1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 /// form should be in the preheader, whereas the while form should be in the
14 /// preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
45 /// VPR.P0 &= Value
46 /// else
47 /// VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallSet.h"
64 #include "llvm/CodeGen/LivePhysRegs.h"
65 #include "llvm/CodeGen/MachineFrameInfo.h"
66 #include "llvm/CodeGen/MachineFunctionPass.h"
67 #include "llvm/CodeGen/MachineLoopInfo.h"
68 #include "llvm/CodeGen/MachineLoopUtils.h"
69 #include "llvm/CodeGen/MachineRegisterInfo.h"
70 #include "llvm/CodeGen/Passes.h"
71 #include "llvm/CodeGen/ReachingDefAnalysis.h"
72 #include "llvm/MC/MCInstrDesc.h"
73
74 using namespace llvm;
75
76 #define DEBUG_TYPE "arm-low-overhead-loops"
77 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
78
79 static cl::opt<bool>
80 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
81 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
82 cl::init(false));
83
isVectorPredicated(MachineInstr * MI)84 static bool isVectorPredicated(MachineInstr *MI) {
85 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
86 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
87 }
88
isVectorPredicate(MachineInstr * MI)89 static bool isVectorPredicate(MachineInstr *MI) {
90 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
91 }
92
hasVPRUse(MachineInstr & MI)93 static bool hasVPRUse(MachineInstr &MI) {
94 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
95 }
96
isDomainMVE(MachineInstr * MI)97 static bool isDomainMVE(MachineInstr *MI) {
98 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
99 return Domain == ARMII::DomainMVE;
100 }
101
getVecSize(const MachineInstr & MI)102 static int getVecSize(const MachineInstr &MI) {
103 const MCInstrDesc &MCID = MI.getDesc();
104 uint64_t Flags = MCID.TSFlags;
105 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift;
106 }
107
shouldInspect(MachineInstr & MI)108 static bool shouldInspect(MachineInstr &MI) {
109 if (MI.isDebugInstr())
110 return false;
111 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
112 }
113
114 namespace {
115
116 using InstSet = SmallPtrSetImpl<MachineInstr *>;
117
118 class PostOrderLoopTraversal {
119 MachineLoop &ML;
120 MachineLoopInfo &MLI;
121 SmallPtrSet<MachineBasicBlock*, 4> Visited;
122 SmallVector<MachineBasicBlock*, 4> Order;
123
124 public:
PostOrderLoopTraversal(MachineLoop & ML,MachineLoopInfo & MLI)125 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
126 : ML(ML), MLI(MLI) { }
127
getOrder() const128 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
129 return Order;
130 }
131
132 // Visit all the blocks within the loop, as well as exit blocks and any
133 // blocks properly dominating the header.
ProcessLoop()134 void ProcessLoop() {
135 std::function<void(MachineBasicBlock*)> Search = [this, &Search]
136 (MachineBasicBlock *MBB) -> void {
137 if (Visited.count(MBB))
138 return;
139
140 Visited.insert(MBB);
141 for (auto *Succ : MBB->successors()) {
142 if (!ML.contains(Succ))
143 continue;
144 Search(Succ);
145 }
146 Order.push_back(MBB);
147 };
148
149 // Insert exit blocks.
150 SmallVector<MachineBasicBlock*, 2> ExitBlocks;
151 ML.getExitBlocks(ExitBlocks);
152 append_range(Order, ExitBlocks);
153
154 // Then add the loop body.
155 Search(ML.getHeader());
156
157 // Then try the preheader and its predecessors.
158 std::function<void(MachineBasicBlock*)> GetPredecessor =
159 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
160 Order.push_back(MBB);
161 if (MBB->pred_size() == 1)
162 GetPredecessor(*MBB->pred_begin());
163 };
164
165 if (auto *Preheader = ML.getLoopPreheader())
166 GetPredecessor(Preheader);
167 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
168 GetPredecessor(Preheader);
169 }
170 };
171
172 struct PredicatedMI {
173 MachineInstr *MI = nullptr;
174 SetVector<MachineInstr*> Predicates;
175
176 public:
PredicatedMI__anon59c8a0920111::PredicatedMI177 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
178 assert(I && "Instruction must not be null!");
179 Predicates.insert(Preds.begin(), Preds.end());
180 }
181 };
182
183 // Represent the current state of the VPR and hold all instances which
184 // represent a VPT block, which is a list of instructions that begins with a
185 // VPT/VPST and has a maximum of four proceeding instructions. All
186 // instructions within the block are predicated upon the vpr and we allow
187 // instructions to define the vpr within in the block too.
188 class VPTState {
189 friend struct LowOverheadLoop;
190
191 SmallVector<MachineInstr *, 4> Insts;
192
193 static SmallVector<VPTState, 4> Blocks;
194 static SetVector<MachineInstr *> CurrentPredicates;
195 static std::map<MachineInstr *,
196 std::unique_ptr<PredicatedMI>> PredicatedInsts;
197
CreateVPTBlock(MachineInstr * MI)198 static void CreateVPTBlock(MachineInstr *MI) {
199 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
200 && "Can't begin VPT without predicate");
201 Blocks.emplace_back(MI);
202 // The execution of MI is predicated upon the current set of instructions
203 // that are AND'ed together to form the VPR predicate value. In the case
204 // that MI is a VPT, CurrentPredicates will also just be MI.
205 PredicatedInsts.emplace(
206 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
207 }
208
reset()209 static void reset() {
210 Blocks.clear();
211 PredicatedInsts.clear();
212 CurrentPredicates.clear();
213 }
214
addInst(MachineInstr * MI)215 static void addInst(MachineInstr *MI) {
216 Blocks.back().insert(MI);
217 PredicatedInsts.emplace(
218 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
219 }
220
addPredicate(MachineInstr * MI)221 static void addPredicate(MachineInstr *MI) {
222 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
223 CurrentPredicates.insert(MI);
224 }
225
resetPredicate(MachineInstr * MI)226 static void resetPredicate(MachineInstr *MI) {
227 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
228 CurrentPredicates.clear();
229 CurrentPredicates.insert(MI);
230 }
231
232 public:
233 // Have we found an instruction within the block which defines the vpr? If
234 // so, not all the instructions in the block will have the same predicate.
hasUniformPredicate(VPTState & Block)235 static bool hasUniformPredicate(VPTState &Block) {
236 return getDivergent(Block) == nullptr;
237 }
238
239 // If it exists, return the first internal instruction which modifies the
240 // VPR.
getDivergent(VPTState & Block)241 static MachineInstr *getDivergent(VPTState &Block) {
242 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
243 for (unsigned i = 1; i < Insts.size(); ++i) {
244 MachineInstr *Next = Insts[i];
245 if (isVectorPredicate(Next))
246 return Next; // Found an instruction altering the vpr.
247 }
248 return nullptr;
249 }
250
251 // Return whether the given instruction is predicated upon a VCTP.
isPredicatedOnVCTP(MachineInstr * MI,bool Exclusive=false)252 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
253 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
254 if (Exclusive && Predicates.size() != 1)
255 return false;
256 return llvm::any_of(Predicates, isVCTP);
257 }
258
259 // Is the VPST, controlling the block entry, predicated upon a VCTP.
isEntryPredicatedOnVCTP(VPTState & Block,bool Exclusive=false)260 static bool isEntryPredicatedOnVCTP(VPTState &Block,
261 bool Exclusive = false) {
262 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
263 return isPredicatedOnVCTP(Insts.front(), Exclusive);
264 }
265
266 // If this block begins with a VPT, we can check whether it's using
267 // at least one predicated input(s), as well as possible loop invariant
268 // which would result in it being implicitly predicated.
hasImplicitlyValidVPT(VPTState & Block,ReachingDefAnalysis & RDA)269 static bool hasImplicitlyValidVPT(VPTState &Block,
270 ReachingDefAnalysis &RDA) {
271 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
272 MachineInstr *VPT = Insts.front();
273 assert(isVPTOpcode(VPT->getOpcode()) &&
274 "Expected VPT block to begin with VPT/VPST");
275
276 if (VPT->getOpcode() == ARM::MVE_VPST)
277 return false;
278
279 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
280 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
281 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
282 };
283
284 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
285 MachineOperand &MO = MI->getOperand(Idx);
286 if (!MO.isReg() || !MO.getReg())
287 return true;
288
289 SmallPtrSet<MachineInstr *, 2> Defs;
290 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
291 if (Defs.empty())
292 return true;
293
294 for (auto *Def : Defs)
295 if (Def->getParent() == VPT->getParent())
296 return false;
297 return true;
298 };
299
300 // Check that at least one of the operands is directly predicated on a
301 // vctp and allow an invariant value too.
302 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
303 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
304 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
305 }
306
isValid(ReachingDefAnalysis & RDA)307 static bool isValid(ReachingDefAnalysis &RDA) {
308 // All predication within the loop should be based on vctp. If the block
309 // isn't predicated on entry, check whether the vctp is within the block
310 // and that all other instructions are then predicated on it.
311 for (auto &Block : Blocks) {
312 if (isEntryPredicatedOnVCTP(Block, false) ||
313 hasImplicitlyValidVPT(Block, RDA))
314 continue;
315
316 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
317 // We don't know how to convert a block with just a VPT;VCTP into
318 // anything valid once we remove the VCTP. For now just bail out.
319 assert(isVPTOpcode(Insts.front()->getOpcode()) &&
320 "Expected VPT block to start with a VPST or VPT!");
321 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
322 isVCTP(Insts.back()))
323 return false;
324
325 for (auto *MI : Insts) {
326 // Check that any internal VCTPs are 'Then' predicated.
327 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
328 return false;
329 // Skip other instructions that build up the predicate.
330 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
331 continue;
332 // Check that any other instructions are predicated upon a vctp.
333 // TODO: We could infer when VPTs are implicitly predicated on the
334 // vctp (when the operands are predicated).
335 if (!isPredicatedOnVCTP(MI)) {
336 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
337 return false;
338 }
339 }
340 }
341 return true;
342 }
343
VPTState(MachineInstr * MI)344 VPTState(MachineInstr *MI) { Insts.push_back(MI); }
345
insert(MachineInstr * MI)346 void insert(MachineInstr *MI) {
347 Insts.push_back(MI);
348 // VPT/VPST + 4 predicated instructions.
349 assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
350 }
351
containsVCTP() const352 bool containsVCTP() const {
353 return llvm::any_of(Insts, isVCTP);
354 }
355
size() const356 unsigned size() const { return Insts.size(); }
getInsts()357 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
358 };
359
360 struct LowOverheadLoop {
361
362 MachineLoop &ML;
363 MachineBasicBlock *Preheader = nullptr;
364 MachineLoopInfo &MLI;
365 ReachingDefAnalysis &RDA;
366 const TargetRegisterInfo &TRI;
367 const ARMBaseInstrInfo &TII;
368 MachineFunction *MF = nullptr;
369 MachineBasicBlock::iterator StartInsertPt;
370 MachineBasicBlock *StartInsertBB = nullptr;
371 MachineInstr *Start = nullptr;
372 MachineInstr *Dec = nullptr;
373 MachineInstr *End = nullptr;
374 MachineOperand TPNumElements;
375 SmallVector<MachineInstr *, 4> VCTPs;
376 SmallPtrSet<MachineInstr *, 4> ToRemove;
377 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute;
378 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs;
379 SmallPtrSet<MachineInstr *, 4> VMOVCopies;
380 bool Revert = false;
381 bool CannotTailPredicate = false;
382
LowOverheadLoop__anon59c8a0920111::LowOverheadLoop383 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
384 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
385 const ARMBaseInstrInfo &TII)
386 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
387 TPNumElements(MachineOperand::CreateImm(0)) {
388 MF = ML.getHeader()->getParent();
389 if (auto *MBB = ML.getLoopPreheader())
390 Preheader = MBB;
391 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
392 Preheader = MBB;
393 VPTState::reset();
394 }
395
396 // If this is an MVE instruction, check that we know how to use tail
397 // predication with it. Record VPT blocks and return whether the
398 // instruction is valid for tail predication.
399 bool ValidateMVEInst(MachineInstr *MI);
400
AnalyseMVEInst__anon59c8a0920111::LowOverheadLoop401 void AnalyseMVEInst(MachineInstr *MI) {
402 CannotTailPredicate = !ValidateMVEInst(MI);
403 }
404
IsTailPredicationLegal__anon59c8a0920111::LowOverheadLoop405 bool IsTailPredicationLegal() const {
406 // For now, let's keep things really simple and only support a single
407 // block for tail predication.
408 return !Revert && FoundAllComponents() && !VCTPs.empty() &&
409 !CannotTailPredicate && ML.getNumBlocks() == 1;
410 }
411
412 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
413 // found.
414 bool AddVCTP(MachineInstr *MI);
415
416 // Check that the predication in the loop will be equivalent once we
417 // perform the conversion. Also ensure that we can provide the number
418 // of elements to the loop start instruction.
419 bool ValidateTailPredicate();
420
421 // Check that any values available outside of the loop will be the same
422 // after tail predication conversion.
423 bool ValidateLiveOuts();
424
425 // Is it safe to define LR with DLS/WLS?
426 // LR can be defined if it is the operand to start, because it's the same
427 // value, or if it's going to be equivalent to the operand to Start.
428 MachineInstr *isSafeToDefineLR();
429
430 // Check the branch targets are within range and we satisfy our
431 // restrictions.
432 void Validate(ARMBasicBlockUtils *BBUtils);
433
FoundAllComponents__anon59c8a0920111::LowOverheadLoop434 bool FoundAllComponents() const {
435 return Start && Dec && End;
436 }
437
getVPTBlocks__anon59c8a0920111::LowOverheadLoop438 SmallVectorImpl<VPTState> &getVPTBlocks() {
439 return VPTState::Blocks;
440 }
441
442 // Return the operand for the loop start instruction. This will be the loop
443 // iteration count, or the number of elements if we're tail predicating.
getLoopStartOperand__anon59c8a0920111::LowOverheadLoop444 MachineOperand &getLoopStartOperand() {
445 if (IsTailPredicationLegal())
446 return TPNumElements;
447 return Start->getOperand(1);
448 }
449
getStartOpcode__anon59c8a0920111::LowOverheadLoop450 unsigned getStartOpcode() const {
451 bool IsDo = isDoLoopStart(*Start);
452 if (!IsTailPredicationLegal())
453 return IsDo ? ARM::t2DLS : ARM::t2WLS;
454
455 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
456 }
457
dump__anon59c8a0920111::LowOverheadLoop458 void dump() const {
459 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
460 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
461 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
462 if (!VCTPs.empty()) {
463 dbgs() << "ARM Loops: Found VCTP(s):\n";
464 for (auto *MI : VCTPs)
465 dbgs() << " - " << *MI;
466 }
467 if (!FoundAllComponents())
468 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
469 else if (!(Start && Dec && End))
470 dbgs() << "ARM Loops: Failed to find all loop components.\n";
471 }
472 };
473
474 class ARMLowOverheadLoops : public MachineFunctionPass {
475 MachineFunction *MF = nullptr;
476 MachineLoopInfo *MLI = nullptr;
477 ReachingDefAnalysis *RDA = nullptr;
478 const ARMBaseInstrInfo *TII = nullptr;
479 MachineRegisterInfo *MRI = nullptr;
480 const TargetRegisterInfo *TRI = nullptr;
481 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
482
483 public:
484 static char ID;
485
ARMLowOverheadLoops()486 ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
487
getAnalysisUsage(AnalysisUsage & AU) const488 void getAnalysisUsage(AnalysisUsage &AU) const override {
489 AU.setPreservesCFG();
490 AU.addRequired<MachineLoopInfo>();
491 AU.addRequired<ReachingDefAnalysis>();
492 MachineFunctionPass::getAnalysisUsage(AU);
493 }
494
495 bool runOnMachineFunction(MachineFunction &MF) override;
496
getRequiredProperties() const497 MachineFunctionProperties getRequiredProperties() const override {
498 return MachineFunctionProperties().set(
499 MachineFunctionProperties::Property::NoVRegs).set(
500 MachineFunctionProperties::Property::TracksLiveness);
501 }
502
getPassName() const503 StringRef getPassName() const override {
504 return ARM_LOW_OVERHEAD_LOOPS_NAME;
505 }
506
507 private:
508 bool ProcessLoop(MachineLoop *ML);
509
510 bool RevertNonLoops();
511
512 void RevertWhile(MachineInstr *MI) const;
513 void RevertDo(MachineInstr *MI) const;
514
515 bool RevertLoopDec(MachineInstr *MI) const;
516
517 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
518
519 void RevertLoopEndDec(MachineInstr *MI) const;
520
521 void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
522
523 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
524
525 void Expand(LowOverheadLoop &LoLoop);
526
527 void IterationCountDCE(LowOverheadLoop &LoLoop);
528 };
529 }
530
531 char ARMLowOverheadLoops::ID = 0;
532
533 SmallVector<VPTState, 4> VPTState::Blocks;
534 SetVector<MachineInstr *> VPTState::CurrentPredicates;
535 std::map<MachineInstr *,
536 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
537
INITIALIZE_PASS(ARMLowOverheadLoops,DEBUG_TYPE,ARM_LOW_OVERHEAD_LOOPS_NAME,false,false)538 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
539 false, false)
540
541 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
542 InstSet &ToRemove, InstSet &Ignore) {
543
544 // Check that we can remove all of Killed without having to modify any IT
545 // blocks.
546 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
547 // Collect the dead code and the MBBs in which they reside.
548 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
549 for (auto *Dead : Killed)
550 BasicBlocks.insert(Dead->getParent());
551
552 // Collect IT blocks in all affected basic blocks.
553 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
554 for (auto *MBB : BasicBlocks) {
555 for (auto &IT : *MBB) {
556 if (IT.getOpcode() != ARM::t2IT)
557 continue;
558 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
559 ITBlocks[&IT]);
560 }
561 }
562
563 // If we're removing all of the instructions within an IT block, then
564 // also remove the IT instruction.
565 SmallPtrSet<MachineInstr *, 2> ModifiedITs;
566 SmallPtrSet<MachineInstr *, 2> RemoveITs;
567 for (auto *Dead : Killed) {
568 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
569 MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
570 RemoveITs.insert(IT);
571 auto &CurrentBlock = ITBlocks[IT];
572 CurrentBlock.erase(Dead);
573 if (CurrentBlock.empty())
574 ModifiedITs.erase(IT);
575 else
576 ModifiedITs.insert(IT);
577 }
578 }
579 if (!ModifiedITs.empty())
580 return false;
581 Killed.insert(RemoveITs.begin(), RemoveITs.end());
582 return true;
583 };
584
585 SmallPtrSet<MachineInstr *, 2> Uses;
586 if (!RDA.isSafeToRemove(MI, Uses, Ignore))
587 return false;
588
589 if (WontCorruptITs(Uses, RDA)) {
590 ToRemove.insert(Uses.begin(), Uses.end());
591 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
592 << " - can also remove:\n";
593 for (auto *Use : Uses)
594 dbgs() << " - " << *Use);
595
596 SmallPtrSet<MachineInstr*, 4> Killed;
597 RDA.collectKilledOperands(MI, Killed);
598 if (WontCorruptITs(Killed, RDA)) {
599 ToRemove.insert(Killed.begin(), Killed.end());
600 LLVM_DEBUG(for (auto *Dead : Killed)
601 dbgs() << " - " << *Dead);
602 }
603 return true;
604 }
605 return false;
606 }
607
ValidateTailPredicate()608 bool LowOverheadLoop::ValidateTailPredicate() {
609 if (!IsTailPredicationLegal()) {
610 LLVM_DEBUG(if (VCTPs.empty())
611 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
612 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
613 return false;
614 }
615
616 assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
617 assert(ML.getBlocks().size() == 1 &&
618 "Shouldn't be processing a loop with more than one block");
619
620 if (DisableTailPredication) {
621 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
622 return false;
623 }
624
625 if (!VPTState::isValid(RDA)) {
626 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
627 return false;
628 }
629
630 if (!ValidateLiveOuts()) {
631 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
632 return false;
633 }
634
635 // For tail predication, we need to provide the number of elements, instead
636 // of the iteration count, to the loop start instruction. The number of
637 // elements is provided to the vctp instruction, so we need to check that
638 // we can use this register at InsertPt.
639 MachineInstr *VCTP = VCTPs.back();
640 if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
641 Start->getOpcode() == ARM::t2WhileLoopStartTP) {
642 TPNumElements = Start->getOperand(2);
643 StartInsertPt = Start;
644 StartInsertBB = Start->getParent();
645 } else {
646 TPNumElements = VCTP->getOperand(1);
647 MCRegister NumElements = TPNumElements.getReg().asMCReg();
648
649 // If the register is defined within loop, then we can't perform TP.
650 // TODO: Check whether this is just a mov of a register that would be
651 // available.
652 if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
653 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
654 return false;
655 }
656
657 // The element count register maybe defined after InsertPt, in which case we
658 // need to try to move either InsertPt or the def so that the [w|d]lstp can
659 // use the value.
660
661 if (StartInsertPt != StartInsertBB->end() &&
662 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
663 if (auto *ElemDef =
664 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
665 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
666 ElemDef->removeFromParent();
667 StartInsertBB->insert(StartInsertPt, ElemDef);
668 LLVM_DEBUG(dbgs()
669 << "ARM Loops: Moved element count def: " << *ElemDef);
670 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
671 StartInsertPt->removeFromParent();
672 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
673 &*StartInsertPt);
674 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
675 } else {
676 // If we fail to move an instruction and the element count is provided
677 // by a mov, use the mov operand if it will have the same value at the
678 // insertion point
679 MachineOperand Operand = ElemDef->getOperand(1);
680 if (isMovRegOpcode(ElemDef->getOpcode()) &&
681 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
682 RDA.getUniqueReachingMIDef(&*StartInsertPt,
683 Operand.getReg().asMCReg())) {
684 TPNumElements = Operand;
685 NumElements = TPNumElements.getReg();
686 } else {
687 LLVM_DEBUG(dbgs()
688 << "ARM Loops: Unable to move element count to loop "
689 << "start instruction.\n");
690 return false;
691 }
692 }
693 }
694 }
695
696 // Especially in the case of while loops, InsertBB may not be the
697 // preheader, so we need to check that the register isn't redefined
698 // before entering the loop.
699 auto CannotProvideElements = [this](MachineBasicBlock *MBB,
700 MCRegister NumElements) {
701 if (MBB->empty())
702 return false;
703 // NumElements is redefined in this block.
704 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
705 return true;
706
707 // Don't continue searching up through multiple predecessors.
708 if (MBB->pred_size() > 1)
709 return true;
710
711 return false;
712 };
713
714 // Search backwards for a def, until we get to InsertBB.
715 MachineBasicBlock *MBB = Preheader;
716 while (MBB && MBB != StartInsertBB) {
717 if (CannotProvideElements(MBB, NumElements)) {
718 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
719 return false;
720 }
721 MBB = *MBB->pred_begin();
722 }
723 }
724
725 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
726 // world the [w|d]lstp instruction would be last instruction in the preheader
727 // and so it would only affect instructions within the loop body. But due to
728 // scheduling, and/or the logic in this pass (above), the insertion point can
729 // be moved earlier. So if the Loop Start isn't the last instruction in the
730 // preheader, and if the initial element count is smaller than the vector
731 // width, the Loop Start instruction will immediately generate one or more
732 // false lane mask which can, incorrectly, affect the proceeding MVE
733 // instructions in the preheader.
734 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
735 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
736 return false;
737 }
738
739 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
740 // need to compute an output size that is smaller than the VCTP mask operates
741 // on. The VecSize of the DoubleWidthResult is the larger vector size - the
742 // size it extends into, so any VCTP VecSize <= is valid.
743 unsigned VCTPVecSize = getVecSize(*VCTP);
744 for (MachineInstr *MI : DoubleWidthResultInstrs) {
745 unsigned InstrVecSize = getVecSize(*MI);
746 if (InstrVecSize > VCTPVecSize) {
747 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
748 << "VecSize:\n" << *MI);
749 return false;
750 }
751 }
752
753 // Check that the value change of the element count is what we expect and
754 // that the predication will be equivalent. For this we need:
755 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
756 // and we can also allow register copies within the chain too.
757 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
758 return -getAddSubImmediate(*MI) == ExpectedVecWidth;
759 };
760
761 MachineBasicBlock *MBB = VCTP->getParent();
762 // Remove modifications to the element count since they have no purpose in a
763 // tail predicated loop. Explicitly refer to the vctp operand no matter which
764 // register NumElements has been assigned to, since that is what the
765 // modifications will be using
766 if (auto *Def = RDA.getUniqueReachingMIDef(
767 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
768 SmallPtrSet<MachineInstr*, 2> ElementChain;
769 SmallPtrSet<MachineInstr*, 2> Ignore;
770 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
771
772 Ignore.insert(VCTPs.begin(), VCTPs.end());
773
774 if (TryRemove(Def, RDA, ElementChain, Ignore)) {
775 bool FoundSub = false;
776
777 for (auto *MI : ElementChain) {
778 if (isMovRegOpcode(MI->getOpcode()))
779 continue;
780
781 if (isSubImmOpcode(MI->getOpcode())) {
782 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
783 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
784 " count: " << *MI);
785 return false;
786 }
787 FoundSub = true;
788 } else {
789 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
790 " count: " << *MI);
791 return false;
792 }
793 }
794 ToRemove.insert(ElementChain.begin(), ElementChain.end());
795 }
796 }
797
798 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
799 // can also remove any extra instructions in the preheader, which often
800 // includes a now unused MOV.
801 if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
802 Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
803 Preheader && !Preheader->empty() &&
804 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
805 if (auto *Def = RDA.getUniqueReachingMIDef(
806 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
807 SmallPtrSet<MachineInstr*, 2> Ignore;
808 Ignore.insert(VCTPs.begin(), VCTPs.end());
809 TryRemove(Def, RDA, ToRemove, Ignore);
810 }
811 }
812
813 return true;
814 }
815
isRegInClass(const MachineOperand & MO,const TargetRegisterClass * Class)816 static bool isRegInClass(const MachineOperand &MO,
817 const TargetRegisterClass *Class) {
818 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
819 }
820
821 // MVE 'narrowing' operate on half a lane, reading from half and writing
822 // to half, which are referred to has the top and bottom half. The other
823 // half retains its previous value.
retainsPreviousHalfElement(const MachineInstr & MI)824 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
825 const MCInstrDesc &MCID = MI.getDesc();
826 uint64_t Flags = MCID.TSFlags;
827 return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
828 }
829
830 // Some MVE instructions read from the top/bottom halves of their operand(s)
831 // and generate a vector result with result elements that are double the
832 // width of the input.
producesDoubleWidthResult(const MachineInstr & MI)833 static bool producesDoubleWidthResult(const MachineInstr &MI) {
834 const MCInstrDesc &MCID = MI.getDesc();
835 uint64_t Flags = MCID.TSFlags;
836 return (Flags & ARMII::DoubleWidthResult) != 0;
837 }
838
isHorizontalReduction(const MachineInstr & MI)839 static bool isHorizontalReduction(const MachineInstr &MI) {
840 const MCInstrDesc &MCID = MI.getDesc();
841 uint64_t Flags = MCID.TSFlags;
842 return (Flags & ARMII::HorizontalReduction) != 0;
843 }
844
845 // Can this instruction generate a non-zero result when given only zeroed
846 // operands? This allows us to know that, given operands with false bytes
847 // zeroed by masked loads, that the result will also contain zeros in those
848 // bytes.
canGenerateNonZeros(const MachineInstr & MI)849 static bool canGenerateNonZeros(const MachineInstr &MI) {
850
851 // Check for instructions which can write into a larger element size,
852 // possibly writing into a previous zero'd lane.
853 if (producesDoubleWidthResult(MI))
854 return true;
855
856 switch (MI.getOpcode()) {
857 default:
858 break;
859 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
860 // fp16 -> fp32 vector conversions.
861 // Instructions that perform a NOT will generate 1s from 0s.
862 case ARM::MVE_VMVN:
863 case ARM::MVE_VORN:
864 // Count leading zeros will do just that!
865 case ARM::MVE_VCLZs8:
866 case ARM::MVE_VCLZs16:
867 case ARM::MVE_VCLZs32:
868 return true;
869 }
870 return false;
871 }
872
873 // Look at its register uses to see if it only can only receive zeros
874 // into its false lanes which would then produce zeros. Also check that
875 // the output register is also defined by an FalseLanesZero instruction
876 // so that if tail-predication happens, the lanes that aren't updated will
877 // still be zeros.
producesFalseLanesZero(MachineInstr & MI,const TargetRegisterClass * QPRs,const ReachingDefAnalysis & RDA,InstSet & FalseLanesZero)878 static bool producesFalseLanesZero(MachineInstr &MI,
879 const TargetRegisterClass *QPRs,
880 const ReachingDefAnalysis &RDA,
881 InstSet &FalseLanesZero) {
882 if (canGenerateNonZeros(MI))
883 return false;
884
885 bool isPredicated = isVectorPredicated(&MI);
886 // Predicated loads will write zeros to the falsely predicated bytes of the
887 // destination register.
888 if (MI.mayLoad())
889 return isPredicated;
890
891 auto IsZeroInit = [](MachineInstr *Def) {
892 return !isVectorPredicated(Def) &&
893 Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
894 Def->getOperand(1).getImm() == 0;
895 };
896
897 bool AllowScalars = isHorizontalReduction(MI);
898 for (auto &MO : MI.operands()) {
899 if (!MO.isReg() || !MO.getReg())
900 continue;
901 if (!isRegInClass(MO, QPRs) && AllowScalars)
902 continue;
903 // Skip the lr predicate reg
904 int PIdx = llvm::findFirstVPTPredOperandIdx(MI);
905 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2)
906 continue;
907
908 // Check that this instruction will produce zeros in its false lanes:
909 // - If it only consumes false lanes zero or constant 0 (vmov #0)
910 // - If it's predicated, it only matters that it's def register already has
911 // false lane zeros, so we can ignore the uses.
912 SmallPtrSet<MachineInstr *, 2> Defs;
913 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
914 for (auto *Def : Defs) {
915 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
916 continue;
917 if (MO.isUse() && isPredicated)
918 continue;
919 return false;
920 }
921 }
922 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
923 return true;
924 }
925
ValidateLiveOuts()926 bool LowOverheadLoop::ValidateLiveOuts() {
927 // We want to find out if the tail-predicated version of this loop will
928 // produce the same values as the loop in its original form. For this to
929 // be true, the newly inserted implicit predication must not change the
930 // the (observable) results.
931 // We're doing this because many instructions in the loop will not be
932 // predicated and so the conversion from VPT predication to tail-predication
933 // can result in different values being produced; due to the tail-predication
934 // preventing many instructions from updating their falsely predicated
935 // lanes. This analysis assumes that all the instructions perform lane-wise
936 // operations and don't perform any exchanges.
937 // A masked load, whether through VPT or tail predication, will write zeros
938 // to any of the falsely predicated bytes. So, from the loads, we know that
939 // the false lanes are zeroed and here we're trying to track that those false
940 // lanes remain zero, or where they change, the differences are masked away
941 // by their user(s).
942 // All MVE stores have to be predicated, so we know that any predicate load
943 // operands, or stored results are equivalent already. Other explicitly
944 // predicated instructions will perform the same operation in the original
945 // loop and the tail-predicated form too. Because of this, we can insert
946 // loads, stores and other predicated instructions into our Predicated
947 // set and build from there.
948 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
949 SetVector<MachineInstr *> FalseLanesUnknown;
950 SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
951 SmallPtrSet<MachineInstr *, 4> Predicated;
952 MachineBasicBlock *Header = ML.getHeader();
953
954 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
955
956 for (auto &MI : *Header) {
957 if (!shouldInspect(MI))
958 continue;
959
960 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
961 continue;
962
963 bool isPredicated = isVectorPredicated(&MI);
964 bool retainsOrReduces =
965 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
966
967 if (isPredicated)
968 Predicated.insert(&MI);
969 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
970 FalseLanesZero.insert(&MI);
971 else if (MI.getNumDefs() == 0)
972 continue;
973 else if (!isPredicated && retainsOrReduces) {
974 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI);
975 return false;
976 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy)
977 FalseLanesUnknown.insert(&MI);
978 }
979
980 LLVM_DEBUG({
981 dbgs() << " Predicated:\n";
982 for (auto *I : Predicated)
983 dbgs() << " " << *I;
984 dbgs() << " FalseLanesZero:\n";
985 for (auto *I : FalseLanesZero)
986 dbgs() << " " << *I;
987 dbgs() << " FalseLanesUnknown:\n";
988 for (auto *I : FalseLanesUnknown)
989 dbgs() << " " << *I;
990 });
991
992 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
993 SmallPtrSetImpl<MachineInstr *> &Predicated) {
994 SmallPtrSet<MachineInstr *, 2> Uses;
995 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
996 for (auto *Use : Uses) {
997 if (Use != MI && !Predicated.count(Use))
998 return false;
999 }
1000 return true;
1001 };
1002
1003 // Visit the unknowns in reverse so that we can start at the values being
1004 // stored and then we can work towards the leaves, hopefully adding more
1005 // instructions to Predicated. Successfully terminating the loop means that
1006 // all the unknown values have to found to be masked by predicated user(s).
1007 // For any unpredicated values, we store them in NonPredicated so that we
1008 // can later check whether these form a reduction.
1009 SmallPtrSet<MachineInstr*, 2> NonPredicated;
1010 for (auto *MI : reverse(FalseLanesUnknown)) {
1011 for (auto &MO : MI->operands()) {
1012 if (!isRegInClass(MO, QPRs) || !MO.isDef())
1013 continue;
1014 if (!HasPredicatedUsers(MI, MO, Predicated)) {
1015 LLVM_DEBUG(dbgs() << " Found an unknown def of : "
1016 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
1017 NonPredicated.insert(MI);
1018 break;
1019 }
1020 }
1021 // Any unknown false lanes have been masked away by the user(s).
1022 if (!NonPredicated.contains(MI))
1023 Predicated.insert(MI);
1024 }
1025
1026 SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
1027 SmallVector<MachineBasicBlock *, 2> ExitBlocks;
1028 ML.getExitBlocks(ExitBlocks);
1029 assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1030 assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1031 MachineBasicBlock *ExitBB = ExitBlocks.front();
1032 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1033 // TODO: Instead of blocking predication, we could move the vctp to the exit
1034 // block and calculate it's operand there in or the preheader.
1035 if (RegMask.PhysReg == ARM::VPR) {
1036 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block.");
1037 return false;
1038 }
1039 // Check Q-regs that are live in the exit blocks. We don't collect scalars
1040 // because they won't be affected by lane predication.
1041 if (QPRs->contains(RegMask.PhysReg))
1042 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1043 LiveOutMIs.insert(MI);
1044 }
1045
1046 // We've already validated that any VPT predication within the loop will be
1047 // equivalent when we perform the predication transformation; so we know that
1048 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1049 // instruction needs to be predicated, so check this here. The instructions
1050 // in NonPredicated have been found to be a reduction that we can ensure its
1051 // legality. Any MQPRCopy found will need to validate its input as if it was
1052 // live out.
1053 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end());
1054 while (!Worklist.empty()) {
1055 MachineInstr *MI = Worklist.pop_back_val();
1056 if (MI->getOpcode() == ARM::MQPRCopy) {
1057 VMOVCopies.insert(MI);
1058 MachineInstr *CopySrc =
1059 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg());
1060 if (CopySrc)
1061 Worklist.push_back(CopySrc);
1062 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1063 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1064 VMOVCopies.clear();
1065 return false;
1066 }
1067 }
1068
1069 return true;
1070 }
1071
Validate(ARMBasicBlockUtils * BBUtils)1072 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1073 if (Revert)
1074 return;
1075
1076 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1077 // can only jump back.
1078 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1079 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1080 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1081 ? End->getOperand(1).getMBB()
1082 : End->getOperand(2).getMBB();
1083 // TODO Maybe there's cases where the target doesn't have to be the header,
1084 // but for now be safe and revert.
1085 if (TgtBB != ML.getHeader()) {
1086 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1087 return false;
1088 }
1089
1090 // The WLS and LE instructions have 12-bits for the label offset. WLS
1091 // requires a positive offset, while LE uses negative.
1092 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1093 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1094 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1095 return false;
1096 }
1097
1098 if (isWhileLoopStart(*Start)) {
1099 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1100 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1101 !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1102 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1103 return false;
1104 }
1105 }
1106 return true;
1107 };
1108
1109 StartInsertPt = MachineBasicBlock::iterator(Start);
1110 StartInsertBB = Start->getParent();
1111 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1112 << *StartInsertPt);
1113
1114 Revert = !ValidateRanges(Start, End, BBUtils, ML);
1115 CannotTailPredicate = !ValidateTailPredicate();
1116 }
1117
AddVCTP(MachineInstr * MI)1118 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1119 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1120 if (VCTPs.empty()) {
1121 VCTPs.push_back(MI);
1122 return true;
1123 }
1124
1125 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1126 // If it does, store it in the VCTPs set, else refuse it.
1127 MachineInstr *Prev = VCTPs.back();
1128 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1129 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1130 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1131 "definition from the main VCTP");
1132 return false;
1133 }
1134 VCTPs.push_back(MI);
1135 return true;
1136 }
1137
ValidateMVEStore(MachineInstr * MI,MachineLoop * ML)1138 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) {
1139
1140 auto GetFrameIndex = [](MachineMemOperand *Operand) {
1141 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1142 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1143 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1144 return FS->getFrameIndex();
1145 }
1146 }
1147 return -1;
1148 };
1149
1150 auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1151 switch (I->getOpcode()) {
1152 case ARM::MVE_VSTRWU32:
1153 case ARM::MVE_VLDRWU32: {
1154 return I->getOperand(1).getReg() == ARM::SP &&
1155 I->memoperands().size() == 1 &&
1156 GetFrameIndex(I->memoperands().front()) >= 0;
1157 }
1158 default:
1159 return false;
1160 }
1161 };
1162
1163 // An unpredicated vector register spill is allowed if all of the uses of the
1164 // stack slot are within the loop
1165 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1166 return false;
1167
1168 // Search all blocks after the loop for accesses to the same stack slot.
1169 // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1170 // live-out (which sp never is) to know what blocks to look in
1171 if (MI->memoperands().size() == 0)
1172 return false;
1173 int FI = GetFrameIndex(MI->memoperands().front());
1174
1175 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1176 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1177 return false;
1178
1179 SmallVector<MachineBasicBlock *> Frontier;
1180 ML->getExitBlocks(Frontier);
1181 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1182 unsigned Idx = 0;
1183 while (Idx < Frontier.size()) {
1184 MachineBasicBlock *BB = Frontier[Idx];
1185 bool LookAtSuccessors = true;
1186 for (auto &I : *BB) {
1187 if (!IsStackOp(&I) || I.memoperands().size() == 0)
1188 continue;
1189 if (GetFrameIndex(I.memoperands().front()) != FI)
1190 continue;
1191 // If this block has a store to the stack slot before any loads then we
1192 // can ignore the block
1193 if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1194 LookAtSuccessors = false;
1195 break;
1196 }
1197 // If the store and the load are using the same stack slot then the
1198 // store isn't valid for tail predication
1199 if (I.getOpcode() == ARM::MVE_VLDRWU32)
1200 return false;
1201 }
1202
1203 if (LookAtSuccessors) {
1204 for (auto Succ : BB->successors()) {
1205 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1206 Frontier.push_back(Succ);
1207 }
1208 }
1209 Visited.insert(BB);
1210 Idx++;
1211 }
1212
1213 return true;
1214 }
1215
ValidateMVEInst(MachineInstr * MI)1216 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1217 if (CannotTailPredicate)
1218 return false;
1219
1220 if (!shouldInspect(*MI))
1221 return true;
1222
1223 if (MI->getOpcode() == ARM::MVE_VPSEL ||
1224 MI->getOpcode() == ARM::MVE_VPNOT) {
1225 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1226 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1227 // instead a VPT block, which means we can assert while building up
1228 // the VPT block because we don't find another VPT or VPST to being a new
1229 // one.
1230 // 2) VPSEL still requires a VPR operand even after tail predicating,
1231 // which means we can't remove it unless there is another
1232 // instruction, such as vcmp, that can provide the VPR def.
1233 return false;
1234 }
1235
1236 // Record all VCTPs and check that they're equivalent to one another.
1237 if (isVCTP(MI) && !AddVCTP(MI))
1238 return false;
1239
1240 // Inspect uses first so that any instructions that alter the VPR don't
1241 // alter the predicate upon themselves.
1242 const MCInstrDesc &MCID = MI->getDesc();
1243 bool IsUse = false;
1244 unsigned LastOpIdx = MI->getNumOperands() - 1;
1245 for (auto &Op : enumerate(reverse(MCID.operands()))) {
1246 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1247 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1248 continue;
1249
1250 if (ARM::isVpred(Op.value().OperandType)) {
1251 VPTState::addInst(MI);
1252 IsUse = true;
1253 } else if (MI->getOpcode() != ARM::MVE_VPST) {
1254 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1255 return false;
1256 }
1257 }
1258
1259 // If we find an instruction that has been marked as not valid for tail
1260 // predication, only allow the instruction if it's contained within a valid
1261 // VPT block.
1262 bool RequiresExplicitPredication =
1263 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1264 if (isDomainMVE(MI) && RequiresExplicitPredication) {
1265 if (MI->getOpcode() == ARM::MQPRCopy)
1266 return true;
1267 if (!IsUse && producesDoubleWidthResult(*MI)) {
1268 DoubleWidthResultInstrs.insert(MI);
1269 return true;
1270 }
1271
1272 LLVM_DEBUG(if (!IsUse) dbgs()
1273 << "ARM Loops: Can't tail predicate: " << *MI);
1274 return IsUse;
1275 }
1276
1277 // If the instruction is already explicitly predicated, then the conversion
1278 // will be fine, but ensure that all store operations are predicated.
1279 if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1280 return IsUse;
1281
1282 // If this instruction defines the VPR, update the predicate for the
1283 // proceeding instructions.
1284 if (isVectorPredicate(MI)) {
1285 // Clear the existing predicate when we're not in VPT Active state,
1286 // otherwise we add to it.
1287 if (!isVectorPredicated(MI))
1288 VPTState::resetPredicate(MI);
1289 else
1290 VPTState::addPredicate(MI);
1291 }
1292
1293 // Finally once the predicate has been modified, we can start a new VPT
1294 // block if necessary.
1295 if (isVPTOpcode(MI->getOpcode()))
1296 VPTState::CreateVPTBlock(MI);
1297
1298 return true;
1299 }
1300
runOnMachineFunction(MachineFunction & mf)1301 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1302 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>();
1303 if (!ST.hasLOB())
1304 return false;
1305
1306 MF = &mf;
1307 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1308
1309 MLI = &getAnalysis<MachineLoopInfo>();
1310 RDA = &getAnalysis<ReachingDefAnalysis>();
1311 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1312 MRI = &MF->getRegInfo();
1313 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1314 TRI = ST.getRegisterInfo();
1315 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1316 BBUtils->computeAllBlockSizes();
1317 BBUtils->adjustBBOffsetsAfter(&MF->front());
1318
1319 bool Changed = false;
1320 for (auto ML : *MLI) {
1321 if (ML->isOutermost())
1322 Changed |= ProcessLoop(ML);
1323 }
1324 Changed |= RevertNonLoops();
1325 return Changed;
1326 }
1327
ProcessLoop(MachineLoop * ML)1328 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1329
1330 bool Changed = false;
1331
1332 // Process inner loops first.
1333 for (MachineLoop *L : *ML)
1334 Changed |= ProcessLoop(L);
1335
1336 LLVM_DEBUG({
1337 dbgs() << "ARM Loops: Processing loop containing:\n";
1338 if (auto *Preheader = ML->getLoopPreheader())
1339 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1340 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1341 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1342 for (auto *MBB : ML->getBlocks())
1343 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1344 });
1345
1346 // Search the given block for a loop start instruction. If one isn't found,
1347 // and there's only one predecessor block, search that one too.
1348 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1349 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1350 for (auto &MI : *MBB) {
1351 if (isLoopStart(MI))
1352 return &MI;
1353 }
1354 if (MBB->pred_size() == 1)
1355 return SearchForStart(*MBB->pred_begin());
1356 return nullptr;
1357 };
1358
1359 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1360 // Search the preheader for the start intrinsic.
1361 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1362 // with potentially multiple set.loop.iterations, so we need to enable this.
1363 if (LoLoop.Preheader)
1364 LoLoop.Start = SearchForStart(LoLoop.Preheader);
1365 else
1366 return Changed;
1367
1368 // Find the low-overhead loop components and decide whether or not to fall
1369 // back to a normal loop. Also look for a vctp instructions and decide
1370 // whether we can convert that predicate using tail predication.
1371 for (auto *MBB : reverse(ML->getBlocks())) {
1372 for (auto &MI : *MBB) {
1373 if (MI.isDebugValue())
1374 continue;
1375 else if (MI.getOpcode() == ARM::t2LoopDec)
1376 LoLoop.Dec = &MI;
1377 else if (MI.getOpcode() == ARM::t2LoopEnd)
1378 LoLoop.End = &MI;
1379 else if (MI.getOpcode() == ARM::t2LoopEndDec)
1380 LoLoop.End = LoLoop.Dec = &MI;
1381 else if (isLoopStart(MI))
1382 LoLoop.Start = &MI;
1383 else if (MI.getDesc().isCall()) {
1384 // TODO: Though the call will require LE to execute again, does this
1385 // mean we should revert? Always executing LE hopefully should be
1386 // faster than performing a sub,cmp,br or even subs,br.
1387 LoLoop.Revert = true;
1388 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1389 } else {
1390 // Record VPR defs and build up their corresponding vpt blocks.
1391 // Check we know how to tail predicate any mve instructions.
1392 LoLoop.AnalyseMVEInst(&MI);
1393 }
1394 }
1395 }
1396
1397 LLVM_DEBUG(LoLoop.dump());
1398 if (!LoLoop.FoundAllComponents()) {
1399 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1400 return Changed;
1401 }
1402
1403 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1404 "Expected t2WhileLoopStart to be removed before regalloc!");
1405
1406 // Check that the only instruction using LoopDec is LoopEnd. This can only
1407 // happen when the Dec and End are separate, not a single t2LoopEndDec.
1408 // TODO: Check for copy chains that really have no effect.
1409 if (LoLoop.Dec != LoLoop.End) {
1410 SmallPtrSet<MachineInstr *, 2> Uses;
1411 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1412 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1413 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1414 LoLoop.Revert = true;
1415 }
1416 }
1417 LoLoop.Validate(BBUtils.get());
1418 Expand(LoLoop);
1419 return true;
1420 }
1421
1422 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1423 // beq that branches to the exit branch.
1424 // TODO: We could also try to generate a cbz if the value in LR is also in
1425 // another low register.
RevertWhile(MachineInstr * MI) const1426 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1427 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1428 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI);
1429 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1430 ARM::tBcc : ARM::t2Bcc;
1431
1432 RevertWhileLoopStartLR(MI, TII, BrOpc);
1433 }
1434
RevertDo(MachineInstr * MI) const1435 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1436 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1437 RevertDoLoopStart(MI, TII);
1438 }
1439
RevertLoopDec(MachineInstr * MI) const1440 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1441 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1442 MachineBasicBlock *MBB = MI->getParent();
1443 SmallPtrSet<MachineInstr*, 1> Ignore;
1444 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1445 if (I->getOpcode() == ARM::t2LoopEnd) {
1446 Ignore.insert(&*I);
1447 break;
1448 }
1449 }
1450
1451 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1452 bool SetFlags =
1453 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1454
1455 llvm::RevertLoopDec(MI, TII, SetFlags);
1456 return SetFlags;
1457 }
1458
1459 // Generate a subs, or sub and cmp, and a branch instead of an LE.
RevertLoopEnd(MachineInstr * MI,bool SkipCmp) const1460 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1461 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1462
1463 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1464 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1465 ARM::tBcc : ARM::t2Bcc;
1466
1467 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1468 }
1469
1470 // Generate a subs, or sub and cmp, and a branch instead of an LE.
RevertLoopEndDec(MachineInstr * MI) const1471 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1472 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1473 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1474 MachineBasicBlock *MBB = MI->getParent();
1475
1476 MachineInstrBuilder MIB =
1477 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1478 MIB.addDef(ARM::LR);
1479 MIB.add(MI->getOperand(1));
1480 MIB.addImm(1);
1481 MIB.addImm(ARMCC::AL);
1482 MIB.addReg(ARM::NoRegister);
1483 MIB.addReg(ARM::CPSR);
1484 MIB->getOperand(5).setIsDef(true);
1485
1486 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1487 unsigned BrOpc =
1488 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1489
1490 // Create bne
1491 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1492 MIB.add(MI->getOperand(2)); // branch target
1493 MIB.addImm(ARMCC::NE); // condition code
1494 MIB.addReg(ARM::CPSR);
1495
1496 MI->eraseFromParent();
1497 }
1498
1499 // Perform dead code elimation on the loop iteration count setup expression.
1500 // If we are tail-predicating, the number of elements to be processed is the
1501 // operand of the VCTP instruction in the vector body, see getCount(), which is
1502 // register $r3 in this example:
1503 //
1504 // $lr = big-itercount-expression
1505 // ..
1506 // $lr = t2DoLoopStart renamable $lr
1507 // vector.body:
1508 // ..
1509 // $vpr = MVE_VCTP32 renamable $r3
1510 // renamable $lr = t2LoopDec killed renamable $lr, 1
1511 // t2LoopEnd renamable $lr, %vector.body
1512 // tB %end
1513 //
1514 // What we would like achieve here is to replace the do-loop start pseudo
1515 // instruction t2DoLoopStart with:
1516 //
1517 // $lr = MVE_DLSTP_32 killed renamable $r3
1518 //
1519 // Thus, $r3 which defines the number of elements, is written to $lr,
1520 // and then we want to delete the whole chain that used to define $lr,
1521 // see the comment below how this chain could look like.
1522 //
IterationCountDCE(LowOverheadLoop & LoLoop)1523 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1524 if (!LoLoop.IsTailPredicationLegal())
1525 return;
1526
1527 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1528
1529 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1530 if (!Def) {
1531 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1532 return;
1533 }
1534
1535 // Collect and remove the users of iteration count.
1536 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
1537 LoLoop.End };
1538 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1539 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1540 }
1541
ExpandLoopStart(LowOverheadLoop & LoLoop)1542 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1543 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1544 // When using tail-predication, try to delete the dead code that was used to
1545 // calculate the number of loop iterations.
1546 IterationCountDCE(LoLoop);
1547
1548 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1549 MachineInstr *Start = LoLoop.Start;
1550 MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1551 unsigned Opc = LoLoop.getStartOpcode();
1552 MachineOperand &Count = LoLoop.getLoopStartOperand();
1553
1554 // A DLS lr, lr we needn't emit
1555 MachineInstr* NewStart;
1556 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) {
1557 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1558 NewStart = nullptr;
1559 } else {
1560 MachineInstrBuilder MIB =
1561 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1562
1563 MIB.addDef(ARM::LR);
1564 MIB.add(Count);
1565 if (isWhileLoopStart(*Start))
1566 MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1567
1568 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1569 NewStart = &*MIB;
1570 }
1571
1572 LoLoop.ToRemove.insert(Start);
1573 return NewStart;
1574 }
1575
ConvertVPTBlocks(LowOverheadLoop & LoLoop)1576 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1577 auto RemovePredicate = [](MachineInstr *MI) {
1578 if (MI->isDebugInstr())
1579 return;
1580 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1581 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1582 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1583 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1584 "Expected Then predicate!");
1585 MI->getOperand(PIdx).setImm(ARMVCC::None);
1586 MI->getOperand(PIdx + 1).setReg(0);
1587 };
1588
1589 for (auto &Block : LoLoop.getVPTBlocks()) {
1590 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1591
1592 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1593 assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1594 // Replace the VCMP with a VPT
1595 MachineInstrBuilder MIB =
1596 BuildMI(*At->getParent(), At, At->getDebugLoc(),
1597 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1598 MIB.addImm(ARMVCC::Then);
1599 // Register one
1600 MIB.add(TheVCMP->getOperand(1));
1601 // Register two
1602 MIB.add(TheVCMP->getOperand(2));
1603 // The comparison code, e.g. ge, eq, lt
1604 MIB.add(TheVCMP->getOperand(3));
1605 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1606 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1607 LoLoop.ToRemove.insert(TheVCMP);
1608 TheVCMP = nullptr;
1609 };
1610
1611 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1612 MachineInstr *VPST = Insts.front();
1613 if (VPTState::hasUniformPredicate(Block)) {
1614 // A vpt block starting with VPST, is only predicated upon vctp and has no
1615 // internal vpr defs:
1616 // - Remove vpst.
1617 // - Unpredicate the remaining instructions.
1618 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1619 for (unsigned i = 1; i < Insts.size(); ++i)
1620 RemovePredicate(Insts[i]);
1621 } else {
1622 // The VPT block has a non-uniform predicate but it uses a vpst and its
1623 // entry is guarded only by a vctp, which means we:
1624 // - Need to remove the original vpst.
1625 // - Then need to unpredicate any following instructions, until
1626 // we come across the divergent vpr def.
1627 // - Insert a new vpst to predicate the instruction(s) that following
1628 // the divergent vpr def.
1629 MachineInstr *Divergent = VPTState::getDivergent(Block);
1630 MachineBasicBlock *MBB = Divergent->getParent();
1631 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1632 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1633 ++DivergentNext;
1634
1635 bool DivergentNextIsPredicated =
1636 DivergentNext != MBB->end() &&
1637 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1638
1639 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1640 I != E; ++I)
1641 RemovePredicate(&*I);
1642
1643 // Check if the instruction defining vpr is a vcmp so it can be combined
1644 // with the VPST This should be the divergent instruction
1645 MachineInstr *VCMP =
1646 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1647
1648 if (DivergentNextIsPredicated) {
1649 // Insert a VPST at the divergent only if the next instruction
1650 // would actually use it. A VCMP following a VPST can be
1651 // merged into a VPT so do that instead if the VCMP exists.
1652 if (!VCMP) {
1653 // Create a VPST (with a null mask for now, we'll recompute it
1654 // later)
1655 MachineInstrBuilder MIB =
1656 BuildMI(*Divergent->getParent(), Divergent,
1657 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1658 MIB.addImm(0);
1659 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1660 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1661 } else {
1662 // No RDA checks are necessary here since the VPST would have been
1663 // directly after the VCMP
1664 ReplaceVCMPWithVPT(VCMP, VCMP);
1665 }
1666 }
1667 }
1668 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1669 LoLoop.ToRemove.insert(VPST);
1670 } else if (Block.containsVCTP()) {
1671 // The vctp will be removed, so either the entire block will be dead or
1672 // the block mask of the vp(s)t will need to be recomputed.
1673 MachineInstr *VPST = Insts.front();
1674 if (Block.size() == 2) {
1675 assert(VPST->getOpcode() == ARM::MVE_VPST &&
1676 "Found a VPST in an otherwise empty vpt block");
1677 LoLoop.ToRemove.insert(VPST);
1678 } else
1679 LoLoop.BlockMasksToRecompute.insert(VPST);
1680 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1681 // If this block starts with a VPST then attempt to merge it with the
1682 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1683 // block that no longer exists
1684 MachineInstr *VPST = Insts.front();
1685 auto Next = ++MachineBasicBlock::iterator(VPST);
1686 assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1687 "The instruction after a VPST must be predicated");
1688 (void)Next;
1689 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1690 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1691 !LoLoop.ToRemove.contains(VprDef)) {
1692 MachineInstr *VCMP = VprDef;
1693 // The VCMP and VPST can only be merged if the VCMP's operands will have
1694 // the same values at the VPST.
1695 // If any of the instructions between the VCMP and VPST are predicated
1696 // then a different code path is expected to have merged the VCMP and
1697 // VPST already.
1698 if (std::none_of(++MachineBasicBlock::iterator(VCMP),
1699 MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1700 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1701 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1702 ReplaceVCMPWithVPT(VCMP, VPST);
1703 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1704 LoLoop.ToRemove.insert(VPST);
1705 }
1706 }
1707 }
1708 }
1709
1710 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1711 }
1712
Expand(LowOverheadLoop & LoLoop)1713 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1714
1715 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1716 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1717 MachineInstr *End = LoLoop.End;
1718 MachineBasicBlock *MBB = End->getParent();
1719 unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1720 ARM::MVE_LETP : ARM::t2LEUpdate;
1721 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1722 TII->get(Opc));
1723 MIB.addDef(ARM::LR);
1724 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1725 MIB.add(End->getOperand(Off + 0));
1726 MIB.add(End->getOperand(Off + 1));
1727 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1728 LoLoop.ToRemove.insert(LoLoop.Dec);
1729 LoLoop.ToRemove.insert(End);
1730 return &*MIB;
1731 };
1732
1733 // TODO: We should be able to automatically remove these branches before we
1734 // get here - probably by teaching analyzeBranch about the pseudo
1735 // instructions.
1736 // If there is an unconditional branch, after I, that just branches to the
1737 // next block, remove it.
1738 auto RemoveDeadBranch = [](MachineInstr *I) {
1739 MachineBasicBlock *BB = I->getParent();
1740 MachineInstr *Terminator = &BB->instr_back();
1741 if (Terminator->isUnconditionalBranch() && I != Terminator) {
1742 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1743 if (BB->isLayoutSuccessor(Succ)) {
1744 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1745 Terminator->eraseFromParent();
1746 }
1747 }
1748 };
1749
1750 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1751 // Anything other MQPRCopy can be converted to MVE_VORR later on.
1752 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) {
1753 for (auto *MI : VMOVCopies) {
1754 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI);
1755 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1756 MachineBasicBlock *MBB = MI->getParent();
1757 Register Dst = MI->getOperand(0).getReg();
1758 Register Src = MI->getOperand(1).getReg();
1759 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1760 ARM::D0 + (Dst - ARM::Q0) * 2)
1761 .addReg(ARM::D0 + (Src - ARM::Q0) * 2)
1762 .add(predOps(ARMCC::AL));
1763 (void)MIB1;
1764 LLVM_DEBUG(dbgs() << " into " << *MIB1);
1765 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1766 ARM::D0 + (Dst - ARM::Q0) * 2 + 1)
1767 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1)
1768 .add(predOps(ARMCC::AL));
1769 LLVM_DEBUG(dbgs() << " and " << *MIB2);
1770 (void)MIB2;
1771 MI->eraseFromParent();
1772 }
1773 };
1774
1775 if (LoLoop.Revert) {
1776 if (isWhileLoopStart(*LoLoop.Start))
1777 RevertWhile(LoLoop.Start);
1778 else
1779 RevertDo(LoLoop.Start);
1780 if (LoLoop.Dec == LoLoop.End)
1781 RevertLoopEndDec(LoLoop.End);
1782 else
1783 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1784 } else {
1785 ExpandVMOVCopies(LoLoop.VMOVCopies);
1786 LoLoop.Start = ExpandLoopStart(LoLoop);
1787 if (LoLoop.Start)
1788 RemoveDeadBranch(LoLoop.Start);
1789 LoLoop.End = ExpandLoopEnd(LoLoop);
1790 RemoveDeadBranch(LoLoop.End);
1791 if (LoLoop.IsTailPredicationLegal())
1792 ConvertVPTBlocks(LoLoop);
1793 for (auto *I : LoLoop.ToRemove) {
1794 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1795 I->eraseFromParent();
1796 }
1797 for (auto *I : LoLoop.BlockMasksToRecompute) {
1798 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1799 recomputeVPTBlockMask(*I);
1800 LLVM_DEBUG(dbgs() << " ... done: " << *I);
1801 }
1802 }
1803
1804 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1805 DFS.ProcessLoop();
1806 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1807 for (auto *MBB : PostOrder) {
1808 recomputeLiveIns(*MBB);
1809 // FIXME: For some reason, the live-in print order is non-deterministic for
1810 // our tests and I can't out why... So just sort them.
1811 MBB->sortUniqueLiveIns();
1812 }
1813
1814 for (auto *MBB : reverse(PostOrder))
1815 recomputeLivenessFlags(*MBB);
1816
1817 // We've moved, removed and inserted new instructions, so update RDA.
1818 RDA->reset();
1819 }
1820
RevertNonLoops()1821 bool ARMLowOverheadLoops::RevertNonLoops() {
1822 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1823 bool Changed = false;
1824
1825 for (auto &MBB : *MF) {
1826 SmallVector<MachineInstr*, 4> Starts;
1827 SmallVector<MachineInstr*, 4> Decs;
1828 SmallVector<MachineInstr*, 4> Ends;
1829 SmallVector<MachineInstr *, 4> EndDecs;
1830 SmallVector<MachineInstr *, 4> MQPRCopies;
1831
1832 for (auto &I : MBB) {
1833 if (isLoopStart(I))
1834 Starts.push_back(&I);
1835 else if (I.getOpcode() == ARM::t2LoopDec)
1836 Decs.push_back(&I);
1837 else if (I.getOpcode() == ARM::t2LoopEnd)
1838 Ends.push_back(&I);
1839 else if (I.getOpcode() == ARM::t2LoopEndDec)
1840 EndDecs.push_back(&I);
1841 else if (I.getOpcode() == ARM::MQPRCopy)
1842 MQPRCopies.push_back(&I);
1843 }
1844
1845 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() &&
1846 MQPRCopies.empty())
1847 continue;
1848
1849 Changed = true;
1850
1851 for (auto *Start : Starts) {
1852 if (isWhileLoopStart(*Start))
1853 RevertWhile(Start);
1854 else
1855 RevertDo(Start);
1856 }
1857 for (auto *Dec : Decs)
1858 RevertLoopDec(Dec);
1859
1860 for (auto *End : Ends)
1861 RevertLoopEnd(End);
1862 for (auto *End : EndDecs)
1863 RevertLoopEndDec(End);
1864 for (auto *MI : MQPRCopies) {
1865 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI);
1866 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1867 MachineBasicBlock *MBB = MI->getParent();
1868 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR),
1869 MI->getOperand(0).getReg())
1870 .add(MI->getOperand(1))
1871 .add(MI->getOperand(1));
1872 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg());
1873 MI->eraseFromParent();
1874 }
1875 }
1876 return Changed;
1877 }
1878
createARMLowOverheadLoopsPass()1879 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1880 return new ARMLowOverheadLoops();
1881 }
1882