleted = true;
202 
203   // The IR does not really have a type for the index.
204   // A special type for array index should have been
205   // created during initial type traversal. Just
206   // retrieve that type id.
207   ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
208 }
209 
210 void BTFTypeArray::emitType(MCStreamer &OS) {
211   BTFTypeBase::emitType(OS);
212   OS.EmitIntValue(ArrayInfo.ElemType, 4);
213   OS.EmitIntValue(ArrayInfo.IndexType, 4);
214   OS.EmitIntValue(ArrayInfo.Nelems, 4);
215 }
216 
217 /// Represent either a struct or a union.
218 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
219                              bool HasBitField, uint32_t Vlen)
220     : STy(STy), HasBitField(HasBitField) {
221   Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
222   BTFType.Size = roundupToBytes(STy->getSizeInBits());
223   BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
224 }
225 
226 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
227   if (IsCompleted)
228     return;
229   IsCompleted = true;
230 
231   BTFType.NameOff = BDebug.addString(STy->getName());
232 
233   // Add struct/union members.
234   const DINodeArray Elements = STy->getElements();
235   for (const auto *Element : Elements) {
236     struct BTF::BTFMember BTFMember;
237     const auto *DDTy = cast<DIDerivedType>(Element);
238 
239     BTFMember.NameOff = BDebug.addString(DDTy->getName());
240     if (HasBitField) {
241       uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
242       BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
243     } else {
244       BTFMember.Offset = DDTy->getOffsetInBits();
245     }
246     const auto *BaseTy = DDTy->getBaseType();
247     BTFMember.Type = BDebug.getTypeId(BaseTy);
248     Members.push_back(BTFMember);
249   }
250 }
251 
252 void BTFTypeStruct::emitType(MCStreamer &OS) {
253   BTFTypeBase::emitType(OS);
254   for (const auto &Member : Members) {
255     OS.EmitIntValue(Member.NameOff, 4);
256     OS.EmitIntValue(Member.Type, 4);
257     OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
258     OS.EmitIntValue(Member.Offset, 4);
259   }
260 }
261 
262 std::string BTFTypeStruct::getName() { return STy->getName(); }
263 
264 /// The Func kind represents both subprogram and pointee of function
265 /// pointers. If the FuncName is empty, it represents a pointee of function
266 /// pointer. Otherwise, it represents a subprogram. The func arg names
267 /// are empty for pointee of function pointer case, and are valid names
268 /// for subprogram.
269 BTFTypeFuncProto::BTFTypeFuncProto(
270     const DISubroutineType *STy, uint32_t VLen,
271     const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
272     : STy(STy), FuncArgNames(FuncArgNames) {
273   Kind = BTF::BTF_KIND_FUNC_PROTO;
274   BTFType.Info = (Kind << 24) | VLen;
275 }
276 
277 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
278   if (IsCompleted)
279     return;
280   IsCompleted = true;
281 
282   DITypeRefArray Elements = STy->getTypeArray();
283   auto RetType = Elements[0];
284   BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
285   BTFType.NameOff = 0;
286 
287   // For null parameter which is typically the last one
288   // to represent the vararg, encode the NameOff/Type to be 0.
289   for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
290     struct BTF::BTFParam Param;
291     auto Element = Elements[I];
292     if (Element) {
293       Param.NameOff = BDebug.addString(FuncArgNames[I]);
294       Param.Type = BDebug.getTypeId(Element);
295     } else {
296       Param.NameOff = 0;
297       Param.Type = 0;
298     }
299     Parameters.push_back(Param);
300   }
301 }
302 
303 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
304   BTFTypeBase::emitType(OS);
305   for (const auto &Param : Parameters) {
306     OS.EmitIntValue(Param.NameOff, 4);
307     OS.EmitIntValue(Param.Type, 4);
308   }
309 }
310 
311 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
312     : Name(FuncName) {
313   Kind = BTF::BTF_KIND_FUNC;
314   BTFType.Info = Kind << 24;
315   BTFType.Type = ProtoTypeId;
316 }
317 
318 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
319   if (IsCompleted)
320     return;
321   IsCompleted = true;
322 
323   BTFType.NameOff = BDebug.addString(Name);
324 }
325 
326 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
327 
328 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
329     : Name(VarName) {
330   Kind = BTF::BTF_KIND_VAR;
331   BTFType.Info = Kind << 24;
332   BTFType.Type = TypeId;
333   Info = VarInfo;
334 }
335 
336 void BTFKindVar::completeType(BTFDebug &BDebug) {
337   BTFType.NameOff = BDebug.addString(Name);
338 }
339 
340 void BTFKindVar::emitType(MCStreamer &OS) {
341   BTFTypeBase::emitType(OS);
342   OS.EmitIntValue(Info, 4);
343 }
344 
345 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
346     : Asm(AsmPrt), Name(SecName) {
347   Kind = BTF::BTF_KIND_DATASEC;
348   BTFType.Info = Kind << 24;
349   BTFType.Size = 0;
350 }
351 
352 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
353   BTFType.NameOff = BDebug.addString(Name);
354   BTFType.Info |= Vars.size();
355 }
356 
357 void BTFKindDataSec::emitType(MCStreamer &OS) {
358   BTFTypeBase::emitType(OS);
359 
360   for (const auto &V : Vars) {
361     OS.EmitIntValue(std::get<0>(V), 4);
362     Asm->EmitLabelReference(std::get<1>(V), 4);
363     OS.EmitIntValue(std::get<2>(V), 4);
364   }
365 }
366 
367 uint32_t BTFStringTable::addString(StringRef S) {
368   // Check whether the string already exists.
369   for (auto &OffsetM : OffsetToIdMap) {
370     if (Table[OffsetM.second] == S)
371       return OffsetM.first;
372   }
373   // Not find, add to the string table.
374   uint32_t Offset = Size;
375   OffsetToIdMap[Offset] = Table.size();
376   Table.push_back(S);
377   Size += S.size() + 1;
378   return Offset;
379 }
380 
381 BTFDebug::BTFDebug(AsmPrinter *AP)
382     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
383       LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
384       MapDefNotCollected(true) {
385   addString("\0");
386 }
387 
388 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
389                            const DIType *Ty) {
390   TypeEntry->setId(TypeEntries.size() + 1);
391   uint32_t Id = TypeEntry->getId();
392   DIToIdMap[Ty] = Id;
393   TypeEntries.push_back(std::move(TypeEntry));
394   return Id;
395 }
396 
397 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
398   TypeEntry->setId(TypeEntries.size() + 1);
399   uint32_t Id = TypeEntry->getId();
400   TypeEntries.push_back(std::move(TypeEntry));
401   return Id;
402 }
403 
404 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
405   // Only int types are supported in BTF.
406   uint32_t Encoding = BTy->getEncoding();
407   if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
408       Encoding != dwarf::DW_ATE_signed_char &&
409       Encoding != dwarf::DW_ATE_unsigned &&
410       Encoding != dwarf::DW_ATE_unsigned_char)
411     return;
412 
413   // Create a BTF type instance for this DIBasicType and put it into
414   // DIToIdMap for cross-type reference check.
415   auto TypeEntry = llvm::make_unique<BTFTypeInt>(
416       Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
417   TypeId = addType(std::move(TypeEntry), BTy);
418 }
419 
420 /// Handle subprogram or subroutine types.
421 void BTFDebug::visitSubroutineType(
422     const DISubroutineType *STy, bool ForSubprog,
423     const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
424     uint32_t &TypeId) {
425   DITypeRefArray Elements = STy->getTypeArray();
426   uint32_t VLen = Elements.size() - 1;
427   if (VLen > BTF::MAX_VLEN)
428     return;
429 
430   // Subprogram has a valid non-zero-length name, and the pointee of
431   // a function pointer has an empty name. The subprogram type will
432   // not be added to DIToIdMap as it should not be referenced by
433   // any other types.
434   auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
435   if (ForSubprog)
436     TypeId = addType(std::move(TypeEntry)); // For subprogram
437   else
438     TypeId = addType(std::move(TypeEntry), STy); // For func ptr
439 
440   // Visit return type and func arg types.
441   for (const auto Element : Elements) {
442     visitTypeEntry(Element);
443   }
444 }
445 
446 /// Handle structure/union types.
447 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
448                                uint32_t &TypeId) {
449   const DINodeArray Elements = CTy->getElements();
450   uint32_t VLen = Elements.size();
451   if (VLen > BTF::MAX_VLEN)
452     return;
453 
454   // Check whether we have any bitfield members or not
455   bool HasBitField = false;
456   for (const auto *Element : Elements) {
457     auto E = cast<DIDerivedType>(Element);
458     if (E->isBitField()) {
459       HasBitField = true;
460       break;
461     }
462   }
463 
464   auto TypeEntry =
465       llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
466   StructTypes.push_back(TypeEntry.get());
467   TypeId = addType(std::move(TypeEntry), CTy);
468 
469   // Visit all struct members.
470   for (const auto *Element : Elements)
471     visitTypeEntry(cast<DIDerivedType>(Element));
472 }
473 
474 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
475   // Visit array element type.
476   uint32_t ElemTypeId, ElemSize;
477   const DIType *ElemType = CTy->getBaseType();
478   visitTypeEntry(ElemType, ElemTypeId, false, false);
479 
480   // Strip qualifiers from element type to get accurate element size.
481   ElemSize = ElemType->getSizeInBits() >> 3;
482 
483   if (!CTy->getSizeInBits()) {
484     auto TypeEntry = llvm::make_unique<BTFTypeArray>(ElemTypeId, 0);
485     ElemTypeId = addType(std::move(TypeEntry), CTy);
486   } else {
487     // Visit array dimensions.
488     DINodeArray Elements = CTy->getElements();
489     for (int I = Elements.size() - 1; I >= 0; --I) {
490       if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
491         if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
492           const DISubrange *SR = cast<DISubrange>(Element);
493           auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
494           int64_t Count = CI->getSExtValue();
495 
496           auto TypeEntry =
497               llvm::make_unique<BTFTypeArray>(ElemTypeId, Count);
498           if (I == 0)
499             ElemTypeId = addType(std::move(TypeEntry), CTy);
500           else
501             ElemTypeId = addType(std::move(TypeEntry));
502           ElemSize = ElemSize * Count;
503         }
504     }
505   }
506 
507   // The array TypeId is the type id of the outermost dimension.
508   TypeId = ElemTypeId;
509 
510   // The IR does not have a type for array index while BTF wants one.
511   // So create an array index type if there is none.
512   if (!ArrayIndexTypeId) {
513     auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
514                                                    0, "__ARRAY_SIZE_TYPE__");
515     ArrayIndexTypeId = addType(std::move(TypeEntry));
516   }
517 }
518 
519 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
520   DINodeArray Elements = CTy->getElements();
521   uint32_t VLen = Elements.size();
522   if (VLen > BTF::MAX_VLEN)
523     return;
524 
525   auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
526   TypeId = addType(std::move(TypeEntry), CTy);
527   // No need to visit base type as BTF does not encode it.
528 }
529 
530 /// Handle structure/union forward declarations.
531 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
532                                 uint32_t &TypeId) {
533   auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
534   TypeId = addType(std::move(TypeEntry), CTy);
535 }
536 
537 /// Handle structure, union, array and enumeration types.
538 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
539                                   uint32_t &TypeId) {
540   auto Tag = CTy->getTag();
541   if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
542     // Handle forward declaration differently as it does not have members.
543     if (CTy->isForwardDecl())
544       visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
545     else
546       visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
547   } else if (Tag == dwarf::DW_TAG_array_type)
548     visitArrayType(CTy, TypeId);
549   else if (Tag == dwarf::DW_TAG_enumeration_type)
550     visitEnumType(CTy, TypeId);
551 }
552 
553 /// Handle pointer, typedef, const, volatile, restrict and member types.
554 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
555                                 bool CheckPointer, bool SeenPointer) {
556   unsigned Tag = DTy->getTag();
557 
558   /// Try to avoid chasing pointees, esp. structure pointees which may
559   /// unnecessary bring in a lot of types.
560   if (CheckPointer && !SeenPointer) {
561     SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
562   }
563 
564   if (CheckPointer && SeenPointer) {
565     const DIType *Base = DTy->getBaseType();
566     if (Base) {
567       if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
568         auto CTag = CTy->getTag();
569         if ((CTag == dwarf::DW_TAG_structure_type ||
570              CTag == dwarf::DW_TAG_union_type) &&
571             !CTy->isForwardDecl()) {
572           /// Find a candidate, generate a fixup. Later on the struct/union
573           /// pointee type will be replaced with either a real type or
574           /// a forward declaration.
575           auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, true);
576           auto &Fixup = FixupDerivedTypes[CTy->getName()];
577           Fixup.first = CTag == dwarf::DW_TAG_union_type;
578           Fixup.second.push_back(TypeEntry.get());
579           TypeId = addType(std::move(TypeEntry), DTy);
580           return;
581         }
582       }
583     }
584   }
585 
586   if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
587       Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
588       Tag == dwarf::DW_TAG_restrict_type) {
589     auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, false);
590     TypeId = addType(std::move(TypeEntry), DTy);
591   } else if (Tag != dwarf::DW_TAG_member) {
592     return;
593   }
594 
595   // Visit base type of pointer, typedef, const, volatile, restrict or
596   // struct/union member.
597   uint32_t TempTypeId = 0;
598   if (Tag == dwarf::DW_TAG_member)
599     visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
600   else
601     visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
602 }
603 
604 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
605                               bool CheckPointer, bool SeenPointer) {
606   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
607     TypeId = DIToIdMap[Ty];
608     return;
609   }
610 
611   if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
612     visitBasicType(BTy, TypeId);
613   else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
614     visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
615                         TypeId);
616   else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
617     visitCompositeType(CTy, TypeId);
618   else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
619     visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
620   else
621     llvm_unreachable("Unknown DIType");
622 }
623 
624 void BTFDebug::visitTypeEntry(const DIType *Ty) {
625   uint32_t TypeId;
626   visitTypeEntry(Ty, TypeId, false, false);
627 }
628 
629 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
630   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
631     TypeId = DIToIdMap[Ty];
632     return;
633   }
634 
635   // MapDef type is a struct type
636   const auto *CTy = dyn_cast<DICompositeType>(Ty);
637   if (!CTy)
638     return;
639 
640   auto Tag = CTy->getTag();
641   if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
642     return;
643 
644   // Record this type
645   const DINodeArray Elements = CTy->getElements();
646   bool HasBitField = false;
647   for (const auto *Element : Elements) {
648     auto E = cast<DIDerivedType>(Element);
649     if (E->isBitField()) {
650       HasBitField = true;
651       break;
652     }
653   }
654 
655   auto TypeEntry =
656       llvm::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size());
657   StructTypes.push_back(TypeEntry.get());
658   TypeId = addType(std::move(TypeEntry), CTy);
659 
660   // Visit all struct members
661   for (const auto *Element : Elements) {
662     const auto *MemberType = cast<DIDerivedType>(Element);
663     visitTypeEntry(MemberType->getBaseType());
664   }
665 }
666 
667 /// Read file contents from the actual file or from the source
668 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
669   auto File = SP->getFile();
670   std::string FileName;
671 
672   if (!File->getFilename().startswith("/") && File->getDirectory().size())
673     FileName = File->getDirectory().str() + "/" + File->getFilename().str();
674   else
675     FileName = File->getFilename();
676 
677   // No need to populate the contends if it has been populated!
678   if (FileContent.find(FileName) != FileContent.end())
679     return FileName;
680 
681   std::vector<std::string> Content;
682   std::string Line;
683   Content.push_back(Line); // Line 0 for empty string
684 
685   std::unique_ptr<MemoryBuffer> Buf;
686   auto Source = File->getSource();
687   if (Source)
688     Buf = MemoryBuffer::getMemBufferCopy(*Source);
689   else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
690                MemoryBuffer::getFile(FileName))
691     Buf = std::move(*BufOrErr);
692   if (Buf)
693     for (line_iterator I(*Buf, false), E; I != E; ++I)
694       Content.push_back(*I);
695 
696   FileContent[FileName] = Content;
697   return FileName;
698 }
699 
700 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
701                                  uint32_t Line, uint32_t Column) {
702   std::string FileName = populateFileContent(SP);
703   BTFLineInfo LineInfo;
704 
705   LineInfo.Label = Label;
706   LineInfo.FileNameOff = addString(FileName);
707   // If file content is not available, let LineOff = 0.
708   if (Line < FileContent[FileName].size())
709     LineInfo.LineOff = addString(FileContent[FileName][Line]);
710   else
711     LineInfo.LineOff = 0;
712   LineInfo.LineNum = Line;
713   LineInfo.ColumnNum = Column;
714   LineInfoTable[SecNameOff].push_back(LineInfo);
715 }
716 
717 void BTFDebug::emitCommonHeader() {
718   OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
719   OS.EmitIntValue(BTF::MAGIC, 2);
720   OS.EmitIntValue(BTF::VERSION, 1);
721   OS.EmitIntValue(0, 1);
722 }
723 
724 void BTFDebug::emitBTFSection() {
725   // Do not emit section if no types and only "" string.
726   if (!TypeEntries.size() && StringTable.getSize() == 1)
727     return;
728 
729   MCContext &Ctx = OS.getContext();
730   OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
731 
732   // Emit header.
733   emitCommonHeader();
734   OS.EmitIntValue(BTF::HeaderSize, 4);
735 
736   uint32_t TypeLen = 0, StrLen;
737   for (const auto &TypeEntry : TypeEntries)
738     TypeLen += TypeEntry->getSize();
739   StrLen = StringTable.getSize();
740 
741   OS.EmitIntValue(0, 4);
742   OS.EmitIntValue(TypeLen, 4);
743   OS.EmitIntValue(TypeLen, 4);
744   OS.EmitIntValue(StrLen, 4);
745 
746   // Emit type table.
747   for (const auto &TypeEntry : TypeEntries)
748     TypeEntry->emitType(OS);
749 
750   // Emit string table.
751   uint32_t StringOffset = 0;
752   for (const auto &S : StringTable.getTable()) {
753     OS.AddComment("string offset=" + std::to_string(StringOffset));
754     OS.EmitBytes(S);
755     OS.EmitBytes(StringRef("\0", 1));
756     StringOffset += S.size() + 1;
757   }
758 }
759 
760 void BTFDebug::emitBTFExtSection() {
761   // Do not emit section if empty FuncInfoTable and LineInfoTable.
762   if (!FuncInfoTable.size() && !LineInfoTable.size() &&
763       !OffsetRelocTable.size() && !ExternRelocTable.size())
764     return;
765 
766   MCContext &Ctx = OS.getContext();
767   OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
768 
769   // Emit header.
770   emitCommonHeader();
771   OS.EmitIntValue(BTF::ExtHeaderSize, 4);
772 
773   // Account for FuncInfo/LineInfo record size as well.
774   uint32_t FuncLen = 4, LineLen = 4;
775   // Do not account for optional OffsetReloc/ExternReloc.
776   uint32_t OffsetRelocLen = 0, ExternRelocLen = 0;
777   for (const auto &FuncSec : FuncInfoTable) {
778     FuncLen += BTF::SecFuncInfoSize;
779     FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
780   }
781   for (const auto &LineSec : LineInfoTable) {
782     LineLen += BTF::SecLineInfoSize;
783     LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
784   }
785   for (const auto &OffsetRelocSec : OffsetRelocTable) {
786     OffsetRelocLen += BTF::SecOffsetRelocSize;
787     OffsetRelocLen += OffsetRelocSec.second.size() * BTF::BPFOffsetRelocSize;
788   }
789   for (const auto &ExternRelocSec : ExternRelocTable) {
790     ExternRelocLen += BTF::SecExternRelocSize;
791     ExternRelocLen += ExternRelocSec.second.size() * BTF::BPFExternRelocSize;
792   }
793 
794   if (OffsetRelocLen)
795     OffsetRelocLen += 4;
796   if (ExternRelocLen)
797     ExternRelocLen += 4;
798 
799   OS.EmitIntValue(0, 4);
800   OS.EmitIntValue(FuncLen, 4);
801   OS.EmitIntValue(FuncLen, 4);
802   OS.EmitIntValue(LineLen, 4);
803   OS.EmitIntValue(FuncLen + LineLen, 4);
804   OS.EmitIntValue(OffsetRelocLen, 4);
805   OS.EmitIntValue(FuncLen + LineLen + OffsetRelocLen, 4);
806   OS.EmitIntValue(ExternRelocLen, 4);
807 
808   // Emit func_info table.
809   OS.AddComment("FuncInfo");
810   OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
811   for (const auto &FuncSec : FuncInfoTable) {
812     OS.AddComment("FuncInfo section string offset=" +
813                   std::to_string(FuncSec.first));
814     OS.EmitIntValue(FuncSec.first, 4);
815     OS.EmitIntValue(FuncSec.second.size(), 4);
816     for (const auto &FuncInfo : FuncSec.second) {
817       Asm->EmitLabelReference(FuncInfo.Label, 4);
818       OS.EmitIntValue(FuncInfo.TypeId, 4);
819     }
820   }
821 
822   // Emit line_info table.
823   OS.AddComment("LineInfo");
824   OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
825   for (const auto &LineSec : LineInfoTable) {
826     OS.AddComment("LineInfo section string offset=" +
827                   std::to_string(LineSec.first));
828     OS.EmitIntValue(LineSec.first, 4);
829     OS.EmitIntValue(LineSec.second.size(), 4);
830     for (const auto &LineInfo : LineSec.second) {
831       Asm->EmitLabelReference(LineInfo.Label, 4);
832       OS.EmitIntValue(LineInfo.FileNameOff, 4);
833       OS.EmitIntValue(LineInfo.LineOff, 4);
834       OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
835                     std::to_string(LineInfo.ColumnNum));
836       OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
837     }
838   }
839 
840   // Emit offset reloc table.
841   if (OffsetRelocLen) {
842     OS.AddComment("OffsetReloc");
843     OS.EmitIntValue(BTF::BPFOffsetRelocSize, 4);
844     for (const auto &OffsetRelocSec : OffsetRelocTable) {
845       OS.AddComment("Offset reloc section string offset=" +
846                     std::to_string(OffsetRelocSec.first));
847       OS.EmitIntValue(OffsetRelocSec.first, 4);
848       OS.EmitIntValue(OffsetRelocSec.second.size(), 4);
849       for (const auto &OffsetRelocInfo : OffsetRelocSec.second) {
850         Asm->EmitLabelReference(OffsetRelocInfo.Label, 4);
851         OS.EmitIntValue(OffsetRelocInfo.TypeID, 4);
852         OS.EmitIntValue(OffsetRelocInfo.OffsetNameOff, 4);
853       }
854     }
855   }
856 
857   // Emit extern reloc table.
858   if (ExternRelocLen) {
859     OS.AddComment("ExternReloc");
860     OS.EmitIntValue(BTF::BPFExternRelocSize, 4);
861     for (const auto &ExternRelocSec : ExternRelocTable) {
862       OS.AddComment("Extern reloc section string offset=" +
863                     std::to_string(ExternRelocSec.first));
864       OS.EmitIntValue(ExternRelocSec.first, 4);
865       OS.EmitIntValue(ExternRelocSec.second.size(), 4);
866       for (const auto &ExternRelocInfo : ExternRelocSec.second) {
867         Asm->EmitLabelReference(ExternRelocInfo.Label, 4);
868         OS.EmitIntValue(ExternRelocInfo.ExternNameOff, 4);
869       }
870     }
871   }
872 }
873 
874 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
875   auto *SP = MF->getFunction().getSubprogram();
876   auto *Unit = SP->getUnit();
877 
878   if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
879     SkipInstruction = true;
880     return;
881   }
882   SkipInstruction = false;
883 
884   // Collect MapDef types. Map definition needs to collect
885   // pointee types. Do it first. Otherwise, for the following
886   // case:
887   //    struct m { ...};
888   //    struct t {
889   //      struct m *key;
890   //    };
891   //    foo(struct t *arg);
892   //
893   //    struct mapdef {
894   //      ...
895   //      struct m *key;
896   //      ...
897   //    } __attribute__((section(".maps"))) hash_map;
898   //
899   // If subroutine foo is traversed first, a type chain
900   // "ptr->struct m(fwd)" will be created and later on
901   // when traversing mapdef, since "ptr->struct m" exists,
902   // the traversal of "struct m" will be omitted.
903   if (MapDefNotCollected) {
904     processGlobals(true);
905     MapDefNotCollected = false;
906   }
907 
908   // Collect all types locally referenced in this function.
909   // Use RetainedNodes so we can collect all argument names
910   // even if the argument is not used.
911   std::unordered_map<uint32_t, StringRef> FuncArgNames;
912   for (const DINode *DN : SP->getRetainedNodes()) {
913     if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
914       // Collect function arguments for subprogram func type.
915       uint32_t Arg = DV->getArg();
916       if (Arg) {
917         visitTypeEntry(DV->getType());
918         FuncArgNames[Arg] = DV->getName();
919       }
920     }
921   }
922 
923   // Construct subprogram func proto type.
924   uint32_t ProtoTypeId;
925   visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
926 
927   // Construct subprogram func type
928   auto FuncTypeEntry =
929       llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
930   uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
931 
932   for (const auto &TypeEntry : TypeEntries)
933     TypeEntry->completeType(*this);
934 
935   // Construct funcinfo and the first lineinfo for the function.
936   MCSymbol *FuncLabel = Asm->getFunctionBegin();
937   BTFFuncInfo FuncInfo;
938   FuncInfo.Label = FuncLabel;
939   FuncInfo.TypeId = FuncTypeId;
940   if (FuncLabel->isInSection()) {
941     MCSection &Section = FuncLabel->getSection();
942     const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
943     assert(SectionELF && "Null section for Function Label");
944     SecNameOff = addString(SectionELF->getSectionName());
945   } else {
946     SecNameOff = addString(".text");
947   }
948   FuncInfoTable[SecNameOff].push_back(FuncInfo);
949 }
950 
951 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
952   SkipInstruction = false;
953   LineInfoGenerated = false;
954   SecNameOff = 0;
955 }
956 
957 /// On-demand populate struct types as requested from abstract member
958 /// accessing.
959 unsigned BTFDebug::populateStructType(const DIType *Ty) {
960   unsigned Id;
961   visitTypeEntry(Ty, Id, false, false);
962   for (const auto &TypeEntry : TypeEntries)
963     TypeEntry->completeType(*this);
964   return Id;
965 }
966 
967 /// Generate a struct member offset relocation.
968 void BTFDebug::generateOffsetReloc(const MachineInstr *MI,
969                                    const MCSymbol *ORSym, DIType *RootTy,
970                                    StringRef AccessPattern) {
971   unsigned RootId = populateStructType(RootTy);
972   size_t FirstDollar = AccessPattern.find_first_of('$');
973   size_t FirstColon = AccessPattern.find_first_of(':');
974   StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
975   StringRef OffsetStr = AccessPattern.substr(FirstColon + 1,
976       FirstDollar - FirstColon);
977 
978   BTFOffsetReloc OffsetReloc;
979   OffsetReloc.Label = ORSym;
980   OffsetReloc.OffsetNameOff = addString(IndexPattern);
981   OffsetReloc.TypeID = RootId;
982   AccessOffsets[AccessPattern.str()] = std::stoi(OffsetStr);
983   OffsetRelocTable[SecNameOff].push_back(OffsetReloc);
984 }
985 
986 void BTFDebug::processLDimm64(const MachineInstr *MI) {
987   // If the insn is an LD_imm64, the following two cases
988   // will generate an .BTF.ext record.
989   //
990   // If the insn is "r2 = LD_imm64 @__BTF_...",
991   // add this insn into the .BTF.ext OffsetReloc subsection.
992   // Relocation looks like:
993   //  . SecName:
994   //    . InstOffset
995   //    . TypeID
996   //    . OffSetNameOff
997   // Later, the insn is replaced with "r2 = <offset>"
998   // where "<offset>" equals to the offset based on current
999   // type definitions.
1000   //
1001   // If the insn is "r2 = LD_imm64 @VAR" and VAR is
1002   // a patchable external global, add this insn into the .BTF.ext
1003   // ExternReloc subsection.
1004   // Relocation looks like:
1005   //  . SecName:
1006   //    . InstOffset
1007   //    . ExternNameOff
1008   // Later, the insn is replaced with "r2 = <value>" or
1009   // "LD_imm64 r2, <value>" where "<value>" = 0.
1010 
1011   // check whether this is a candidate or not
1012   const MachineOperand &MO = MI->getOperand(1);
1013   if (MO.isGlobal()) {
1014     const GlobalValue *GVal = MO.getGlobal();
1015     auto *GVar = dyn_cast<GlobalVariable>(GVal);
1016     if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1017       MCSymbol *ORSym = OS.getContext().createTempSymbol();
1018       OS.EmitLabel(ORSym);
1019 
1020       MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1021       DIType *Ty = dyn_cast<DIType>(MDN);
1022       generateOffsetReloc(MI, ORSym, Ty, GVar->getName());
1023     } else if (GVar && !GVar->hasInitializer() && GVar->hasExternalLinkage() &&
1024                GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
1025       MCSymbol *ORSym = OS.getContext().createTempSymbol();
1026       OS.EmitLabel(ORSym);
1027 
1028       BTFExternReloc ExternReloc;
1029       ExternReloc.Label = ORSym;
1030       ExternReloc.ExternNameOff = addString(GVar->getName());
1031       ExternRelocTable[SecNameOff].push_back(ExternReloc);
1032     }
1033   }
1034 }
1035 
1036 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1037   DebugHandlerBase::beginInstruction(MI);
1038 
1039   if (SkipInstruction || MI->isMetaInstruction() ||
1040       MI->getFlag(MachineInstr::FrameSetup))
1041     return;
1042 
1043   if (MI->isInlineAsm()) {
1044     // Count the number of register definitions to find the asm string.
1045     unsigned NumDefs = 0;
1046     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1047          ++NumDefs)
1048       ;
1049 
1050     // Skip this inline asm instruction if the asmstr is empty.
1051     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1052     if (AsmStr[0] == 0)
1053       return;
1054   }
1055 
1056   if (MI->getOpcode() == BPF::LD_imm64)
1057     processLDimm64(MI);
1058 
1059   // Skip this instruction if no DebugLoc or the DebugLoc
1060   // is the same as the previous instruction.
1061   const DebugLoc &DL = MI->getDebugLoc();
1062   if (!DL || PrevInstLoc == DL) {
1063     // This instruction will be skipped, no LineInfo has
1064     // been generated, construct one based on function signature.
1065     if (LineInfoGenerated == false) {
1066       auto *S = MI->getMF()->getFunction().getSubprogram();
1067       MCSymbol *FuncLabel = Asm->getFunctionBegin();
1068       constructLineInfo(S, FuncLabel, S->getLine(), 0);
1069       LineInfoGenerated = true;
1070     }
1071 
1072     return;
1073   }
1074 
1075   // Create a temporary label to remember the insn for lineinfo.
1076   MCSymbol *LineSym = OS.getContext().createTempSymbol();
1077   OS.EmitLabel(LineSym);
1078 
1079   // Construct the lineinfo.
1080   auto SP = DL.get()->getScope()->getSubprogram();
1081   constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1082 
1083   LineInfoGenerated = true;
1084   PrevInstLoc = DL;
1085 }
1086 
1087 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1088   // Collect all types referenced by globals.
1089   const Module *M = MMI->getModule();
1090   for (const GlobalVariable &Global : M->globals()) {
1091     // Ignore external globals for now.
1092     if (!Global.hasInitializer() && Global.hasExternalLinkage())
1093       continue;
1094 
1095     // Decide the section name.
1096     StringRef SecName;
1097     if (Global.hasSection()) {
1098       SecName = Global.getSection();
1099     } else {
1100       // data, bss, or readonly sections
1101       if (Global.isConstant())
1102         SecName = ".rodata";
1103       else
1104         SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1105     }
1106 
1107     if (ProcessingMapDef != SecName.startswith(".maps"))
1108       continue;
1109 
1110     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1111     Global.getDebugInfo(GVs);
1112     uint32_t GVTypeId = 0;
1113     for (auto *GVE : GVs) {
1114       if (SecName.startswith(".maps"))
1115         visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
1116       else
1117         visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
1118       break;
1119     }
1120 
1121     // Only support the following globals:
1122     //  . static variables
1123     //  . non-static global variables with section attributes
1124     // Essentially means:
1125     //  . .bcc/.data/.rodata DataSec entities only contain static data
1126     //  . Other DataSec entities contain static or initialized global data.
1127     //    Initialized global data are mostly used for finding map key/value type
1128     //    id's. Whether DataSec is readonly or not can be found from
1129     //    corresponding ELF section flags.
1130     auto Linkage = Global.getLinkage();
1131     if (Linkage != GlobalValue::InternalLinkage &&
1132         (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection()))
1133       continue;
1134 
1135     uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage
1136                             ? BTF::VAR_GLOBAL_ALLOCATED
1137                             : BTF::VAR_STATIC;
1138     auto VarEntry =
1139         llvm::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1140     uint32_t VarId = addType(std::move(VarEntry));
1141 
1142     // Find or create a DataSec
1143     if (DataSecEntries.find(SecName) == DataSecEntries.end()) {
1144       DataSecEntries[SecName] = llvm::make_unique<BTFKindDataSec>(Asm, SecName);
1145     }
1146 
1147     // Calculate symbol size
1148     const DataLayout &DL = Global.getParent()->getDataLayout();
1149     uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
1150 
1151     DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size);
1152   }
1153 }
1154 
1155 /// Emit proper patchable instructions.
1156 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1157   if (MI->getOpcode() == BPF::LD_imm64) {
1158     const MachineOperand &MO = MI->getOperand(1);
1159     if (MO.isGlobal()) {
1160       const GlobalValue *GVal = MO.getGlobal();
1161       auto *GVar = dyn_cast<GlobalVariable>(GVal);
1162       if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1163         MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1164         DIType *Ty = dyn_cast<DIType>(MDN);
1165         std::string TypeName = Ty->getName();
1166         int64_t Imm = AccessOffsets[GVar->getName().str()];
1167 
1168         // Emit "mov ri, <imm>" for abstract member accesses.
1169         OutMI.setOpcode(BPF::MOV_ri);
1170         OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1171         OutMI.addOperand(MCOperand::createImm(Imm));
1172         return true;
1173       } else if (GVar && !GVar->hasInitializer() &&
1174                  GVar->hasExternalLinkage() &&
1175                  GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
1176         const IntegerType *IntTy = dyn_cast<IntegerType>(GVar->getValueType());
1177         assert(IntTy);
1178         // For patchable externals, emit "LD_imm64, ri, 0" if the external
1179         // variable is 64bit width, emit "mov ri, 0" otherwise.
1180         if (IntTy->getBitWidth() == 64)
1181           OutMI.setOpcode(BPF::LD_imm64);
1182         else
1183           OutMI.setOpcode(BPF::MOV_ri);
1184         OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1185         OutMI.addOperand(MCOperand::createImm(0));
1186         return true;
1187       }
1188     }
1189   }
1190   return false;
1191 }
1192 
1193 void BTFDebug::endModule() {
1194   // Collect MapDef globals if not collected yet.
1195   if (MapDefNotCollected) {
1196     processGlobals(true);
1197     MapDefNotCollected = false;
1198   }
1199 
1200   // Collect global types/variables except MapDef globals.
1201   processGlobals(false);
1202   for (auto &DataSec : DataSecEntries)
1203     addType(std::move(DataSec.second));
1204 
1205   // Fixups
1206   for (auto &Fixup : FixupDerivedTypes) {
1207     StringRef TypeName = Fixup.first;
1208     bool IsUnion = Fixup.second.first;
1209 
1210     // Search through struct types
1211     uint32_t StructTypeId = 0;
1212     for (const auto &StructType : StructTypes) {
1213       if (StructType->getName() == TypeName) {
1214         StructTypeId = StructType->getId();
1215         break;
1216       }
1217     }
1218 
1219     if (StructTypeId == 0) {
1220       auto FwdTypeEntry = llvm::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1221       StructTypeId = addType(std::move(FwdTypeEntry));
1222     }
1223 
1224     for (auto &DType : Fixup.second.second) {
1225       DType->setPointeeType(StructTypeId);
1226     }
1227   }
1228 
1229   // Complete BTF type cross refereences.
1230   for (const auto &TypeEntry : TypeEntries)
1231     TypeEntry->completeType(*this);
1232 
1233   // Emit BTF sections.
1234   emitBTFSection();
1235   emitBTFExtSection();
1236 }
1237