1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 using InstSet = SmallPtrSetImpl<MachineInstr *>; 65 66 class PostOrderLoopTraversal { 67 MachineLoop &ML; 68 MachineLoopInfo &MLI; 69 SmallPtrSet<MachineBasicBlock*, 4> Visited; 70 SmallVector<MachineBasicBlock*, 4> Order; 71 72 public: 73 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 74 : ML(ML), MLI(MLI) { } 75 76 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 77 return Order; 78 } 79 80 // Visit all the blocks within the loop, as well as exit blocks and any 81 // blocks properly dominating the header. 82 void ProcessLoop() { 83 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 84 (MachineBasicBlock *MBB) -> void { 85 if (Visited.count(MBB)) 86 return; 87 88 Visited.insert(MBB); 89 for (auto *Succ : MBB->successors()) { 90 if (!ML.contains(Succ)) 91 continue; 92 Search(Succ); 93 } 94 Order.push_back(MBB); 95 }; 96 97 // Insert exit blocks. 98 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 99 ML.getExitBlocks(ExitBlocks); 100 for (auto *MBB : ExitBlocks) 101 Order.push_back(MBB); 102 103 // Then add the loop body. 104 Search(ML.getHeader()); 105 106 // Then try the preheader and its predecessors. 107 std::function<void(MachineBasicBlock*)> GetPredecessor = 108 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 109 Order.push_back(MBB); 110 if (MBB->pred_size() == 1) 111 GetPredecessor(*MBB->pred_begin()); 112 }; 113 114 if (auto *Preheader = ML.getLoopPreheader()) 115 GetPredecessor(Preheader); 116 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 117 GetPredecessor(Preheader); 118 } 119 }; 120 121 struct PredicatedMI { 122 MachineInstr *MI = nullptr; 123 SetVector<MachineInstr*> Predicates; 124 125 public: 126 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 127 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 128 }; 129 130 // Represent a VPT block, a list of instructions that begins with a VPST and 131 // has a maximum of four proceeding instructions. All instructions within the 132 // block are predicated upon the vpr and we allow instructions to define the 133 // vpr within in the block too. 134 class VPTBlock { 135 std::unique_ptr<PredicatedMI> VPST; 136 PredicatedMI *Divergent = nullptr; 137 SmallVector<PredicatedMI, 4> Insts; 138 139 public: 140 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 141 VPST = std::make_unique<PredicatedMI>(MI, Preds); 142 } 143 144 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 145 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 146 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 147 Divergent = &Insts.back(); 148 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 149 } 150 Insts.emplace_back(MI, Preds); 151 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 152 } 153 154 // Have we found an instruction within the block which defines the vpr? If 155 // so, not all the instructions in the block will have the same predicate. 156 bool HasNonUniformPredicate() const { 157 return Divergent != nullptr; 158 } 159 160 // Is the given instruction part of the predicate set controlling the entry 161 // to the block. 162 bool IsPredicatedOn(MachineInstr *MI) const { 163 return VPST->Predicates.count(MI); 164 } 165 166 // Is the given instruction the only predicate which controls the entry to 167 // the block. 168 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 169 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 170 } 171 172 unsigned size() const { return Insts.size(); } 173 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 174 MachineInstr *getVPST() const { return VPST->MI; } 175 PredicatedMI *getDivergent() const { return Divergent; } 176 }; 177 178 struct LowOverheadLoop { 179 180 MachineLoop &ML; 181 MachineLoopInfo &MLI; 182 ReachingDefAnalysis &RDA; 183 const TargetRegisterInfo &TRI; 184 MachineFunction *MF = nullptr; 185 MachineInstr *InsertPt = nullptr; 186 MachineInstr *Start = nullptr; 187 MachineInstr *Dec = nullptr; 188 MachineInstr *End = nullptr; 189 MachineInstr *VCTP = nullptr; 190 VPTBlock *CurrentBlock = nullptr; 191 SetVector<MachineInstr*> CurrentPredicate; 192 SmallVector<VPTBlock, 4> VPTBlocks; 193 SmallPtrSet<MachineInstr*, 4> ToRemove; 194 bool Revert = false; 195 bool CannotTailPredicate = false; 196 197 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 198 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 199 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 200 MF = ML.getHeader()->getParent(); 201 } 202 203 // If this is an MVE instruction, check that we know how to use tail 204 // predication with it. Record VPT blocks and return whether the 205 // instruction is valid for tail predication. 206 bool ValidateMVEInst(MachineInstr *MI); 207 208 void AnalyseMVEInst(MachineInstr *MI) { 209 CannotTailPredicate = !ValidateMVEInst(MI); 210 } 211 212 bool IsTailPredicationLegal() const { 213 // For now, let's keep things really simple and only support a single 214 // block for tail predication. 215 return !Revert && FoundAllComponents() && VCTP && 216 !CannotTailPredicate && ML.getNumBlocks() == 1; 217 } 218 219 // Check that the predication in the loop will be equivalent once we 220 // perform the conversion. Also ensure that we can provide the number 221 // of elements to the loop start instruction. 222 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 223 224 // Check that any values available outside of the loop will be the same 225 // after tail predication conversion. 226 bool ValidateLiveOuts() const; 227 228 // Is it safe to define LR with DLS/WLS? 229 // LR can be defined if it is the operand to start, because it's the same 230 // value, or if it's going to be equivalent to the operand to Start. 231 MachineInstr *isSafeToDefineLR(); 232 233 // Check the branch targets are within range and we satisfy our 234 // restrictions. 235 void CheckLegality(ARMBasicBlockUtils *BBUtils); 236 237 bool FoundAllComponents() const { 238 return Start && Dec && End; 239 } 240 241 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 242 243 // Return the loop iteration count, or the number of elements if we're tail 244 // predicating. 245 MachineOperand &getCount() { 246 return IsTailPredicationLegal() ? 247 VCTP->getOperand(1) : Start->getOperand(0); 248 } 249 250 unsigned getStartOpcode() const { 251 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 252 if (!IsTailPredicationLegal()) 253 return IsDo ? ARM::t2DLS : ARM::t2WLS; 254 255 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 256 } 257 258 void dump() const { 259 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 260 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 261 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 262 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 263 if (!FoundAllComponents()) 264 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 265 else if (!(Start && Dec && End)) 266 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 267 } 268 }; 269 270 class ARMLowOverheadLoops : public MachineFunctionPass { 271 MachineFunction *MF = nullptr; 272 MachineLoopInfo *MLI = nullptr; 273 ReachingDefAnalysis *RDA = nullptr; 274 const ARMBaseInstrInfo *TII = nullptr; 275 MachineRegisterInfo *MRI = nullptr; 276 const TargetRegisterInfo *TRI = nullptr; 277 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 278 279 public: 280 static char ID; 281 282 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesCFG(); 286 AU.addRequired<MachineLoopInfo>(); 287 AU.addRequired<ReachingDefAnalysis>(); 288 MachineFunctionPass::getAnalysisUsage(AU); 289 } 290 291 bool runOnMachineFunction(MachineFunction &MF) override; 292 293 MachineFunctionProperties getRequiredProperties() const override { 294 return MachineFunctionProperties().set( 295 MachineFunctionProperties::Property::NoVRegs).set( 296 MachineFunctionProperties::Property::TracksLiveness); 297 } 298 299 StringRef getPassName() const override { 300 return ARM_LOW_OVERHEAD_LOOPS_NAME; 301 } 302 303 private: 304 bool ProcessLoop(MachineLoop *ML); 305 306 bool RevertNonLoops(); 307 308 void RevertWhile(MachineInstr *MI) const; 309 310 bool RevertLoopDec(MachineInstr *MI) const; 311 312 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 313 314 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 315 316 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 317 318 void Expand(LowOverheadLoop &LoLoop); 319 320 void IterationCountDCE(LowOverheadLoop &LoLoop); 321 }; 322 } 323 324 char ARMLowOverheadLoops::ID = 0; 325 326 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 327 false, false) 328 329 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 330 // We can define LR because LR already contains the same value. 331 if (Start->getOperand(0).getReg() == ARM::LR) 332 return Start; 333 334 unsigned CountReg = Start->getOperand(0).getReg(); 335 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 336 return MI->getOpcode() == ARM::tMOVr && 337 MI->getOperand(0).getReg() == ARM::LR && 338 MI->getOperand(1).getReg() == CountReg && 339 MI->getOperand(2).getImm() == ARMCC::AL; 340 }; 341 342 MachineBasicBlock *MBB = Start->getParent(); 343 344 // Find an insertion point: 345 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 346 // to Count before Start, we can insert at that mov. 347 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 348 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 349 return LRDef; 350 351 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 352 // to Count after Start, we can insert at that mov. 353 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 354 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 355 return LRDef; 356 357 // We've found no suitable LR def and Start doesn't use LR directly. Can we 358 // just define LR anyway? 359 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 360 } 361 362 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 363 assert(VCTP && "VCTP instruction expected but is not set"); 364 // All predication within the loop should be based on vctp. If the block 365 // isn't predicated on entry, check whether the vctp is within the block 366 // and that all other instructions are then predicated on it. 367 for (auto &Block : VPTBlocks) { 368 if (Block.IsPredicatedOn(VCTP)) 369 continue; 370 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 371 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 372 << *Block.getDivergent()->MI); 373 return false; 374 } 375 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 376 for (auto &PredMI : Insts) { 377 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 378 continue; 379 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 380 << " - which is predicated on:\n"; 381 for (auto *MI : PredMI.Predicates) 382 dbgs() << " - " << *MI); 383 return false; 384 } 385 } 386 387 if (!ValidateLiveOuts()) 388 return false; 389 390 // For tail predication, we need to provide the number of elements, instead 391 // of the iteration count, to the loop start instruction. The number of 392 // elements is provided to the vctp instruction, so we need to check that 393 // we can use this register at InsertPt. 394 Register NumElements = VCTP->getOperand(1).getReg(); 395 396 // If the register is defined within loop, then we can't perform TP. 397 // TODO: Check whether this is just a mov of a register that would be 398 // available. 399 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 400 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 401 return false; 402 } 403 404 // The element count register maybe defined after InsertPt, in which case we 405 // need to try to move either InsertPt or the def so that the [w|d]lstp can 406 // use the value. 407 // TODO: On failing to move an instruction, check if the count is provided by 408 // a mov and whether we can use the mov operand directly. 409 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 410 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 411 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 412 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 413 ElemDef->removeFromParent(); 414 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 415 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 416 << *ElemDef); 417 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 418 StartInsertPt->removeFromParent(); 419 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 420 StartInsertPt); 421 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 422 } else { 423 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 424 << "start instruction.\n"); 425 return false; 426 } 427 } 428 } 429 430 // Especially in the case of while loops, InsertBB may not be the 431 // preheader, so we need to check that the register isn't redefined 432 // before entering the loop. 433 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 434 Register NumElements) { 435 // NumElements is redefined in this block. 436 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 437 return true; 438 439 // Don't continue searching up through multiple predecessors. 440 if (MBB->pred_size() > 1) 441 return true; 442 443 return false; 444 }; 445 446 // First, find the block that looks like the preheader. 447 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 448 if (!MBB) { 449 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 450 return false; 451 } 452 453 // Then search backwards for a def, until we get to InsertBB. 454 while (MBB != InsertBB) { 455 if (CannotProvideElements(MBB, NumElements)) { 456 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 457 return false; 458 } 459 MBB = *MBB->pred_begin(); 460 } 461 462 // Check that the value change of the element count is what we expect and 463 // that the predication will be equivalent. For this we need: 464 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 465 // and we can also allow register copies within the chain too. 466 auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) { 467 unsigned ImmOpIdx = 0; 468 switch (MI->getOpcode()) { 469 default: 470 llvm_unreachable("unhandled sub opcode"); 471 case ARM::tSUBi3: 472 case ARM::tSUBi8: 473 ImmOpIdx = 3; 474 break; 475 case ARM::t2SUBri: 476 case ARM::t2SUBri12: 477 ImmOpIdx = 2; 478 break; 479 } 480 return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth; 481 }; 482 483 MBB = VCTP->getParent(); 484 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 485 SmallPtrSet<MachineInstr*, 2> ElementChain; 486 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 487 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 488 489 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 490 bool FoundSub = false; 491 492 for (auto *MI : ElementChain) { 493 if (isMovRegOpcode(MI->getOpcode())) 494 continue; 495 496 if (isSubImmOpcode(MI->getOpcode())) { 497 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 498 return false; 499 FoundSub = true; 500 } else 501 return false; 502 } 503 504 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 505 for (auto *MI : ElementChain) 506 dbgs() << " - " << *MI); 507 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 508 } 509 } 510 return true; 511 } 512 513 static bool isVectorPredicated(MachineInstr *MI) { 514 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 515 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 516 } 517 518 static bool isRegInClass(const MachineOperand &MO, 519 const TargetRegisterClass *Class) { 520 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 521 } 522 523 // MVE 'narrowing' operate on half a lane, reading from half and writing 524 // to half, which are referred to has the top and bottom half. The other 525 // half retains its previous value. 526 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 527 const MCInstrDesc &MCID = MI.getDesc(); 528 uint64_t Flags = MCID.TSFlags; 529 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 530 } 531 532 // Some MVE instructions read from the top/bottom halves of their operand(s) 533 // and generate a vector result with result elements that are double the 534 // width of the input. 535 static bool producesDoubleWidthResult(const MachineInstr &MI) { 536 const MCInstrDesc &MCID = MI.getDesc(); 537 uint64_t Flags = MCID.TSFlags; 538 return (Flags & ARMII::DoubleWidthResult) != 0; 539 } 540 541 static bool isHorizontalReduction(const MachineInstr &MI) { 542 const MCInstrDesc &MCID = MI.getDesc(); 543 uint64_t Flags = MCID.TSFlags; 544 return (Flags & ARMII::HorizontalReduction) != 0; 545 } 546 547 // Can this instruction generate a non-zero result when given only zeroed 548 // operands? This allows us to know that, given operands with false bytes 549 // zeroed by masked loads, that the result will also contain zeros in those 550 // bytes. 551 static bool canGenerateNonZeros(const MachineInstr &MI) { 552 553 // Check for instructions which can write into a larger element size, 554 // possibly writing into a previous zero'd lane. 555 if (producesDoubleWidthResult(MI)) 556 return true; 557 558 switch (MI.getOpcode()) { 559 default: 560 break; 561 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 562 // fp16 -> fp32 vector conversions. 563 // Instructions that perform a NOT will generate 1s from 0s. 564 case ARM::MVE_VMVN: 565 case ARM::MVE_VORN: 566 // Count leading zeros will do just that! 567 case ARM::MVE_VCLZs8: 568 case ARM::MVE_VCLZs16: 569 case ARM::MVE_VCLZs32: 570 return true; 571 } 572 return false; 573 } 574 575 576 // Look at its register uses to see if it only can only receive zeros 577 // into its false lanes which would then produce zeros. Also check that 578 // the output register is also defined by an FalseLanesZero instruction 579 // so that if tail-predication happens, the lanes that aren't updated will 580 // still be zeros. 581 static bool producesFalseLanesZero(MachineInstr &MI, 582 const TargetRegisterClass *QPRs, 583 const ReachingDefAnalysis &RDA, 584 InstSet &FalseLanesZero) { 585 if (canGenerateNonZeros(MI)) 586 return false; 587 588 bool AllowScalars = isHorizontalReduction(MI); 589 for (auto &MO : MI.operands()) { 590 if (!MO.isReg() || !MO.getReg()) 591 continue; 592 if (!isRegInClass(MO, QPRs) && AllowScalars) 593 continue; 594 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 595 if (FalseLanesZero.count(OpDef)) 596 continue; 597 return false; 598 } 599 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 600 return true; 601 } 602 603 bool LowOverheadLoop::ValidateLiveOuts() const { 604 // We want to find out if the tail-predicated version of this loop will 605 // produce the same values as the loop in its original form. For this to 606 // be true, the newly inserted implicit predication must not change the 607 // the (observable) results. 608 // We're doing this because many instructions in the loop will not be 609 // predicated and so the conversion from VPT predication to tail-predication 610 // can result in different values being produced; due to the tail-predication 611 // preventing many instructions from updating their falsely predicated 612 // lanes. This analysis assumes that all the instructions perform lane-wise 613 // operations and don't perform any exchanges. 614 // A masked load, whether through VPT or tail predication, will write zeros 615 // to any of the falsely predicated bytes. So, from the loads, we know that 616 // the false lanes are zeroed and here we're trying to track that those false 617 // lanes remain zero, or where they change, the differences are masked away 618 // by their user(s). 619 // All MVE loads and stores have to be predicated, so we know that any load 620 // operands, or stored results are equivalent already. Other explicitly 621 // predicated instructions will perform the same operation in the original 622 // loop and the tail-predicated form too. Because of this, we can insert 623 // loads, stores and other predicated instructions into our Predicated 624 // set and build from there. 625 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 626 SetVector<MachineInstr *> FalseLanesUnknown; 627 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 628 SmallPtrSet<MachineInstr *, 4> Predicated; 629 MachineBasicBlock *MBB = ML.getHeader(); 630 631 for (auto &MI : *MBB) { 632 const MCInstrDesc &MCID = MI.getDesc(); 633 uint64_t Flags = MCID.TSFlags; 634 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 635 continue; 636 637 if (isVCTP(&MI) || MI.getOpcode() == ARM::MVE_VPST) 638 continue; 639 640 // Predicated loads will write zeros to the falsely predicated bytes of the 641 // destination register. 642 if (isVectorPredicated(&MI)) { 643 if (MI.mayLoad()) 644 FalseLanesZero.insert(&MI); 645 Predicated.insert(&MI); 646 continue; 647 } 648 649 if (MI.getNumDefs() == 0) 650 continue; 651 652 if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) { 653 // We require retaining and horizontal operations to operate upon zero'd 654 // false lanes to ensure the conversion doesn't change the output. 655 if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI)) 656 return false; 657 // Otherwise we need to evaluate this instruction later to see whether 658 // unknown false lanes will get masked away by their user(s). 659 FalseLanesUnknown.insert(&MI); 660 } else if (!isHorizontalReduction(MI)) 661 FalseLanesZero.insert(&MI); 662 } 663 664 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 665 SmallPtrSetImpl<MachineInstr *> &Predicated) { 666 SmallPtrSet<MachineInstr *, 2> Uses; 667 RDA.getGlobalUses(MI, MO.getReg(), Uses); 668 for (auto *Use : Uses) { 669 if (Use != MI && !Predicated.count(Use)) 670 return false; 671 } 672 return true; 673 }; 674 675 // Visit the unknowns in reverse so that we can start at the values being 676 // stored and then we can work towards the leaves, hopefully adding more 677 // instructions to Predicated. Successfully terminating the loop means that 678 // all the unknown values have to found to be masked by predicated user(s). 679 for (auto *MI : reverse(FalseLanesUnknown)) { 680 for (auto &MO : MI->operands()) { 681 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 682 continue; 683 if (!HasPredicatedUsers(MI, MO, Predicated)) { 684 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 685 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 686 return false; 687 } 688 } 689 // Any unknown false lanes have been masked away by the user(s). 690 Predicated.insert(MI); 691 } 692 693 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 694 // because they won't be affected by lane predication. 695 SmallSet<Register, 2> LiveOuts; 696 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 697 ML.getExitBlocks(ExitBlocks); 698 for (auto *MBB : ExitBlocks) 699 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 700 if (QPRs->contains(RegMask.PhysReg)) 701 LiveOuts.insert(RegMask.PhysReg); 702 703 // Collect the instructions in the loop body that define the live-out values. 704 SmallPtrSet<MachineInstr *, 2> LiveMIs; 705 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 706 for (auto Reg : LiveOuts) 707 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 708 LiveMIs.insert(MI); 709 710 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 711 for (auto *MI : LiveMIs) 712 dbgs() << " - " << *MI); 713 // We've already validated that any VPT predication within the loop will be 714 // equivalent when we perform the predication transformation; so we know that 715 // any VPT predicated instruction is predicated upon VCTP. Any live-out 716 // instruction needs to be predicated, so check this here. 717 for (auto *MI : LiveMIs) 718 if (!isVectorPredicated(MI)) 719 return false; 720 721 return true; 722 } 723 724 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 725 if (Revert) 726 return; 727 728 if (!End->getOperand(1).isMBB()) 729 report_fatal_error("Expected LoopEnd to target basic block"); 730 731 // TODO Maybe there's cases where the target doesn't have to be the header, 732 // but for now be safe and revert. 733 if (End->getOperand(1).getMBB() != ML.getHeader()) { 734 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 735 Revert = true; 736 return; 737 } 738 739 // The WLS and LE instructions have 12-bits for the label offset. WLS 740 // requires a positive offset, while LE uses negative. 741 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 742 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 743 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 744 Revert = true; 745 return; 746 } 747 748 if (Start->getOpcode() == ARM::t2WhileLoopStart && 749 (BBUtils->getOffsetOf(Start) > 750 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 751 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 752 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 753 Revert = true; 754 return; 755 } 756 757 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 758 if (!InsertPt) { 759 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 760 Revert = true; 761 return; 762 } else 763 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 764 765 if (!IsTailPredicationLegal()) { 766 LLVM_DEBUG(if (!VCTP) 767 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 768 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 769 return; 770 } 771 772 assert(ML.getBlocks().size() == 1 && 773 "Shouldn't be processing a loop with more than one block"); 774 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 775 LLVM_DEBUG(if (CannotTailPredicate) 776 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 777 } 778 779 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 780 if (CannotTailPredicate) 781 return false; 782 783 // Only support a single vctp. 784 if (isVCTP(MI) && VCTP) 785 return false; 786 787 // Start a new vpt block when we discover a vpt. 788 if (MI->getOpcode() == ARM::MVE_VPST) { 789 VPTBlocks.emplace_back(MI, CurrentPredicate); 790 CurrentBlock = &VPTBlocks.back(); 791 return true; 792 } else if (isVCTP(MI)) 793 VCTP = MI; 794 else if (MI->getOpcode() == ARM::MVE_VPSEL || 795 MI->getOpcode() == ARM::MVE_VPNOT) 796 return false; 797 798 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 799 // 1) It will use the VPR as a predicate operand, but doesn't have to be 800 // instead a VPT block, which means we can assert while building up 801 // the VPT block because we don't find another VPST to being a new 802 // one. 803 // 2) VPSEL still requires a VPR operand even after tail predicating, 804 // which means we can't remove it unless there is another 805 // instruction, such as vcmp, that can provide the VPR def. 806 807 bool IsUse = false; 808 bool IsDef = false; 809 const MCInstrDesc &MCID = MI->getDesc(); 810 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 811 const MachineOperand &MO = MI->getOperand(i); 812 if (!MO.isReg() || MO.getReg() != ARM::VPR) 813 continue; 814 815 if (MO.isDef()) { 816 CurrentPredicate.insert(MI); 817 IsDef = true; 818 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 819 CurrentBlock->addInst(MI, CurrentPredicate); 820 IsUse = true; 821 } else { 822 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 823 return false; 824 } 825 } 826 827 // If we find a vpr def that is not already predicated on the vctp, we've 828 // got disjoint predicates that may not be equivalent when we do the 829 // conversion. 830 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 831 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 832 return false; 833 } 834 835 uint64_t Flags = MCID.TSFlags; 836 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 837 return true; 838 839 // If we find an instruction that has been marked as not valid for tail 840 // predication, only allow the instruction if it's contained within a valid 841 // VPT block. 842 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 843 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 844 return false; 845 } 846 847 // If the instruction is already explicitly predicated, then the conversion 848 // will be fine, but ensure that all memory operations are predicated. 849 return !IsUse && MI->mayLoadOrStore() ? false : true; 850 } 851 852 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 853 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 854 if (!ST.hasLOB()) 855 return false; 856 857 MF = &mf; 858 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 859 860 MLI = &getAnalysis<MachineLoopInfo>(); 861 RDA = &getAnalysis<ReachingDefAnalysis>(); 862 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 863 MRI = &MF->getRegInfo(); 864 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 865 TRI = ST.getRegisterInfo(); 866 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 867 BBUtils->computeAllBlockSizes(); 868 BBUtils->adjustBBOffsetsAfter(&MF->front()); 869 870 bool Changed = false; 871 for (auto ML : *MLI) { 872 if (!ML->getParentLoop()) 873 Changed |= ProcessLoop(ML); 874 } 875 Changed |= RevertNonLoops(); 876 return Changed; 877 } 878 879 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 880 881 bool Changed = false; 882 883 // Process inner loops first. 884 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 885 Changed |= ProcessLoop(*I); 886 887 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 888 if (auto *Preheader = ML->getLoopPreheader()) 889 dbgs() << " - " << Preheader->getName() << "\n"; 890 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 891 dbgs() << " - " << Preheader->getName() << "\n"; 892 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 893 dbgs() << " - " << Preheader->getName() << "\n"; 894 for (auto *MBB : ML->getBlocks()) 895 dbgs() << " - " << MBB->getName() << "\n"; 896 ); 897 898 // Search the given block for a loop start instruction. If one isn't found, 899 // and there's only one predecessor block, search that one too. 900 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 901 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 902 for (auto &MI : *MBB) { 903 if (isLoopStart(MI)) 904 return &MI; 905 } 906 if (MBB->pred_size() == 1) 907 return SearchForStart(*MBB->pred_begin()); 908 return nullptr; 909 }; 910 911 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 912 // Search the preheader for the start intrinsic. 913 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 914 // with potentially multiple set.loop.iterations, so we need to enable this. 915 if (auto *Preheader = ML->getLoopPreheader()) 916 LoLoop.Start = SearchForStart(Preheader); 917 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 918 LoLoop.Start = SearchForStart(Preheader); 919 else 920 return false; 921 922 // Find the low-overhead loop components and decide whether or not to fall 923 // back to a normal loop. Also look for a vctp instructions and decide 924 // whether we can convert that predicate using tail predication. 925 for (auto *MBB : reverse(ML->getBlocks())) { 926 for (auto &MI : *MBB) { 927 if (MI.isDebugValue()) 928 continue; 929 else if (MI.getOpcode() == ARM::t2LoopDec) 930 LoLoop.Dec = &MI; 931 else if (MI.getOpcode() == ARM::t2LoopEnd) 932 LoLoop.End = &MI; 933 else if (isLoopStart(MI)) 934 LoLoop.Start = &MI; 935 else if (MI.getDesc().isCall()) { 936 // TODO: Though the call will require LE to execute again, does this 937 // mean we should revert? Always executing LE hopefully should be 938 // faster than performing a sub,cmp,br or even subs,br. 939 LoLoop.Revert = true; 940 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 941 } else { 942 // Record VPR defs and build up their corresponding vpt blocks. 943 // Check we know how to tail predicate any mve instructions. 944 LoLoop.AnalyseMVEInst(&MI); 945 } 946 } 947 } 948 949 LLVM_DEBUG(LoLoop.dump()); 950 if (!LoLoop.FoundAllComponents()) { 951 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 952 return false; 953 } 954 955 // Check that the only instruction using LoopDec is LoopEnd. 956 // TODO: Check for copy chains that really have no effect. 957 SmallPtrSet<MachineInstr*, 2> Uses; 958 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 959 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 960 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 961 LoLoop.Revert = true; 962 } 963 LoLoop.CheckLegality(BBUtils.get()); 964 Expand(LoLoop); 965 return true; 966 } 967 968 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 969 // beq that branches to the exit branch. 970 // TODO: We could also try to generate a cbz if the value in LR is also in 971 // another low register. 972 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 973 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 974 MachineBasicBlock *MBB = MI->getParent(); 975 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 976 TII->get(ARM::t2CMPri)); 977 MIB.add(MI->getOperand(0)); 978 MIB.addImm(0); 979 MIB.addImm(ARMCC::AL); 980 MIB.addReg(ARM::NoRegister); 981 982 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 983 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 984 ARM::tBcc : ARM::t2Bcc; 985 986 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 987 MIB.add(MI->getOperand(1)); // branch target 988 MIB.addImm(ARMCC::EQ); // condition code 989 MIB.addReg(ARM::CPSR); 990 MI->eraseFromParent(); 991 } 992 993 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 994 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 995 MachineBasicBlock *MBB = MI->getParent(); 996 SmallPtrSet<MachineInstr*, 1> Ignore; 997 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 998 if (I->getOpcode() == ARM::t2LoopEnd) { 999 Ignore.insert(&*I); 1000 break; 1001 } 1002 } 1003 1004 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1005 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1006 1007 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1008 TII->get(ARM::t2SUBri)); 1009 MIB.addDef(ARM::LR); 1010 MIB.add(MI->getOperand(1)); 1011 MIB.add(MI->getOperand(2)); 1012 MIB.addImm(ARMCC::AL); 1013 MIB.addReg(0); 1014 1015 if (SetFlags) { 1016 MIB.addReg(ARM::CPSR); 1017 MIB->getOperand(5).setIsDef(true); 1018 } else 1019 MIB.addReg(0); 1020 1021 MI->eraseFromParent(); 1022 return SetFlags; 1023 } 1024 1025 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1026 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1027 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1028 1029 MachineBasicBlock *MBB = MI->getParent(); 1030 // Create cmp 1031 if (!SkipCmp) { 1032 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1033 TII->get(ARM::t2CMPri)); 1034 MIB.addReg(ARM::LR); 1035 MIB.addImm(0); 1036 MIB.addImm(ARMCC::AL); 1037 MIB.addReg(ARM::NoRegister); 1038 } 1039 1040 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1041 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1042 ARM::tBcc : ARM::t2Bcc; 1043 1044 // Create bne 1045 MachineInstrBuilder MIB = 1046 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1047 MIB.add(MI->getOperand(1)); // branch target 1048 MIB.addImm(ARMCC::NE); // condition code 1049 MIB.addReg(ARM::CPSR); 1050 MI->eraseFromParent(); 1051 } 1052 1053 // Perform dead code elimation on the loop iteration count setup expression. 1054 // If we are tail-predicating, the number of elements to be processed is the 1055 // operand of the VCTP instruction in the vector body, see getCount(), which is 1056 // register $r3 in this example: 1057 // 1058 // $lr = big-itercount-expression 1059 // .. 1060 // t2DoLoopStart renamable $lr 1061 // vector.body: 1062 // .. 1063 // $vpr = MVE_VCTP32 renamable $r3 1064 // renamable $lr = t2LoopDec killed renamable $lr, 1 1065 // t2LoopEnd renamable $lr, %vector.body 1066 // tB %end 1067 // 1068 // What we would like achieve here is to replace the do-loop start pseudo 1069 // instruction t2DoLoopStart with: 1070 // 1071 // $lr = MVE_DLSTP_32 killed renamable $r3 1072 // 1073 // Thus, $r3 which defines the number of elements, is written to $lr, 1074 // and then we want to delete the whole chain that used to define $lr, 1075 // see the comment below how this chain could look like. 1076 // 1077 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1078 if (!LoLoop.IsTailPredicationLegal()) 1079 return; 1080 1081 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1082 1083 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1084 if (!Def) { 1085 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1086 return; 1087 } 1088 1089 // Collect and remove the users of iteration count. 1090 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1091 LoLoop.End, LoLoop.InsertPt }; 1092 SmallPtrSet<MachineInstr*, 2> Remove; 1093 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1094 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1095 else { 1096 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1097 return; 1098 } 1099 1100 // Collect the dead code and the MBBs in which they reside. 1101 RDA->collectKilledOperands(Def, Killed); 1102 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1103 for (auto *MI : Killed) 1104 BasicBlocks.insert(MI->getParent()); 1105 1106 // Collect IT blocks in all affected basic blocks. 1107 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1108 for (auto *MBB : BasicBlocks) { 1109 for (auto &MI : *MBB) { 1110 if (MI.getOpcode() != ARM::t2IT) 1111 continue; 1112 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1113 } 1114 } 1115 1116 // If we're removing all of the instructions within an IT block, then 1117 // also remove the IT instruction. 1118 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1119 for (auto *MI : Killed) { 1120 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1121 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1122 auto &CurrentBlock = ITBlocks[IT]; 1123 CurrentBlock.erase(MI); 1124 if (CurrentBlock.empty()) 1125 ModifiedITs.erase(IT); 1126 else 1127 ModifiedITs.insert(IT); 1128 } 1129 } 1130 1131 // Delete the killed instructions only if we don't have any IT blocks that 1132 // need to be modified because we need to fixup the mask. 1133 // TODO: Handle cases where IT blocks are modified. 1134 if (ModifiedITs.empty()) { 1135 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1136 for (auto *MI : Killed) 1137 dbgs() << " - " << *MI); 1138 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1139 } else 1140 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1141 } 1142 1143 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1144 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1145 // When using tail-predication, try to delete the dead code that was used to 1146 // calculate the number of loop iterations. 1147 IterationCountDCE(LoLoop); 1148 1149 MachineInstr *InsertPt = LoLoop.InsertPt; 1150 MachineInstr *Start = LoLoop.Start; 1151 MachineBasicBlock *MBB = InsertPt->getParent(); 1152 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1153 unsigned Opc = LoLoop.getStartOpcode(); 1154 MachineOperand &Count = LoLoop.getCount(); 1155 1156 MachineInstrBuilder MIB = 1157 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1158 1159 MIB.addDef(ARM::LR); 1160 MIB.add(Count); 1161 if (!IsDo) 1162 MIB.add(Start->getOperand(1)); 1163 1164 // If we're inserting at a mov lr, then remove it as it's redundant. 1165 if (InsertPt != Start) 1166 LoLoop.ToRemove.insert(InsertPt); 1167 LoLoop.ToRemove.insert(Start); 1168 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1169 return &*MIB; 1170 } 1171 1172 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1173 auto RemovePredicate = [](MachineInstr *MI) { 1174 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1175 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1176 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1177 "Expected Then predicate!"); 1178 MI->getOperand(PIdx).setImm(ARMVCC::None); 1179 MI->getOperand(PIdx+1).setReg(0); 1180 } else 1181 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1182 }; 1183 1184 // There are a few scenarios which we have to fix up: 1185 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1186 // defs. 1187 // 2) A VPT block which is only predicated by the vctp but has an internal 1188 // vpr def. 1189 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1190 // def. 1191 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1192 // all instructions within the block are predicated upon in. 1193 1194 for (auto &Block : LoLoop.getVPTBlocks()) { 1195 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1196 if (Block.HasNonUniformPredicate()) { 1197 PredicatedMI *Divergent = Block.getDivergent(); 1198 if (isVCTP(Divergent->MI)) { 1199 // The vctp will be removed, so the size of the vpt block needs to be 1200 // modified. 1201 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 1202 Block.getVPST()->getOperand(0).setImm(Size); 1203 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 1204 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1205 // The VPT block has a non-uniform predicate but it's entry is guarded 1206 // only by a vctp, which means we: 1207 // - Need to remove the original vpst. 1208 // - Then need to unpredicate any following instructions, until 1209 // we come across the divergent vpr def. 1210 // - Insert a new vpst to predicate the instruction(s) that following 1211 // the divergent vpr def. 1212 // TODO: We could be producing more VPT blocks than necessary and could 1213 // fold the newly created one into a proceeding one. 1214 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1215 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1216 RemovePredicate(&*I); 1217 1218 unsigned Size = 0; 1219 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1220 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1221 MachineInstr *InsertAt = nullptr; 1222 while (I != E) { 1223 InsertAt = &*I; 1224 ++Size; 1225 ++I; 1226 } 1227 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1228 InsertAt->getDebugLoc(), 1229 TII->get(ARM::MVE_VPST)); 1230 MIB.addImm(getARMVPTBlockMask(Size)); 1231 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1232 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1233 LoLoop.ToRemove.insert(Block.getVPST()); 1234 } 1235 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1236 // A vpt block which is only predicated upon vctp and has no internal vpr 1237 // defs: 1238 // - Remove vpst. 1239 // - Unpredicate the remaining instructions. 1240 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1241 LoLoop.ToRemove.insert(Block.getVPST()); 1242 for (auto &PredMI : Insts) 1243 RemovePredicate(PredMI.MI); 1244 } 1245 } 1246 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1247 LoLoop.ToRemove.insert(LoLoop.VCTP); 1248 } 1249 1250 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1251 1252 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1253 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1254 MachineInstr *End = LoLoop.End; 1255 MachineBasicBlock *MBB = End->getParent(); 1256 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1257 ARM::MVE_LETP : ARM::t2LEUpdate; 1258 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1259 TII->get(Opc)); 1260 MIB.addDef(ARM::LR); 1261 MIB.add(End->getOperand(0)); 1262 MIB.add(End->getOperand(1)); 1263 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1264 LoLoop.ToRemove.insert(LoLoop.Dec); 1265 LoLoop.ToRemove.insert(End); 1266 return &*MIB; 1267 }; 1268 1269 // TODO: We should be able to automatically remove these branches before we 1270 // get here - probably by teaching analyzeBranch about the pseudo 1271 // instructions. 1272 // If there is an unconditional branch, after I, that just branches to the 1273 // next block, remove it. 1274 auto RemoveDeadBranch = [](MachineInstr *I) { 1275 MachineBasicBlock *BB = I->getParent(); 1276 MachineInstr *Terminator = &BB->instr_back(); 1277 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1278 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1279 if (BB->isLayoutSuccessor(Succ)) { 1280 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1281 Terminator->eraseFromParent(); 1282 } 1283 } 1284 }; 1285 1286 if (LoLoop.Revert) { 1287 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1288 RevertWhile(LoLoop.Start); 1289 else 1290 LoLoop.Start->eraseFromParent(); 1291 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1292 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1293 } else { 1294 LoLoop.Start = ExpandLoopStart(LoLoop); 1295 RemoveDeadBranch(LoLoop.Start); 1296 LoLoop.End = ExpandLoopEnd(LoLoop); 1297 RemoveDeadBranch(LoLoop.End); 1298 if (LoLoop.IsTailPredicationLegal()) 1299 ConvertVPTBlocks(LoLoop); 1300 for (auto *I : LoLoop.ToRemove) { 1301 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1302 I->eraseFromParent(); 1303 } 1304 } 1305 1306 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1307 DFS.ProcessLoop(); 1308 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1309 for (auto *MBB : PostOrder) { 1310 recomputeLiveIns(*MBB); 1311 // FIXME: For some reason, the live-in print order is non-deterministic for 1312 // our tests and I can't out why... So just sort them. 1313 MBB->sortUniqueLiveIns(); 1314 } 1315 1316 for (auto *MBB : reverse(PostOrder)) 1317 recomputeLivenessFlags(*MBB); 1318 1319 // We've moved, removed and inserted new instructions, so update RDA. 1320 RDA->reset(); 1321 } 1322 1323 bool ARMLowOverheadLoops::RevertNonLoops() { 1324 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1325 bool Changed = false; 1326 1327 for (auto &MBB : *MF) { 1328 SmallVector<MachineInstr*, 4> Starts; 1329 SmallVector<MachineInstr*, 4> Decs; 1330 SmallVector<MachineInstr*, 4> Ends; 1331 1332 for (auto &I : MBB) { 1333 if (isLoopStart(I)) 1334 Starts.push_back(&I); 1335 else if (I.getOpcode() == ARM::t2LoopDec) 1336 Decs.push_back(&I); 1337 else if (I.getOpcode() == ARM::t2LoopEnd) 1338 Ends.push_back(&I); 1339 } 1340 1341 if (Starts.empty() && Decs.empty() && Ends.empty()) 1342 continue; 1343 1344 Changed = true; 1345 1346 for (auto *Start : Starts) { 1347 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1348 RevertWhile(Start); 1349 else 1350 Start->eraseFromParent(); 1351 } 1352 for (auto *Dec : Decs) 1353 RevertLoopDec(Dec); 1354 1355 for (auto *End : Ends) 1356 RevertLoopEnd(End); 1357 } 1358 return Changed; 1359 } 1360 1361 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1362 return new ARMLowOverheadLoops(); 1363 } 1364