1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "bpf-lower"
33
34 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
35 cl::Hidden, cl::init(false),
36 cl::desc("Expand memcpy into load/store pairs in order"));
37
fail(const SDLoc & DL,SelectionDAG & DAG,const Twine & Msg)38 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
39 MachineFunction &MF = DAG.getMachineFunction();
40 DAG.getContext()->diagnose(
41 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
42 }
43
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg,SDValue Val)44 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
45 SDValue Val) {
46 MachineFunction &MF = DAG.getMachineFunction();
47 std::string Str;
48 raw_string_ostream OS(Str);
49 OS << Msg;
50 Val->print(OS);
51 OS.flush();
52 DAG.getContext()->diagnose(
53 DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
54 }
55
BPFTargetLowering(const TargetMachine & TM,const BPFSubtarget & STI)56 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
57 const BPFSubtarget &STI)
58 : TargetLowering(TM) {
59
60 // Set up the register classes.
61 addRegisterClass(MVT::i64, &BPF::GPRRegClass);
62 if (STI.getHasAlu32())
63 addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
64
65 // Compute derived properties from the register classes
66 computeRegisterProperties(STI.getRegisterInfo());
67
68 setStackPointerRegisterToSaveRestore(BPF::R11);
69
70 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
71 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72 setOperationAction(ISD::BRIND, MVT::Other, Expand);
73 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
74
75 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
76
77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
78 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
79 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
80
81 // Set unsupported atomic operations as Custom so
82 // we can emit better error messages than fatal error
83 // from selectiondag.
84 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
85 if (VT == MVT::i32) {
86 if (STI.getHasAlu32())
87 continue;
88 } else {
89 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
90 }
91
92 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
93 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
94 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
95 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
96 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
97 }
98
99 for (auto VT : { MVT::i32, MVT::i64 }) {
100 if (VT == MVT::i32 && !STI.getHasAlu32())
101 continue;
102
103 setOperationAction(ISD::SDIVREM, VT, Expand);
104 setOperationAction(ISD::UDIVREM, VT, Expand);
105 setOperationAction(ISD::SREM, VT, Expand);
106 setOperationAction(ISD::MULHU, VT, Expand);
107 setOperationAction(ISD::MULHS, VT, Expand);
108 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
109 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
110 setOperationAction(ISD::ROTR, VT, Expand);
111 setOperationAction(ISD::ROTL, VT, Expand);
112 setOperationAction(ISD::SHL_PARTS, VT, Expand);
113 setOperationAction(ISD::SRL_PARTS, VT, Expand);
114 setOperationAction(ISD::SRA_PARTS, VT, Expand);
115 setOperationAction(ISD::CTPOP, VT, Expand);
116
117 setOperationAction(ISD::SETCC, VT, Expand);
118 setOperationAction(ISD::SELECT, VT, Expand);
119 setOperationAction(ISD::SELECT_CC, VT, Custom);
120 }
121
122 if (STI.getHasAlu32()) {
123 setOperationAction(ISD::BSWAP, MVT::i32, Promote);
124 setOperationAction(ISD::BR_CC, MVT::i32,
125 STI.getHasJmp32() ? Custom : Promote);
126 }
127
128 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
129 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
130 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
131 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
132
133 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
134 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
135 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
137
138 // Extended load operations for i1 types must be promoted
139 for (MVT VT : MVT::integer_valuetypes()) {
140 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
143
144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
147 }
148
149 setBooleanContents(ZeroOrOneBooleanContent);
150
151 // Function alignments
152 setMinFunctionAlignment(Align(8));
153 setPrefFunctionAlignment(Align(8));
154
155 if (BPFExpandMemcpyInOrder) {
156 // LLVM generic code will try to expand memcpy into load/store pairs at this
157 // stage which is before quite a few IR optimization passes, therefore the
158 // loads and stores could potentially be moved apart from each other which
159 // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
160 // compilers.
161 //
162 // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
163 // of memcpy to later stage in IR optimization pipeline so those load/store
164 // pairs won't be touched and could be kept in order. Hence, we set
165 // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
166 // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
167 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
168 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
169 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
170 MaxLoadsPerMemcmp = 0;
171 } else {
172 // inline memcpy() for kernel to see explicit copy
173 unsigned CommonMaxStores =
174 STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
175
176 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
177 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
178 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
179 MaxLoadsPerMemcmp = MaxLoadsPerMemcmpOptSize = CommonMaxStores;
180 }
181
182 // CPU/Feature control
183 HasAlu32 = STI.getHasAlu32();
184 HasJmp32 = STI.getHasJmp32();
185 HasJmpExt = STI.getHasJmpExt();
186 }
187
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const188 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
189 return false;
190 }
191
isTruncateFree(Type * Ty1,Type * Ty2) const192 bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
193 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
194 return false;
195 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
196 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
197 return NumBits1 > NumBits2;
198 }
199
isTruncateFree(EVT VT1,EVT VT2) const200 bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
201 if (!VT1.isInteger() || !VT2.isInteger())
202 return false;
203 unsigned NumBits1 = VT1.getSizeInBits();
204 unsigned NumBits2 = VT2.getSizeInBits();
205 return NumBits1 > NumBits2;
206 }
207
isZExtFree(Type * Ty1,Type * Ty2) const208 bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
209 if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
210 return false;
211 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
212 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
213 return NumBits1 == 32 && NumBits2 == 64;
214 }
215
isZExtFree(EVT VT1,EVT VT2) const216 bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
217 if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
218 return false;
219 unsigned NumBits1 = VT1.getSizeInBits();
220 unsigned NumBits2 = VT2.getSizeInBits();
221 return NumBits1 == 32 && NumBits2 == 64;
222 }
223
224 BPFTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const225 BPFTargetLowering::getConstraintType(StringRef Constraint) const {
226 if (Constraint.size() == 1) {
227 switch (Constraint[0]) {
228 default:
229 break;
230 case 'w':
231 return C_RegisterClass;
232 }
233 }
234
235 return TargetLowering::getConstraintType(Constraint);
236 }
237
238 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const239 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
240 StringRef Constraint,
241 MVT VT) const {
242 if (Constraint.size() == 1)
243 // GCC Constraint Letters
244 switch (Constraint[0]) {
245 case 'r': // GENERAL_REGS
246 return std::make_pair(0U, &BPF::GPRRegClass);
247 case 'w':
248 if (HasAlu32)
249 return std::make_pair(0U, &BPF::GPR32RegClass);
250 break;
251 default:
252 break;
253 }
254
255 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
256 }
257
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const258 void BPFTargetLowering::ReplaceNodeResults(
259 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
260 const char *err_msg;
261 uint32_t Opcode = N->getOpcode();
262 switch (Opcode) {
263 default:
264 report_fatal_error("Unhandled custom legalization");
265 case ISD::ATOMIC_LOAD_ADD:
266 case ISD::ATOMIC_LOAD_AND:
267 case ISD::ATOMIC_LOAD_OR:
268 case ISD::ATOMIC_LOAD_XOR:
269 case ISD::ATOMIC_SWAP:
270 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
271 if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
272 err_msg = "Unsupported atomic operations, please use 32/64 bit version";
273 else
274 err_msg = "Unsupported atomic operations, please use 64 bit version";
275 break;
276 }
277
278 SDLoc DL(N);
279 fail(DL, DAG, err_msg);
280 }
281
LowerOperation(SDValue Op,SelectionDAG & DAG) const282 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
283 switch (Op.getOpcode()) {
284 case ISD::BR_CC:
285 return LowerBR_CC(Op, DAG);
286 case ISD::GlobalAddress:
287 return LowerGlobalAddress(Op, DAG);
288 case ISD::SELECT_CC:
289 return LowerSELECT_CC(Op, DAG);
290 case ISD::DYNAMIC_STACKALLOC:
291 report_fatal_error("Unsupported dynamic stack allocation");
292 default:
293 llvm_unreachable("unimplemented operand");
294 }
295 }
296
297 // Calling Convention Implementation
298 #include "BPFGenCallingConv.inc"
299
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const300 SDValue BPFTargetLowering::LowerFormalArguments(
301 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
302 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
303 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
304 switch (CallConv) {
305 default:
306 report_fatal_error("Unsupported calling convention");
307 case CallingConv::C:
308 case CallingConv::Fast:
309 break;
310 }
311
312 MachineFunction &MF = DAG.getMachineFunction();
313 MachineRegisterInfo &RegInfo = MF.getRegInfo();
314
315 // Assign locations to all of the incoming arguments.
316 SmallVector<CCValAssign, 16> ArgLocs;
317 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
318 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
319
320 for (auto &VA : ArgLocs) {
321 if (VA.isRegLoc()) {
322 // Arguments passed in registers
323 EVT RegVT = VA.getLocVT();
324 MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
325 switch (SimpleTy) {
326 default: {
327 errs() << "LowerFormalArguments Unhandled argument type: "
328 << RegVT.getEVTString() << '\n';
329 llvm_unreachable(nullptr);
330 }
331 case MVT::i32:
332 case MVT::i64:
333 Register VReg = RegInfo.createVirtualRegister(
334 SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
335 RegInfo.addLiveIn(VA.getLocReg(), VReg);
336 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
337
338 // If this is an value that has been promoted to wider types, insert an
339 // assert[sz]ext to capture this, then truncate to the right size.
340 if (VA.getLocInfo() == CCValAssign::SExt)
341 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
342 DAG.getValueType(VA.getValVT()));
343 else if (VA.getLocInfo() == CCValAssign::ZExt)
344 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
345 DAG.getValueType(VA.getValVT()));
346
347 if (VA.getLocInfo() != CCValAssign::Full)
348 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
349
350 InVals.push_back(ArgValue);
351
352 break;
353 }
354 } else {
355 fail(DL, DAG, "defined with too many args");
356 InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
357 }
358 }
359
360 if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
361 fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
362 }
363
364 return Chain;
365 }
366
367 const unsigned BPFTargetLowering::MaxArgs = 5;
368
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const369 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
370 SmallVectorImpl<SDValue> &InVals) const {
371 SelectionDAG &DAG = CLI.DAG;
372 auto &Outs = CLI.Outs;
373 auto &OutVals = CLI.OutVals;
374 auto &Ins = CLI.Ins;
375 SDValue Chain = CLI.Chain;
376 SDValue Callee = CLI.Callee;
377 bool &IsTailCall = CLI.IsTailCall;
378 CallingConv::ID CallConv = CLI.CallConv;
379 bool IsVarArg = CLI.IsVarArg;
380 MachineFunction &MF = DAG.getMachineFunction();
381
382 // BPF target does not support tail call optimization.
383 IsTailCall = false;
384
385 switch (CallConv) {
386 default:
387 report_fatal_error("Unsupported calling convention");
388 case CallingConv::Fast:
389 case CallingConv::C:
390 break;
391 }
392
393 // Analyze operands of the call, assigning locations to each operand.
394 SmallVector<CCValAssign, 16> ArgLocs;
395 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
396
397 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
398
399 unsigned NumBytes = CCInfo.getNextStackOffset();
400
401 if (Outs.size() > MaxArgs)
402 fail(CLI.DL, DAG, "too many args to ", Callee);
403
404 for (auto &Arg : Outs) {
405 ISD::ArgFlagsTy Flags = Arg.Flags;
406 if (!Flags.isByVal())
407 continue;
408
409 fail(CLI.DL, DAG, "pass by value not supported ", Callee);
410 }
411
412 auto PtrVT = getPointerTy(MF.getDataLayout());
413 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
414
415 SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
416
417 // Walk arg assignments
418 for (unsigned i = 0,
419 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
420 i != e; ++i) {
421 CCValAssign &VA = ArgLocs[i];
422 SDValue Arg = OutVals[i];
423
424 // Promote the value if needed.
425 switch (VA.getLocInfo()) {
426 default:
427 llvm_unreachable("Unknown loc info");
428 case CCValAssign::Full:
429 break;
430 case CCValAssign::SExt:
431 Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
432 break;
433 case CCValAssign::ZExt:
434 Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
435 break;
436 case CCValAssign::AExt:
437 Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
438 break;
439 }
440
441 // Push arguments into RegsToPass vector
442 if (VA.isRegLoc())
443 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
444 else
445 llvm_unreachable("call arg pass bug");
446 }
447
448 SDValue InFlag;
449
450 // Build a sequence of copy-to-reg nodes chained together with token chain and
451 // flag operands which copy the outgoing args into registers. The InFlag in
452 // necessary since all emitted instructions must be stuck together.
453 for (auto &Reg : RegsToPass) {
454 Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
455 InFlag = Chain.getValue(1);
456 }
457
458 // If the callee is a GlobalAddress node (quite common, every direct call is)
459 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
460 // Likewise ExternalSymbol -> TargetExternalSymbol.
461 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
462 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
463 G->getOffset(), 0);
464 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
465 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
466 fail(CLI.DL, DAG, Twine("A call to built-in function '"
467 + StringRef(E->getSymbol())
468 + "' is not supported."));
469 }
470
471 // Returns a chain & a flag for retval copy to use.
472 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
473 SmallVector<SDValue, 8> Ops;
474 Ops.push_back(Chain);
475 Ops.push_back(Callee);
476
477 // Add argument registers to the end of the list so that they are
478 // known live into the call.
479 for (auto &Reg : RegsToPass)
480 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
481
482 if (InFlag.getNode())
483 Ops.push_back(InFlag);
484
485 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
486 InFlag = Chain.getValue(1);
487
488 // Create the CALLSEQ_END node.
489 Chain = DAG.getCALLSEQ_END(
490 Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
491 DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
492 InFlag = Chain.getValue(1);
493
494 // Handle result values, copying them out of physregs into vregs that we
495 // return.
496 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
497 InVals);
498 }
499
500 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const501 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
502 bool IsVarArg,
503 const SmallVectorImpl<ISD::OutputArg> &Outs,
504 const SmallVectorImpl<SDValue> &OutVals,
505 const SDLoc &DL, SelectionDAG &DAG) const {
506 unsigned Opc = BPFISD::RET_FLAG;
507
508 // CCValAssign - represent the assignment of the return value to a location
509 SmallVector<CCValAssign, 16> RVLocs;
510 MachineFunction &MF = DAG.getMachineFunction();
511
512 // CCState - Info about the registers and stack slot.
513 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
514
515 if (MF.getFunction().getReturnType()->isAggregateType()) {
516 fail(DL, DAG, "only integer returns supported");
517 return DAG.getNode(Opc, DL, MVT::Other, Chain);
518 }
519
520 // Analize return values.
521 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
522
523 SDValue Flag;
524 SmallVector<SDValue, 4> RetOps(1, Chain);
525
526 // Copy the result values into the output registers.
527 for (unsigned i = 0; i != RVLocs.size(); ++i) {
528 CCValAssign &VA = RVLocs[i];
529 assert(VA.isRegLoc() && "Can only return in registers!");
530
531 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
532
533 // Guarantee that all emitted copies are stuck together,
534 // avoiding something bad.
535 Flag = Chain.getValue(1);
536 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
537 }
538
539 RetOps[0] = Chain; // Update chain.
540
541 // Add the flag if we have it.
542 if (Flag.getNode())
543 RetOps.push_back(Flag);
544
545 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
546 }
547
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const548 SDValue BPFTargetLowering::LowerCallResult(
549 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
550 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
551 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
552
553 MachineFunction &MF = DAG.getMachineFunction();
554 // Assign locations to each value returned by this call.
555 SmallVector<CCValAssign, 16> RVLocs;
556 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
557
558 if (Ins.size() >= 2) {
559 fail(DL, DAG, "only small returns supported");
560 for (unsigned i = 0, e = Ins.size(); i != e; ++i)
561 InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
562 return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
563 }
564
565 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
566
567 // Copy all of the result registers out of their specified physreg.
568 for (auto &Val : RVLocs) {
569 Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
570 Val.getValVT(), InFlag).getValue(1);
571 InFlag = Chain.getValue(2);
572 InVals.push_back(Chain.getValue(0));
573 }
574
575 return Chain;
576 }
577
NegateCC(SDValue & LHS,SDValue & RHS,ISD::CondCode & CC)578 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
579 switch (CC) {
580 default:
581 break;
582 case ISD::SETULT:
583 case ISD::SETULE:
584 case ISD::SETLT:
585 case ISD::SETLE:
586 CC = ISD::getSetCCSwappedOperands(CC);
587 std::swap(LHS, RHS);
588 break;
589 }
590 }
591
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const592 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
593 SDValue Chain = Op.getOperand(0);
594 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
595 SDValue LHS = Op.getOperand(2);
596 SDValue RHS = Op.getOperand(3);
597 SDValue Dest = Op.getOperand(4);
598 SDLoc DL(Op);
599
600 if (!getHasJmpExt())
601 NegateCC(LHS, RHS, CC);
602
603 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
604 DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
605 }
606
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const607 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
608 SDValue LHS = Op.getOperand(0);
609 SDValue RHS = Op.getOperand(1);
610 SDValue TrueV = Op.getOperand(2);
611 SDValue FalseV = Op.getOperand(3);
612 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
613 SDLoc DL(Op);
614
615 if (!getHasJmpExt())
616 NegateCC(LHS, RHS, CC);
617
618 SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
619 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
620 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
621
622 return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
623 }
624
getTargetNodeName(unsigned Opcode) const625 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
626 switch ((BPFISD::NodeType)Opcode) {
627 case BPFISD::FIRST_NUMBER:
628 break;
629 case BPFISD::RET_FLAG:
630 return "BPFISD::RET_FLAG";
631 case BPFISD::CALL:
632 return "BPFISD::CALL";
633 case BPFISD::SELECT_CC:
634 return "BPFISD::SELECT_CC";
635 case BPFISD::BR_CC:
636 return "BPFISD::BR_CC";
637 case BPFISD::Wrapper:
638 return "BPFISD::Wrapper";
639 case BPFISD::MEMCPY:
640 return "BPFISD::MEMCPY";
641 }
642 return nullptr;
643 }
644
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const645 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
646 SelectionDAG &DAG) const {
647 auto N = cast<GlobalAddressSDNode>(Op);
648 assert(N->getOffset() == 0 && "Invalid offset for global address");
649
650 SDLoc DL(Op);
651 const GlobalValue *GV = N->getGlobal();
652 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
653
654 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
655 }
656
657 unsigned
EmitSubregExt(MachineInstr & MI,MachineBasicBlock * BB,unsigned Reg,bool isSigned) const658 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
659 unsigned Reg, bool isSigned) const {
660 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
661 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
662 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
663 MachineFunction *F = BB->getParent();
664 DebugLoc DL = MI.getDebugLoc();
665
666 MachineRegisterInfo &RegInfo = F->getRegInfo();
667
668 if (!isSigned) {
669 Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
670 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
671 return PromotedReg0;
672 }
673 Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
674 Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
675 Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
676 BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
677 BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
678 .addReg(PromotedReg0).addImm(32);
679 BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
680 .addReg(PromotedReg1).addImm(32);
681
682 return PromotedReg2;
683 }
684
685 MachineBasicBlock *
EmitInstrWithCustomInserterMemcpy(MachineInstr & MI,MachineBasicBlock * BB) const686 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
687 MachineBasicBlock *BB)
688 const {
689 MachineFunction *MF = MI.getParent()->getParent();
690 MachineRegisterInfo &MRI = MF->getRegInfo();
691 MachineInstrBuilder MIB(*MF, MI);
692 unsigned ScratchReg;
693
694 // This function does custom insertion during lowering BPFISD::MEMCPY which
695 // only has two register operands from memcpy semantics, the copy source
696 // address and the copy destination address.
697 //
698 // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
699 // a third scratch register to serve as the destination register of load and
700 // source register of store.
701 //
702 // The scratch register here is with the Define | Dead | EarlyClobber flags.
703 // The EarlyClobber flag has the semantic property that the operand it is
704 // attached to is clobbered before the rest of the inputs are read. Hence it
705 // must be unique among the operands to the instruction. The Define flag is
706 // needed to coerce the machine verifier that an Undef value isn't a problem
707 // as we anyway is loading memory into it. The Dead flag is needed as the
708 // value in scratch isn't supposed to be used by any other instruction.
709 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
710 MIB.addReg(ScratchReg,
711 RegState::Define | RegState::Dead | RegState::EarlyClobber);
712
713 return BB;
714 }
715
716 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const717 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
718 MachineBasicBlock *BB) const {
719 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
720 DebugLoc DL = MI.getDebugLoc();
721 unsigned Opc = MI.getOpcode();
722 bool isSelectRROp = (Opc == BPF::Select ||
723 Opc == BPF::Select_64_32 ||
724 Opc == BPF::Select_32 ||
725 Opc == BPF::Select_32_64);
726
727 bool isMemcpyOp = Opc == BPF::MEMCPY;
728
729 #ifndef NDEBUG
730 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
731 Opc == BPF::Select_Ri_64_32 ||
732 Opc == BPF::Select_Ri_32 ||
733 Opc == BPF::Select_Ri_32_64);
734
735
736 assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
737 "Unexpected instr type to insert");
738 #endif
739
740 if (isMemcpyOp)
741 return EmitInstrWithCustomInserterMemcpy(MI, BB);
742
743 bool is32BitCmp = (Opc == BPF::Select_32 ||
744 Opc == BPF::Select_32_64 ||
745 Opc == BPF::Select_Ri_32 ||
746 Opc == BPF::Select_Ri_32_64);
747
748 // To "insert" a SELECT instruction, we actually have to insert the diamond
749 // control-flow pattern. The incoming instruction knows the destination vreg
750 // to set, the condition code register to branch on, the true/false values to
751 // select between, and a branch opcode to use.
752 const BasicBlock *LLVM_BB = BB->getBasicBlock();
753 MachineFunction::iterator I = ++BB->getIterator();
754
755 // ThisMBB:
756 // ...
757 // TrueVal = ...
758 // jmp_XX r1, r2 goto Copy1MBB
759 // fallthrough --> Copy0MBB
760 MachineBasicBlock *ThisMBB = BB;
761 MachineFunction *F = BB->getParent();
762 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
763 MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
764
765 F->insert(I, Copy0MBB);
766 F->insert(I, Copy1MBB);
767 // Update machine-CFG edges by transferring all successors of the current
768 // block to the new block which will contain the Phi node for the select.
769 Copy1MBB->splice(Copy1MBB->begin(), BB,
770 std::next(MachineBasicBlock::iterator(MI)), BB->end());
771 Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
772 // Next, add the true and fallthrough blocks as its successors.
773 BB->addSuccessor(Copy0MBB);
774 BB->addSuccessor(Copy1MBB);
775
776 // Insert Branch if Flag
777 int CC = MI.getOperand(3).getImm();
778 int NewCC;
779 switch (CC) {
780 #define SET_NEWCC(X, Y) \
781 case ISD::X: \
782 if (is32BitCmp && HasJmp32) \
783 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
784 else \
785 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
786 break
787 SET_NEWCC(SETGT, JSGT);
788 SET_NEWCC(SETUGT, JUGT);
789 SET_NEWCC(SETGE, JSGE);
790 SET_NEWCC(SETUGE, JUGE);
791 SET_NEWCC(SETEQ, JEQ);
792 SET_NEWCC(SETNE, JNE);
793 SET_NEWCC(SETLT, JSLT);
794 SET_NEWCC(SETULT, JULT);
795 SET_NEWCC(SETLE, JSLE);
796 SET_NEWCC(SETULE, JULE);
797 default:
798 report_fatal_error("unimplemented select CondCode " + Twine(CC));
799 }
800
801 Register LHS = MI.getOperand(1).getReg();
802 bool isSignedCmp = (CC == ISD::SETGT ||
803 CC == ISD::SETGE ||
804 CC == ISD::SETLT ||
805 CC == ISD::SETLE);
806
807 // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
808 // to be promoted, however if the 32-bit comparison operands are destination
809 // registers then they are implicitly zero-extended already, there is no
810 // need of explicit zero-extend sequence for them.
811 //
812 // We simply do extension for all situations in this method, but we will
813 // try to remove those unnecessary in BPFMIPeephole pass.
814 if (is32BitCmp && !HasJmp32)
815 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
816
817 if (isSelectRROp) {
818 Register RHS = MI.getOperand(2).getReg();
819
820 if (is32BitCmp && !HasJmp32)
821 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
822
823 BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
824 } else {
825 int64_t imm32 = MI.getOperand(2).getImm();
826 // Check before we build J*_ri instruction.
827 assert (isInt<32>(imm32));
828 BuildMI(BB, DL, TII.get(NewCC))
829 .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
830 }
831
832 // Copy0MBB:
833 // %FalseValue = ...
834 // # fallthrough to Copy1MBB
835 BB = Copy0MBB;
836
837 // Update machine-CFG edges
838 BB->addSuccessor(Copy1MBB);
839
840 // Copy1MBB:
841 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
842 // ...
843 BB = Copy1MBB;
844 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
845 .addReg(MI.getOperand(5).getReg())
846 .addMBB(Copy0MBB)
847 .addReg(MI.getOperand(4).getReg())
848 .addMBB(ThisMBB);
849
850 MI.eraseFromParent(); // The pseudo instruction is gone now.
851 return BB;
852 }
853
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const854 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
855 EVT VT) const {
856 return getHasAlu32() ? MVT::i32 : MVT::i64;
857 }
858
getScalarShiftAmountTy(const DataLayout & DL,EVT VT) const859 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
860 EVT VT) const {
861 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
862 }
863
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const864 bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL,
865 const AddrMode &AM, Type *Ty,
866 unsigned AS,
867 Instruction *I) const {
868 // No global is ever allowed as a base.
869 if (AM.BaseGV)
870 return false;
871
872 switch (AM.Scale) {
873 case 0: // "r+i" or just "i", depending on HasBaseReg.
874 break;
875 case 1:
876 if (!AM.HasBaseReg) // allow "r+i".
877 break;
878 return false; // disallow "r+r" or "r+r+i".
879 default:
880 return false;
881 }
882
883 return true;
884 }
885