1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 using InstSet = SmallPtrSetImpl<MachineInstr *>; 65 66 class PostOrderLoopTraversal { 67 MachineLoop &ML; 68 MachineLoopInfo &MLI; 69 SmallPtrSet<MachineBasicBlock*, 4> Visited; 70 SmallVector<MachineBasicBlock*, 4> Order; 71 72 public: 73 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 74 : ML(ML), MLI(MLI) { } 75 76 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 77 return Order; 78 } 79 80 // Visit all the blocks within the loop, as well as exit blocks and any 81 // blocks properly dominating the header. 82 void ProcessLoop() { 83 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 84 (MachineBasicBlock *MBB) -> void { 85 if (Visited.count(MBB)) 86 return; 87 88 Visited.insert(MBB); 89 for (auto *Succ : MBB->successors()) { 90 if (!ML.contains(Succ)) 91 continue; 92 Search(Succ); 93 } 94 Order.push_back(MBB); 95 }; 96 97 // Insert exit blocks. 98 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 99 ML.getExitBlocks(ExitBlocks); 100 for (auto *MBB : ExitBlocks) 101 Order.push_back(MBB); 102 103 // Then add the loop body. 104 Search(ML.getHeader()); 105 106 // Then try the preheader and its predecessors. 107 std::function<void(MachineBasicBlock*)> GetPredecessor = 108 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 109 Order.push_back(MBB); 110 if (MBB->pred_size() == 1) 111 GetPredecessor(*MBB->pred_begin()); 112 }; 113 114 if (auto *Preheader = ML.getLoopPreheader()) 115 GetPredecessor(Preheader); 116 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 117 GetPredecessor(Preheader); 118 } 119 }; 120 121 struct PredicatedMI { 122 MachineInstr *MI = nullptr; 123 SetVector<MachineInstr*> Predicates; 124 125 public: 126 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 127 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 128 }; 129 130 // Represent a VPT block, a list of instructions that begins with a VPST and 131 // has a maximum of four proceeding instructions. All instructions within the 132 // block are predicated upon the vpr and we allow instructions to define the 133 // vpr within in the block too. 134 class VPTBlock { 135 std::unique_ptr<PredicatedMI> VPST; 136 PredicatedMI *Divergent = nullptr; 137 SmallVector<PredicatedMI, 4> Insts; 138 139 public: 140 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 141 VPST = std::make_unique<PredicatedMI>(MI, Preds); 142 } 143 144 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 145 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 146 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 147 Divergent = &Insts.back(); 148 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 149 } 150 Insts.emplace_back(MI, Preds); 151 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 152 } 153 154 // Have we found an instruction within the block which defines the vpr? If 155 // so, not all the instructions in the block will have the same predicate. 156 bool HasNonUniformPredicate() const { 157 return Divergent != nullptr; 158 } 159 160 // Is the given instruction part of the predicate set controlling the entry 161 // to the block. 162 bool IsPredicatedOn(MachineInstr *MI) const { 163 return VPST->Predicates.count(MI); 164 } 165 166 // Is the given instruction the only predicate which controls the entry to 167 // the block. 168 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 169 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 170 } 171 172 unsigned size() const { return Insts.size(); } 173 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 174 MachineInstr *getVPST() const { return VPST->MI; } 175 PredicatedMI *getDivergent() const { return Divergent; } 176 }; 177 178 struct LowOverheadLoop { 179 180 MachineLoop &ML; 181 MachineLoopInfo &MLI; 182 ReachingDefAnalysis &RDA; 183 const TargetRegisterInfo &TRI; 184 MachineFunction *MF = nullptr; 185 MachineInstr *InsertPt = nullptr; 186 MachineInstr *Start = nullptr; 187 MachineInstr *Dec = nullptr; 188 MachineInstr *End = nullptr; 189 MachineInstr *VCTP = nullptr; 190 VPTBlock *CurrentBlock = nullptr; 191 SetVector<MachineInstr*> CurrentPredicate; 192 SmallVector<VPTBlock, 4> VPTBlocks; 193 SmallPtrSet<MachineInstr*, 4> ToRemove; 194 bool Revert = false; 195 bool CannotTailPredicate = false; 196 197 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 198 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 199 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 200 MF = ML.getHeader()->getParent(); 201 } 202 203 // If this is an MVE instruction, check that we know how to use tail 204 // predication with it. Record VPT blocks and return whether the 205 // instruction is valid for tail predication. 206 bool ValidateMVEInst(MachineInstr *MI); 207 208 void AnalyseMVEInst(MachineInstr *MI) { 209 CannotTailPredicate = !ValidateMVEInst(MI); 210 } 211 212 bool IsTailPredicationLegal() const { 213 // For now, let's keep things really simple and only support a single 214 // block for tail predication. 215 return !Revert && FoundAllComponents() && VCTP && 216 !CannotTailPredicate && ML.getNumBlocks() == 1; 217 } 218 219 // Check that the predication in the loop will be equivalent once we 220 // perform the conversion. Also ensure that we can provide the number 221 // of elements to the loop start instruction. 222 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 223 224 // Check that any values available outside of the loop will be the same 225 // after tail predication conversion. 226 bool ValidateLiveOuts() const; 227 228 // Is it safe to define LR with DLS/WLS? 229 // LR can be defined if it is the operand to start, because it's the same 230 // value, or if it's going to be equivalent to the operand to Start. 231 MachineInstr *isSafeToDefineLR(); 232 233 // Check the branch targets are within range and we satisfy our 234 // restrictions. 235 void CheckLegality(ARMBasicBlockUtils *BBUtils); 236 237 bool FoundAllComponents() const { 238 return Start && Dec && End; 239 } 240 241 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 242 243 // Return the loop iteration count, or the number of elements if we're tail 244 // predicating. 245 MachineOperand &getCount() { 246 return IsTailPredicationLegal() ? 247 VCTP->getOperand(1) : Start->getOperand(0); 248 } 249 250 unsigned getStartOpcode() const { 251 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 252 if (!IsTailPredicationLegal()) 253 return IsDo ? ARM::t2DLS : ARM::t2WLS; 254 255 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 256 } 257 258 void dump() const { 259 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 260 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 261 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 262 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 263 if (!FoundAllComponents()) 264 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 265 else if (!(Start && Dec && End)) 266 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 267 } 268 }; 269 270 class ARMLowOverheadLoops : public MachineFunctionPass { 271 MachineFunction *MF = nullptr; 272 MachineLoopInfo *MLI = nullptr; 273 ReachingDefAnalysis *RDA = nullptr; 274 const ARMBaseInstrInfo *TII = nullptr; 275 MachineRegisterInfo *MRI = nullptr; 276 const TargetRegisterInfo *TRI = nullptr; 277 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 278 279 public: 280 static char ID; 281 282 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesCFG(); 286 AU.addRequired<MachineLoopInfo>(); 287 AU.addRequired<ReachingDefAnalysis>(); 288 MachineFunctionPass::getAnalysisUsage(AU); 289 } 290 291 bool runOnMachineFunction(MachineFunction &MF) override; 292 293 MachineFunctionProperties getRequiredProperties() const override { 294 return MachineFunctionProperties().set( 295 MachineFunctionProperties::Property::NoVRegs).set( 296 MachineFunctionProperties::Property::TracksLiveness); 297 } 298 299 StringRef getPassName() const override { 300 return ARM_LOW_OVERHEAD_LOOPS_NAME; 301 } 302 303 private: 304 bool ProcessLoop(MachineLoop *ML); 305 306 bool RevertNonLoops(); 307 308 void RevertWhile(MachineInstr *MI) const; 309 310 bool RevertLoopDec(MachineInstr *MI) const; 311 312 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 313 314 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 315 316 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 317 318 void Expand(LowOverheadLoop &LoLoop); 319 320 void IterationCountDCE(LowOverheadLoop &LoLoop); 321 }; 322 } 323 324 char ARMLowOverheadLoops::ID = 0; 325 326 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 327 false, false) 328 329 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 330 // We can define LR because LR already contains the same value. 331 if (Start->getOperand(0).getReg() == ARM::LR) 332 return Start; 333 334 unsigned CountReg = Start->getOperand(0).getReg(); 335 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 336 return MI->getOpcode() == ARM::tMOVr && 337 MI->getOperand(0).getReg() == ARM::LR && 338 MI->getOperand(1).getReg() == CountReg && 339 MI->getOperand(2).getImm() == ARMCC::AL; 340 }; 341 342 MachineBasicBlock *MBB = Start->getParent(); 343 344 // Find an insertion point: 345 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 346 // to Count before Start, we can insert at that mov. 347 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 348 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 349 return LRDef; 350 351 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 352 // to Count after Start, we can insert at that mov. 353 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 354 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 355 return LRDef; 356 357 // We've found no suitable LR def and Start doesn't use LR directly. Can we 358 // just define LR anyway? 359 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 360 } 361 362 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 363 assert(VCTP && "VCTP instruction expected but is not set"); 364 // All predication within the loop should be based on vctp. If the block 365 // isn't predicated on entry, check whether the vctp is within the block 366 // and that all other instructions are then predicated on it. 367 for (auto &Block : VPTBlocks) { 368 if (Block.IsPredicatedOn(VCTP)) 369 continue; 370 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 371 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 372 << *Block.getDivergent()->MI); 373 return false; 374 } 375 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 376 for (auto &PredMI : Insts) { 377 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 378 continue; 379 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 380 << " - which is predicated on:\n"; 381 for (auto *MI : PredMI.Predicates) 382 dbgs() << " - " << *MI); 383 return false; 384 } 385 } 386 387 if (!ValidateLiveOuts()) 388 return false; 389 390 // For tail predication, we need to provide the number of elements, instead 391 // of the iteration count, to the loop start instruction. The number of 392 // elements is provided to the vctp instruction, so we need to check that 393 // we can use this register at InsertPt. 394 Register NumElements = VCTP->getOperand(1).getReg(); 395 396 // If the register is defined within loop, then we can't perform TP. 397 // TODO: Check whether this is just a mov of a register that would be 398 // available. 399 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 400 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 401 return false; 402 } 403 404 // The element count register maybe defined after InsertPt, in which case we 405 // need to try to move either InsertPt or the def so that the [w|d]lstp can 406 // use the value. 407 // TODO: On failing to move an instruction, check if the count is provided by 408 // a mov and whether we can use the mov operand directly. 409 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 410 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 411 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 412 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 413 ElemDef->removeFromParent(); 414 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 415 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 416 << *ElemDef); 417 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 418 StartInsertPt->removeFromParent(); 419 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 420 StartInsertPt); 421 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 422 } else { 423 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 424 << "start instruction.\n"); 425 return false; 426 } 427 } 428 } 429 430 // Especially in the case of while loops, InsertBB may not be the 431 // preheader, so we need to check that the register isn't redefined 432 // before entering the loop. 433 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 434 Register NumElements) { 435 // NumElements is redefined in this block. 436 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 437 return true; 438 439 // Don't continue searching up through multiple predecessors. 440 if (MBB->pred_size() > 1) 441 return true; 442 443 return false; 444 }; 445 446 // First, find the block that looks like the preheader. 447 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 448 if (!MBB) { 449 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 450 return false; 451 } 452 453 // Then search backwards for a def, until we get to InsertBB. 454 while (MBB != InsertBB) { 455 if (CannotProvideElements(MBB, NumElements)) { 456 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 457 return false; 458 } 459 MBB = *MBB->pred_begin(); 460 } 461 462 // Check that the value change of the element count is what we expect and 463 // that the predication will be equivalent. For this we need: 464 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 465 // and we can also allow register copies within the chain too. 466 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 467 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 468 }; 469 470 MBB = VCTP->getParent(); 471 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 472 SmallPtrSet<MachineInstr*, 2> ElementChain; 473 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 474 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 475 476 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 477 bool FoundSub = false; 478 479 for (auto *MI : ElementChain) { 480 if (isMovRegOpcode(MI->getOpcode())) 481 continue; 482 483 if (isSubImmOpcode(MI->getOpcode())) { 484 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 485 return false; 486 FoundSub = true; 487 } else 488 return false; 489 } 490 491 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 492 for (auto *MI : ElementChain) 493 dbgs() << " - " << *MI); 494 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 495 } 496 } 497 return true; 498 } 499 500 static bool isVectorPredicated(MachineInstr *MI) { 501 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 502 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 503 } 504 505 static bool isRegInClass(const MachineOperand &MO, 506 const TargetRegisterClass *Class) { 507 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 508 } 509 510 // MVE 'narrowing' operate on half a lane, reading from half and writing 511 // to half, which are referred to has the top and bottom half. The other 512 // half retains its previous value. 513 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 514 const MCInstrDesc &MCID = MI.getDesc(); 515 uint64_t Flags = MCID.TSFlags; 516 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 517 } 518 519 // Some MVE instructions read from the top/bottom halves of their operand(s) 520 // and generate a vector result with result elements that are double the 521 // width of the input. 522 static bool producesDoubleWidthResult(const MachineInstr &MI) { 523 const MCInstrDesc &MCID = MI.getDesc(); 524 uint64_t Flags = MCID.TSFlags; 525 return (Flags & ARMII::DoubleWidthResult) != 0; 526 } 527 528 static bool isHorizontalReduction(const MachineInstr &MI) { 529 const MCInstrDesc &MCID = MI.getDesc(); 530 uint64_t Flags = MCID.TSFlags; 531 return (Flags & ARMII::HorizontalReduction) != 0; 532 } 533 534 // Can this instruction generate a non-zero result when given only zeroed 535 // operands? This allows us to know that, given operands with false bytes 536 // zeroed by masked loads, that the result will also contain zeros in those 537 // bytes. 538 static bool canGenerateNonZeros(const MachineInstr &MI) { 539 540 // Check for instructions which can write into a larger element size, 541 // possibly writing into a previous zero'd lane. 542 if (producesDoubleWidthResult(MI)) 543 return true; 544 545 switch (MI.getOpcode()) { 546 default: 547 break; 548 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 549 // fp16 -> fp32 vector conversions. 550 // Instructions that perform a NOT will generate 1s from 0s. 551 case ARM::MVE_VMVN: 552 case ARM::MVE_VORN: 553 // Count leading zeros will do just that! 554 case ARM::MVE_VCLZs8: 555 case ARM::MVE_VCLZs16: 556 case ARM::MVE_VCLZs32: 557 return true; 558 } 559 return false; 560 } 561 562 563 // Look at its register uses to see if it only can only receive zeros 564 // into its false lanes which would then produce zeros. Also check that 565 // the output register is also defined by an FalseLanesZero instruction 566 // so that if tail-predication happens, the lanes that aren't updated will 567 // still be zeros. 568 static bool producesFalseLanesZero(MachineInstr &MI, 569 const TargetRegisterClass *QPRs, 570 const ReachingDefAnalysis &RDA, 571 InstSet &FalseLanesZero) { 572 if (canGenerateNonZeros(MI)) 573 return false; 574 575 bool AllowScalars = isHorizontalReduction(MI); 576 for (auto &MO : MI.operands()) { 577 if (!MO.isReg() || !MO.getReg()) 578 continue; 579 if (!isRegInClass(MO, QPRs) && AllowScalars) 580 continue; 581 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 582 if (FalseLanesZero.count(OpDef)) 583 continue; 584 return false; 585 } 586 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 587 return true; 588 } 589 590 bool LowOverheadLoop::ValidateLiveOuts() const { 591 // We want to find out if the tail-predicated version of this loop will 592 // produce the same values as the loop in its original form. For this to 593 // be true, the newly inserted implicit predication must not change the 594 // the (observable) results. 595 // We're doing this because many instructions in the loop will not be 596 // predicated and so the conversion from VPT predication to tail-predication 597 // can result in different values being produced; due to the tail-predication 598 // preventing many instructions from updating their falsely predicated 599 // lanes. This analysis assumes that all the instructions perform lane-wise 600 // operations and don't perform any exchanges. 601 // A masked load, whether through VPT or tail predication, will write zeros 602 // to any of the falsely predicated bytes. So, from the loads, we know that 603 // the false lanes are zeroed and here we're trying to track that those false 604 // lanes remain zero, or where they change, the differences are masked away 605 // by their user(s). 606 // All MVE loads and stores have to be predicated, so we know that any load 607 // operands, or stored results are equivalent already. Other explicitly 608 // predicated instructions will perform the same operation in the original 609 // loop and the tail-predicated form too. Because of this, we can insert 610 // loads, stores and other predicated instructions into our Predicated 611 // set and build from there. 612 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 613 SetVector<MachineInstr *> FalseLanesUnknown; 614 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 615 SmallPtrSet<MachineInstr *, 4> Predicated; 616 MachineBasicBlock *MBB = ML.getHeader(); 617 618 for (auto &MI : *MBB) { 619 const MCInstrDesc &MCID = MI.getDesc(); 620 uint64_t Flags = MCID.TSFlags; 621 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 622 continue; 623 624 if (isVCTP(&MI) || MI.getOpcode() == ARM::MVE_VPST) 625 continue; 626 627 // Predicated loads will write zeros to the falsely predicated bytes of the 628 // destination register. 629 if (isVectorPredicated(&MI)) { 630 if (MI.mayLoad()) 631 FalseLanesZero.insert(&MI); 632 Predicated.insert(&MI); 633 continue; 634 } 635 636 if (MI.getNumDefs() == 0) 637 continue; 638 639 if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) { 640 // We require retaining and horizontal operations to operate upon zero'd 641 // false lanes to ensure the conversion doesn't change the output. 642 if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI)) 643 return false; 644 // Otherwise we need to evaluate this instruction later to see whether 645 // unknown false lanes will get masked away by their user(s). 646 FalseLanesUnknown.insert(&MI); 647 } else if (!isHorizontalReduction(MI)) 648 FalseLanesZero.insert(&MI); 649 } 650 651 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 652 SmallPtrSetImpl<MachineInstr *> &Predicated) { 653 SmallPtrSet<MachineInstr *, 2> Uses; 654 RDA.getGlobalUses(MI, MO.getReg(), Uses); 655 for (auto *Use : Uses) { 656 if (Use != MI && !Predicated.count(Use)) 657 return false; 658 } 659 return true; 660 }; 661 662 // Visit the unknowns in reverse so that we can start at the values being 663 // stored and then we can work towards the leaves, hopefully adding more 664 // instructions to Predicated. Successfully terminating the loop means that 665 // all the unknown values have to found to be masked by predicated user(s). 666 for (auto *MI : reverse(FalseLanesUnknown)) { 667 for (auto &MO : MI->operands()) { 668 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 669 continue; 670 if (!HasPredicatedUsers(MI, MO, Predicated)) { 671 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 672 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 673 return false; 674 } 675 } 676 // Any unknown false lanes have been masked away by the user(s). 677 Predicated.insert(MI); 678 } 679 680 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 681 // because they won't be affected by lane predication. 682 SmallSet<Register, 2> LiveOuts; 683 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 684 ML.getExitBlocks(ExitBlocks); 685 for (auto *MBB : ExitBlocks) 686 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 687 if (QPRs->contains(RegMask.PhysReg)) 688 LiveOuts.insert(RegMask.PhysReg); 689 690 // Collect the instructions in the loop body that define the live-out values. 691 SmallPtrSet<MachineInstr *, 2> LiveMIs; 692 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 693 for (auto Reg : LiveOuts) 694 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 695 LiveMIs.insert(MI); 696 697 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 698 for (auto *MI : LiveMIs) 699 dbgs() << " - " << *MI); 700 // We've already validated that any VPT predication within the loop will be 701 // equivalent when we perform the predication transformation; so we know that 702 // any VPT predicated instruction is predicated upon VCTP. Any live-out 703 // instruction needs to be predicated, so check this here. 704 for (auto *MI : LiveMIs) 705 if (!isVectorPredicated(MI)) 706 return false; 707 708 return true; 709 } 710 711 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 712 if (Revert) 713 return; 714 715 if (!End->getOperand(1).isMBB()) 716 report_fatal_error("Expected LoopEnd to target basic block"); 717 718 // TODO Maybe there's cases where the target doesn't have to be the header, 719 // but for now be safe and revert. 720 if (End->getOperand(1).getMBB() != ML.getHeader()) { 721 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 722 Revert = true; 723 return; 724 } 725 726 // The WLS and LE instructions have 12-bits for the label offset. WLS 727 // requires a positive offset, while LE uses negative. 728 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 729 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 730 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 731 Revert = true; 732 return; 733 } 734 735 if (Start->getOpcode() == ARM::t2WhileLoopStart && 736 (BBUtils->getOffsetOf(Start) > 737 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 738 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 739 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 740 Revert = true; 741 return; 742 } 743 744 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 745 if (!InsertPt) { 746 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 747 Revert = true; 748 return; 749 } else 750 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 751 752 if (!IsTailPredicationLegal()) { 753 LLVM_DEBUG(if (!VCTP) 754 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 755 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 756 return; 757 } 758 759 assert(ML.getBlocks().size() == 1 && 760 "Shouldn't be processing a loop with more than one block"); 761 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 762 LLVM_DEBUG(if (CannotTailPredicate) 763 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 764 } 765 766 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 767 if (CannotTailPredicate) 768 return false; 769 770 // Only support a single vctp. 771 if (isVCTP(MI) && VCTP) 772 return false; 773 774 // Start a new vpt block when we discover a vpt. 775 if (MI->getOpcode() == ARM::MVE_VPST) { 776 VPTBlocks.emplace_back(MI, CurrentPredicate); 777 CurrentBlock = &VPTBlocks.back(); 778 return true; 779 } else if (isVCTP(MI)) 780 VCTP = MI; 781 else if (MI->getOpcode() == ARM::MVE_VPSEL || 782 MI->getOpcode() == ARM::MVE_VPNOT) 783 return false; 784 785 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 786 // 1) It will use the VPR as a predicate operand, but doesn't have to be 787 // instead a VPT block, which means we can assert while building up 788 // the VPT block because we don't find another VPST to being a new 789 // one. 790 // 2) VPSEL still requires a VPR operand even after tail predicating, 791 // which means we can't remove it unless there is another 792 // instruction, such as vcmp, that can provide the VPR def. 793 794 bool IsUse = false; 795 bool IsDef = false; 796 const MCInstrDesc &MCID = MI->getDesc(); 797 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 798 const MachineOperand &MO = MI->getOperand(i); 799 if (!MO.isReg() || MO.getReg() != ARM::VPR) 800 continue; 801 802 if (MO.isDef()) { 803 CurrentPredicate.insert(MI); 804 IsDef = true; 805 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 806 CurrentBlock->addInst(MI, CurrentPredicate); 807 IsUse = true; 808 } else { 809 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 810 return false; 811 } 812 } 813 814 // If we find a vpr def that is not already predicated on the vctp, we've 815 // got disjoint predicates that may not be equivalent when we do the 816 // conversion. 817 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 818 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 819 return false; 820 } 821 822 uint64_t Flags = MCID.TSFlags; 823 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 824 return true; 825 826 // If we find an instruction that has been marked as not valid for tail 827 // predication, only allow the instruction if it's contained within a valid 828 // VPT block. 829 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 830 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 831 return false; 832 } 833 834 // If the instruction is already explicitly predicated, then the conversion 835 // will be fine, but ensure that all memory operations are predicated. 836 return !IsUse && MI->mayLoadOrStore() ? false : true; 837 } 838 839 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 840 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 841 if (!ST.hasLOB()) 842 return false; 843 844 MF = &mf; 845 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 846 847 MLI = &getAnalysis<MachineLoopInfo>(); 848 RDA = &getAnalysis<ReachingDefAnalysis>(); 849 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 850 MRI = &MF->getRegInfo(); 851 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 852 TRI = ST.getRegisterInfo(); 853 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 854 BBUtils->computeAllBlockSizes(); 855 BBUtils->adjustBBOffsetsAfter(&MF->front()); 856 857 bool Changed = false; 858 for (auto ML : *MLI) { 859 if (!ML->getParentLoop()) 860 Changed |= ProcessLoop(ML); 861 } 862 Changed |= RevertNonLoops(); 863 return Changed; 864 } 865 866 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 867 868 bool Changed = false; 869 870 // Process inner loops first. 871 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 872 Changed |= ProcessLoop(*I); 873 874 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 875 if (auto *Preheader = ML->getLoopPreheader()) 876 dbgs() << " - " << Preheader->getName() << "\n"; 877 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 878 dbgs() << " - " << Preheader->getName() << "\n"; 879 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 880 dbgs() << " - " << Preheader->getName() << "\n"; 881 for (auto *MBB : ML->getBlocks()) 882 dbgs() << " - " << MBB->getName() << "\n"; 883 ); 884 885 // Search the given block for a loop start instruction. If one isn't found, 886 // and there's only one predecessor block, search that one too. 887 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 888 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 889 for (auto &MI : *MBB) { 890 if (isLoopStart(MI)) 891 return &MI; 892 } 893 if (MBB->pred_size() == 1) 894 return SearchForStart(*MBB->pred_begin()); 895 return nullptr; 896 }; 897 898 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 899 // Search the preheader for the start intrinsic. 900 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 901 // with potentially multiple set.loop.iterations, so we need to enable this. 902 if (auto *Preheader = ML->getLoopPreheader()) 903 LoLoop.Start = SearchForStart(Preheader); 904 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 905 LoLoop.Start = SearchForStart(Preheader); 906 else 907 return false; 908 909 // Find the low-overhead loop components and decide whether or not to fall 910 // back to a normal loop. Also look for a vctp instructions and decide 911 // whether we can convert that predicate using tail predication. 912 for (auto *MBB : reverse(ML->getBlocks())) { 913 for (auto &MI : *MBB) { 914 if (MI.isDebugValue()) 915 continue; 916 else if (MI.getOpcode() == ARM::t2LoopDec) 917 LoLoop.Dec = &MI; 918 else if (MI.getOpcode() == ARM::t2LoopEnd) 919 LoLoop.End = &MI; 920 else if (isLoopStart(MI)) 921 LoLoop.Start = &MI; 922 else if (MI.getDesc().isCall()) { 923 // TODO: Though the call will require LE to execute again, does this 924 // mean we should revert? Always executing LE hopefully should be 925 // faster than performing a sub,cmp,br or even subs,br. 926 LoLoop.Revert = true; 927 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 928 } else { 929 // Record VPR defs and build up their corresponding vpt blocks. 930 // Check we know how to tail predicate any mve instructions. 931 LoLoop.AnalyseMVEInst(&MI); 932 } 933 } 934 } 935 936 LLVM_DEBUG(LoLoop.dump()); 937 if (!LoLoop.FoundAllComponents()) { 938 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 939 return false; 940 } 941 942 // Check that the only instruction using LoopDec is LoopEnd. 943 // TODO: Check for copy chains that really have no effect. 944 SmallPtrSet<MachineInstr*, 2> Uses; 945 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 946 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 947 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 948 LoLoop.Revert = true; 949 } 950 LoLoop.CheckLegality(BBUtils.get()); 951 Expand(LoLoop); 952 return true; 953 } 954 955 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 956 // beq that branches to the exit branch. 957 // TODO: We could also try to generate a cbz if the value in LR is also in 958 // another low register. 959 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 960 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 961 MachineBasicBlock *MBB = MI->getParent(); 962 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 963 TII->get(ARM::t2CMPri)); 964 MIB.add(MI->getOperand(0)); 965 MIB.addImm(0); 966 MIB.addImm(ARMCC::AL); 967 MIB.addReg(ARM::NoRegister); 968 969 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 970 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 971 ARM::tBcc : ARM::t2Bcc; 972 973 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 974 MIB.add(MI->getOperand(1)); // branch target 975 MIB.addImm(ARMCC::EQ); // condition code 976 MIB.addReg(ARM::CPSR); 977 MI->eraseFromParent(); 978 } 979 980 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 981 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 982 MachineBasicBlock *MBB = MI->getParent(); 983 SmallPtrSet<MachineInstr*, 1> Ignore; 984 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 985 if (I->getOpcode() == ARM::t2LoopEnd) { 986 Ignore.insert(&*I); 987 break; 988 } 989 } 990 991 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 992 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 993 994 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 995 TII->get(ARM::t2SUBri)); 996 MIB.addDef(ARM::LR); 997 MIB.add(MI->getOperand(1)); 998 MIB.add(MI->getOperand(2)); 999 MIB.addImm(ARMCC::AL); 1000 MIB.addReg(0); 1001 1002 if (SetFlags) { 1003 MIB.addReg(ARM::CPSR); 1004 MIB->getOperand(5).setIsDef(true); 1005 } else 1006 MIB.addReg(0); 1007 1008 MI->eraseFromParent(); 1009 return SetFlags; 1010 } 1011 1012 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1013 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1014 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1015 1016 MachineBasicBlock *MBB = MI->getParent(); 1017 // Create cmp 1018 if (!SkipCmp) { 1019 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1020 TII->get(ARM::t2CMPri)); 1021 MIB.addReg(ARM::LR); 1022 MIB.addImm(0); 1023 MIB.addImm(ARMCC::AL); 1024 MIB.addReg(ARM::NoRegister); 1025 } 1026 1027 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1028 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1029 ARM::tBcc : ARM::t2Bcc; 1030 1031 // Create bne 1032 MachineInstrBuilder MIB = 1033 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1034 MIB.add(MI->getOperand(1)); // branch target 1035 MIB.addImm(ARMCC::NE); // condition code 1036 MIB.addReg(ARM::CPSR); 1037 MI->eraseFromParent(); 1038 } 1039 1040 // Perform dead code elimation on the loop iteration count setup expression. 1041 // If we are tail-predicating, the number of elements to be processed is the 1042 // operand of the VCTP instruction in the vector body, see getCount(), which is 1043 // register $r3 in this example: 1044 // 1045 // $lr = big-itercount-expression 1046 // .. 1047 // t2DoLoopStart renamable $lr 1048 // vector.body: 1049 // .. 1050 // $vpr = MVE_VCTP32 renamable $r3 1051 // renamable $lr = t2LoopDec killed renamable $lr, 1 1052 // t2LoopEnd renamable $lr, %vector.body 1053 // tB %end 1054 // 1055 // What we would like achieve here is to replace the do-loop start pseudo 1056 // instruction t2DoLoopStart with: 1057 // 1058 // $lr = MVE_DLSTP_32 killed renamable $r3 1059 // 1060 // Thus, $r3 which defines the number of elements, is written to $lr, 1061 // and then we want to delete the whole chain that used to define $lr, 1062 // see the comment below how this chain could look like. 1063 // 1064 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1065 if (!LoLoop.IsTailPredicationLegal()) 1066 return; 1067 1068 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1069 1070 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1071 if (!Def) { 1072 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1073 return; 1074 } 1075 1076 // Collect and remove the users of iteration count. 1077 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1078 LoLoop.End, LoLoop.InsertPt }; 1079 SmallPtrSet<MachineInstr*, 2> Remove; 1080 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1081 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1082 else { 1083 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1084 return; 1085 } 1086 1087 // Collect the dead code and the MBBs in which they reside. 1088 RDA->collectKilledOperands(Def, Killed); 1089 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1090 for (auto *MI : Killed) 1091 BasicBlocks.insert(MI->getParent()); 1092 1093 // Collect IT blocks in all affected basic blocks. 1094 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1095 for (auto *MBB : BasicBlocks) { 1096 for (auto &MI : *MBB) { 1097 if (MI.getOpcode() != ARM::t2IT) 1098 continue; 1099 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1100 } 1101 } 1102 1103 // If we're removing all of the instructions within an IT block, then 1104 // also remove the IT instruction. 1105 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1106 for (auto *MI : Killed) { 1107 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1108 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1109 auto &CurrentBlock = ITBlocks[IT]; 1110 CurrentBlock.erase(MI); 1111 if (CurrentBlock.empty()) 1112 ModifiedITs.erase(IT); 1113 else 1114 ModifiedITs.insert(IT); 1115 } 1116 } 1117 1118 // Delete the killed instructions only if we don't have any IT blocks that 1119 // need to be modified because we need to fixup the mask. 1120 // TODO: Handle cases where IT blocks are modified. 1121 if (ModifiedITs.empty()) { 1122 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1123 for (auto *MI : Killed) 1124 dbgs() << " - " << *MI); 1125 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1126 } else 1127 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1128 } 1129 1130 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1131 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1132 // When using tail-predication, try to delete the dead code that was used to 1133 // calculate the number of loop iterations. 1134 IterationCountDCE(LoLoop); 1135 1136 MachineInstr *InsertPt = LoLoop.InsertPt; 1137 MachineInstr *Start = LoLoop.Start; 1138 MachineBasicBlock *MBB = InsertPt->getParent(); 1139 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1140 unsigned Opc = LoLoop.getStartOpcode(); 1141 MachineOperand &Count = LoLoop.getCount(); 1142 1143 MachineInstrBuilder MIB = 1144 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1145 1146 MIB.addDef(ARM::LR); 1147 MIB.add(Count); 1148 if (!IsDo) 1149 MIB.add(Start->getOperand(1)); 1150 1151 // If we're inserting at a mov lr, then remove it as it's redundant. 1152 if (InsertPt != Start) 1153 LoLoop.ToRemove.insert(InsertPt); 1154 LoLoop.ToRemove.insert(Start); 1155 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1156 return &*MIB; 1157 } 1158 1159 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1160 auto RemovePredicate = [](MachineInstr *MI) { 1161 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1162 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1163 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1164 "Expected Then predicate!"); 1165 MI->getOperand(PIdx).setImm(ARMVCC::None); 1166 MI->getOperand(PIdx+1).setReg(0); 1167 } else 1168 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1169 }; 1170 1171 // There are a few scenarios which we have to fix up: 1172 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1173 // defs. 1174 // 2) A VPT block which is only predicated by the vctp but has an internal 1175 // vpr def. 1176 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1177 // def. 1178 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1179 // all instructions within the block are predicated upon in. 1180 1181 for (auto &Block : LoLoop.getVPTBlocks()) { 1182 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1183 if (Block.HasNonUniformPredicate()) { 1184 PredicatedMI *Divergent = Block.getDivergent(); 1185 if (isVCTP(Divergent->MI)) { 1186 // The vctp will be removed, so the size of the vpt block needs to be 1187 // modified. 1188 uint64_t Size = (uint64_t)getARMVPTBlockMask(Block.size() - 1); 1189 Block.getVPST()->getOperand(0).setImm(Size); 1190 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 1191 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1192 // The VPT block has a non-uniform predicate but it's entry is guarded 1193 // only by a vctp, which means we: 1194 // - Need to remove the original vpst. 1195 // - Then need to unpredicate any following instructions, until 1196 // we come across the divergent vpr def. 1197 // - Insert a new vpst to predicate the instruction(s) that following 1198 // the divergent vpr def. 1199 // TODO: We could be producing more VPT blocks than necessary and could 1200 // fold the newly created one into a proceeding one. 1201 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1202 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1203 RemovePredicate(&*I); 1204 1205 unsigned Size = 0; 1206 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1207 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1208 MachineInstr *InsertAt = nullptr; 1209 while (I != E) { 1210 InsertAt = &*I; 1211 ++Size; 1212 ++I; 1213 } 1214 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1215 InsertAt->getDebugLoc(), 1216 TII->get(ARM::MVE_VPST)); 1217 MIB.addImm((uint64_t)getARMVPTBlockMask(Size)); 1218 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1219 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1220 LoLoop.ToRemove.insert(Block.getVPST()); 1221 } 1222 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1223 // A vpt block which is only predicated upon vctp and has no internal vpr 1224 // defs: 1225 // - Remove vpst. 1226 // - Unpredicate the remaining instructions. 1227 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1228 LoLoop.ToRemove.insert(Block.getVPST()); 1229 for (auto &PredMI : Insts) 1230 RemovePredicate(PredMI.MI); 1231 } 1232 } 1233 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1234 LoLoop.ToRemove.insert(LoLoop.VCTP); 1235 } 1236 1237 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1238 1239 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1240 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1241 MachineInstr *End = LoLoop.End; 1242 MachineBasicBlock *MBB = End->getParent(); 1243 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1244 ARM::MVE_LETP : ARM::t2LEUpdate; 1245 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1246 TII->get(Opc)); 1247 MIB.addDef(ARM::LR); 1248 MIB.add(End->getOperand(0)); 1249 MIB.add(End->getOperand(1)); 1250 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1251 LoLoop.ToRemove.insert(LoLoop.Dec); 1252 LoLoop.ToRemove.insert(End); 1253 return &*MIB; 1254 }; 1255 1256 // TODO: We should be able to automatically remove these branches before we 1257 // get here - probably by teaching analyzeBranch about the pseudo 1258 // instructions. 1259 // If there is an unconditional branch, after I, that just branches to the 1260 // next block, remove it. 1261 auto RemoveDeadBranch = [](MachineInstr *I) { 1262 MachineBasicBlock *BB = I->getParent(); 1263 MachineInstr *Terminator = &BB->instr_back(); 1264 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1265 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1266 if (BB->isLayoutSuccessor(Succ)) { 1267 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1268 Terminator->eraseFromParent(); 1269 } 1270 } 1271 }; 1272 1273 if (LoLoop.Revert) { 1274 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1275 RevertWhile(LoLoop.Start); 1276 else 1277 LoLoop.Start->eraseFromParent(); 1278 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1279 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1280 } else { 1281 LoLoop.Start = ExpandLoopStart(LoLoop); 1282 RemoveDeadBranch(LoLoop.Start); 1283 LoLoop.End = ExpandLoopEnd(LoLoop); 1284 RemoveDeadBranch(LoLoop.End); 1285 if (LoLoop.IsTailPredicationLegal()) 1286 ConvertVPTBlocks(LoLoop); 1287 for (auto *I : LoLoop.ToRemove) { 1288 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1289 I->eraseFromParent(); 1290 } 1291 } 1292 1293 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1294 DFS.ProcessLoop(); 1295 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1296 for (auto *MBB : PostOrder) { 1297 recomputeLiveIns(*MBB); 1298 // FIXME: For some reason, the live-in print order is non-deterministic for 1299 // our tests and I can't out why... So just sort them. 1300 MBB->sortUniqueLiveIns(); 1301 } 1302 1303 for (auto *MBB : reverse(PostOrder)) 1304 recomputeLivenessFlags(*MBB); 1305 1306 // We've moved, removed and inserted new instructions, so update RDA. 1307 RDA->reset(); 1308 } 1309 1310 bool ARMLowOverheadLoops::RevertNonLoops() { 1311 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1312 bool Changed = false; 1313 1314 for (auto &MBB : *MF) { 1315 SmallVector<MachineInstr*, 4> Starts; 1316 SmallVector<MachineInstr*, 4> Decs; 1317 SmallVector<MachineInstr*, 4> Ends; 1318 1319 for (auto &I : MBB) { 1320 if (isLoopStart(I)) 1321 Starts.push_back(&I); 1322 else if (I.getOpcode() == ARM::t2LoopDec) 1323 Decs.push_back(&I); 1324 else if (I.getOpcode() == ARM::t2LoopEnd) 1325 Ends.push_back(&I); 1326 } 1327 1328 if (Starts.empty() && Decs.empty() && Ends.empty()) 1329 continue; 1330 1331 Changed = true; 1332 1333 for (auto *Start : Starts) { 1334 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1335 RevertWhile(Start); 1336 else 1337 Start->eraseFromParent(); 1338 } 1339 for (auto *Dec : Decs) 1340 RevertLoopDec(Dec); 1341 1342 for (auto *End : Ends) 1343 RevertLoopEnd(End); 1344 } 1345 return Changed; 1346 } 1347 1348 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1349 return new ARMLowOverheadLoops(); 1350 } 1351