1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 27 using namespace llvm; 28 29 static const char *BTFKindStr[] = { 30 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 31 #include "BTF.def" 32 }; 33 34 /// Emit a BTF common type. 35 void BTFTypeBase::emitType(MCStreamer &OS) { 36 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 37 ")"); 38 OS.emitInt32(BTFType.NameOff); 39 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 40 OS.emitInt32(BTFType.Info); 41 OS.emitInt32(BTFType.Size); 42 } 43 44 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 45 bool NeedsFixup) 46 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 47 switch (Tag) { 48 case dwarf::DW_TAG_pointer_type: 49 Kind = BTF::BTF_KIND_PTR; 50 break; 51 case dwarf::DW_TAG_const_type: 52 Kind = BTF::BTF_KIND_CONST; 53 break; 54 case dwarf::DW_TAG_volatile_type: 55 Kind = BTF::BTF_KIND_VOLATILE; 56 break; 57 case dwarf::DW_TAG_typedef: 58 Kind = BTF::BTF_KIND_TYPEDEF; 59 break; 60 case dwarf::DW_TAG_restrict_type: 61 Kind = BTF::BTF_KIND_RESTRICT; 62 break; 63 default: 64 llvm_unreachable("Unknown DIDerivedType Tag"); 65 } 66 BTFType.Info = Kind << 24; 67 } 68 69 /// Used by DW_TAG_pointer_type only. 70 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 71 StringRef Name) 72 : DTy(nullptr), NeedsFixup(false), Name(Name) { 73 Kind = BTF::BTF_KIND_PTR; 74 BTFType.Info = Kind << 24; 75 BTFType.Type = NextTypeId; 76 } 77 78 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 79 if (IsCompleted) 80 return; 81 IsCompleted = true; 82 83 BTFType.NameOff = BDebug.addString(Name); 84 85 if (NeedsFixup || !DTy) 86 return; 87 88 // The base type for PTR/CONST/VOLATILE could be void. 89 const DIType *ResolvedType = DTy->getBaseType(); 90 if (!ResolvedType) { 91 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 92 Kind == BTF::BTF_KIND_VOLATILE) && 93 "Invalid null basetype"); 94 BTFType.Type = 0; 95 } else { 96 BTFType.Type = BDebug.getTypeId(ResolvedType); 97 } 98 } 99 100 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 101 102 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 103 BTFType.Type = PointeeType; 104 } 105 106 /// Represent a struct/union forward declaration. 107 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 108 Kind = BTF::BTF_KIND_FWD; 109 BTFType.Info = IsUnion << 31 | Kind << 24; 110 BTFType.Type = 0; 111 } 112 113 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 114 if (IsCompleted) 115 return; 116 IsCompleted = true; 117 118 BTFType.NameOff = BDebug.addString(Name); 119 } 120 121 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 122 123 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 124 uint32_t OffsetInBits, StringRef TypeName) 125 : Name(TypeName) { 126 // Translate IR int encoding to BTF int encoding. 127 uint8_t BTFEncoding; 128 switch (Encoding) { 129 case dwarf::DW_ATE_boolean: 130 BTFEncoding = BTF::INT_BOOL; 131 break; 132 case dwarf::DW_ATE_signed: 133 case dwarf::DW_ATE_signed_char: 134 BTFEncoding = BTF::INT_SIGNED; 135 break; 136 case dwarf::DW_ATE_unsigned: 137 case dwarf::DW_ATE_unsigned_char: 138 BTFEncoding = 0; 139 break; 140 default: 141 llvm_unreachable("Unknown BTFTypeInt Encoding"); 142 } 143 144 Kind = BTF::BTF_KIND_INT; 145 BTFType.Info = Kind << 24; 146 BTFType.Size = roundupToBytes(SizeInBits); 147 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 148 } 149 150 void BTFTypeInt::completeType(BTFDebug &BDebug) { 151 if (IsCompleted) 152 return; 153 IsCompleted = true; 154 155 BTFType.NameOff = BDebug.addString(Name); 156 } 157 158 void BTFTypeInt::emitType(MCStreamer &OS) { 159 BTFTypeBase::emitType(OS); 160 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 161 OS.emitInt32(IntVal); 162 } 163 164 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 165 Kind = BTF::BTF_KIND_ENUM; 166 BTFType.Info = Kind << 24 | VLen; 167 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 168 } 169 170 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 171 if (IsCompleted) 172 return; 173 IsCompleted = true; 174 175 BTFType.NameOff = BDebug.addString(ETy->getName()); 176 177 DINodeArray Elements = ETy->getElements(); 178 for (const auto Element : Elements) { 179 const auto *Enum = cast<DIEnumerator>(Element); 180 181 struct BTF::BTFEnum BTFEnum; 182 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 183 // BTF enum value is 32bit, enforce it. 184 uint32_t Value; 185 if (Enum->isUnsigned()) 186 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 187 else 188 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 189 BTFEnum.Val = Value; 190 EnumValues.push_back(BTFEnum); 191 } 192 } 193 194 void BTFTypeEnum::emitType(MCStreamer &OS) { 195 BTFTypeBase::emitType(OS); 196 for (const auto &Enum : EnumValues) { 197 OS.emitInt32(Enum.NameOff); 198 OS.emitInt32(Enum.Val); 199 } 200 } 201 202 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 203 Kind = BTF::BTF_KIND_ARRAY; 204 BTFType.NameOff = 0; 205 BTFType.Info = Kind << 24; 206 BTFType.Size = 0; 207 208 ArrayInfo.ElemType = ElemTypeId; 209 ArrayInfo.Nelems = NumElems; 210 } 211 212 /// Represent a BTF array. 213 void BTFTypeArray::completeType(BTFDebug &BDebug) { 214 if (IsCompleted) 215 return; 216 IsCompleted = true; 217 218 // The IR does not really have a type for the index. 219 // A special type for array index should have been 220 // created during initial type traversal. Just 221 // retrieve that type id. 222 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 223 } 224 225 void BTFTypeArray::emitType(MCStreamer &OS) { 226 BTFTypeBase::emitType(OS); 227 OS.emitInt32(ArrayInfo.ElemType); 228 OS.emitInt32(ArrayInfo.IndexType); 229 OS.emitInt32(ArrayInfo.Nelems); 230 } 231 232 /// Represent either a struct or a union. 233 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 234 bool HasBitField, uint32_t Vlen) 235 : STy(STy), HasBitField(HasBitField) { 236 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 237 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 238 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 239 } 240 241 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 242 if (IsCompleted) 243 return; 244 IsCompleted = true; 245 246 BTFType.NameOff = BDebug.addString(STy->getName()); 247 248 // Add struct/union members. 249 const DINodeArray Elements = STy->getElements(); 250 for (const auto *Element : Elements) { 251 struct BTF::BTFMember BTFMember; 252 const auto *DDTy = cast<DIDerivedType>(Element); 253 254 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 255 if (HasBitField) { 256 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 257 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 258 } else { 259 BTFMember.Offset = DDTy->getOffsetInBits(); 260 } 261 const auto *BaseTy = DDTy->getBaseType(); 262 BTFMember.Type = BDebug.getTypeId(BaseTy); 263 Members.push_back(BTFMember); 264 } 265 } 266 267 void BTFTypeStruct::emitType(MCStreamer &OS) { 268 BTFTypeBase::emitType(OS); 269 for (const auto &Member : Members) { 270 OS.emitInt32(Member.NameOff); 271 OS.emitInt32(Member.Type); 272 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 273 OS.emitInt32(Member.Offset); 274 } 275 } 276 277 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 278 279 /// The Func kind represents both subprogram and pointee of function 280 /// pointers. If the FuncName is empty, it represents a pointee of function 281 /// pointer. Otherwise, it represents a subprogram. The func arg names 282 /// are empty for pointee of function pointer case, and are valid names 283 /// for subprogram. 284 BTFTypeFuncProto::BTFTypeFuncProto( 285 const DISubroutineType *STy, uint32_t VLen, 286 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 287 : STy(STy), FuncArgNames(FuncArgNames) { 288 Kind = BTF::BTF_KIND_FUNC_PROTO; 289 BTFType.Info = (Kind << 24) | VLen; 290 } 291 292 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 293 if (IsCompleted) 294 return; 295 IsCompleted = true; 296 297 DITypeRefArray Elements = STy->getTypeArray(); 298 auto RetType = Elements[0]; 299 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 300 BTFType.NameOff = 0; 301 302 // For null parameter which is typically the last one 303 // to represent the vararg, encode the NameOff/Type to be 0. 304 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 305 struct BTF::BTFParam Param; 306 auto Element = Elements[I]; 307 if (Element) { 308 Param.NameOff = BDebug.addString(FuncArgNames[I]); 309 Param.Type = BDebug.getTypeId(Element); 310 } else { 311 Param.NameOff = 0; 312 Param.Type = 0; 313 } 314 Parameters.push_back(Param); 315 } 316 } 317 318 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 319 BTFTypeBase::emitType(OS); 320 for (const auto &Param : Parameters) { 321 OS.emitInt32(Param.NameOff); 322 OS.emitInt32(Param.Type); 323 } 324 } 325 326 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 327 uint32_t Scope) 328 : Name(FuncName) { 329 Kind = BTF::BTF_KIND_FUNC; 330 BTFType.Info = (Kind << 24) | Scope; 331 BTFType.Type = ProtoTypeId; 332 } 333 334 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 335 if (IsCompleted) 336 return; 337 IsCompleted = true; 338 339 BTFType.NameOff = BDebug.addString(Name); 340 } 341 342 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 343 344 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 345 : Name(VarName) { 346 Kind = BTF::BTF_KIND_VAR; 347 BTFType.Info = Kind << 24; 348 BTFType.Type = TypeId; 349 Info = VarInfo; 350 } 351 352 void BTFKindVar::completeType(BTFDebug &BDebug) { 353 BTFType.NameOff = BDebug.addString(Name); 354 } 355 356 void BTFKindVar::emitType(MCStreamer &OS) { 357 BTFTypeBase::emitType(OS); 358 OS.emitInt32(Info); 359 } 360 361 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 362 : Asm(AsmPrt), Name(SecName) { 363 Kind = BTF::BTF_KIND_DATASEC; 364 BTFType.Info = Kind << 24; 365 BTFType.Size = 0; 366 } 367 368 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 369 BTFType.NameOff = BDebug.addString(Name); 370 BTFType.Info |= Vars.size(); 371 } 372 373 void BTFKindDataSec::emitType(MCStreamer &OS) { 374 BTFTypeBase::emitType(OS); 375 376 for (const auto &V : Vars) { 377 OS.emitInt32(std::get<0>(V)); 378 Asm->emitLabelReference(std::get<1>(V), 4); 379 OS.emitInt32(std::get<2>(V)); 380 } 381 } 382 383 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 384 : Name(TypeName) { 385 Kind = BTF::BTF_KIND_FLOAT; 386 BTFType.Info = Kind << 24; 387 BTFType.Size = roundupToBytes(SizeInBits); 388 } 389 390 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 391 if (IsCompleted) 392 return; 393 IsCompleted = true; 394 395 BTFType.NameOff = BDebug.addString(Name); 396 } 397 398 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 399 StringRef Tag) 400 : Tag(Tag) { 401 Kind = BTF::BTF_KIND_DECL_TAG; 402 BTFType.Info = Kind << 24; 403 BTFType.Type = BaseTypeId; 404 Info = ComponentIdx; 405 } 406 407 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 408 if (IsCompleted) 409 return; 410 IsCompleted = true; 411 412 BTFType.NameOff = BDebug.addString(Tag); 413 } 414 415 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 416 BTFTypeBase::emitType(OS); 417 OS.emitInt32(Info); 418 } 419 420 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 421 : DTy(nullptr), Tag(Tag) { 422 Kind = BTF::BTF_KIND_TYPE_TAG; 423 BTFType.Info = Kind << 24; 424 BTFType.Type = NextTypeId; 425 } 426 427 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 428 : DTy(DTy), Tag(Tag) { 429 Kind = BTF::BTF_KIND_TYPE_TAG; 430 BTFType.Info = Kind << 24; 431 } 432 433 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 434 if (IsCompleted) 435 return; 436 IsCompleted = true; 437 BTFType.NameOff = BDebug.addString(Tag); 438 if (DTy) { 439 const DIType *ResolvedType = DTy->getBaseType(); 440 if (!ResolvedType) 441 BTFType.Type = 0; 442 else 443 BTFType.Type = BDebug.getTypeId(ResolvedType); 444 } 445 } 446 447 uint32_t BTFStringTable::addString(StringRef S) { 448 // Check whether the string already exists. 449 for (auto &OffsetM : OffsetToIdMap) { 450 if (Table[OffsetM.second] == S) 451 return OffsetM.first; 452 } 453 // Not find, add to the string table. 454 uint32_t Offset = Size; 455 OffsetToIdMap[Offset] = Table.size(); 456 Table.push_back(std::string(S)); 457 Size += S.size() + 1; 458 return Offset; 459 } 460 461 BTFDebug::BTFDebug(AsmPrinter *AP) 462 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 463 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 464 MapDefNotCollected(true) { 465 addString("\0"); 466 } 467 468 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 469 const DIType *Ty) { 470 TypeEntry->setId(TypeEntries.size() + 1); 471 uint32_t Id = TypeEntry->getId(); 472 DIToIdMap[Ty] = Id; 473 TypeEntries.push_back(std::move(TypeEntry)); 474 return Id; 475 } 476 477 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 478 TypeEntry->setId(TypeEntries.size() + 1); 479 uint32_t Id = TypeEntry->getId(); 480 TypeEntries.push_back(std::move(TypeEntry)); 481 return Id; 482 } 483 484 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 485 // Only int and binary floating point types are supported in BTF. 486 uint32_t Encoding = BTy->getEncoding(); 487 std::unique_ptr<BTFTypeBase> TypeEntry; 488 switch (Encoding) { 489 case dwarf::DW_ATE_boolean: 490 case dwarf::DW_ATE_signed: 491 case dwarf::DW_ATE_signed_char: 492 case dwarf::DW_ATE_unsigned: 493 case dwarf::DW_ATE_unsigned_char: 494 // Create a BTF type instance for this DIBasicType and put it into 495 // DIToIdMap for cross-type reference check. 496 TypeEntry = std::make_unique<BTFTypeInt>( 497 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 498 break; 499 case dwarf::DW_ATE_float: 500 TypeEntry = 501 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 502 break; 503 default: 504 return; 505 } 506 507 TypeId = addType(std::move(TypeEntry), BTy); 508 } 509 510 /// Handle subprogram or subroutine types. 511 void BTFDebug::visitSubroutineType( 512 const DISubroutineType *STy, bool ForSubprog, 513 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 514 uint32_t &TypeId) { 515 DITypeRefArray Elements = STy->getTypeArray(); 516 uint32_t VLen = Elements.size() - 1; 517 if (VLen > BTF::MAX_VLEN) 518 return; 519 520 // Subprogram has a valid non-zero-length name, and the pointee of 521 // a function pointer has an empty name. The subprogram type will 522 // not be added to DIToIdMap as it should not be referenced by 523 // any other types. 524 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 525 if (ForSubprog) 526 TypeId = addType(std::move(TypeEntry)); // For subprogram 527 else 528 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 529 530 // Visit return type and func arg types. 531 for (const auto Element : Elements) { 532 visitTypeEntry(Element); 533 } 534 } 535 536 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 537 uint32_t BaseTypeId, 538 int ComponentIdx) { 539 if (!Annotations) 540 return; 541 542 for (const Metadata *Annotation : Annotations->operands()) { 543 const MDNode *MD = cast<MDNode>(Annotation); 544 const MDString *Name = cast<MDString>(MD->getOperand(0)); 545 if (!Name->getString().equals("btf_decl_tag")) 546 continue; 547 548 const MDString *Value = cast<MDString>(MD->getOperand(1)); 549 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 550 Value->getString()); 551 addType(std::move(TypeEntry)); 552 } 553 } 554 555 /// Generate btf_type_tag chains. 556 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { 557 SmallVector<const MDString *, 4> MDStrs; 558 DINodeArray Annots = DTy->getAnnotations(); 559 if (Annots) { 560 // For type with "int __tag1 __tag2 *p", the MDStrs will have 561 // content: [__tag1, __tag2]. 562 for (const Metadata *Annotations : Annots->operands()) { 563 const MDNode *MD = cast<MDNode>(Annotations); 564 const MDString *Name = cast<MDString>(MD->getOperand(0)); 565 if (!Name->getString().equals("btf_type_tag")) 566 continue; 567 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 568 } 569 } 570 571 if (MDStrs.size() == 0) 572 return -1; 573 574 // With MDStrs [__tag1, __tag2], the output type chain looks like 575 // PTR -> __tag2 -> __tag1 -> BaseType 576 // In the below, we construct BTF types with the order of __tag1, __tag2 577 // and PTR. 578 unsigned TmpTypeId; 579 std::unique_ptr<BTFTypeTypeTag> TypeEntry; 580 if (BaseTypeId >= 0) 581 TypeEntry = 582 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString()); 583 else 584 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 585 TmpTypeId = addType(std::move(TypeEntry)); 586 587 for (unsigned I = 1; I < MDStrs.size(); I++) { 588 const MDString *Value = MDStrs[I]; 589 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 590 TmpTypeId = addType(std::move(TypeEntry)); 591 } 592 return TmpTypeId; 593 } 594 595 /// Handle structure/union types. 596 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 597 uint32_t &TypeId) { 598 const DINodeArray Elements = CTy->getElements(); 599 uint32_t VLen = Elements.size(); 600 if (VLen > BTF::MAX_VLEN) 601 return; 602 603 // Check whether we have any bitfield members or not 604 bool HasBitField = false; 605 for (const auto *Element : Elements) { 606 auto E = cast<DIDerivedType>(Element); 607 if (E->isBitField()) { 608 HasBitField = true; 609 break; 610 } 611 } 612 613 auto TypeEntry = 614 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 615 StructTypes.push_back(TypeEntry.get()); 616 TypeId = addType(std::move(TypeEntry), CTy); 617 618 // Check struct/union annotations 619 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 620 621 // Visit all struct members. 622 int FieldNo = 0; 623 for (const auto *Element : Elements) { 624 const auto Elem = cast<DIDerivedType>(Element); 625 visitTypeEntry(Elem); 626 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 627 FieldNo++; 628 } 629 } 630 631 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 632 // Visit array element type. 633 uint32_t ElemTypeId; 634 const DIType *ElemType = CTy->getBaseType(); 635 visitTypeEntry(ElemType, ElemTypeId, false, false); 636 637 // Visit array dimensions. 638 DINodeArray Elements = CTy->getElements(); 639 for (int I = Elements.size() - 1; I >= 0; --I) { 640 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 641 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 642 const DISubrange *SR = cast<DISubrange>(Element); 643 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 644 int64_t Count = CI->getSExtValue(); 645 646 // For struct s { int b; char c[]; }, the c[] will be represented 647 // as an array with Count = -1. 648 auto TypeEntry = 649 std::make_unique<BTFTypeArray>(ElemTypeId, 650 Count >= 0 ? Count : 0); 651 if (I == 0) 652 ElemTypeId = addType(std::move(TypeEntry), CTy); 653 else 654 ElemTypeId = addType(std::move(TypeEntry)); 655 } 656 } 657 658 // The array TypeId is the type id of the outermost dimension. 659 TypeId = ElemTypeId; 660 661 // The IR does not have a type for array index while BTF wants one. 662 // So create an array index type if there is none. 663 if (!ArrayIndexTypeId) { 664 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 665 0, "__ARRAY_SIZE_TYPE__"); 666 ArrayIndexTypeId = addType(std::move(TypeEntry)); 667 } 668 } 669 670 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 671 DINodeArray Elements = CTy->getElements(); 672 uint32_t VLen = Elements.size(); 673 if (VLen > BTF::MAX_VLEN) 674 return; 675 676 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 677 TypeId = addType(std::move(TypeEntry), CTy); 678 // No need to visit base type as BTF does not encode it. 679 } 680 681 /// Handle structure/union forward declarations. 682 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 683 uint32_t &TypeId) { 684 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 685 TypeId = addType(std::move(TypeEntry), CTy); 686 } 687 688 /// Handle structure, union, array and enumeration types. 689 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 690 uint32_t &TypeId) { 691 auto Tag = CTy->getTag(); 692 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 693 // Handle forward declaration differently as it does not have members. 694 if (CTy->isForwardDecl()) 695 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 696 else 697 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 698 } else if (Tag == dwarf::DW_TAG_array_type) 699 visitArrayType(CTy, TypeId); 700 else if (Tag == dwarf::DW_TAG_enumeration_type) 701 visitEnumType(CTy, TypeId); 702 } 703 704 /// Handle pointer, typedef, const, volatile, restrict and member types. 705 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 706 bool CheckPointer, bool SeenPointer) { 707 unsigned Tag = DTy->getTag(); 708 709 /// Try to avoid chasing pointees, esp. structure pointees which may 710 /// unnecessary bring in a lot of types. 711 if (CheckPointer && !SeenPointer) { 712 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 713 } 714 715 if (CheckPointer && SeenPointer) { 716 const DIType *Base = DTy->getBaseType(); 717 if (Base) { 718 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 719 auto CTag = CTy->getTag(); 720 if ((CTag == dwarf::DW_TAG_structure_type || 721 CTag == dwarf::DW_TAG_union_type) && 722 !CTy->getName().empty() && !CTy->isForwardDecl()) { 723 /// Find a candidate, generate a fixup. Later on the struct/union 724 /// pointee type will be replaced with either a real type or 725 /// a forward declaration. 726 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 727 auto &Fixup = FixupDerivedTypes[CTy]; 728 Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); 729 TypeId = addType(std::move(TypeEntry), DTy); 730 return; 731 } 732 } 733 } 734 } 735 736 if (Tag == dwarf::DW_TAG_pointer_type) { 737 int TmpTypeId = genBTFTypeTags(DTy, -1); 738 if (TmpTypeId >= 0) { 739 auto TypeDEntry = 740 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 741 TypeId = addType(std::move(TypeDEntry), DTy); 742 } else { 743 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 744 TypeId = addType(std::move(TypeEntry), DTy); 745 } 746 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 747 Tag == dwarf::DW_TAG_volatile_type || 748 Tag == dwarf::DW_TAG_restrict_type) { 749 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 750 TypeId = addType(std::move(TypeEntry), DTy); 751 if (Tag == dwarf::DW_TAG_typedef) 752 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 753 } else if (Tag != dwarf::DW_TAG_member) { 754 return; 755 } 756 757 // Visit base type of pointer, typedef, const, volatile, restrict or 758 // struct/union member. 759 uint32_t TempTypeId = 0; 760 if (Tag == dwarf::DW_TAG_member) 761 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 762 else 763 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 764 } 765 766 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 767 bool CheckPointer, bool SeenPointer) { 768 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 769 TypeId = DIToIdMap[Ty]; 770 771 // To handle the case like the following: 772 // struct t; 773 // typedef struct t _t; 774 // struct s1 { _t *c; }; 775 // int test1(struct s1 *arg) { ... } 776 // 777 // struct t { int a; int b; }; 778 // struct s2 { _t c; } 779 // int test2(struct s2 *arg) { ... } 780 // 781 // During traversing test1() argument, "_t" is recorded 782 // in DIToIdMap and a forward declaration fixup is created 783 // for "struct t" to avoid pointee type traversal. 784 // 785 // During traversing test2() argument, even if we see "_t" is 786 // already defined, we should keep moving to eventually 787 // bring in types for "struct t". Otherwise, the "struct s2" 788 // definition won't be correct. 789 if (Ty && (!CheckPointer || !SeenPointer)) { 790 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 791 unsigned Tag = DTy->getTag(); 792 if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 793 Tag == dwarf::DW_TAG_volatile_type || 794 Tag == dwarf::DW_TAG_restrict_type) { 795 uint32_t TmpTypeId; 796 visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer, 797 SeenPointer); 798 } 799 } 800 } 801 802 return; 803 } 804 805 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 806 visitBasicType(BTy, TypeId); 807 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 808 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 809 TypeId); 810 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 811 visitCompositeType(CTy, TypeId); 812 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 813 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 814 else 815 llvm_unreachable("Unknown DIType"); 816 } 817 818 void BTFDebug::visitTypeEntry(const DIType *Ty) { 819 uint32_t TypeId; 820 visitTypeEntry(Ty, TypeId, false, false); 821 } 822 823 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 824 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 825 TypeId = DIToIdMap[Ty]; 826 return; 827 } 828 829 // MapDef type may be a struct type or a non-pointer derived type 830 const DIType *OrigTy = Ty; 831 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 832 auto Tag = DTy->getTag(); 833 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 834 Tag != dwarf::DW_TAG_volatile_type && 835 Tag != dwarf::DW_TAG_restrict_type) 836 break; 837 Ty = DTy->getBaseType(); 838 } 839 840 const auto *CTy = dyn_cast<DICompositeType>(Ty); 841 if (!CTy) 842 return; 843 844 auto Tag = CTy->getTag(); 845 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 846 return; 847 848 // Visit all struct members to ensure pointee type is visited 849 const DINodeArray Elements = CTy->getElements(); 850 for (const auto *Element : Elements) { 851 const auto *MemberType = cast<DIDerivedType>(Element); 852 visitTypeEntry(MemberType->getBaseType()); 853 } 854 855 // Visit this type, struct or a const/typedef/volatile/restrict type 856 visitTypeEntry(OrigTy, TypeId, false, false); 857 } 858 859 /// Read file contents from the actual file or from the source 860 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 861 auto File = SP->getFile(); 862 std::string FileName; 863 864 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 865 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 866 else 867 FileName = std::string(File->getFilename()); 868 869 // No need to populate the contends if it has been populated! 870 if (FileContent.find(FileName) != FileContent.end()) 871 return FileName; 872 873 std::vector<std::string> Content; 874 std::string Line; 875 Content.push_back(Line); // Line 0 for empty string 876 877 std::unique_ptr<MemoryBuffer> Buf; 878 auto Source = File->getSource(); 879 if (Source) 880 Buf = MemoryBuffer::getMemBufferCopy(*Source); 881 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 882 MemoryBuffer::getFile(FileName)) 883 Buf = std::move(*BufOrErr); 884 if (Buf) 885 for (line_iterator I(*Buf, false), E; I != E; ++I) 886 Content.push_back(std::string(*I)); 887 888 FileContent[FileName] = Content; 889 return FileName; 890 } 891 892 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 893 uint32_t Line, uint32_t Column) { 894 std::string FileName = populateFileContent(SP); 895 BTFLineInfo LineInfo; 896 897 LineInfo.Label = Label; 898 LineInfo.FileNameOff = addString(FileName); 899 // If file content is not available, let LineOff = 0. 900 if (Line < FileContent[FileName].size()) 901 LineInfo.LineOff = addString(FileContent[FileName][Line]); 902 else 903 LineInfo.LineOff = 0; 904 LineInfo.LineNum = Line; 905 LineInfo.ColumnNum = Column; 906 LineInfoTable[SecNameOff].push_back(LineInfo); 907 } 908 909 void BTFDebug::emitCommonHeader() { 910 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 911 OS.emitIntValue(BTF::MAGIC, 2); 912 OS.emitInt8(BTF::VERSION); 913 OS.emitInt8(0); 914 } 915 916 void BTFDebug::emitBTFSection() { 917 // Do not emit section if no types and only "" string. 918 if (!TypeEntries.size() && StringTable.getSize() == 1) 919 return; 920 921 MCContext &Ctx = OS.getContext(); 922 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 923 Sec->setAlignment(Align(4)); 924 OS.SwitchSection(Sec); 925 926 // Emit header. 927 emitCommonHeader(); 928 OS.emitInt32(BTF::HeaderSize); 929 930 uint32_t TypeLen = 0, StrLen; 931 for (const auto &TypeEntry : TypeEntries) 932 TypeLen += TypeEntry->getSize(); 933 StrLen = StringTable.getSize(); 934 935 OS.emitInt32(0); 936 OS.emitInt32(TypeLen); 937 OS.emitInt32(TypeLen); 938 OS.emitInt32(StrLen); 939 940 // Emit type table. 941 for (const auto &TypeEntry : TypeEntries) 942 TypeEntry->emitType(OS); 943 944 // Emit string table. 945 uint32_t StringOffset = 0; 946 for (const auto &S : StringTable.getTable()) { 947 OS.AddComment("string offset=" + std::to_string(StringOffset)); 948 OS.emitBytes(S); 949 OS.emitBytes(StringRef("\0", 1)); 950 StringOffset += S.size() + 1; 951 } 952 } 953 954 void BTFDebug::emitBTFExtSection() { 955 // Do not emit section if empty FuncInfoTable and LineInfoTable 956 // and FieldRelocTable. 957 if (!FuncInfoTable.size() && !LineInfoTable.size() && 958 !FieldRelocTable.size()) 959 return; 960 961 MCContext &Ctx = OS.getContext(); 962 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 963 Sec->setAlignment(Align(4)); 964 OS.SwitchSection(Sec); 965 966 // Emit header. 967 emitCommonHeader(); 968 OS.emitInt32(BTF::ExtHeaderSize); 969 970 // Account for FuncInfo/LineInfo record size as well. 971 uint32_t FuncLen = 4, LineLen = 4; 972 // Do not account for optional FieldReloc. 973 uint32_t FieldRelocLen = 0; 974 for (const auto &FuncSec : FuncInfoTable) { 975 FuncLen += BTF::SecFuncInfoSize; 976 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 977 } 978 for (const auto &LineSec : LineInfoTable) { 979 LineLen += BTF::SecLineInfoSize; 980 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 981 } 982 for (const auto &FieldRelocSec : FieldRelocTable) { 983 FieldRelocLen += BTF::SecFieldRelocSize; 984 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 985 } 986 987 if (FieldRelocLen) 988 FieldRelocLen += 4; 989 990 OS.emitInt32(0); 991 OS.emitInt32(FuncLen); 992 OS.emitInt32(FuncLen); 993 OS.emitInt32(LineLen); 994 OS.emitInt32(FuncLen + LineLen); 995 OS.emitInt32(FieldRelocLen); 996 997 // Emit func_info table. 998 OS.AddComment("FuncInfo"); 999 OS.emitInt32(BTF::BPFFuncInfoSize); 1000 for (const auto &FuncSec : FuncInfoTable) { 1001 OS.AddComment("FuncInfo section string offset=" + 1002 std::to_string(FuncSec.first)); 1003 OS.emitInt32(FuncSec.first); 1004 OS.emitInt32(FuncSec.second.size()); 1005 for (const auto &FuncInfo : FuncSec.second) { 1006 Asm->emitLabelReference(FuncInfo.Label, 4); 1007 OS.emitInt32(FuncInfo.TypeId); 1008 } 1009 } 1010 1011 // Emit line_info table. 1012 OS.AddComment("LineInfo"); 1013 OS.emitInt32(BTF::BPFLineInfoSize); 1014 for (const auto &LineSec : LineInfoTable) { 1015 OS.AddComment("LineInfo section string offset=" + 1016 std::to_string(LineSec.first)); 1017 OS.emitInt32(LineSec.first); 1018 OS.emitInt32(LineSec.second.size()); 1019 for (const auto &LineInfo : LineSec.second) { 1020 Asm->emitLabelReference(LineInfo.Label, 4); 1021 OS.emitInt32(LineInfo.FileNameOff); 1022 OS.emitInt32(LineInfo.LineOff); 1023 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1024 std::to_string(LineInfo.ColumnNum)); 1025 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1026 } 1027 } 1028 1029 // Emit field reloc table. 1030 if (FieldRelocLen) { 1031 OS.AddComment("FieldReloc"); 1032 OS.emitInt32(BTF::BPFFieldRelocSize); 1033 for (const auto &FieldRelocSec : FieldRelocTable) { 1034 OS.AddComment("Field reloc section string offset=" + 1035 std::to_string(FieldRelocSec.first)); 1036 OS.emitInt32(FieldRelocSec.first); 1037 OS.emitInt32(FieldRelocSec.second.size()); 1038 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1039 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1040 OS.emitInt32(FieldRelocInfo.TypeID); 1041 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1042 OS.emitInt32(FieldRelocInfo.RelocKind); 1043 } 1044 } 1045 } 1046 } 1047 1048 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1049 auto *SP = MF->getFunction().getSubprogram(); 1050 auto *Unit = SP->getUnit(); 1051 1052 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1053 SkipInstruction = true; 1054 return; 1055 } 1056 SkipInstruction = false; 1057 1058 // Collect MapDef types. Map definition needs to collect 1059 // pointee types. Do it first. Otherwise, for the following 1060 // case: 1061 // struct m { ...}; 1062 // struct t { 1063 // struct m *key; 1064 // }; 1065 // foo(struct t *arg); 1066 // 1067 // struct mapdef { 1068 // ... 1069 // struct m *key; 1070 // ... 1071 // } __attribute__((section(".maps"))) hash_map; 1072 // 1073 // If subroutine foo is traversed first, a type chain 1074 // "ptr->struct m(fwd)" will be created and later on 1075 // when traversing mapdef, since "ptr->struct m" exists, 1076 // the traversal of "struct m" will be omitted. 1077 if (MapDefNotCollected) { 1078 processGlobals(true); 1079 MapDefNotCollected = false; 1080 } 1081 1082 // Collect all types locally referenced in this function. 1083 // Use RetainedNodes so we can collect all argument names 1084 // even if the argument is not used. 1085 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1086 for (const DINode *DN : SP->getRetainedNodes()) { 1087 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1088 // Collect function arguments for subprogram func type. 1089 uint32_t Arg = DV->getArg(); 1090 if (Arg) { 1091 visitTypeEntry(DV->getType()); 1092 FuncArgNames[Arg] = DV->getName(); 1093 } 1094 } 1095 } 1096 1097 // Construct subprogram func proto type. 1098 uint32_t ProtoTypeId; 1099 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1100 1101 // Construct subprogram func type 1102 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1103 auto FuncTypeEntry = 1104 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1105 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 1106 1107 // Process argument annotations. 1108 for (const DINode *DN : SP->getRetainedNodes()) { 1109 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1110 uint32_t Arg = DV->getArg(); 1111 if (Arg) 1112 processDeclAnnotations(DV->getAnnotations(), FuncTypeId, Arg - 1); 1113 } 1114 } 1115 1116 processDeclAnnotations(SP->getAnnotations(), FuncTypeId, -1); 1117 1118 for (const auto &TypeEntry : TypeEntries) 1119 TypeEntry->completeType(*this); 1120 1121 // Construct funcinfo and the first lineinfo for the function. 1122 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1123 BTFFuncInfo FuncInfo; 1124 FuncInfo.Label = FuncLabel; 1125 FuncInfo.TypeId = FuncTypeId; 1126 if (FuncLabel->isInSection()) { 1127 MCSection &Section = FuncLabel->getSection(); 1128 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1129 assert(SectionELF && "Null section for Function Label"); 1130 SecNameOff = addString(SectionELF->getName()); 1131 } else { 1132 SecNameOff = addString(".text"); 1133 } 1134 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1135 } 1136 1137 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1138 SkipInstruction = false; 1139 LineInfoGenerated = false; 1140 SecNameOff = 0; 1141 } 1142 1143 /// On-demand populate types as requested from abstract member 1144 /// accessing or preserve debuginfo type. 1145 unsigned BTFDebug::populateType(const DIType *Ty) { 1146 unsigned Id; 1147 visitTypeEntry(Ty, Id, false, false); 1148 for (const auto &TypeEntry : TypeEntries) 1149 TypeEntry->completeType(*this); 1150 return Id; 1151 } 1152 1153 /// Generate a struct member field relocation. 1154 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1155 const GlobalVariable *GVar, bool IsAma) { 1156 BTFFieldReloc FieldReloc; 1157 FieldReloc.Label = ORSym; 1158 FieldReloc.TypeID = RootId; 1159 1160 StringRef AccessPattern = GVar->getName(); 1161 size_t FirstDollar = AccessPattern.find_first_of('$'); 1162 if (IsAma) { 1163 size_t FirstColon = AccessPattern.find_first_of(':'); 1164 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1165 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1166 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1167 SecondColon - FirstColon); 1168 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1169 FirstDollar - SecondColon); 1170 1171 FieldReloc.OffsetNameOff = addString(IndexPattern); 1172 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1173 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1174 FieldReloc.RelocKind); 1175 } else { 1176 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1177 FieldReloc.OffsetNameOff = addString("0"); 1178 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1179 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1180 } 1181 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1182 } 1183 1184 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1185 // check whether this is a candidate or not 1186 if (MO.isGlobal()) { 1187 const GlobalValue *GVal = MO.getGlobal(); 1188 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1189 if (!GVar) { 1190 // Not a global variable. Maybe an extern function reference. 1191 processFuncPrototypes(dyn_cast<Function>(GVal)); 1192 return; 1193 } 1194 1195 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1196 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1197 return; 1198 1199 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1200 OS.emitLabel(ORSym); 1201 1202 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1203 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1204 generatePatchImmReloc(ORSym, RootId, GVar, 1205 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1206 } 1207 } 1208 1209 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1210 DebugHandlerBase::beginInstruction(MI); 1211 1212 if (SkipInstruction || MI->isMetaInstruction() || 1213 MI->getFlag(MachineInstr::FrameSetup)) 1214 return; 1215 1216 if (MI->isInlineAsm()) { 1217 // Count the number of register definitions to find the asm string. 1218 unsigned NumDefs = 0; 1219 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1220 ++NumDefs) 1221 ; 1222 1223 // Skip this inline asm instruction if the asmstr is empty. 1224 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1225 if (AsmStr[0] == 0) 1226 return; 1227 } 1228 1229 if (MI->getOpcode() == BPF::LD_imm64) { 1230 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1231 // add this insn into the .BTF.ext FieldReloc subsection. 1232 // Relocation looks like: 1233 // . SecName: 1234 // . InstOffset 1235 // . TypeID 1236 // . OffSetNameOff 1237 // . RelocType 1238 // Later, the insn is replaced with "r2 = <offset>" 1239 // where "<offset>" equals to the offset based on current 1240 // type definitions. 1241 // 1242 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1243 // The LD_imm64 result will be replaced with a btf type id. 1244 processGlobalValue(MI->getOperand(1)); 1245 } else if (MI->getOpcode() == BPF::CORE_MEM || 1246 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1247 MI->getOpcode() == BPF::CORE_SHIFT) { 1248 // relocation insn is a load, store or shift insn. 1249 processGlobalValue(MI->getOperand(3)); 1250 } else if (MI->getOpcode() == BPF::JAL) { 1251 // check extern function references 1252 const MachineOperand &MO = MI->getOperand(0); 1253 if (MO.isGlobal()) { 1254 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1255 } 1256 } 1257 1258 if (!CurMI) // no debug info 1259 return; 1260 1261 // Skip this instruction if no DebugLoc or the DebugLoc 1262 // is the same as the previous instruction. 1263 const DebugLoc &DL = MI->getDebugLoc(); 1264 if (!DL || PrevInstLoc == DL) { 1265 // This instruction will be skipped, no LineInfo has 1266 // been generated, construct one based on function signature. 1267 if (LineInfoGenerated == false) { 1268 auto *S = MI->getMF()->getFunction().getSubprogram(); 1269 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1270 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1271 LineInfoGenerated = true; 1272 } 1273 1274 return; 1275 } 1276 1277 // Create a temporary label to remember the insn for lineinfo. 1278 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1279 OS.emitLabel(LineSym); 1280 1281 // Construct the lineinfo. 1282 auto SP = DL.get()->getScope()->getSubprogram(); 1283 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1284 1285 LineInfoGenerated = true; 1286 PrevInstLoc = DL; 1287 } 1288 1289 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1290 // Collect all types referenced by globals. 1291 const Module *M = MMI->getModule(); 1292 for (const GlobalVariable &Global : M->globals()) { 1293 // Decide the section name. 1294 StringRef SecName; 1295 if (Global.hasSection()) { 1296 SecName = Global.getSection(); 1297 } else if (Global.hasInitializer()) { 1298 // data, bss, or readonly sections 1299 if (Global.isConstant()) 1300 SecName = ".rodata"; 1301 else 1302 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1303 } 1304 1305 if (ProcessingMapDef != SecName.startswith(".maps")) 1306 continue; 1307 1308 // Create a .rodata datasec if the global variable is an initialized 1309 // constant with private linkage and if it won't be in .rodata.str<#> 1310 // and .rodata.cst<#> sections. 1311 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1312 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1313 SectionKind GVKind = 1314 TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1315 // skip .rodata.str<#> and .rodata.cst<#> sections 1316 if (!GVKind.isMergeableCString() && !GVKind.isMergeableConst()) { 1317 DataSecEntries[std::string(SecName)] = 1318 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1319 } 1320 } 1321 1322 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1323 Global.getDebugInfo(GVs); 1324 1325 // No type information, mostly internal, skip it. 1326 if (GVs.size() == 0) 1327 continue; 1328 1329 uint32_t GVTypeId = 0; 1330 DIGlobalVariable *DIGlobal = nullptr; 1331 for (auto *GVE : GVs) { 1332 DIGlobal = GVE->getVariable(); 1333 if (SecName.startswith(".maps")) 1334 visitMapDefType(DIGlobal->getType(), GVTypeId); 1335 else 1336 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1337 break; 1338 } 1339 1340 // Only support the following globals: 1341 // . static variables 1342 // . non-static weak or non-weak global variables 1343 // . weak or non-weak extern global variables 1344 // Whether DataSec is readonly or not can be found from corresponding ELF 1345 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1346 // can be found from the corresponding ELF symbol table. 1347 auto Linkage = Global.getLinkage(); 1348 if (Linkage != GlobalValue::InternalLinkage && 1349 Linkage != GlobalValue::ExternalLinkage && 1350 Linkage != GlobalValue::WeakAnyLinkage && 1351 Linkage != GlobalValue::WeakODRLinkage && 1352 Linkage != GlobalValue::ExternalWeakLinkage) 1353 continue; 1354 1355 uint32_t GVarInfo; 1356 if (Linkage == GlobalValue::InternalLinkage) { 1357 GVarInfo = BTF::VAR_STATIC; 1358 } else if (Global.hasInitializer()) { 1359 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1360 } else { 1361 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1362 } 1363 1364 auto VarEntry = 1365 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1366 uint32_t VarId = addType(std::move(VarEntry)); 1367 1368 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1369 1370 // An empty SecName means an extern variable without section attribute. 1371 if (SecName.empty()) 1372 continue; 1373 1374 // Find or create a DataSec 1375 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1376 DataSecEntries[std::string(SecName)] = 1377 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1378 } 1379 1380 // Calculate symbol size 1381 const DataLayout &DL = Global.getParent()->getDataLayout(); 1382 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1383 1384 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1385 Asm->getSymbol(&Global), Size); 1386 } 1387 } 1388 1389 /// Emit proper patchable instructions. 1390 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1391 if (MI->getOpcode() == BPF::LD_imm64) { 1392 const MachineOperand &MO = MI->getOperand(1); 1393 if (MO.isGlobal()) { 1394 const GlobalValue *GVal = MO.getGlobal(); 1395 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1396 if (GVar) { 1397 // Emit "mov ri, <imm>" 1398 int64_t Imm; 1399 uint32_t Reloc; 1400 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1401 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1402 Imm = PatchImms[GVar].first; 1403 Reloc = PatchImms[GVar].second; 1404 } else { 1405 return false; 1406 } 1407 1408 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1409 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1410 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1411 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1412 OutMI.setOpcode(BPF::LD_imm64); 1413 else 1414 OutMI.setOpcode(BPF::MOV_ri); 1415 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1416 OutMI.addOperand(MCOperand::createImm(Imm)); 1417 return true; 1418 } 1419 } 1420 } else if (MI->getOpcode() == BPF::CORE_MEM || 1421 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1422 MI->getOpcode() == BPF::CORE_SHIFT) { 1423 const MachineOperand &MO = MI->getOperand(3); 1424 if (MO.isGlobal()) { 1425 const GlobalValue *GVal = MO.getGlobal(); 1426 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1427 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1428 uint32_t Imm = PatchImms[GVar].first; 1429 OutMI.setOpcode(MI->getOperand(1).getImm()); 1430 if (MI->getOperand(0).isImm()) 1431 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1432 else 1433 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1434 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1435 OutMI.addOperand(MCOperand::createImm(Imm)); 1436 return true; 1437 } 1438 } 1439 } 1440 return false; 1441 } 1442 1443 void BTFDebug::processFuncPrototypes(const Function *F) { 1444 if (!F) 1445 return; 1446 1447 const DISubprogram *SP = F->getSubprogram(); 1448 if (!SP || SP->isDefinition()) 1449 return; 1450 1451 // Do not emit again if already emitted. 1452 if (ProtoFunctions.find(F) != ProtoFunctions.end()) 1453 return; 1454 ProtoFunctions.insert(F); 1455 1456 uint32_t ProtoTypeId; 1457 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1458 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1459 1460 uint8_t Scope = BTF::FUNC_EXTERN; 1461 auto FuncTypeEntry = 1462 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 1463 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 1464 1465 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 1466 1467 if (F->hasSection()) { 1468 StringRef SecName = F->getSection(); 1469 1470 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1471 DataSecEntries[std::string(SecName)] = 1472 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1473 } 1474 1475 // We really don't know func size, set it to 0. 1476 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1477 Asm->getSymbol(F), 0); 1478 } 1479 } 1480 1481 void BTFDebug::endModule() { 1482 // Collect MapDef globals if not collected yet. 1483 if (MapDefNotCollected) { 1484 processGlobals(true); 1485 MapDefNotCollected = false; 1486 } 1487 1488 // Collect global types/variables except MapDef globals. 1489 processGlobals(false); 1490 1491 for (auto &DataSec : DataSecEntries) 1492 addType(std::move(DataSec.second)); 1493 1494 // Fixups 1495 for (auto &Fixup : FixupDerivedTypes) { 1496 const DICompositeType *CTy = Fixup.first; 1497 StringRef TypeName = CTy->getName(); 1498 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; 1499 1500 // Search through struct types 1501 uint32_t StructTypeId = 0; 1502 for (const auto &StructType : StructTypes) { 1503 if (StructType->getName() == TypeName) { 1504 StructTypeId = StructType->getId(); 1505 break; 1506 } 1507 } 1508 1509 if (StructTypeId == 0) { 1510 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1511 StructTypeId = addType(std::move(FwdTypeEntry)); 1512 } 1513 1514 for (auto &TypeInfo : Fixup.second) { 1515 const DIDerivedType *DTy = TypeInfo.first; 1516 BTFTypeDerived *BDType = TypeInfo.second; 1517 1518 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); 1519 if (TmpTypeId >= 0) 1520 BDType->setPointeeType(TmpTypeId); 1521 else 1522 BDType->setPointeeType(StructTypeId); 1523 } 1524 } 1525 1526 // Complete BTF type cross refereences. 1527 for (const auto &TypeEntry : TypeEntries) 1528 TypeEntry->completeType(*this); 1529 1530 // Emit BTF sections. 1531 emitBTFSection(); 1532 emitBTFExtSection(); 1533 } 1534