1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 26 using namespace llvm; 27 28 static const char *BTFKindStr[] = { 29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 30 #include "BTF.def" 31 }; 32 33 /// Emit a BTF common type. 34 void BTFTypeBase::emitType(MCStreamer &OS) { 35 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 36 ")"); 37 OS.EmitIntValue(BTFType.NameOff, 4); 38 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 39 OS.EmitIntValue(BTFType.Info, 4); 40 OS.EmitIntValue(BTFType.Size, 4); 41 } 42 43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 44 bool NeedsFixup) 45 : DTy(DTy), NeedsFixup(NeedsFixup) { 46 switch (Tag) { 47 case dwarf::DW_TAG_pointer_type: 48 Kind = BTF::BTF_KIND_PTR; 49 break; 50 case dwarf::DW_TAG_const_type: 51 Kind = BTF::BTF_KIND_CONST; 52 break; 53 case dwarf::DW_TAG_volatile_type: 54 Kind = BTF::BTF_KIND_VOLATILE; 55 break; 56 case dwarf::DW_TAG_typedef: 57 Kind = BTF::BTF_KIND_TYPEDEF; 58 break; 59 case dwarf::DW_TAG_restrict_type: 60 Kind = BTF::BTF_KIND_RESTRICT; 61 break; 62 default: 63 llvm_unreachable("Unknown DIDerivedType Tag"); 64 } 65 BTFType.Info = Kind << 24; 66 } 67 68 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 69 if (IsCompleted) 70 return; 71 IsCompleted = true; 72 73 BTFType.NameOff = BDebug.addString(DTy->getName()); 74 75 if (NeedsFixup) 76 return; 77 78 // The base type for PTR/CONST/VOLATILE could be void. 79 const DIType *ResolvedType = DTy->getBaseType(); 80 if (!ResolvedType) { 81 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 82 Kind == BTF::BTF_KIND_VOLATILE) && 83 "Invalid null basetype"); 84 BTFType.Type = 0; 85 } else { 86 BTFType.Type = BDebug.getTypeId(ResolvedType); 87 } 88 } 89 90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 91 92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 93 BTFType.Type = PointeeType; 94 } 95 96 /// Represent a struct/union forward declaration. 97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 98 Kind = BTF::BTF_KIND_FWD; 99 BTFType.Info = IsUnion << 31 | Kind << 24; 100 BTFType.Type = 0; 101 } 102 103 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 104 if (IsCompleted) 105 return; 106 IsCompleted = true; 107 108 BTFType.NameOff = BDebug.addString(Name); 109 } 110 111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 112 113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 114 uint32_t OffsetInBits, StringRef TypeName) 115 : Name(TypeName) { 116 // Translate IR int encoding to BTF int encoding. 117 uint8_t BTFEncoding; 118 switch (Encoding) { 119 case dwarf::DW_ATE_boolean: 120 BTFEncoding = BTF::INT_BOOL; 121 break; 122 case dwarf::DW_ATE_signed: 123 case dwarf::DW_ATE_signed_char: 124 BTFEncoding = BTF::INT_SIGNED; 125 break; 126 case dwarf::DW_ATE_unsigned: 127 case dwarf::DW_ATE_unsigned_char: 128 BTFEncoding = 0; 129 break; 130 default: 131 llvm_unreachable("Unknown BTFTypeInt Encoding"); 132 } 133 134 Kind = BTF::BTF_KIND_INT; 135 BTFType.Info = Kind << 24; 136 BTFType.Size = roundupToBytes(SizeInBits); 137 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 138 } 139 140 void BTFTypeInt::completeType(BTFDebug &BDebug) { 141 if (IsCompleted) 142 return; 143 IsCompleted = true; 144 145 BTFType.NameOff = BDebug.addString(Name); 146 } 147 148 void BTFTypeInt::emitType(MCStreamer &OS) { 149 BTFTypeBase::emitType(OS); 150 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 151 OS.EmitIntValue(IntVal, 4); 152 } 153 154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { 155 Kind = BTF::BTF_KIND_ENUM; 156 BTFType.Info = Kind << 24 | VLen; 157 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 158 } 159 160 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 161 if (IsCompleted) 162 return; 163 IsCompleted = true; 164 165 BTFType.NameOff = BDebug.addString(ETy->getName()); 166 167 DINodeArray Elements = ETy->getElements(); 168 for (const auto Element : Elements) { 169 const auto *Enum = cast<DIEnumerator>(Element); 170 171 struct BTF::BTFEnum BTFEnum; 172 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 173 // BTF enum value is 32bit, enforce it. 174 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue()); 175 EnumValues.push_back(BTFEnum); 176 } 177 } 178 179 void BTFTypeEnum::emitType(MCStreamer &OS) { 180 BTFTypeBase::emitType(OS); 181 for (const auto &Enum : EnumValues) { 182 OS.EmitIntValue(Enum.NameOff, 4); 183 OS.EmitIntValue(Enum.Val, 4); 184 } 185 } 186 187 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 188 Kind = BTF::BTF_KIND_ARRAY; 189 BTFType.NameOff = 0; 190 BTFType.Info = Kind << 24; 191 BTFType.Size = 0; 192 193 ArrayInfo.ElemType = ElemTypeId; 194 ArrayInfo.Nelems = NumElems; 195 } 196 197 /// Represent a BTF array. 198 void BTFTypeArray::completeType(BTFDebug &BDebug) { 199 if (IsCompleted) 200 return; 201 IsCompleted = true; 202 203 // The IR does not really have a type for the index. 204 // A special type for array index should have been 205 // created during initial type traversal. Just 206 // retrieve that type id. 207 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 208 } 209 210 void BTFTypeArray::emitType(MCStreamer &OS) { 211 BTFTypeBase::emitType(OS); 212 OS.EmitIntValue(ArrayInfo.ElemType, 4); 213 OS.EmitIntValue(ArrayInfo.IndexType, 4); 214 OS.EmitIntValue(ArrayInfo.Nelems, 4); 215 } 216 217 /// Represent either a struct or a union. 218 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 219 bool HasBitField, uint32_t Vlen) 220 : STy(STy), HasBitField(HasBitField) { 221 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 222 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 223 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 224 } 225 226 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 227 if (IsCompleted) 228 return; 229 IsCompleted = true; 230 231 BTFType.NameOff = BDebug.addString(STy->getName()); 232 233 // Add struct/union members. 234 const DINodeArray Elements = STy->getElements(); 235 for (const auto *Element : Elements) { 236 struct BTF::BTFMember BTFMember; 237 const auto *DDTy = cast<DIDerivedType>(Element); 238 239 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 240 if (HasBitField) { 241 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 242 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 243 } else { 244 BTFMember.Offset = DDTy->getOffsetInBits(); 245 } 246 const auto *BaseTy = DDTy->getBaseType(); 247 BTFMember.Type = BDebug.getTypeId(BaseTy); 248 Members.push_back(BTFMember); 249 } 250 } 251 252 void BTFTypeStruct::emitType(MCStreamer &OS) { 253 BTFTypeBase::emitType(OS); 254 for (const auto &Member : Members) { 255 OS.EmitIntValue(Member.NameOff, 4); 256 OS.EmitIntValue(Member.Type, 4); 257 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 258 OS.EmitIntValue(Member.Offset, 4); 259 } 260 } 261 262 std::string BTFTypeStruct::getName() { return STy->getName(); } 263 264 /// The Func kind represents both subprogram and pointee of function 265 /// pointers. If the FuncName is empty, it represents a pointee of function 266 /// pointer. Otherwise, it represents a subprogram. The func arg names 267 /// are empty for pointee of function pointer case, and are valid names 268 /// for subprogram. 269 BTFTypeFuncProto::BTFTypeFuncProto( 270 const DISubroutineType *STy, uint32_t VLen, 271 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 272 : STy(STy), FuncArgNames(FuncArgNames) { 273 Kind = BTF::BTF_KIND_FUNC_PROTO; 274 BTFType.Info = (Kind << 24) | VLen; 275 } 276 277 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 278 if (IsCompleted) 279 return; 280 IsCompleted = true; 281 282 DITypeRefArray Elements = STy->getTypeArray(); 283 auto RetType = Elements[0]; 284 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 285 BTFType.NameOff = 0; 286 287 // For null parameter which is typically the last one 288 // to represent the vararg, encode the NameOff/Type to be 0. 289 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 290 struct BTF::BTFParam Param; 291 auto Element = Elements[I]; 292 if (Element) { 293 Param.NameOff = BDebug.addString(FuncArgNames[I]); 294 Param.Type = BDebug.getTypeId(Element); 295 } else { 296 Param.NameOff = 0; 297 Param.Type = 0; 298 } 299 Parameters.push_back(Param); 300 } 301 } 302 303 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 304 BTFTypeBase::emitType(OS); 305 for (const auto &Param : Parameters) { 306 OS.EmitIntValue(Param.NameOff, 4); 307 OS.EmitIntValue(Param.Type, 4); 308 } 309 } 310 311 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId) 312 : Name(FuncName) { 313 Kind = BTF::BTF_KIND_FUNC; 314 BTFType.Info = Kind << 24; 315 BTFType.Type = ProtoTypeId; 316 } 317 318 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 319 if (IsCompleted) 320 return; 321 IsCompleted = true; 322 323 BTFType.NameOff = BDebug.addString(Name); 324 } 325 326 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 327 328 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 329 : Name(VarName) { 330 Kind = BTF::BTF_KIND_VAR; 331 BTFType.Info = Kind << 24; 332 BTFType.Type = TypeId; 333 Info = VarInfo; 334 } 335 336 void BTFKindVar::completeType(BTFDebug &BDebug) { 337 BTFType.NameOff = BDebug.addString(Name); 338 } 339 340 void BTFKindVar::emitType(MCStreamer &OS) { 341 BTFTypeBase::emitType(OS); 342 OS.EmitIntValue(Info, 4); 343 } 344 345 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 346 : Asm(AsmPrt), Name(SecName) { 347 Kind = BTF::BTF_KIND_DATASEC; 348 BTFType.Info = Kind << 24; 349 BTFType.Size = 0; 350 } 351 352 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 353 BTFType.NameOff = BDebug.addString(Name); 354 BTFType.Info |= Vars.size(); 355 } 356 357 void BTFKindDataSec::emitType(MCStreamer &OS) { 358 BTFTypeBase::emitType(OS); 359 360 for (const auto &V : Vars) { 361 OS.EmitIntValue(std::get<0>(V), 4); 362 Asm->EmitLabelReference(std::get<1>(V), 4); 363 OS.EmitIntValue(std::get<2>(V), 4); 364 } 365 } 366 367 uint32_t BTFStringTable::addString(StringRef S) { 368 // Check whether the string already exists. 369 for (auto &OffsetM : OffsetToIdMap) { 370 if (Table[OffsetM.second] == S) 371 return OffsetM.first; 372 } 373 // Not find, add to the string table. 374 uint32_t Offset = Size; 375 OffsetToIdMap[Offset] = Table.size(); 376 Table.push_back(S); 377 Size += S.size() + 1; 378 return Offset; 379 } 380 381 BTFDebug::BTFDebug(AsmPrinter *AP) 382 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 383 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 384 MapDefNotCollected(true) { 385 addString("\0"); 386 } 387 388 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 389 const DIType *Ty) { 390 TypeEntry->setId(TypeEntries.size() + 1); 391 uint32_t Id = TypeEntry->getId(); 392 DIToIdMap[Ty] = Id; 393 TypeEntries.push_back(std::move(TypeEntry)); 394 return Id; 395 } 396 397 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 398 TypeEntry->setId(TypeEntries.size() + 1); 399 uint32_t Id = TypeEntry->getId(); 400 TypeEntries.push_back(std::move(TypeEntry)); 401 return Id; 402 } 403 404 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 405 // Only int types are supported in BTF. 406 uint32_t Encoding = BTy->getEncoding(); 407 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && 408 Encoding != dwarf::DW_ATE_signed_char && 409 Encoding != dwarf::DW_ATE_unsigned && 410 Encoding != dwarf::DW_ATE_unsigned_char) 411 return; 412 413 // Create a BTF type instance for this DIBasicType and put it into 414 // DIToIdMap for cross-type reference check. 415 auto TypeEntry = std::make_unique<BTFTypeInt>( 416 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 417 TypeId = addType(std::move(TypeEntry), BTy); 418 } 419 420 /// Handle subprogram or subroutine types. 421 void BTFDebug::visitSubroutineType( 422 const DISubroutineType *STy, bool ForSubprog, 423 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 424 uint32_t &TypeId) { 425 DITypeRefArray Elements = STy->getTypeArray(); 426 uint32_t VLen = Elements.size() - 1; 427 if (VLen > BTF::MAX_VLEN) 428 return; 429 430 // Subprogram has a valid non-zero-length name, and the pointee of 431 // a function pointer has an empty name. The subprogram type will 432 // not be added to DIToIdMap as it should not be referenced by 433 // any other types. 434 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 435 if (ForSubprog) 436 TypeId = addType(std::move(TypeEntry)); // For subprogram 437 else 438 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 439 440 // Visit return type and func arg types. 441 for (const auto Element : Elements) { 442 visitTypeEntry(Element); 443 } 444 } 445 446 /// Handle structure/union types. 447 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 448 uint32_t &TypeId) { 449 const DINodeArray Elements = CTy->getElements(); 450 uint32_t VLen = Elements.size(); 451 if (VLen > BTF::MAX_VLEN) 452 return; 453 454 // Check whether we have any bitfield members or not 455 bool HasBitField = false; 456 for (const auto *Element : Elements) { 457 auto E = cast<DIDerivedType>(Element); 458 if (E->isBitField()) { 459 HasBitField = true; 460 break; 461 } 462 } 463 464 auto TypeEntry = 465 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 466 StructTypes.push_back(TypeEntry.get()); 467 TypeId = addType(std::move(TypeEntry), CTy); 468 469 // Visit all struct members. 470 for (const auto *Element : Elements) 471 visitTypeEntry(cast<DIDerivedType>(Element)); 472 } 473 474 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 475 // Visit array element type. 476 uint32_t ElemTypeId; 477 const DIType *ElemType = CTy->getBaseType(); 478 visitTypeEntry(ElemType, ElemTypeId, false, false); 479 480 // Visit array dimensions. 481 DINodeArray Elements = CTy->getElements(); 482 for (int I = Elements.size() - 1; I >= 0; --I) { 483 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 484 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 485 const DISubrange *SR = cast<DISubrange>(Element); 486 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 487 int64_t Count = CI->getSExtValue(); 488 489 // For struct s { int b; char c[]; }, the c[] will be represented 490 // as an array with Count = -1. 491 auto TypeEntry = 492 std::make_unique<BTFTypeArray>(ElemTypeId, 493 Count >= 0 ? Count : 0); 494 if (I == 0) 495 ElemTypeId = addType(std::move(TypeEntry), CTy); 496 else 497 ElemTypeId = addType(std::move(TypeEntry)); 498 } 499 } 500 501 // The array TypeId is the type id of the outermost dimension. 502 TypeId = ElemTypeId; 503 504 // The IR does not have a type for array index while BTF wants one. 505 // So create an array index type if there is none. 506 if (!ArrayIndexTypeId) { 507 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 508 0, "__ARRAY_SIZE_TYPE__"); 509 ArrayIndexTypeId = addType(std::move(TypeEntry)); 510 } 511 } 512 513 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 514 DINodeArray Elements = CTy->getElements(); 515 uint32_t VLen = Elements.size(); 516 if (VLen > BTF::MAX_VLEN) 517 return; 518 519 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen); 520 TypeId = addType(std::move(TypeEntry), CTy); 521 // No need to visit base type as BTF does not encode it. 522 } 523 524 /// Handle structure/union forward declarations. 525 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 526 uint32_t &TypeId) { 527 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 528 TypeId = addType(std::move(TypeEntry), CTy); 529 } 530 531 /// Handle structure, union, array and enumeration types. 532 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 533 uint32_t &TypeId) { 534 auto Tag = CTy->getTag(); 535 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 536 // Handle forward declaration differently as it does not have members. 537 if (CTy->isForwardDecl()) 538 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 539 else 540 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 541 } else if (Tag == dwarf::DW_TAG_array_type) 542 visitArrayType(CTy, TypeId); 543 else if (Tag == dwarf::DW_TAG_enumeration_type) 544 visitEnumType(CTy, TypeId); 545 } 546 547 /// Handle pointer, typedef, const, volatile, restrict and member types. 548 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 549 bool CheckPointer, bool SeenPointer) { 550 unsigned Tag = DTy->getTag(); 551 552 /// Try to avoid chasing pointees, esp. structure pointees which may 553 /// unnecessary bring in a lot of types. 554 if (CheckPointer && !SeenPointer) { 555 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 556 } 557 558 if (CheckPointer && SeenPointer) { 559 const DIType *Base = DTy->getBaseType(); 560 if (Base) { 561 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 562 auto CTag = CTy->getTag(); 563 if ((CTag == dwarf::DW_TAG_structure_type || 564 CTag == dwarf::DW_TAG_union_type) && 565 !CTy->isForwardDecl()) { 566 /// Find a candidate, generate a fixup. Later on the struct/union 567 /// pointee type will be replaced with either a real type or 568 /// a forward declaration. 569 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 570 auto &Fixup = FixupDerivedTypes[CTy->getName()]; 571 Fixup.first = CTag == dwarf::DW_TAG_union_type; 572 Fixup.second.push_back(TypeEntry.get()); 573 TypeId = addType(std::move(TypeEntry), DTy); 574 return; 575 } 576 } 577 } 578 } 579 580 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || 581 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || 582 Tag == dwarf::DW_TAG_restrict_type) { 583 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 584 TypeId = addType(std::move(TypeEntry), DTy); 585 } else if (Tag != dwarf::DW_TAG_member) { 586 return; 587 } 588 589 // Visit base type of pointer, typedef, const, volatile, restrict or 590 // struct/union member. 591 uint32_t TempTypeId = 0; 592 if (Tag == dwarf::DW_TAG_member) 593 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 594 else 595 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 596 } 597 598 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 599 bool CheckPointer, bool SeenPointer) { 600 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 601 TypeId = DIToIdMap[Ty]; 602 return; 603 } 604 605 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 606 visitBasicType(BTy, TypeId); 607 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 608 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 609 TypeId); 610 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 611 visitCompositeType(CTy, TypeId); 612 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 613 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 614 else 615 llvm_unreachable("Unknown DIType"); 616 } 617 618 void BTFDebug::visitTypeEntry(const DIType *Ty) { 619 uint32_t TypeId; 620 visitTypeEntry(Ty, TypeId, false, false); 621 } 622 623 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 624 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 625 TypeId = DIToIdMap[Ty]; 626 return; 627 } 628 629 // MapDef type is a struct type 630 const auto *CTy = dyn_cast<DICompositeType>(Ty); 631 if (!CTy) 632 return; 633 634 auto Tag = CTy->getTag(); 635 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 636 return; 637 638 // Record this type 639 const DINodeArray Elements = CTy->getElements(); 640 bool HasBitField = false; 641 for (const auto *Element : Elements) { 642 auto E = cast<DIDerivedType>(Element); 643 if (E->isBitField()) { 644 HasBitField = true; 645 break; 646 } 647 } 648 649 auto TypeEntry = 650 std::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size()); 651 StructTypes.push_back(TypeEntry.get()); 652 TypeId = addType(std::move(TypeEntry), CTy); 653 654 // Visit all struct members 655 for (const auto *Element : Elements) { 656 const auto *MemberType = cast<DIDerivedType>(Element); 657 visitTypeEntry(MemberType->getBaseType()); 658 } 659 } 660 661 /// Read file contents from the actual file or from the source 662 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 663 auto File = SP->getFile(); 664 std::string FileName; 665 666 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 667 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 668 else 669 FileName = File->getFilename(); 670 671 // No need to populate the contends if it has been populated! 672 if (FileContent.find(FileName) != FileContent.end()) 673 return FileName; 674 675 std::vector<std::string> Content; 676 std::string Line; 677 Content.push_back(Line); // Line 0 for empty string 678 679 std::unique_ptr<MemoryBuffer> Buf; 680 auto Source = File->getSource(); 681 if (Source) 682 Buf = MemoryBuffer::getMemBufferCopy(*Source); 683 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 684 MemoryBuffer::getFile(FileName)) 685 Buf = std::move(*BufOrErr); 686 if (Buf) 687 for (line_iterator I(*Buf, false), E; I != E; ++I) 688 Content.push_back(*I); 689 690 FileContent[FileName] = Content; 691 return FileName; 692 } 693 694 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 695 uint32_t Line, uint32_t Column) { 696 std::string FileName = populateFileContent(SP); 697 BTFLineInfo LineInfo; 698 699 LineInfo.Label = Label; 700 LineInfo.FileNameOff = addString(FileName); 701 // If file content is not available, let LineOff = 0. 702 if (Line < FileContent[FileName].size()) 703 LineInfo.LineOff = addString(FileContent[FileName][Line]); 704 else 705 LineInfo.LineOff = 0; 706 LineInfo.LineNum = Line; 707 LineInfo.ColumnNum = Column; 708 LineInfoTable[SecNameOff].push_back(LineInfo); 709 } 710 711 void BTFDebug::emitCommonHeader() { 712 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 713 OS.EmitIntValue(BTF::MAGIC, 2); 714 OS.EmitIntValue(BTF::VERSION, 1); 715 OS.EmitIntValue(0, 1); 716 } 717 718 void BTFDebug::emitBTFSection() { 719 // Do not emit section if no types and only "" string. 720 if (!TypeEntries.size() && StringTable.getSize() == 1) 721 return; 722 723 MCContext &Ctx = OS.getContext(); 724 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); 725 726 // Emit header. 727 emitCommonHeader(); 728 OS.EmitIntValue(BTF::HeaderSize, 4); 729 730 uint32_t TypeLen = 0, StrLen; 731 for (const auto &TypeEntry : TypeEntries) 732 TypeLen += TypeEntry->getSize(); 733 StrLen = StringTable.getSize(); 734 735 OS.EmitIntValue(0, 4); 736 OS.EmitIntValue(TypeLen, 4); 737 OS.EmitIntValue(TypeLen, 4); 738 OS.EmitIntValue(StrLen, 4); 739 740 // Emit type table. 741 for (const auto &TypeEntry : TypeEntries) 742 TypeEntry->emitType(OS); 743 744 // Emit string table. 745 uint32_t StringOffset = 0; 746 for (const auto &S : StringTable.getTable()) { 747 OS.AddComment("string offset=" + std::to_string(StringOffset)); 748 OS.EmitBytes(S); 749 OS.EmitBytes(StringRef("\0", 1)); 750 StringOffset += S.size() + 1; 751 } 752 } 753 754 void BTFDebug::emitBTFExtSection() { 755 // Do not emit section if empty FuncInfoTable and LineInfoTable. 756 if (!FuncInfoTable.size() && !LineInfoTable.size() && 757 !OffsetRelocTable.size() && !ExternRelocTable.size()) 758 return; 759 760 MCContext &Ctx = OS.getContext(); 761 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); 762 763 // Emit header. 764 emitCommonHeader(); 765 OS.EmitIntValue(BTF::ExtHeaderSize, 4); 766 767 // Account for FuncInfo/LineInfo record size as well. 768 uint32_t FuncLen = 4, LineLen = 4; 769 // Do not account for optional OffsetReloc/ExternReloc. 770 uint32_t OffsetRelocLen = 0, ExternRelocLen = 0; 771 for (const auto &FuncSec : FuncInfoTable) { 772 FuncLen += BTF::SecFuncInfoSize; 773 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 774 } 775 for (const auto &LineSec : LineInfoTable) { 776 LineLen += BTF::SecLineInfoSize; 777 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 778 } 779 for (const auto &OffsetRelocSec : OffsetRelocTable) { 780 OffsetRelocLen += BTF::SecOffsetRelocSize; 781 OffsetRelocLen += OffsetRelocSec.second.size() * BTF::BPFOffsetRelocSize; 782 } 783 for (const auto &ExternRelocSec : ExternRelocTable) { 784 ExternRelocLen += BTF::SecExternRelocSize; 785 ExternRelocLen += ExternRelocSec.second.size() * BTF::BPFExternRelocSize; 786 } 787 788 if (OffsetRelocLen) 789 OffsetRelocLen += 4; 790 if (ExternRelocLen) 791 ExternRelocLen += 4; 792 793 OS.EmitIntValue(0, 4); 794 OS.EmitIntValue(FuncLen, 4); 795 OS.EmitIntValue(FuncLen, 4); 796 OS.EmitIntValue(LineLen, 4); 797 OS.EmitIntValue(FuncLen + LineLen, 4); 798 OS.EmitIntValue(OffsetRelocLen, 4); 799 OS.EmitIntValue(FuncLen + LineLen + OffsetRelocLen, 4); 800 OS.EmitIntValue(ExternRelocLen, 4); 801 802 // Emit func_info table. 803 OS.AddComment("FuncInfo"); 804 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4); 805 for (const auto &FuncSec : FuncInfoTable) { 806 OS.AddComment("FuncInfo section string offset=" + 807 std::to_string(FuncSec.first)); 808 OS.EmitIntValue(FuncSec.first, 4); 809 OS.EmitIntValue(FuncSec.second.size(), 4); 810 for (const auto &FuncInfo : FuncSec.second) { 811 Asm->EmitLabelReference(FuncInfo.Label, 4); 812 OS.EmitIntValue(FuncInfo.TypeId, 4); 813 } 814 } 815 816 // Emit line_info table. 817 OS.AddComment("LineInfo"); 818 OS.EmitIntValue(BTF::BPFLineInfoSize, 4); 819 for (const auto &LineSec : LineInfoTable) { 820 OS.AddComment("LineInfo section string offset=" + 821 std::to_string(LineSec.first)); 822 OS.EmitIntValue(LineSec.first, 4); 823 OS.EmitIntValue(LineSec.second.size(), 4); 824 for (const auto &LineInfo : LineSec.second) { 825 Asm->EmitLabelReference(LineInfo.Label, 4); 826 OS.EmitIntValue(LineInfo.FileNameOff, 4); 827 OS.EmitIntValue(LineInfo.LineOff, 4); 828 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 829 std::to_string(LineInfo.ColumnNum)); 830 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4); 831 } 832 } 833 834 // Emit offset reloc table. 835 if (OffsetRelocLen) { 836 OS.AddComment("OffsetReloc"); 837 OS.EmitIntValue(BTF::BPFOffsetRelocSize, 4); 838 for (const auto &OffsetRelocSec : OffsetRelocTable) { 839 OS.AddComment("Offset reloc section string offset=" + 840 std::to_string(OffsetRelocSec.first)); 841 OS.EmitIntValue(OffsetRelocSec.first, 4); 842 OS.EmitIntValue(OffsetRelocSec.second.size(), 4); 843 for (const auto &OffsetRelocInfo : OffsetRelocSec.second) { 844 Asm->EmitLabelReference(OffsetRelocInfo.Label, 4); 845 OS.EmitIntValue(OffsetRelocInfo.TypeID, 4); 846 OS.EmitIntValue(OffsetRelocInfo.OffsetNameOff, 4); 847 } 848 } 849 } 850 851 // Emit extern reloc table. 852 if (ExternRelocLen) { 853 OS.AddComment("ExternReloc"); 854 OS.EmitIntValue(BTF::BPFExternRelocSize, 4); 855 for (const auto &ExternRelocSec : ExternRelocTable) { 856 OS.AddComment("Extern reloc section string offset=" + 857 std::to_string(ExternRelocSec.first)); 858 OS.EmitIntValue(ExternRelocSec.first, 4); 859 OS.EmitIntValue(ExternRelocSec.second.size(), 4); 860 for (const auto &ExternRelocInfo : ExternRelocSec.second) { 861 Asm->EmitLabelReference(ExternRelocInfo.Label, 4); 862 OS.EmitIntValue(ExternRelocInfo.ExternNameOff, 4); 863 } 864 } 865 } 866 } 867 868 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 869 auto *SP = MF->getFunction().getSubprogram(); 870 auto *Unit = SP->getUnit(); 871 872 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 873 SkipInstruction = true; 874 return; 875 } 876 SkipInstruction = false; 877 878 // Collect MapDef types. Map definition needs to collect 879 // pointee types. Do it first. Otherwise, for the following 880 // case: 881 // struct m { ...}; 882 // struct t { 883 // struct m *key; 884 // }; 885 // foo(struct t *arg); 886 // 887 // struct mapdef { 888 // ... 889 // struct m *key; 890 // ... 891 // } __attribute__((section(".maps"))) hash_map; 892 // 893 // If subroutine foo is traversed first, a type chain 894 // "ptr->struct m(fwd)" will be created and later on 895 // when traversing mapdef, since "ptr->struct m" exists, 896 // the traversal of "struct m" will be omitted. 897 if (MapDefNotCollected) { 898 processGlobals(true); 899 MapDefNotCollected = false; 900 } 901 902 // Collect all types locally referenced in this function. 903 // Use RetainedNodes so we can collect all argument names 904 // even if the argument is not used. 905 std::unordered_map<uint32_t, StringRef> FuncArgNames; 906 for (const DINode *DN : SP->getRetainedNodes()) { 907 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 908 // Collect function arguments for subprogram func type. 909 uint32_t Arg = DV->getArg(); 910 if (Arg) { 911 visitTypeEntry(DV->getType()); 912 FuncArgNames[Arg] = DV->getName(); 913 } 914 } 915 } 916 917 // Construct subprogram func proto type. 918 uint32_t ProtoTypeId; 919 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 920 921 // Construct subprogram func type 922 auto FuncTypeEntry = 923 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId); 924 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); 925 926 for (const auto &TypeEntry : TypeEntries) 927 TypeEntry->completeType(*this); 928 929 // Construct funcinfo and the first lineinfo for the function. 930 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 931 BTFFuncInfo FuncInfo; 932 FuncInfo.Label = FuncLabel; 933 FuncInfo.TypeId = FuncTypeId; 934 if (FuncLabel->isInSection()) { 935 MCSection &Section = FuncLabel->getSection(); 936 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 937 assert(SectionELF && "Null section for Function Label"); 938 SecNameOff = addString(SectionELF->getSectionName()); 939 } else { 940 SecNameOff = addString(".text"); 941 } 942 FuncInfoTable[SecNameOff].push_back(FuncInfo); 943 } 944 945 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 946 SkipInstruction = false; 947 LineInfoGenerated = false; 948 SecNameOff = 0; 949 } 950 951 /// On-demand populate struct types as requested from abstract member 952 /// accessing. 953 unsigned BTFDebug::populateStructType(const DIType *Ty) { 954 unsigned Id; 955 visitTypeEntry(Ty, Id, false, false); 956 for (const auto &TypeEntry : TypeEntries) 957 TypeEntry->completeType(*this); 958 return Id; 959 } 960 961 /// Generate a struct member offset relocation. 962 void BTFDebug::generateOffsetReloc(const MachineInstr *MI, 963 const MCSymbol *ORSym, DIType *RootTy, 964 StringRef AccessPattern) { 965 unsigned RootId = populateStructType(RootTy); 966 size_t FirstDollar = AccessPattern.find_first_of('$'); 967 size_t FirstColon = AccessPattern.find_first_of(':'); 968 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 969 StringRef OffsetStr = AccessPattern.substr(FirstColon + 1, 970 FirstDollar - FirstColon); 971 972 BTFOffsetReloc OffsetReloc; 973 OffsetReloc.Label = ORSym; 974 OffsetReloc.OffsetNameOff = addString(IndexPattern); 975 OffsetReloc.TypeID = RootId; 976 AccessOffsets[AccessPattern.str()] = std::stoi(OffsetStr); 977 OffsetRelocTable[SecNameOff].push_back(OffsetReloc); 978 } 979 980 void BTFDebug::processLDimm64(const MachineInstr *MI) { 981 // If the insn is an LD_imm64, the following two cases 982 // will generate an .BTF.ext record. 983 // 984 // If the insn is "r2 = LD_imm64 @__BTF_...", 985 // add this insn into the .BTF.ext OffsetReloc subsection. 986 // Relocation looks like: 987 // . SecName: 988 // . InstOffset 989 // . TypeID 990 // . OffSetNameOff 991 // Later, the insn is replaced with "r2 = <offset>" 992 // where "<offset>" equals to the offset based on current 993 // type definitions. 994 // 995 // If the insn is "r2 = LD_imm64 @VAR" and VAR is 996 // a patchable external global, add this insn into the .BTF.ext 997 // ExternReloc subsection. 998 // Relocation looks like: 999 // . SecName: 1000 // . InstOffset 1001 // . ExternNameOff 1002 // Later, the insn is replaced with "r2 = <value>" or 1003 // "LD_imm64 r2, <value>" where "<value>" = 0. 1004 1005 // check whether this is a candidate or not 1006 const MachineOperand &MO = MI->getOperand(1); 1007 if (MO.isGlobal()) { 1008 const GlobalValue *GVal = MO.getGlobal(); 1009 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1010 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1011 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1012 OS.EmitLabel(ORSym); 1013 1014 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1015 DIType *Ty = dyn_cast<DIType>(MDN); 1016 generateOffsetReloc(MI, ORSym, Ty, GVar->getName()); 1017 } else if (GVar && !GVar->hasInitializer() && GVar->hasExternalLinkage() && 1018 GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) { 1019 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1020 OS.EmitLabel(ORSym); 1021 1022 BTFExternReloc ExternReloc; 1023 ExternReloc.Label = ORSym; 1024 ExternReloc.ExternNameOff = addString(GVar->getName()); 1025 ExternRelocTable[SecNameOff].push_back(ExternReloc); 1026 } 1027 } 1028 } 1029 1030 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1031 DebugHandlerBase::beginInstruction(MI); 1032 1033 if (SkipInstruction || MI->isMetaInstruction() || 1034 MI->getFlag(MachineInstr::FrameSetup)) 1035 return; 1036 1037 if (MI->isInlineAsm()) { 1038 // Count the number of register definitions to find the asm string. 1039 unsigned NumDefs = 0; 1040 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1041 ++NumDefs) 1042 ; 1043 1044 // Skip this inline asm instruction if the asmstr is empty. 1045 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1046 if (AsmStr[0] == 0) 1047 return; 1048 } 1049 1050 if (MI->getOpcode() == BPF::LD_imm64) 1051 processLDimm64(MI); 1052 1053 // Skip this instruction if no DebugLoc or the DebugLoc 1054 // is the same as the previous instruction. 1055 const DebugLoc &DL = MI->getDebugLoc(); 1056 if (!DL || PrevInstLoc == DL) { 1057 // This instruction will be skipped, no LineInfo has 1058 // been generated, construct one based on function signature. 1059 if (LineInfoGenerated == false) { 1060 auto *S = MI->getMF()->getFunction().getSubprogram(); 1061 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1062 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1063 LineInfoGenerated = true; 1064 } 1065 1066 return; 1067 } 1068 1069 // Create a temporary label to remember the insn for lineinfo. 1070 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1071 OS.EmitLabel(LineSym); 1072 1073 // Construct the lineinfo. 1074 auto SP = DL.get()->getScope()->getSubprogram(); 1075 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1076 1077 LineInfoGenerated = true; 1078 PrevInstLoc = DL; 1079 } 1080 1081 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1082 // Collect all types referenced by globals. 1083 const Module *M = MMI->getModule(); 1084 for (const GlobalVariable &Global : M->globals()) { 1085 // Ignore external globals for now. 1086 if (!Global.hasInitializer() && Global.hasExternalLinkage()) 1087 continue; 1088 1089 // Decide the section name. 1090 StringRef SecName; 1091 if (Global.hasSection()) { 1092 SecName = Global.getSection(); 1093 } else { 1094 // data, bss, or readonly sections 1095 if (Global.isConstant()) 1096 SecName = ".rodata"; 1097 else 1098 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data"; 1099 } 1100 1101 if (ProcessingMapDef != SecName.startswith(".maps")) 1102 continue; 1103 1104 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1105 Global.getDebugInfo(GVs); 1106 uint32_t GVTypeId = 0; 1107 for (auto *GVE : GVs) { 1108 if (SecName.startswith(".maps")) 1109 visitMapDefType(GVE->getVariable()->getType(), GVTypeId); 1110 else 1111 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false); 1112 break; 1113 } 1114 1115 // Only support the following globals: 1116 // . static variables 1117 // . non-static global variables with section attributes 1118 // Essentially means: 1119 // . .bcc/.data/.rodata DataSec entities only contain static data 1120 // . Other DataSec entities contain static or initialized global data. 1121 // Initialized global data are mostly used for finding map key/value type 1122 // id's. Whether DataSec is readonly or not can be found from 1123 // corresponding ELF section flags. 1124 auto Linkage = Global.getLinkage(); 1125 if (Linkage != GlobalValue::InternalLinkage && 1126 (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection())) 1127 continue; 1128 1129 uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage 1130 ? BTF::VAR_GLOBAL_ALLOCATED 1131 : BTF::VAR_STATIC; 1132 auto VarEntry = 1133 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1134 uint32_t VarId = addType(std::move(VarEntry)); 1135 1136 // Find or create a DataSec 1137 if (DataSecEntries.find(SecName) == DataSecEntries.end()) { 1138 DataSecEntries[SecName] = std::make_unique<BTFKindDataSec>(Asm, SecName); 1139 } 1140 1141 // Calculate symbol size 1142 const DataLayout &DL = Global.getParent()->getDataLayout(); 1143 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType()); 1144 1145 DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size); 1146 } 1147 } 1148 1149 /// Emit proper patchable instructions. 1150 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1151 if (MI->getOpcode() == BPF::LD_imm64) { 1152 const MachineOperand &MO = MI->getOperand(1); 1153 if (MO.isGlobal()) { 1154 const GlobalValue *GVal = MO.getGlobal(); 1155 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1156 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1157 // Emit "mov ri, <imm>" for abstract member accesses. 1158 int64_t Imm = AccessOffsets[GVar->getName().str()]; 1159 OutMI.setOpcode(BPF::MOV_ri); 1160 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1161 OutMI.addOperand(MCOperand::createImm(Imm)); 1162 return true; 1163 } else if (GVar && !GVar->hasInitializer() && 1164 GVar->hasExternalLinkage() && 1165 GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) { 1166 const IntegerType *IntTy = dyn_cast<IntegerType>(GVar->getValueType()); 1167 assert(IntTy); 1168 // For patchable externals, emit "LD_imm64, ri, 0" if the external 1169 // variable is 64bit width, emit "mov ri, 0" otherwise. 1170 if (IntTy->getBitWidth() == 64) 1171 OutMI.setOpcode(BPF::LD_imm64); 1172 else 1173 OutMI.setOpcode(BPF::MOV_ri); 1174 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1175 OutMI.addOperand(MCOperand::createImm(0)); 1176 return true; 1177 } 1178 } 1179 } 1180 return false; 1181 } 1182 1183 void BTFDebug::endModule() { 1184 // Collect MapDef globals if not collected yet. 1185 if (MapDefNotCollected) { 1186 processGlobals(true); 1187 MapDefNotCollected = false; 1188 } 1189 1190 // Collect global types/variables except MapDef globals. 1191 processGlobals(false); 1192 for (auto &DataSec : DataSecEntries) 1193 addType(std::move(DataSec.second)); 1194 1195 // Fixups 1196 for (auto &Fixup : FixupDerivedTypes) { 1197 StringRef TypeName = Fixup.first; 1198 bool IsUnion = Fixup.second.first; 1199 1200 // Search through struct types 1201 uint32_t StructTypeId = 0; 1202 for (const auto &StructType : StructTypes) { 1203 if (StructType->getName() == TypeName) { 1204 StructTypeId = StructType->getId(); 1205 break; 1206 } 1207 } 1208 1209 if (StructTypeId == 0) { 1210 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1211 StructTypeId = addType(std::move(FwdTypeEntry)); 1212 } 1213 1214 for (auto &DType : Fixup.second.second) { 1215 DType->setPointeeType(StructTypeId); 1216 } 1217 } 1218 1219 // Complete BTF type cross refereences. 1220 for (const auto &TypeEntry : TypeEntries) 1221 TypeEntry->completeType(*this); 1222 1223 // Emit BTF sections. 1224 emitBTFSection(); 1225 emitBTFExtSection(); 1226 } 1227