1 //===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AVRAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MCTargetDesc/AVRAsmBackend.h"
14 #include "MCTargetDesc/AVRFixupKinds.h"
15 #include "MCTargetDesc/AVRMCTargetDesc.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAssembler.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDirectives.h"
20 #include "llvm/MC/MCELFObjectWriter.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 // FIXME: we should be doing checks to make sure asm operands
31 // are not out of bounds.
32
33 namespace adjust {
34
35 using namespace llvm;
36
signed_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)37 static void signed_width(unsigned Width, uint64_t Value,
38 std::string Description, const MCFixup &Fixup,
39 MCContext *Ctx = nullptr) {
40 if (!isIntN(Width, Value)) {
41 std::string Diagnostic = "out of range " + Description;
42
43 int64_t Min = minIntN(Width);
44 int64_t Max = maxIntN(Width);
45
46 Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
47 " to " + std::to_string(Max) + ")";
48
49 if (Ctx) {
50 Ctx->reportError(Fixup.getLoc(), Diagnostic);
51 } else {
52 llvm_unreachable(Diagnostic.c_str());
53 }
54 }
55 }
56
unsigned_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)57 static void unsigned_width(unsigned Width, uint64_t Value,
58 std::string Description, const MCFixup &Fixup,
59 MCContext *Ctx = nullptr) {
60 if (!isUIntN(Width, Value)) {
61 std::string Diagnostic = "out of range " + Description;
62
63 int64_t Max = maxUIntN(Width);
64
65 Diagnostic +=
66 " (expected an integer in the range 0 to " + std::to_string(Max) + ")";
67
68 if (Ctx) {
69 Ctx->reportError(Fixup.getLoc(), Diagnostic);
70 } else {
71 llvm_unreachable(Diagnostic.c_str());
72 }
73 }
74 }
75
76 /// Adjusts the value of a branch target before fixup application.
adjustBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)77 static void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
78 MCContext *Ctx = nullptr) {
79 // We have one extra bit of precision because the value is rightshifted by
80 // one.
81 unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
82
83 // Rightshifts the value by one.
84 AVR::fixups::adjustBranchTarget(Value);
85 }
86
87 /// Adjusts the value of a relative branch target before fixup application.
adjustRelativeBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)88 static void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup,
89 uint64_t &Value, MCContext *Ctx = nullptr) {
90 // We have one extra bit of precision because the value is rightshifted by
91 // one.
92 signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
93
94 // Rightshifts the value by one.
95 AVR::fixups::adjustBranchTarget(Value);
96 }
97
98 /// 22-bit absolute fixup.
99 ///
100 /// Resolves to:
101 /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
102 ///
103 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_call(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)104 static void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
105 MCContext *Ctx = nullptr) {
106 adjustBranch(Size, Fixup, Value, Ctx);
107
108 auto top = Value & (0xf00000 << 6); // the top four bits
109 auto middle = Value & (0x1ffff << 5); // the middle 13 bits
110 auto bottom = Value & 0x1f; // end bottom 5 bits
111
112 Value = (top << 6) | (middle << 3) | (bottom << 0);
113 }
114
115 /// 7-bit PC-relative fixup.
116 ///
117 /// Resolves to:
118 /// 0000 00kk kkkk k000
119 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_7_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)120 static void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
121 MCContext *Ctx = nullptr) {
122 adjustRelativeBranch(Size, Fixup, Value, Ctx);
123
124 // Because the value may be negative, we must mask out the sign bits
125 Value &= 0x7f;
126 }
127
128 /// 12-bit PC-relative fixup.
129 /// Yes, the fixup is 12 bits even though the name says otherwise.
130 ///
131 /// Resolves to:
132 /// 0000 kkkk kkkk kkkk
133 /// Offset of 0 (so the result isn't left-shifted before application).
fixup_13_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)134 static void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
135 MCContext *Ctx = nullptr) {
136 adjustRelativeBranch(Size, Fixup, Value, Ctx);
137
138 // Because the value may be negative, we must mask out the sign bits
139 Value &= 0xfff;
140 }
141
142 /// 6-bit fixup for the immediate operand of the STD/LDD family of
143 /// instructions.
144 ///
145 /// Resolves to:
146 /// 10q0 qq10 0000 1qqq
fixup_6(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)147 static void fixup_6(const MCFixup &Fixup, uint64_t &Value,
148 MCContext *Ctx = nullptr) {
149 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
150
151 Value = ((Value & 0x20) << 8) | ((Value & 0x18) << 7) | (Value & 0x07);
152 }
153
154 /// 6-bit fixup for the immediate operand of the ADIW family of
155 /// instructions.
156 ///
157 /// Resolves to:
158 /// 0000 0000 kk00 kkkk
fixup_6_adiw(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)159 static void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
160 MCContext *Ctx = nullptr) {
161 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
162
163 Value = ((Value & 0x30) << 2) | (Value & 0x0f);
164 }
165
166 /// 5-bit port number fixup on the SBIC family of instructions.
167 ///
168 /// Resolves to:
169 /// 0000 0000 AAAA A000
fixup_port5(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)170 static void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
171 MCContext *Ctx = nullptr) {
172 unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
173
174 Value &= 0x1f;
175
176 Value <<= 3;
177 }
178
179 /// 6-bit port number fixup on the `IN` family of instructions.
180 ///
181 /// Resolves to:
182 /// 1011 0AAd dddd AAAA
fixup_port6(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)183 static void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
184 MCContext *Ctx = nullptr) {
185 unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
186
187 Value = ((Value & 0x30) << 5) | (Value & 0x0f);
188 }
189
190 /// Adjusts a program memory address.
191 /// This is a simple right-shift.
pm(uint64_t & Value)192 static void pm(uint64_t &Value) { Value >>= 1; }
193
194 /// Fixups relating to the LDI instruction.
195 namespace ldi {
196
197 /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
198 ///
199 /// Resolves to:
200 /// 0000 KKKK 0000 KKKK
201 /// Offset of 0 (so the result isn't left-shifted before application).
fixup(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)202 static void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
203 MCContext *Ctx = nullptr) {
204 uint64_t upper = Value & 0xf0;
205 uint64_t lower = Value & 0x0f;
206
207 Value = (upper << 4) | lower;
208 }
209
neg(uint64_t & Value)210 static void neg(uint64_t &Value) { Value *= -1; }
211
lo8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)212 static void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
213 MCContext *Ctx = nullptr) {
214 Value &= 0xff;
215 ldi::fixup(Size, Fixup, Value, Ctx);
216 }
217
hi8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)218 static void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
219 MCContext *Ctx = nullptr) {
220 Value = (Value & 0xff00) >> 8;
221 ldi::fixup(Size, Fixup, Value, Ctx);
222 }
223
hh8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)224 static void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
225 MCContext *Ctx = nullptr) {
226 Value = (Value & 0xff0000) >> 16;
227 ldi::fixup(Size, Fixup, Value, Ctx);
228 }
229
ms8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)230 static void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
231 MCContext *Ctx = nullptr) {
232 Value = (Value & 0xff000000) >> 24;
233 ldi::fixup(Size, Fixup, Value, Ctx);
234 }
235
236 } // namespace ldi
237 } // namespace adjust
238
239 namespace llvm {
240
241 // Prepare value for the target space for it
adjustFixupValue(const MCFixup & Fixup,const MCValue & Target,uint64_t & Value,MCContext * Ctx) const242 void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
243 const MCValue &Target, uint64_t &Value,
244 MCContext *Ctx) const {
245 // The size of the fixup in bits.
246 uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
247
248 unsigned Kind = Fixup.getKind();
249 switch (Kind) {
250 default:
251 llvm_unreachable("unhandled fixup");
252 case AVR::fixup_7_pcrel:
253 adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
254 break;
255 case AVR::fixup_13_pcrel:
256 adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
257 break;
258 case AVR::fixup_call:
259 adjust::fixup_call(Size, Fixup, Value, Ctx);
260 break;
261 case AVR::fixup_ldi:
262 adjust::ldi::fixup(Size, Fixup, Value, Ctx);
263 break;
264 case AVR::fixup_lo8_ldi:
265 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
266 break;
267 case AVR::fixup_lo8_ldi_pm:
268 case AVR::fixup_lo8_ldi_gs:
269 adjust::pm(Value);
270 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
271 break;
272 case AVR::fixup_hi8_ldi:
273 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
274 break;
275 case AVR::fixup_hi8_ldi_pm:
276 case AVR::fixup_hi8_ldi_gs:
277 adjust::pm(Value);
278 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
279 break;
280 case AVR::fixup_hh8_ldi:
281 case AVR::fixup_hh8_ldi_pm:
282 if (Kind == AVR::fixup_hh8_ldi_pm)
283 adjust::pm(Value);
284
285 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
286 break;
287 case AVR::fixup_ms8_ldi:
288 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
289 break;
290
291 case AVR::fixup_lo8_ldi_neg:
292 case AVR::fixup_lo8_ldi_pm_neg:
293 if (Kind == AVR::fixup_lo8_ldi_pm_neg)
294 adjust::pm(Value);
295
296 adjust::ldi::neg(Value);
297 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
298 break;
299 case AVR::fixup_hi8_ldi_neg:
300 case AVR::fixup_hi8_ldi_pm_neg:
301 if (Kind == AVR::fixup_hi8_ldi_pm_neg)
302 adjust::pm(Value);
303
304 adjust::ldi::neg(Value);
305 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
306 break;
307 case AVR::fixup_hh8_ldi_neg:
308 case AVR::fixup_hh8_ldi_pm_neg:
309 if (Kind == AVR::fixup_hh8_ldi_pm_neg)
310 adjust::pm(Value);
311
312 adjust::ldi::neg(Value);
313 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
314 break;
315 case AVR::fixup_ms8_ldi_neg:
316 adjust::ldi::neg(Value);
317 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
318 break;
319 case AVR::fixup_16:
320 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
321
322 Value &= 0xffff;
323 break;
324 case AVR::fixup_16_pm:
325 Value >>= 1; // Flash addresses are always shifted.
326 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
327
328 Value &= 0xffff;
329 break;
330
331 case AVR::fixup_6:
332 adjust::fixup_6(Fixup, Value, Ctx);
333 break;
334 case AVR::fixup_6_adiw:
335 adjust::fixup_6_adiw(Fixup, Value, Ctx);
336 break;
337
338 case AVR::fixup_port5:
339 adjust::fixup_port5(Fixup, Value, Ctx);
340 break;
341
342 case AVR::fixup_port6:
343 adjust::fixup_port6(Fixup, Value, Ctx);
344 break;
345
346 // Fixups which do not require adjustments.
347 case FK_Data_1:
348 case FK_Data_2:
349 case FK_Data_4:
350 case FK_Data_8:
351 break;
352
353 case FK_GPRel_4:
354 llvm_unreachable("don't know how to adjust this fixup");
355 break;
356 }
357 }
358
359 std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const360 AVRAsmBackend::createObjectTargetWriter() const {
361 return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
362 }
363
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const364 void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
365 const MCValue &Target,
366 MutableArrayRef<char> Data, uint64_t Value,
367 bool IsResolved,
368 const MCSubtargetInfo *STI) const {
369 adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
370 if (Value == 0)
371 return; // Doesn't change encoding.
372
373 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
374
375 // The number of bits in the fixup mask
376 auto NumBits = Info.TargetSize + Info.TargetOffset;
377 auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
378
379 // Shift the value into position.
380 Value <<= Info.TargetOffset;
381
382 unsigned Offset = Fixup.getOffset();
383 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
384
385 // For each byte of the fragment that the fixup touches, mask in the
386 // bits from the fixup value.
387 for (unsigned i = 0; i < NumBytes; ++i) {
388 uint8_t mask = (((Value >> (i * 8)) & 0xff));
389 Data[Offset + i] |= mask;
390 }
391 }
392
getFixupKindInfo(MCFixupKind Kind) const393 MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
394 // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
395 // this by saying that the fixup is the size of the entire instruction.
396 const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
397 // This table *must* be in same the order of fixup_* kinds in
398 // AVRFixupKinds.h.
399 //
400 // name offset bits flags
401 {"fixup_32", 0, 32, 0},
402
403 {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
404 {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
405
406 {"fixup_16", 0, 16, 0},
407 {"fixup_16_pm", 0, 16, 0},
408
409 {"fixup_ldi", 0, 8, 0},
410
411 {"fixup_lo8_ldi", 0, 8, 0},
412 {"fixup_hi8_ldi", 0, 8, 0},
413 {"fixup_hh8_ldi", 0, 8, 0},
414 {"fixup_ms8_ldi", 0, 8, 0},
415
416 {"fixup_lo8_ldi_neg", 0, 8, 0},
417 {"fixup_hi8_ldi_neg", 0, 8, 0},
418 {"fixup_hh8_ldi_neg", 0, 8, 0},
419 {"fixup_ms8_ldi_neg", 0, 8, 0},
420
421 {"fixup_lo8_ldi_pm", 0, 8, 0},
422 {"fixup_hi8_ldi_pm", 0, 8, 0},
423 {"fixup_hh8_ldi_pm", 0, 8, 0},
424
425 {"fixup_lo8_ldi_pm_neg", 0, 8, 0},
426 {"fixup_hi8_ldi_pm_neg", 0, 8, 0},
427 {"fixup_hh8_ldi_pm_neg", 0, 8, 0},
428
429 {"fixup_call", 0, 22, 0},
430
431 {"fixup_6", 0, 16, 0}, // non-contiguous
432 {"fixup_6_adiw", 0, 6, 0},
433
434 {"fixup_lo8_ldi_gs", 0, 8, 0},
435 {"fixup_hi8_ldi_gs", 0, 8, 0},
436
437 {"fixup_8", 0, 8, 0},
438 {"fixup_8_lo8", 0, 8, 0},
439 {"fixup_8_hi8", 0, 8, 0},
440 {"fixup_8_hlo8", 0, 8, 0},
441
442 {"fixup_diff8", 0, 8, 0},
443 {"fixup_diff16", 0, 16, 0},
444 {"fixup_diff32", 0, 32, 0},
445
446 {"fixup_lds_sts_16", 0, 16, 0},
447
448 {"fixup_port6", 0, 16, 0}, // non-contiguous
449 {"fixup_port5", 3, 5, 0},
450 };
451
452 if (Kind < FirstTargetFixupKind)
453 return MCAsmBackend::getFixupKindInfo(Kind);
454
455 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
456 "Invalid kind!");
457
458 return Infos[Kind - FirstTargetFixupKind];
459 }
460
writeNopData(raw_ostream & OS,uint64_t Count,const MCSubtargetInfo * STI) const461 bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
462 const MCSubtargetInfo *STI) const {
463 // If the count is not 2-byte aligned, we must be writing data into the text
464 // section (otherwise we have unaligned instructions, and thus have far
465 // bigger problems), so just write zeros instead.
466 assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
467
468 OS.write_zeros(Count);
469 return true;
470 }
471
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)472 bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
473 const MCFixup &Fixup,
474 const MCValue &Target) {
475 switch ((unsigned)Fixup.getKind()) {
476 default:
477 return false;
478 // Fixups which should always be recorded as relocations.
479 case AVR::fixup_7_pcrel:
480 case AVR::fixup_13_pcrel:
481 case AVR::fixup_call:
482 return true;
483 }
484 }
485
createAVRAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const llvm::MCTargetOptions & TO)486 MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
487 const MCRegisterInfo &MRI,
488 const llvm::MCTargetOptions &TO) {
489 return new AVRAsmBackend(STI.getTargetTriple().getOS());
490 }
491
492 } // end of namespace llvm
493