1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]);
541       }
542     }
543 
544     // If we're removing all of the instructions within an IT block, then
545     // also remove the IT instruction.
546     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
547     SmallPtrSet<MachineInstr *, 2> RemoveITs;
548     for (auto *Dead : Killed) {
549       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
550         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
551         RemoveITs.insert(IT);
552         auto &CurrentBlock = ITBlocks[IT];
553         CurrentBlock.erase(Dead);
554         if (CurrentBlock.empty())
555           ModifiedITs.erase(IT);
556         else
557           ModifiedITs.insert(IT);
558       }
559     }
560     if (!ModifiedITs.empty())
561       return false;
562     Killed.insert(RemoveITs.begin(), RemoveITs.end());
563     return true;
564   };
565 
566   SmallPtrSet<MachineInstr *, 2> Uses;
567   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
568     return false;
569 
570   if (WontCorruptITs(Uses, RDA)) {
571     ToRemove.insert(Uses.begin(), Uses.end());
572     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
573                << " - can also remove:\n";
574                for (auto *Use : Uses)
575                  dbgs() << "   - " << *Use);
576 
577     SmallPtrSet<MachineInstr*, 4> Killed;
578     RDA.collectKilledOperands(MI, Killed);
579     if (WontCorruptITs(Killed, RDA)) {
580       ToRemove.insert(Killed.begin(), Killed.end());
581       LLVM_DEBUG(for (auto *Dead : Killed)
582                    dbgs() << "   - " << *Dead);
583     }
584     return true;
585   }
586   return false;
587 }
588 
589 bool LowOverheadLoop::ValidateTailPredicate() {
590   if (!IsTailPredicationLegal()) {
591     LLVM_DEBUG(if (VCTPs.empty())
592                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
593                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
594     return false;
595   }
596 
597   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
598   assert(ML.getBlocks().size() == 1 &&
599          "Shouldn't be processing a loop with more than one block");
600 
601   if (DisableTailPredication) {
602     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
603     return false;
604   }
605 
606   if (!VPTState::isValid(RDA)) {
607     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
608     return false;
609   }
610 
611   if (!ValidateLiveOuts()) {
612     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
613     return false;
614   }
615 
616   // Check that creating a [W|D]LSTP, which will define LR with an element
617   // count instead of iteration count, won't affect any other instructions
618   // than the LoopStart and LoopDec.
619   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
620   if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) {
621     if (auto *IterCount = RDA.getMIOperand(Start, 0)) {
622       SmallPtrSet<MachineInstr *, 2> Uses;
623       RDA.getGlobalUses(IterCount, ARM::LR, Uses);
624       for (auto *Use : Uses) {
625         if (Use != Start && Use != Dec) {
626           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
627           return false;
628         }
629       }
630     }
631   }
632 
633   // For tail predication, we need to provide the number of elements, instead
634   // of the iteration count, to the loop start instruction. The number of
635   // elements is provided to the vctp instruction, so we need to check that
636   // we can use this register at InsertPt.
637   MachineInstr *VCTP = VCTPs.back();
638   TPNumElements = VCTP->getOperand(1);
639   Register NumElements = TPNumElements.getReg();
640 
641   // If the register is defined within loop, then we can't perform TP.
642   // TODO: Check whether this is just a mov of a register that would be
643   // available.
644   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
645     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
646     return false;
647   }
648 
649   // The element count register maybe defined after InsertPt, in which case we
650   // need to try to move either InsertPt or the def so that the [w|d]lstp can
651   // use the value.
652 
653   if (StartInsertPt != StartInsertBB->end() &&
654       !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
655     if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
656       if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
657         ElemDef->removeFromParent();
658         StartInsertBB->insert(StartInsertPt, ElemDef);
659         LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
660                    << *ElemDef);
661       } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
662         StartInsertPt->removeFromParent();
663         StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
664                                    &*StartInsertPt);
665         LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
666       } else {
667         // If we fail to move an instruction and the element count is provided
668         // by a mov, use the mov operand if it will have the same value at the
669         // insertion point
670         MachineOperand Operand = ElemDef->getOperand(1);
671         if (isMovRegOpcode(ElemDef->getOpcode()) &&
672             RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) ==
673                RDA.getUniqueReachingMIDef(&*StartInsertPt, Operand.getReg())) {
674           TPNumElements = Operand;
675           NumElements = TPNumElements.getReg();
676         } else {
677           LLVM_DEBUG(dbgs()
678                      << "ARM Loops: Unable to move element count to loop "
679                      << "start instruction.\n");
680           return false;
681         }
682       }
683     }
684   }
685 
686   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
687   // world the [w|d]lstp instruction would be last instruction in the preheader
688   // and so it would only affect instructions within the loop body. But due to
689   // scheduling, and/or the logic in this pass (above), the insertion point can
690   // be moved earlier. So if the Loop Start isn't the last instruction in the
691   // preheader, and if the initial element count is smaller than the vector
692   // width, the Loop Start instruction will immediately generate one or more
693   // false lane mask which can, incorrectly, affect the proceeding MVE
694   // instructions in the preheader.
695   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
696                                       MachineBasicBlock::iterator E) {
697     for (; I != E; ++I) {
698       if (shouldInspect(*I)) {
699         LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP"
700                    << " insertion: " << *I);
701         return true;
702       }
703     }
704     return false;
705   };
706 
707   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
708     return false;
709 
710   // Especially in the case of while loops, InsertBB may not be the
711   // preheader, so we need to check that the register isn't redefined
712   // before entering the loop.
713   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
714                                       Register NumElements) {
715     if (MBB->empty())
716       return false;
717     // NumElements is redefined in this block.
718     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
719       return true;
720 
721     // Don't continue searching up through multiple predecessors.
722     if (MBB->pred_size() > 1)
723       return true;
724 
725     return false;
726   };
727 
728   // Search backwards for a def, until we get to InsertBB.
729   MachineBasicBlock *MBB = Preheader;
730   while (MBB && MBB != StartInsertBB) {
731     if (CannotProvideElements(MBB, NumElements)) {
732       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
733       return false;
734     }
735     MBB = *MBB->pred_begin();
736   }
737 
738   // Check that the value change of the element count is what we expect and
739   // that the predication will be equivalent. For this we need:
740   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
741   // and we can also allow register copies within the chain too.
742   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
743     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
744   };
745 
746   MBB = VCTP->getParent();
747   // Remove modifications to the element count since they have no purpose in a
748   // tail predicated loop. Explicitly refer to the vctp operand no matter which
749   // register NumElements has been assigned to, since that is what the
750   // modifications will be using
751   if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(),
752                                              VCTP->getOperand(1).getReg())) {
753     SmallPtrSet<MachineInstr*, 2> ElementChain;
754     SmallPtrSet<MachineInstr*, 2> Ignore;
755     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
756 
757     Ignore.insert(VCTPs.begin(), VCTPs.end());
758 
759     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
760       bool FoundSub = false;
761 
762       for (auto *MI : ElementChain) {
763         if (isMovRegOpcode(MI->getOpcode()))
764           continue;
765 
766         if (isSubImmOpcode(MI->getOpcode())) {
767           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
768             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
769                        " count: " << *MI);
770             return false;
771           }
772           FoundSub = true;
773         } else {
774           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
775                      " count: " << *MI);
776           return false;
777         }
778       }
779       ToRemove.insert(ElementChain.begin(), ElementChain.end());
780     }
781   }
782   return true;
783 }
784 
785 static bool isRegInClass(const MachineOperand &MO,
786                          const TargetRegisterClass *Class) {
787   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
788 }
789 
790 // MVE 'narrowing' operate on half a lane, reading from half and writing
791 // to half, which are referred to has the top and bottom half. The other
792 // half retains its previous value.
793 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
794   const MCInstrDesc &MCID = MI.getDesc();
795   uint64_t Flags = MCID.TSFlags;
796   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
797 }
798 
799 // Some MVE instructions read from the top/bottom halves of their operand(s)
800 // and generate a vector result with result elements that are double the
801 // width of the input.
802 static bool producesDoubleWidthResult(const MachineInstr &MI) {
803   const MCInstrDesc &MCID = MI.getDesc();
804   uint64_t Flags = MCID.TSFlags;
805   return (Flags & ARMII::DoubleWidthResult) != 0;
806 }
807 
808 static bool isHorizontalReduction(const MachineInstr &MI) {
809   const MCInstrDesc &MCID = MI.getDesc();
810   uint64_t Flags = MCID.TSFlags;
811   return (Flags & ARMII::HorizontalReduction) != 0;
812 }
813 
814 // Can this instruction generate a non-zero result when given only zeroed
815 // operands? This allows us to know that, given operands with false bytes
816 // zeroed by masked loads, that the result will also contain zeros in those
817 // bytes.
818 static bool canGenerateNonZeros(const MachineInstr &MI) {
819 
820   // Check for instructions which can write into a larger element size,
821   // possibly writing into a previous zero'd lane.
822   if (producesDoubleWidthResult(MI))
823     return true;
824 
825   switch (MI.getOpcode()) {
826   default:
827     break;
828   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
829   // fp16 -> fp32 vector conversions.
830   // Instructions that perform a NOT will generate 1s from 0s.
831   case ARM::MVE_VMVN:
832   case ARM::MVE_VORN:
833   // Count leading zeros will do just that!
834   case ARM::MVE_VCLZs8:
835   case ARM::MVE_VCLZs16:
836   case ARM::MVE_VCLZs32:
837     return true;
838   }
839   return false;
840 }
841 
842 // Look at its register uses to see if it only can only receive zeros
843 // into its false lanes which would then produce zeros. Also check that
844 // the output register is also defined by an FalseLanesZero instruction
845 // so that if tail-predication happens, the lanes that aren't updated will
846 // still be zeros.
847 static bool producesFalseLanesZero(MachineInstr &MI,
848                                    const TargetRegisterClass *QPRs,
849                                    const ReachingDefAnalysis &RDA,
850                                    InstSet &FalseLanesZero) {
851   if (canGenerateNonZeros(MI))
852     return false;
853 
854   bool isPredicated = isVectorPredicated(&MI);
855   // Predicated loads will write zeros to the falsely predicated bytes of the
856   // destination register.
857   if (MI.mayLoad())
858     return isPredicated;
859 
860   auto IsZeroInit = [](MachineInstr *Def) {
861     return !isVectorPredicated(Def) &&
862            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
863            Def->getOperand(1).getImm() == 0;
864   };
865 
866   bool AllowScalars = isHorizontalReduction(MI);
867   for (auto &MO : MI.operands()) {
868     if (!MO.isReg() || !MO.getReg())
869       continue;
870     if (!isRegInClass(MO, QPRs) && AllowScalars)
871       continue;
872 
873     // Check that this instruction will produce zeros in its false lanes:
874     // - If it only consumes false lanes zero or constant 0 (vmov #0)
875     // - If it's predicated, it only matters that it's def register already has
876     //   false lane zeros, so we can ignore the uses.
877     SmallPtrSet<MachineInstr *, 2> Defs;
878     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
879     for (auto *Def : Defs) {
880       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
881         continue;
882       if (MO.isUse() && isPredicated)
883         continue;
884       return false;
885     }
886   }
887   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
888   return true;
889 }
890 
891 bool LowOverheadLoop::ValidateLiveOuts() {
892   // We want to find out if the tail-predicated version of this loop will
893   // produce the same values as the loop in its original form. For this to
894   // be true, the newly inserted implicit predication must not change the
895   // the (observable) results.
896   // We're doing this because many instructions in the loop will not be
897   // predicated and so the conversion from VPT predication to tail-predication
898   // can result in different values being produced; due to the tail-predication
899   // preventing many instructions from updating their falsely predicated
900   // lanes. This analysis assumes that all the instructions perform lane-wise
901   // operations and don't perform any exchanges.
902   // A masked load, whether through VPT or tail predication, will write zeros
903   // to any of the falsely predicated bytes. So, from the loads, we know that
904   // the false lanes are zeroed and here we're trying to track that those false
905   // lanes remain zero, or where they change, the differences are masked away
906   // by their user(s).
907   // All MVE stores have to be predicated, so we know that any predicate load
908   // operands, or stored results are equivalent already. Other explicitly
909   // predicated instructions will perform the same operation in the original
910   // loop and the tail-predicated form too. Because of this, we can insert
911   // loads, stores and other predicated instructions into our Predicated
912   // set and build from there.
913   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
914   SetVector<MachineInstr *> FalseLanesUnknown;
915   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
916   SmallPtrSet<MachineInstr *, 4> Predicated;
917   MachineBasicBlock *Header = ML.getHeader();
918 
919   for (auto &MI : *Header) {
920     if (!shouldInspect(MI))
921       continue;
922 
923     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
924       continue;
925 
926     bool isPredicated = isVectorPredicated(&MI);
927     bool retainsOrReduces =
928       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
929 
930     if (isPredicated)
931       Predicated.insert(&MI);
932     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
933       FalseLanesZero.insert(&MI);
934     else if (MI.getNumDefs() == 0)
935       continue;
936     else if (!isPredicated && retainsOrReduces)
937       return false;
938     else if (!isPredicated)
939       FalseLanesUnknown.insert(&MI);
940   }
941 
942   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
943                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
944     SmallPtrSet<MachineInstr *, 2> Uses;
945     RDA.getGlobalUses(MI, MO.getReg(), Uses);
946     for (auto *Use : Uses) {
947       if (Use != MI && !Predicated.count(Use))
948         return false;
949     }
950     return true;
951   };
952 
953   // Visit the unknowns in reverse so that we can start at the values being
954   // stored and then we can work towards the leaves, hopefully adding more
955   // instructions to Predicated. Successfully terminating the loop means that
956   // all the unknown values have to found to be masked by predicated user(s).
957   // For any unpredicated values, we store them in NonPredicated so that we
958   // can later check whether these form a reduction.
959   SmallPtrSet<MachineInstr*, 2> NonPredicated;
960   for (auto *MI : reverse(FalseLanesUnknown)) {
961     for (auto &MO : MI->operands()) {
962       if (!isRegInClass(MO, QPRs) || !MO.isDef())
963         continue;
964       if (!HasPredicatedUsers(MI, MO, Predicated)) {
965         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
966                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
967         NonPredicated.insert(MI);
968         break;
969       }
970     }
971     // Any unknown false lanes have been masked away by the user(s).
972     if (!NonPredicated.contains(MI))
973       Predicated.insert(MI);
974   }
975 
976   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
977   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
978   ML.getExitBlocks(ExitBlocks);
979   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
980   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
981   MachineBasicBlock *ExitBB = ExitBlocks.front();
982   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
983     // TODO: Instead of blocking predication, we could move the vctp to the exit
984     // block and calculate it's operand there in or the preheader.
985     if (RegMask.PhysReg == ARM::VPR)
986       return false;
987     // Check Q-regs that are live in the exit blocks. We don't collect scalars
988     // because they won't be affected by lane predication.
989     if (QPRs->contains(RegMask.PhysReg))
990       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
991         LiveOutMIs.insert(MI);
992   }
993 
994   // We've already validated that any VPT predication within the loop will be
995   // equivalent when we perform the predication transformation; so we know that
996   // any VPT predicated instruction is predicated upon VCTP. Any live-out
997   // instruction needs to be predicated, so check this here. The instructions
998   // in NonPredicated have been found to be a reduction that we can ensure its
999   // legality.
1000   for (auto *MI : LiveOutMIs) {
1001     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1002       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
1003       return false;
1004     }
1005   }
1006 
1007   return true;
1008 }
1009 
1010 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1011   if (Revert)
1012     return;
1013 
1014   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1015   // can only jump back.
1016   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1017                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1018     if (!End->getOperand(1).isMBB())
1019       report_fatal_error("Expected LoopEnd to target basic block");
1020 
1021     // TODO Maybe there's cases where the target doesn't have to be the header,
1022     // but for now be safe and revert.
1023     if (End->getOperand(1).getMBB() != ML.getHeader()) {
1024       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1025       return false;
1026     }
1027 
1028     // The WLS and LE instructions have 12-bits for the label offset. WLS
1029     // requires a positive offset, while LE uses negative.
1030     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1031         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1032       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1033       return false;
1034     }
1035 
1036     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1037         (BBUtils->getOffsetOf(Start) >
1038          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1039          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1040       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1041       return false;
1042     }
1043     return true;
1044   };
1045 
1046   // Find a suitable position to insert the loop start instruction. It needs to
1047   // be able to safely define LR.
1048   auto FindStartInsertionPoint = [](MachineInstr *Start,
1049                                     MachineInstr *Dec,
1050                                     MachineBasicBlock::iterator &InsertPt,
1051                                     MachineBasicBlock *&InsertBB,
1052                                     ReachingDefAnalysis &RDA,
1053                                     InstSet &ToRemove) {
1054     // We can define LR because LR already contains the same value.
1055     if (Start->getOperand(0).getReg() == ARM::LR) {
1056       InsertPt = MachineBasicBlock::iterator(Start);
1057       InsertBB = Start->getParent();
1058       return true;
1059     }
1060 
1061     unsigned CountReg = Start->getOperand(0).getReg();
1062     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1063       return MI->getOpcode() == ARM::tMOVr &&
1064              MI->getOperand(0).getReg() == ARM::LR &&
1065              MI->getOperand(1).getReg() == CountReg &&
1066              MI->getOperand(2).getImm() == ARMCC::AL;
1067     };
1068 
1069     // Find an insertion point:
1070     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1071     //   writes to Count before Start, we can insert at start.
1072     if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) {
1073       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1074         SmallPtrSet<MachineInstr *, 2> Ignore = { Dec };
1075         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1076           return false;
1077         InsertPt = MachineBasicBlock::iterator(Start);
1078         InsertBB = Start->getParent();
1079         return true;
1080       }
1081     }
1082 
1083     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1084     //   to Count after Start, we can insert at that mov (which will now be
1085     //   dead).
1086     MachineBasicBlock *MBB = Start->getParent();
1087     if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) {
1088       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1089         SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec };
1090         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1091           return false;
1092         InsertPt = MachineBasicBlock::iterator(LRDef);
1093         InsertBB = LRDef->getParent();
1094         return true;
1095       }
1096     }
1097 
1098     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1099     // just define LR anyway?
1100     if (!RDA.isSafeToDefRegAt(Start, ARM::LR))
1101       return false;
1102 
1103     InsertPt = MachineBasicBlock::iterator(Start);
1104     InsertBB = Start->getParent();
1105     return true;
1106   };
1107 
1108   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1109                                ToRemove)) {
1110     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1111     Revert = true;
1112     return;
1113   }
1114   LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1115                dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1116              else
1117                dbgs() << "ARM Loops: Will insert LoopStart at "
1118                << *StartInsertPt
1119             );
1120 
1121   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1122   CannotTailPredicate = !ValidateTailPredicate();
1123 }
1124 
1125 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1126   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1127   if (VCTPs.empty()) {
1128     VCTPs.push_back(MI);
1129     return true;
1130   }
1131 
1132   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1133   // If it does, store it in the VCTPs set, else refuse it.
1134   MachineInstr *Prev = VCTPs.back();
1135   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1136       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) {
1137     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1138                          "definition from the main VCTP");
1139     return false;
1140   }
1141   VCTPs.push_back(MI);
1142   return true;
1143 }
1144 
1145 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1146   if (CannotTailPredicate)
1147     return false;
1148 
1149   if (!shouldInspect(*MI))
1150     return true;
1151 
1152   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1153       MI->getOpcode() == ARM::MVE_VPNOT) {
1154     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1155     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1156     //    instead a VPT block, which means we can assert while building up
1157     //    the VPT block because we don't find another VPT or VPST to being a new
1158     //    one.
1159     // 2) VPSEL still requires a VPR operand even after tail predicating,
1160     //    which means we can't remove it unless there is another
1161     //    instruction, such as vcmp, that can provide the VPR def.
1162     return false;
1163   }
1164 
1165   // Record all VCTPs and check that they're equivalent to one another.
1166   if (isVCTP(MI) && !AddVCTP(MI))
1167     return false;
1168 
1169   // Inspect uses first so that any instructions that alter the VPR don't
1170   // alter the predicate upon themselves.
1171   const MCInstrDesc &MCID = MI->getDesc();
1172   bool IsUse = false;
1173   unsigned LastOpIdx = MI->getNumOperands() - 1;
1174   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1175     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1176     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1177       continue;
1178 
1179     if (ARM::isVpred(Op.value().OperandType)) {
1180       VPTState::addInst(MI);
1181       IsUse = true;
1182     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1183       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1184       return false;
1185     }
1186   }
1187 
1188   // If we find an instruction that has been marked as not valid for tail
1189   // predication, only allow the instruction if it's contained within a valid
1190   // VPT block.
1191   bool RequiresExplicitPredication =
1192     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1193   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1194     LLVM_DEBUG(if (!IsUse)
1195                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1196     return IsUse;
1197   }
1198 
1199   // If the instruction is already explicitly predicated, then the conversion
1200   // will be fine, but ensure that all store operations are predicated.
1201   if (MI->mayStore())
1202     return IsUse;
1203 
1204   // If this instruction defines the VPR, update the predicate for the
1205   // proceeding instructions.
1206   if (isVectorPredicate(MI)) {
1207     // Clear the existing predicate when we're not in VPT Active state,
1208     // otherwise we add to it.
1209     if (!isVectorPredicated(MI))
1210       VPTState::resetPredicate(MI);
1211     else
1212       VPTState::addPredicate(MI);
1213   }
1214 
1215   // Finally once the predicate has been modified, we can start a new VPT
1216   // block if necessary.
1217   if (isVPTOpcode(MI->getOpcode()))
1218     VPTState::CreateVPTBlock(MI);
1219 
1220   return true;
1221 }
1222 
1223 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1224   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1225   if (!ST.hasLOB())
1226     return false;
1227 
1228   MF = &mf;
1229   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1230 
1231   MLI = &getAnalysis<MachineLoopInfo>();
1232   RDA = &getAnalysis<ReachingDefAnalysis>();
1233   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1234   MRI = &MF->getRegInfo();
1235   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1236   TRI = ST.getRegisterInfo();
1237   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1238   BBUtils->computeAllBlockSizes();
1239   BBUtils->adjustBBOffsetsAfter(&MF->front());
1240 
1241   bool Changed = false;
1242   for (auto ML : *MLI) {
1243     if (ML->isOutermost())
1244       Changed |= ProcessLoop(ML);
1245   }
1246   Changed |= RevertNonLoops();
1247   return Changed;
1248 }
1249 
1250 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1251 
1252   bool Changed = false;
1253 
1254   // Process inner loops first.
1255   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1256     Changed |= ProcessLoop(*I);
1257 
1258   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1259              if (auto *Preheader = ML->getLoopPreheader())
1260                dbgs() << " - " << Preheader->getName() << "\n";
1261              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1262                dbgs() << " - " << Preheader->getName() << "\n";
1263              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1264                dbgs() << " - " << Preheader->getName() << "\n";
1265              for (auto *MBB : ML->getBlocks())
1266                dbgs() << " - " << MBB->getName() << "\n";
1267             );
1268 
1269   // Search the given block for a loop start instruction. If one isn't found,
1270   // and there's only one predecessor block, search that one too.
1271   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1272     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1273     for (auto &MI : *MBB) {
1274       if (isLoopStart(MI))
1275         return &MI;
1276     }
1277     if (MBB->pred_size() == 1)
1278       return SearchForStart(*MBB->pred_begin());
1279     return nullptr;
1280   };
1281 
1282   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1283   // Search the preheader for the start intrinsic.
1284   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1285   // with potentially multiple set.loop.iterations, so we need to enable this.
1286   if (LoLoop.Preheader)
1287     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1288   else
1289     return false;
1290 
1291   // Find the low-overhead loop components and decide whether or not to fall
1292   // back to a normal loop. Also look for a vctp instructions and decide
1293   // whether we can convert that predicate using tail predication.
1294   for (auto *MBB : reverse(ML->getBlocks())) {
1295     for (auto &MI : *MBB) {
1296       if (MI.isDebugValue())
1297         continue;
1298       else if (MI.getOpcode() == ARM::t2LoopDec)
1299         LoLoop.Dec = &MI;
1300       else if (MI.getOpcode() == ARM::t2LoopEnd)
1301         LoLoop.End = &MI;
1302       else if (isLoopStart(MI))
1303         LoLoop.Start = &MI;
1304       else if (MI.getDesc().isCall()) {
1305         // TODO: Though the call will require LE to execute again, does this
1306         // mean we should revert? Always executing LE hopefully should be
1307         // faster than performing a sub,cmp,br or even subs,br.
1308         LoLoop.Revert = true;
1309         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1310       } else {
1311         // Record VPR defs and build up their corresponding vpt blocks.
1312         // Check we know how to tail predicate any mve instructions.
1313         LoLoop.AnalyseMVEInst(&MI);
1314       }
1315     }
1316   }
1317 
1318   LLVM_DEBUG(LoLoop.dump());
1319   if (!LoLoop.FoundAllComponents()) {
1320     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1321     return false;
1322   }
1323 
1324   // Check that the only instruction using LoopDec is LoopEnd.
1325   // TODO: Check for copy chains that really have no effect.
1326   SmallPtrSet<MachineInstr*, 2> Uses;
1327   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
1328   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1329     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1330     LoLoop.Revert = true;
1331   }
1332   LoLoop.Validate(BBUtils.get());
1333   Expand(LoLoop);
1334   return true;
1335 }
1336 
1337 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1338 // beq that branches to the exit branch.
1339 // TODO: We could also try to generate a cbz if the value in LR is also in
1340 // another low register.
1341 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1342   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1343   MachineBasicBlock *MBB = MI->getParent();
1344   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1345                                     TII->get(ARM::t2CMPri));
1346   MIB.add(MI->getOperand(0));
1347   MIB.addImm(0);
1348   MIB.addImm(ARMCC::AL);
1349   MIB.addReg(ARM::NoRegister);
1350 
1351   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1352   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1353     ARM::tBcc : ARM::t2Bcc;
1354 
1355   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1356   MIB.add(MI->getOperand(1));   // branch target
1357   MIB.addImm(ARMCC::EQ);        // condition code
1358   MIB.addReg(ARM::CPSR);
1359   MI->eraseFromParent();
1360 }
1361 
1362 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1363   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1364   MachineBasicBlock *MBB = MI->getParent();
1365   SmallPtrSet<MachineInstr*, 1> Ignore;
1366   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1367     if (I->getOpcode() == ARM::t2LoopEnd) {
1368       Ignore.insert(&*I);
1369       break;
1370     }
1371   }
1372 
1373   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1374   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
1375 
1376   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1377                                     TII->get(ARM::t2SUBri));
1378   MIB.addDef(ARM::LR);
1379   MIB.add(MI->getOperand(1));
1380   MIB.add(MI->getOperand(2));
1381   MIB.addImm(ARMCC::AL);
1382   MIB.addReg(0);
1383 
1384   if (SetFlags) {
1385     MIB.addReg(ARM::CPSR);
1386     MIB->getOperand(5).setIsDef(true);
1387   } else
1388     MIB.addReg(0);
1389 
1390   MI->eraseFromParent();
1391   return SetFlags;
1392 }
1393 
1394 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1395 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1396   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1397 
1398   MachineBasicBlock *MBB = MI->getParent();
1399   // Create cmp
1400   if (!SkipCmp) {
1401     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1402                                       TII->get(ARM::t2CMPri));
1403     MIB.addReg(ARM::LR);
1404     MIB.addImm(0);
1405     MIB.addImm(ARMCC::AL);
1406     MIB.addReg(ARM::NoRegister);
1407   }
1408 
1409   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1410   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1411     ARM::tBcc : ARM::t2Bcc;
1412 
1413   // Create bne
1414   MachineInstrBuilder MIB =
1415     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1416   MIB.add(MI->getOperand(1));   // branch target
1417   MIB.addImm(ARMCC::NE);        // condition code
1418   MIB.addReg(ARM::CPSR);
1419   MI->eraseFromParent();
1420 }
1421 
1422 // Perform dead code elimation on the loop iteration count setup expression.
1423 // If we are tail-predicating, the number of elements to be processed is the
1424 // operand of the VCTP instruction in the vector body, see getCount(), which is
1425 // register $r3 in this example:
1426 //
1427 //   $lr = big-itercount-expression
1428 //   ..
1429 //   t2DoLoopStart renamable $lr
1430 //   vector.body:
1431 //     ..
1432 //     $vpr = MVE_VCTP32 renamable $r3
1433 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1434 //     t2LoopEnd renamable $lr, %vector.body
1435 //     tB %end
1436 //
1437 // What we would like achieve here is to replace the do-loop start pseudo
1438 // instruction t2DoLoopStart with:
1439 //
1440 //    $lr = MVE_DLSTP_32 killed renamable $r3
1441 //
1442 // Thus, $r3 which defines the number of elements, is written to $lr,
1443 // and then we want to delete the whole chain that used to define $lr,
1444 // see the comment below how this chain could look like.
1445 //
1446 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1447   if (!LoLoop.IsTailPredicationLegal())
1448     return;
1449 
1450   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1451 
1452   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1453   if (!Def) {
1454     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1455     return;
1456   }
1457 
1458   // Collect and remove the users of iteration count.
1459   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1460                                             LoLoop.End };
1461   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1462     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1463 }
1464 
1465 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1466   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1467   // When using tail-predication, try to delete the dead code that was used to
1468   // calculate the number of loop iterations.
1469   IterationCountDCE(LoLoop);
1470 
1471   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1472   MachineInstr *Start = LoLoop.Start;
1473   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1474   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1475   unsigned Opc = LoLoop.getStartOpcode();
1476   MachineOperand &Count = LoLoop.getLoopStartOperand();
1477 
1478   MachineInstrBuilder MIB =
1479     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1480 
1481   MIB.addDef(ARM::LR);
1482   MIB.add(Count);
1483   if (!IsDo)
1484     MIB.add(Start->getOperand(1));
1485 
1486   LoLoop.ToRemove.insert(Start);
1487   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1488   return &*MIB;
1489 }
1490 
1491 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1492   auto RemovePredicate = [](MachineInstr *MI) {
1493     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1494     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1495       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1496              "Expected Then predicate!");
1497       MI->getOperand(PIdx).setImm(ARMVCC::None);
1498       MI->getOperand(PIdx+1).setReg(0);
1499     } else
1500       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1501   };
1502 
1503   for (auto &Block : LoLoop.getVPTBlocks()) {
1504     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1505 
1506     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1507       if (VPTState::hasUniformPredicate(Block)) {
1508         // A vpt block starting with VPST, is only predicated upon vctp and has no
1509         // internal vpr defs:
1510         // - Remove vpst.
1511         // - Unpredicate the remaining instructions.
1512         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1513         LoLoop.ToRemove.insert(Insts.front());
1514         for (unsigned i = 1; i < Insts.size(); ++i)
1515           RemovePredicate(Insts[i]);
1516       } else {
1517         // The VPT block has a non-uniform predicate but it uses a vpst and its
1518         // entry is guarded only by a vctp, which means we:
1519         // - Need to remove the original vpst.
1520         // - Then need to unpredicate any following instructions, until
1521         //   we come across the divergent vpr def.
1522         // - Insert a new vpst to predicate the instruction(s) that following
1523         //   the divergent vpr def.
1524         // TODO: We could be producing more VPT blocks than necessary and could
1525         // fold the newly created one into a proceeding one.
1526         MachineInstr *Divergent = VPTState::getDivergent(Block);
1527         for (auto I = ++MachineBasicBlock::iterator(Insts.front()),
1528              E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I)
1529           RemovePredicate(&*I);
1530 
1531         // Check if the instruction defining vpr is a vcmp so it can be combined
1532         // with the VPST This should be the divergent instruction
1533         MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0
1534           ? Divergent
1535           : nullptr;
1536 
1537         MachineInstrBuilder MIB;
1538         if (VCMP) {
1539           // Combine the VPST and VCMP into a VPT
1540           MIB = BuildMI(*Divergent->getParent(), Divergent,
1541                         Divergent->getDebugLoc(),
1542                         TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1543           MIB.addImm(ARMVCC::Then);
1544           // Register one
1545           MIB.add(VCMP->getOperand(1));
1546           // Register two
1547           MIB.add(VCMP->getOperand(2));
1548           // The comparison code, e.g. ge, eq, lt
1549           MIB.add(VCMP->getOperand(3));
1550           LLVM_DEBUG(dbgs()
1551                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1552           LoLoop.ToRemove.insert(VCMP);
1553         } else {
1554           // Create a VPST (with a null mask for now, we'll recompute it later)
1555           // or a VPT in case there was a VCMP right before it
1556           MIB = BuildMI(*Divergent->getParent(), Divergent,
1557                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1558           MIB.addImm(0);
1559           LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1560         }
1561         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1562         LoLoop.ToRemove.insert(Insts.front());
1563         LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1564       }
1565     } else if (Block.containsVCTP()) {
1566       // The vctp will be removed, so the block mask of the vp(s)t will need
1567       // to be recomputed.
1568       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1569     }
1570   }
1571 
1572   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1573 }
1574 
1575 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1576 
1577   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1578   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1579     MachineInstr *End = LoLoop.End;
1580     MachineBasicBlock *MBB = End->getParent();
1581     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1582       ARM::MVE_LETP : ARM::t2LEUpdate;
1583     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1584                                       TII->get(Opc));
1585     MIB.addDef(ARM::LR);
1586     MIB.add(End->getOperand(0));
1587     MIB.add(End->getOperand(1));
1588     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1589     LoLoop.ToRemove.insert(LoLoop.Dec);
1590     LoLoop.ToRemove.insert(End);
1591     return &*MIB;
1592   };
1593 
1594   // TODO: We should be able to automatically remove these branches before we
1595   // get here - probably by teaching analyzeBranch about the pseudo
1596   // instructions.
1597   // If there is an unconditional branch, after I, that just branches to the
1598   // next block, remove it.
1599   auto RemoveDeadBranch = [](MachineInstr *I) {
1600     MachineBasicBlock *BB = I->getParent();
1601     MachineInstr *Terminator = &BB->instr_back();
1602     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1603       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1604       if (BB->isLayoutSuccessor(Succ)) {
1605         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1606         Terminator->eraseFromParent();
1607       }
1608     }
1609   };
1610 
1611   if (LoLoop.Revert) {
1612     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1613       RevertWhile(LoLoop.Start);
1614     else
1615       LoLoop.Start->eraseFromParent();
1616     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1617     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1618   } else {
1619     LoLoop.Start = ExpandLoopStart(LoLoop);
1620     RemoveDeadBranch(LoLoop.Start);
1621     LoLoop.End = ExpandLoopEnd(LoLoop);
1622     RemoveDeadBranch(LoLoop.End);
1623     if (LoLoop.IsTailPredicationLegal())
1624       ConvertVPTBlocks(LoLoop);
1625     for (auto *I : LoLoop.ToRemove) {
1626       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1627       I->eraseFromParent();
1628     }
1629     for (auto *I : LoLoop.BlockMasksToRecompute) {
1630       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1631       recomputeVPTBlockMask(*I);
1632       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1633     }
1634   }
1635 
1636   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1637   DFS.ProcessLoop();
1638   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1639   for (auto *MBB : PostOrder) {
1640     recomputeLiveIns(*MBB);
1641     // FIXME: For some reason, the live-in print order is non-deterministic for
1642     // our tests and I can't out why... So just sort them.
1643     MBB->sortUniqueLiveIns();
1644   }
1645 
1646   for (auto *MBB : reverse(PostOrder))
1647     recomputeLivenessFlags(*MBB);
1648 
1649   // We've moved, removed and inserted new instructions, so update RDA.
1650   RDA->reset();
1651 }
1652 
1653 bool ARMLowOverheadLoops::RevertNonLoops() {
1654   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1655   bool Changed = false;
1656 
1657   for (auto &MBB : *MF) {
1658     SmallVector<MachineInstr*, 4> Starts;
1659     SmallVector<MachineInstr*, 4> Decs;
1660     SmallVector<MachineInstr*, 4> Ends;
1661 
1662     for (auto &I : MBB) {
1663       if (isLoopStart(I))
1664         Starts.push_back(&I);
1665       else if (I.getOpcode() == ARM::t2LoopDec)
1666         Decs.push_back(&I);
1667       else if (I.getOpcode() == ARM::t2LoopEnd)
1668         Ends.push_back(&I);
1669     }
1670 
1671     if (Starts.empty() && Decs.empty() && Ends.empty())
1672       continue;
1673 
1674     Changed = true;
1675 
1676     for (auto *Start : Starts) {
1677       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1678         RevertWhile(Start);
1679       else
1680         Start->eraseFromParent();
1681     }
1682     for (auto *Dec : Decs)
1683       RevertLoopDec(Dec);
1684 
1685     for (auto *End : Ends)
1686       RevertLoopEnd(End);
1687   }
1688   return Changed;
1689 }
1690 
1691 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1692   return new ARMLowOverheadLoops();
1693 }
1694