1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]);
541       }
542     }
543 
544     // If we're removing all of the instructions within an IT block, then
545     // also remove the IT instruction.
546     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
547     SmallPtrSet<MachineInstr *, 2> RemoveITs;
548     for (auto *Dead : Killed) {
549       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
550         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
551         RemoveITs.insert(IT);
552         auto &CurrentBlock = ITBlocks[IT];
553         CurrentBlock.erase(Dead);
554         if (CurrentBlock.empty())
555           ModifiedITs.erase(IT);
556         else
557           ModifiedITs.insert(IT);
558       }
559     }
560     if (!ModifiedITs.empty())
561       return false;
562     Killed.insert(RemoveITs.begin(), RemoveITs.end());
563     return true;
564   };
565 
566   SmallPtrSet<MachineInstr *, 2> Uses;
567   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
568     return false;
569 
570   if (WontCorruptITs(Uses, RDA)) {
571     ToRemove.insert(Uses.begin(), Uses.end());
572     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
573                << " - can also remove:\n";
574                for (auto *Use : Uses)
575                  dbgs() << "   - " << *Use);
576 
577     SmallPtrSet<MachineInstr*, 4> Killed;
578     RDA.collectKilledOperands(MI, Killed);
579     if (WontCorruptITs(Killed, RDA)) {
580       ToRemove.insert(Killed.begin(), Killed.end());
581       LLVM_DEBUG(for (auto *Dead : Killed)
582                    dbgs() << "   - " << *Dead);
583     }
584     return true;
585   }
586   return false;
587 }
588 
589 bool LowOverheadLoop::ValidateTailPredicate() {
590   if (!IsTailPredicationLegal()) {
591     LLVM_DEBUG(if (VCTPs.empty())
592                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
593                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
594     return false;
595   }
596 
597   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
598   assert(ML.getBlocks().size() == 1 &&
599          "Shouldn't be processing a loop with more than one block");
600 
601   if (DisableTailPredication) {
602     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
603     return false;
604   }
605 
606   if (!VPTState::isValid(RDA)) {
607     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
608     return false;
609   }
610 
611   if (!ValidateLiveOuts()) {
612     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
613     return false;
614   }
615 
616   // Check that creating a [W|D]LSTP, which will define LR with an element
617   // count instead of iteration count, won't affect any other instructions
618   // than the LoopStart and LoopDec.
619   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
620   if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) {
621     if (auto *IterCount = RDA.getMIOperand(Start, 0)) {
622       SmallPtrSet<MachineInstr *, 2> Uses;
623       RDA.getGlobalUses(IterCount, ARM::LR, Uses);
624       for (auto *Use : Uses) {
625         if (Use != Start && Use != Dec) {
626           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
627           return false;
628         }
629       }
630     }
631   }
632 
633   // For tail predication, we need to provide the number of elements, instead
634   // of the iteration count, to the loop start instruction. The number of
635   // elements is provided to the vctp instruction, so we need to check that
636   // we can use this register at InsertPt.
637   MachineInstr *VCTP = VCTPs.back();
638   TPNumElements = VCTP->getOperand(1);
639   Register NumElements = TPNumElements.getReg();
640 
641   // If the register is defined within loop, then we can't perform TP.
642   // TODO: Check whether this is just a mov of a register that would be
643   // available.
644   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
645     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
646     return false;
647   }
648 
649   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
650   // world the [w|d]lstp instruction would be last instruction in the preheader
651   // and so it would only affect instructions within the loop body. But due to
652   // scheduling, and/or the logic in this pass, the insertion point can
653   // be moved earlier. So if the Loop Start isn't the last instruction in the
654   // preheader, and if the initial element count is smaller than the vector
655   // width, the Loop Start instruction will immediately generate one or more
656   // false lane mask which can, incorrectly, affect the proceeding MVE
657   // instructions in the preheader.
658   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
659                                       MachineBasicBlock::iterator E) {
660     for (; I != E; ++I) {
661       if (shouldInspect(*I)) {
662         LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP"
663                    << " insertion: " << *I);
664         return true;
665       }
666     }
667     return false;
668   };
669 
670   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
671     return false;
672 
673   // Especially in the case of while loops, InsertBB may not be the
674   // preheader, so we need to check that the register isn't redefined
675   // before entering the loop.
676   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
677                                       Register NumElements) {
678     // NumElements is redefined in this block.
679     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
680       return true;
681 
682     // Don't continue searching up through multiple predecessors.
683     if (MBB->pred_size() > 1)
684       return true;
685 
686     return false;
687   };
688 
689   // Search backwards for a def, until we get to InsertBB.
690   MachineBasicBlock *MBB = Preheader;
691   while (MBB && MBB != StartInsertBB) {
692     if (CannotProvideElements(MBB, NumElements)) {
693       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
694       return false;
695     }
696     MBB = *MBB->pred_begin();
697   }
698 
699   // Check that the value change of the element count is what we expect and
700   // that the predication will be equivalent. For this we need:
701   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
702   // and we can also allow register copies within the chain too.
703   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
704     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
705   };
706 
707   MBB = VCTP->getParent();
708   // Remove modifications to the element count since they have no purpose in a
709   // tail predicated loop. Explicitly refer to the vctp operand no matter which
710   // register NumElements has been assigned to, since that is what the
711   // modifications will be using
712   if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(),
713                                              VCTP->getOperand(1).getReg())) {
714     SmallPtrSet<MachineInstr*, 2> ElementChain;
715     SmallPtrSet<MachineInstr*, 2> Ignore;
716     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
717 
718     Ignore.insert(VCTPs.begin(), VCTPs.end());
719 
720     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
721       bool FoundSub = false;
722 
723       for (auto *MI : ElementChain) {
724         if (isMovRegOpcode(MI->getOpcode()))
725           continue;
726 
727         if (isSubImmOpcode(MI->getOpcode())) {
728           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
729             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
730                        " count: " << *MI);
731             return false;
732           }
733           FoundSub = true;
734         } else {
735           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
736                      " count: " << *MI);
737           return false;
738         }
739       }
740       ToRemove.insert(ElementChain.begin(), ElementChain.end());
741     }
742   }
743   return true;
744 }
745 
746 static bool isRegInClass(const MachineOperand &MO,
747                          const TargetRegisterClass *Class) {
748   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
749 }
750 
751 // MVE 'narrowing' operate on half a lane, reading from half and writing
752 // to half, which are referred to has the top and bottom half. The other
753 // half retains its previous value.
754 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
755   const MCInstrDesc &MCID = MI.getDesc();
756   uint64_t Flags = MCID.TSFlags;
757   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
758 }
759 
760 // Some MVE instructions read from the top/bottom halves of their operand(s)
761 // and generate a vector result with result elements that are double the
762 // width of the input.
763 static bool producesDoubleWidthResult(const MachineInstr &MI) {
764   const MCInstrDesc &MCID = MI.getDesc();
765   uint64_t Flags = MCID.TSFlags;
766   return (Flags & ARMII::DoubleWidthResult) != 0;
767 }
768 
769 static bool isHorizontalReduction(const MachineInstr &MI) {
770   const MCInstrDesc &MCID = MI.getDesc();
771   uint64_t Flags = MCID.TSFlags;
772   return (Flags & ARMII::HorizontalReduction) != 0;
773 }
774 
775 // Can this instruction generate a non-zero result when given only zeroed
776 // operands? This allows us to know that, given operands with false bytes
777 // zeroed by masked loads, that the result will also contain zeros in those
778 // bytes.
779 static bool canGenerateNonZeros(const MachineInstr &MI) {
780 
781   // Check for instructions which can write into a larger element size,
782   // possibly writing into a previous zero'd lane.
783   if (producesDoubleWidthResult(MI))
784     return true;
785 
786   switch (MI.getOpcode()) {
787   default:
788     break;
789   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
790   // fp16 -> fp32 vector conversions.
791   // Instructions that perform a NOT will generate 1s from 0s.
792   case ARM::MVE_VMVN:
793   case ARM::MVE_VORN:
794   // Count leading zeros will do just that!
795   case ARM::MVE_VCLZs8:
796   case ARM::MVE_VCLZs16:
797   case ARM::MVE_VCLZs32:
798     return true;
799   }
800   return false;
801 }
802 
803 // Look at its register uses to see if it only can only receive zeros
804 // into its false lanes which would then produce zeros. Also check that
805 // the output register is also defined by an FalseLanesZero instruction
806 // so that if tail-predication happens, the lanes that aren't updated will
807 // still be zeros.
808 static bool producesFalseLanesZero(MachineInstr &MI,
809                                    const TargetRegisterClass *QPRs,
810                                    const ReachingDefAnalysis &RDA,
811                                    InstSet &FalseLanesZero) {
812   if (canGenerateNonZeros(MI))
813     return false;
814 
815   bool isPredicated = isVectorPredicated(&MI);
816   // Predicated loads will write zeros to the falsely predicated bytes of the
817   // destination register.
818   if (MI.mayLoad())
819     return isPredicated;
820 
821   auto IsZeroInit = [](MachineInstr *Def) {
822     return !isVectorPredicated(Def) &&
823            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
824            Def->getOperand(1).getImm() == 0;
825   };
826 
827   bool AllowScalars = isHorizontalReduction(MI);
828   for (auto &MO : MI.operands()) {
829     if (!MO.isReg() || !MO.getReg())
830       continue;
831     if (!isRegInClass(MO, QPRs) && AllowScalars)
832       continue;
833 
834     // Check that this instruction will produce zeros in its false lanes:
835     // - If it only consumes false lanes zero or constant 0 (vmov #0)
836     // - If it's predicated, it only matters that it's def register already has
837     //   false lane zeros, so we can ignore the uses.
838     SmallPtrSet<MachineInstr *, 2> Defs;
839     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
840     for (auto *Def : Defs) {
841       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
842         continue;
843       if (MO.isUse() && isPredicated)
844         continue;
845       return false;
846     }
847   }
848   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
849   return true;
850 }
851 
852 bool LowOverheadLoop::ValidateLiveOuts() {
853   // We want to find out if the tail-predicated version of this loop will
854   // produce the same values as the loop in its original form. For this to
855   // be true, the newly inserted implicit predication must not change the
856   // the (observable) results.
857   // We're doing this because many instructions in the loop will not be
858   // predicated and so the conversion from VPT predication to tail-predication
859   // can result in different values being produced; due to the tail-predication
860   // preventing many instructions from updating their falsely predicated
861   // lanes. This analysis assumes that all the instructions perform lane-wise
862   // operations and don't perform any exchanges.
863   // A masked load, whether through VPT or tail predication, will write zeros
864   // to any of the falsely predicated bytes. So, from the loads, we know that
865   // the false lanes are zeroed and here we're trying to track that those false
866   // lanes remain zero, or where they change, the differences are masked away
867   // by their user(s).
868   // All MVE stores have to be predicated, so we know that any predicate load
869   // operands, or stored results are equivalent already. Other explicitly
870   // predicated instructions will perform the same operation in the original
871   // loop and the tail-predicated form too. Because of this, we can insert
872   // loads, stores and other predicated instructions into our Predicated
873   // set and build from there.
874   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
875   SetVector<MachineInstr *> FalseLanesUnknown;
876   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
877   SmallPtrSet<MachineInstr *, 4> Predicated;
878   MachineBasicBlock *Header = ML.getHeader();
879 
880   for (auto &MI : *Header) {
881     if (!shouldInspect(MI))
882       continue;
883 
884     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
885       continue;
886 
887     bool isPredicated = isVectorPredicated(&MI);
888     bool retainsOrReduces =
889       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
890 
891     if (isPredicated)
892       Predicated.insert(&MI);
893     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
894       FalseLanesZero.insert(&MI);
895     else if (MI.getNumDefs() == 0)
896       continue;
897     else if (!isPredicated && retainsOrReduces)
898       return false;
899     else if (!isPredicated)
900       FalseLanesUnknown.insert(&MI);
901   }
902 
903   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
904                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
905     SmallPtrSet<MachineInstr *, 2> Uses;
906     RDA.getGlobalUses(MI, MO.getReg(), Uses);
907     for (auto *Use : Uses) {
908       if (Use != MI && !Predicated.count(Use))
909         return false;
910     }
911     return true;
912   };
913 
914   // Visit the unknowns in reverse so that we can start at the values being
915   // stored and then we can work towards the leaves, hopefully adding more
916   // instructions to Predicated. Successfully terminating the loop means that
917   // all the unknown values have to found to be masked by predicated user(s).
918   // For any unpredicated values, we store them in NonPredicated so that we
919   // can later check whether these form a reduction.
920   SmallPtrSet<MachineInstr*, 2> NonPredicated;
921   for (auto *MI : reverse(FalseLanesUnknown)) {
922     for (auto &MO : MI->operands()) {
923       if (!isRegInClass(MO, QPRs) || !MO.isDef())
924         continue;
925       if (!HasPredicatedUsers(MI, MO, Predicated)) {
926         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
927                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
928         NonPredicated.insert(MI);
929         break;
930       }
931     }
932     // Any unknown false lanes have been masked away by the user(s).
933     if (!NonPredicated.contains(MI))
934       Predicated.insert(MI);
935   }
936 
937   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
938   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
939   ML.getExitBlocks(ExitBlocks);
940   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
941   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
942   MachineBasicBlock *ExitBB = ExitBlocks.front();
943   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
944     // TODO: Instead of blocking predication, we could move the vctp to the exit
945     // block and calculate it's operand there in or the preheader.
946     if (RegMask.PhysReg == ARM::VPR)
947       return false;
948     // Check Q-regs that are live in the exit blocks. We don't collect scalars
949     // because they won't be affected by lane predication.
950     if (QPRs->contains(RegMask.PhysReg))
951       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
952         LiveOutMIs.insert(MI);
953   }
954 
955   // We've already validated that any VPT predication within the loop will be
956   // equivalent when we perform the predication transformation; so we know that
957   // any VPT predicated instruction is predicated upon VCTP. Any live-out
958   // instruction needs to be predicated, so check this here. The instructions
959   // in NonPredicated have been found to be a reduction that we can ensure its
960   // legality.
961   for (auto *MI : LiveOutMIs) {
962     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
963       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
964       return false;
965     }
966   }
967 
968   return true;
969 }
970 
971 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
972   if (Revert)
973     return;
974 
975   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
976   // can only jump back.
977   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
978                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
979     if (!End->getOperand(1).isMBB())
980       report_fatal_error("Expected LoopEnd to target basic block");
981 
982     // TODO Maybe there's cases where the target doesn't have to be the header,
983     // but for now be safe and revert.
984     if (End->getOperand(1).getMBB() != ML.getHeader()) {
985       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
986       return false;
987     }
988 
989     // The WLS and LE instructions have 12-bits for the label offset. WLS
990     // requires a positive offset, while LE uses negative.
991     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
992         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
993       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
994       return false;
995     }
996 
997     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
998         (BBUtils->getOffsetOf(Start) >
999          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1000          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1001       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1002       return false;
1003     }
1004     return true;
1005   };
1006 
1007   // Find a suitable position to insert the loop start instruction. It needs to
1008   // be able to safely define LR.
1009   auto FindStartInsertionPoint = [](MachineInstr *Start,
1010                                     MachineInstr *Dec,
1011                                     MachineBasicBlock::iterator &InsertPt,
1012                                     MachineBasicBlock *&InsertBB,
1013                                     ReachingDefAnalysis &RDA,
1014                                     InstSet &ToRemove) {
1015     // We can define LR because LR already contains the same value.
1016     if (Start->getOperand(0).getReg() == ARM::LR) {
1017       InsertPt = MachineBasicBlock::iterator(Start);
1018       InsertBB = Start->getParent();
1019       return true;
1020     }
1021 
1022     unsigned CountReg = Start->getOperand(0).getReg();
1023     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1024       return MI->getOpcode() == ARM::tMOVr &&
1025              MI->getOperand(0).getReg() == ARM::LR &&
1026              MI->getOperand(1).getReg() == CountReg &&
1027              MI->getOperand(2).getImm() == ARMCC::AL;
1028     };
1029 
1030     // Find an insertion point:
1031     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1032     //   writes to Count before Start, we can insert at start.
1033     if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) {
1034       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1035         SmallPtrSet<MachineInstr *, 2> Ignore = { Dec };
1036         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1037           return false;
1038         InsertPt = MachineBasicBlock::iterator(Start);
1039         InsertBB = Start->getParent();
1040         return true;
1041       }
1042     }
1043 
1044     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1045     //   to Count after Start, we can insert at that mov (which will now be
1046     //   dead).
1047     MachineBasicBlock *MBB = Start->getParent();
1048     if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) {
1049       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1050         SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec };
1051         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1052           return false;
1053         InsertPt = MachineBasicBlock::iterator(LRDef);
1054         InsertBB = LRDef->getParent();
1055         return true;
1056       }
1057     }
1058 
1059     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1060     // just define LR anyway?
1061     if (!RDA.isSafeToDefRegAt(Start, ARM::LR))
1062       return false;
1063 
1064     InsertPt = MachineBasicBlock::iterator(Start);
1065     InsertBB = Start->getParent();
1066     return true;
1067   };
1068 
1069   // We know that we can define safely LR at InsertPt, but maybe we could
1070   // push the insertion point to later on in the basic block.
1071   auto TryAdjustInsertionPoint = [](MachineBasicBlock::iterator &InsertPt,
1072                                     MachineInstr *Start,
1073                                     ReachingDefAnalysis &RDA) {
1074 
1075     MachineBasicBlock *MBB = InsertPt->getParent();
1076     MachineBasicBlock::iterator FirstNonTerminator =
1077       MBB->getFirstTerminator();
1078     unsigned CountReg = Start->getOperand(0).getReg();
1079 
1080     // Get the latest possible insertion point and check whether the semantics
1081     // will be maintained if Start was inserted there.
1082     if (FirstNonTerminator == MBB->end()) {
1083       if (RDA.isReachingDefLiveOut(Start, CountReg) &&
1084           RDA.isReachingDefLiveOut(Start, ARM::LR))
1085         InsertPt = FirstNonTerminator;
1086     } else if (RDA.hasSameReachingDef(Start, &*FirstNonTerminator, CountReg) &&
1087                RDA.hasSameReachingDef(Start, &*FirstNonTerminator, ARM::LR))
1088       InsertPt = FirstNonTerminator;
1089   };
1090 
1091   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1092                                ToRemove)) {
1093     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1094     Revert = true;
1095     return;
1096   }
1097   TryAdjustInsertionPoint(StartInsertPt, Start, RDA);
1098   LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1099                dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1100              else
1101                dbgs() << "ARM Loops: Will insert LoopStart at "
1102                << *StartInsertPt
1103             );
1104 
1105   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1106   CannotTailPredicate = !ValidateTailPredicate();
1107 }
1108 
1109 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1110   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1111   if (VCTPs.empty()) {
1112     VCTPs.push_back(MI);
1113     return true;
1114   }
1115 
1116   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1117   // If it does, store it in the VCTPs set, else refuse it.
1118   MachineInstr *Prev = VCTPs.back();
1119   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1120       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) {
1121     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1122                          "definition from the main VCTP");
1123     return false;
1124   }
1125   VCTPs.push_back(MI);
1126   return true;
1127 }
1128 
1129 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1130   if (CannotTailPredicate)
1131     return false;
1132 
1133   if (!shouldInspect(*MI))
1134     return true;
1135 
1136   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1137       MI->getOpcode() == ARM::MVE_VPNOT) {
1138     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1139     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1140     //    instead a VPT block, which means we can assert while building up
1141     //    the VPT block because we don't find another VPT or VPST to being a new
1142     //    one.
1143     // 2) VPSEL still requires a VPR operand even after tail predicating,
1144     //    which means we can't remove it unless there is another
1145     //    instruction, such as vcmp, that can provide the VPR def.
1146     return false;
1147   }
1148 
1149   // Record all VCTPs and check that they're equivalent to one another.
1150   if (isVCTP(MI) && !AddVCTP(MI))
1151     return false;
1152 
1153   // Inspect uses first so that any instructions that alter the VPR don't
1154   // alter the predicate upon themselves.
1155   const MCInstrDesc &MCID = MI->getDesc();
1156   bool IsUse = false;
1157   unsigned LastOpIdx = MI->getNumOperands() - 1;
1158   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1159     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1160     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1161       continue;
1162 
1163     if (ARM::isVpred(Op.value().OperandType)) {
1164       VPTState::addInst(MI);
1165       IsUse = true;
1166     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1167       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1168       return false;
1169     }
1170   }
1171 
1172   // If we find an instruction that has been marked as not valid for tail
1173   // predication, only allow the instruction if it's contained within a valid
1174   // VPT block.
1175   bool RequiresExplicitPredication =
1176     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1177   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1178     LLVM_DEBUG(if (!IsUse)
1179                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1180     return IsUse;
1181   }
1182 
1183   // If the instruction is already explicitly predicated, then the conversion
1184   // will be fine, but ensure that all store operations are predicated.
1185   if (MI->mayStore())
1186     return IsUse;
1187 
1188   // If this instruction defines the VPR, update the predicate for the
1189   // proceeding instructions.
1190   if (isVectorPredicate(MI)) {
1191     // Clear the existing predicate when we're not in VPT Active state,
1192     // otherwise we add to it.
1193     if (!isVectorPredicated(MI))
1194       VPTState::resetPredicate(MI);
1195     else
1196       VPTState::addPredicate(MI);
1197   }
1198 
1199   // Finally once the predicate has been modified, we can start a new VPT
1200   // block if necessary.
1201   if (isVPTOpcode(MI->getOpcode()))
1202     VPTState::CreateVPTBlock(MI);
1203 
1204   return true;
1205 }
1206 
1207 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1208   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1209   if (!ST.hasLOB())
1210     return false;
1211 
1212   MF = &mf;
1213   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1214 
1215   MLI = &getAnalysis<MachineLoopInfo>();
1216   RDA = &getAnalysis<ReachingDefAnalysis>();
1217   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1218   MRI = &MF->getRegInfo();
1219   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1220   TRI = ST.getRegisterInfo();
1221   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1222   BBUtils->computeAllBlockSizes();
1223   BBUtils->adjustBBOffsetsAfter(&MF->front());
1224 
1225   bool Changed = false;
1226   for (auto ML : *MLI) {
1227     if (ML->isOutermost())
1228       Changed |= ProcessLoop(ML);
1229   }
1230   Changed |= RevertNonLoops();
1231   return Changed;
1232 }
1233 
1234 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1235 
1236   bool Changed = false;
1237 
1238   // Process inner loops first.
1239   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1240     Changed |= ProcessLoop(*I);
1241 
1242   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1243              if (auto *Preheader = ML->getLoopPreheader())
1244                dbgs() << " - " << Preheader->getName() << "\n";
1245              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1246                dbgs() << " - " << Preheader->getName() << "\n";
1247              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1248                dbgs() << " - " << Preheader->getName() << "\n";
1249              for (auto *MBB : ML->getBlocks())
1250                dbgs() << " - " << MBB->getName() << "\n";
1251             );
1252 
1253   // Search the given block for a loop start instruction. If one isn't found,
1254   // and there's only one predecessor block, search that one too.
1255   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1256     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1257     for (auto &MI : *MBB) {
1258       if (isLoopStart(MI))
1259         return &MI;
1260     }
1261     if (MBB->pred_size() == 1)
1262       return SearchForStart(*MBB->pred_begin());
1263     return nullptr;
1264   };
1265 
1266   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1267   // Search the preheader for the start intrinsic.
1268   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1269   // with potentially multiple set.loop.iterations, so we need to enable this.
1270   if (LoLoop.Preheader)
1271     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1272   else
1273     return false;
1274 
1275   // Find the low-overhead loop components and decide whether or not to fall
1276   // back to a normal loop. Also look for a vctp instructions and decide
1277   // whether we can convert that predicate using tail predication.
1278   for (auto *MBB : reverse(ML->getBlocks())) {
1279     for (auto &MI : *MBB) {
1280       if (MI.isDebugValue())
1281         continue;
1282       else if (MI.getOpcode() == ARM::t2LoopDec)
1283         LoLoop.Dec = &MI;
1284       else if (MI.getOpcode() == ARM::t2LoopEnd)
1285         LoLoop.End = &MI;
1286       else if (isLoopStart(MI))
1287         LoLoop.Start = &MI;
1288       else if (MI.getDesc().isCall()) {
1289         // TODO: Though the call will require LE to execute again, does this
1290         // mean we should revert? Always executing LE hopefully should be
1291         // faster than performing a sub,cmp,br or even subs,br.
1292         LoLoop.Revert = true;
1293         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1294       } else {
1295         // Record VPR defs and build up their corresponding vpt blocks.
1296         // Check we know how to tail predicate any mve instructions.
1297         LoLoop.AnalyseMVEInst(&MI);
1298       }
1299     }
1300   }
1301 
1302   LLVM_DEBUG(LoLoop.dump());
1303   if (!LoLoop.FoundAllComponents()) {
1304     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1305     return false;
1306   }
1307 
1308   // Check that the only instruction using LoopDec is LoopEnd.
1309   // TODO: Check for copy chains that really have no effect.
1310   SmallPtrSet<MachineInstr*, 2> Uses;
1311   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
1312   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1313     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1314     LoLoop.Revert = true;
1315   }
1316   LoLoop.Validate(BBUtils.get());
1317   Expand(LoLoop);
1318   return true;
1319 }
1320 
1321 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1322 // beq that branches to the exit branch.
1323 // TODO: We could also try to generate a cbz if the value in LR is also in
1324 // another low register.
1325 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1326   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1327   MachineBasicBlock *MBB = MI->getParent();
1328   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1329                                     TII->get(ARM::t2CMPri));
1330   MIB.add(MI->getOperand(0));
1331   MIB.addImm(0);
1332   MIB.addImm(ARMCC::AL);
1333   MIB.addReg(ARM::NoRegister);
1334 
1335   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1336   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1337     ARM::tBcc : ARM::t2Bcc;
1338 
1339   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1340   MIB.add(MI->getOperand(1));   // branch target
1341   MIB.addImm(ARMCC::EQ);        // condition code
1342   MIB.addReg(ARM::CPSR);
1343   MI->eraseFromParent();
1344 }
1345 
1346 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1347   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1348   MachineBasicBlock *MBB = MI->getParent();
1349   SmallPtrSet<MachineInstr*, 1> Ignore;
1350   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1351     if (I->getOpcode() == ARM::t2LoopEnd) {
1352       Ignore.insert(&*I);
1353       break;
1354     }
1355   }
1356 
1357   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1358   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
1359 
1360   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1361                                     TII->get(ARM::t2SUBri));
1362   MIB.addDef(ARM::LR);
1363   MIB.add(MI->getOperand(1));
1364   MIB.add(MI->getOperand(2));
1365   MIB.addImm(ARMCC::AL);
1366   MIB.addReg(0);
1367 
1368   if (SetFlags) {
1369     MIB.addReg(ARM::CPSR);
1370     MIB->getOperand(5).setIsDef(true);
1371   } else
1372     MIB.addReg(0);
1373 
1374   MI->eraseFromParent();
1375   return SetFlags;
1376 }
1377 
1378 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1379 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1380   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1381 
1382   MachineBasicBlock *MBB = MI->getParent();
1383   // Create cmp
1384   if (!SkipCmp) {
1385     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1386                                       TII->get(ARM::t2CMPri));
1387     MIB.addReg(ARM::LR);
1388     MIB.addImm(0);
1389     MIB.addImm(ARMCC::AL);
1390     MIB.addReg(ARM::NoRegister);
1391   }
1392 
1393   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1394   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1395     ARM::tBcc : ARM::t2Bcc;
1396 
1397   // Create bne
1398   MachineInstrBuilder MIB =
1399     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1400   MIB.add(MI->getOperand(1));   // branch target
1401   MIB.addImm(ARMCC::NE);        // condition code
1402   MIB.addReg(ARM::CPSR);
1403   MI->eraseFromParent();
1404 }
1405 
1406 // Perform dead code elimation on the loop iteration count setup expression.
1407 // If we are tail-predicating, the number of elements to be processed is the
1408 // operand of the VCTP instruction in the vector body, see getCount(), which is
1409 // register $r3 in this example:
1410 //
1411 //   $lr = big-itercount-expression
1412 //   ..
1413 //   t2DoLoopStart renamable $lr
1414 //   vector.body:
1415 //     ..
1416 //     $vpr = MVE_VCTP32 renamable $r3
1417 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1418 //     t2LoopEnd renamable $lr, %vector.body
1419 //     tB %end
1420 //
1421 // What we would like achieve here is to replace the do-loop start pseudo
1422 // instruction t2DoLoopStart with:
1423 //
1424 //    $lr = MVE_DLSTP_32 killed renamable $r3
1425 //
1426 // Thus, $r3 which defines the number of elements, is written to $lr,
1427 // and then we want to delete the whole chain that used to define $lr,
1428 // see the comment below how this chain could look like.
1429 //
1430 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1431   if (!LoLoop.IsTailPredicationLegal())
1432     return;
1433 
1434   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1435 
1436   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1437   if (!Def) {
1438     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1439     return;
1440   }
1441 
1442   // Collect and remove the users of iteration count.
1443   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1444                                             LoLoop.End };
1445   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1446     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1447 }
1448 
1449 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1450   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1451   // When using tail-predication, try to delete the dead code that was used to
1452   // calculate the number of loop iterations.
1453   IterationCountDCE(LoLoop);
1454 
1455   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1456   MachineInstr *Start = LoLoop.Start;
1457   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1458   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1459   unsigned Opc = LoLoop.getStartOpcode();
1460   MachineOperand &Count = LoLoop.getLoopStartOperand();
1461 
1462   MachineInstrBuilder MIB =
1463     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1464 
1465   MIB.addDef(ARM::LR);
1466   MIB.add(Count);
1467   if (!IsDo)
1468     MIB.add(Start->getOperand(1));
1469 
1470   LoLoop.ToRemove.insert(Start);
1471   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1472   return &*MIB;
1473 }
1474 
1475 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1476   auto RemovePredicate = [](MachineInstr *MI) {
1477     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1478     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1479       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1480              "Expected Then predicate!");
1481       MI->getOperand(PIdx).setImm(ARMVCC::None);
1482       MI->getOperand(PIdx+1).setReg(0);
1483     } else
1484       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1485   };
1486 
1487   for (auto &Block : LoLoop.getVPTBlocks()) {
1488     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1489 
1490     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1491       if (VPTState::hasUniformPredicate(Block)) {
1492         // A vpt block starting with VPST, is only predicated upon vctp and has no
1493         // internal vpr defs:
1494         // - Remove vpst.
1495         // - Unpredicate the remaining instructions.
1496         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1497         LoLoop.ToRemove.insert(Insts.front());
1498         for (unsigned i = 1; i < Insts.size(); ++i)
1499           RemovePredicate(Insts[i]);
1500       } else {
1501         // The VPT block has a non-uniform predicate but it uses a vpst and its
1502         // entry is guarded only by a vctp, which means we:
1503         // - Need to remove the original vpst.
1504         // - Then need to unpredicate any following instructions, until
1505         //   we come across the divergent vpr def.
1506         // - Insert a new vpst to predicate the instruction(s) that following
1507         //   the divergent vpr def.
1508         // TODO: We could be producing more VPT blocks than necessary and could
1509         // fold the newly created one into a proceeding one.
1510         MachineInstr *Divergent = VPTState::getDivergent(Block);
1511         for (auto I = ++MachineBasicBlock::iterator(Insts.front()),
1512              E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I)
1513           RemovePredicate(&*I);
1514 
1515         // Check if the instruction defining vpr is a vcmp so it can be combined
1516         // with the VPST This should be the divergent instruction
1517         MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0
1518           ? Divergent
1519           : nullptr;
1520 
1521         MachineInstrBuilder MIB;
1522         if (VCMP) {
1523           // Combine the VPST and VCMP into a VPT
1524           MIB = BuildMI(*Divergent->getParent(), Divergent,
1525                         Divergent->getDebugLoc(),
1526                         TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1527           MIB.addImm(ARMVCC::Then);
1528           // Register one
1529           MIB.add(VCMP->getOperand(1));
1530           // Register two
1531           MIB.add(VCMP->getOperand(2));
1532           // The comparison code, e.g. ge, eq, lt
1533           MIB.add(VCMP->getOperand(3));
1534           LLVM_DEBUG(dbgs()
1535                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1536           LoLoop.ToRemove.insert(VCMP);
1537         } else {
1538           // Create a VPST (with a null mask for now, we'll recompute it later)
1539           // or a VPT in case there was a VCMP right before it
1540           MIB = BuildMI(*Divergent->getParent(), Divergent,
1541                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1542           MIB.addImm(0);
1543           LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1544         }
1545         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1546         LoLoop.ToRemove.insert(Insts.front());
1547         LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1548       }
1549     } else if (Block.containsVCTP()) {
1550       // The vctp will be removed, so the block mask of the vp(s)t will need
1551       // to be recomputed.
1552       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1553     }
1554   }
1555 
1556   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1557 }
1558 
1559 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1560 
1561   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1562   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1563     MachineInstr *End = LoLoop.End;
1564     MachineBasicBlock *MBB = End->getParent();
1565     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1566       ARM::MVE_LETP : ARM::t2LEUpdate;
1567     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1568                                       TII->get(Opc));
1569     MIB.addDef(ARM::LR);
1570     MIB.add(End->getOperand(0));
1571     MIB.add(End->getOperand(1));
1572     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1573     LoLoop.ToRemove.insert(LoLoop.Dec);
1574     LoLoop.ToRemove.insert(End);
1575     return &*MIB;
1576   };
1577 
1578   // TODO: We should be able to automatically remove these branches before we
1579   // get here - probably by teaching analyzeBranch about the pseudo
1580   // instructions.
1581   // If there is an unconditional branch, after I, that just branches to the
1582   // next block, remove it.
1583   auto RemoveDeadBranch = [](MachineInstr *I) {
1584     MachineBasicBlock *BB = I->getParent();
1585     MachineInstr *Terminator = &BB->instr_back();
1586     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1587       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1588       if (BB->isLayoutSuccessor(Succ)) {
1589         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1590         Terminator->eraseFromParent();
1591       }
1592     }
1593   };
1594 
1595   if (LoLoop.Revert) {
1596     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1597       RevertWhile(LoLoop.Start);
1598     else
1599       LoLoop.Start->eraseFromParent();
1600     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1601     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1602   } else {
1603     LoLoop.Start = ExpandLoopStart(LoLoop);
1604     RemoveDeadBranch(LoLoop.Start);
1605     LoLoop.End = ExpandLoopEnd(LoLoop);
1606     RemoveDeadBranch(LoLoop.End);
1607     if (LoLoop.IsTailPredicationLegal())
1608       ConvertVPTBlocks(LoLoop);
1609     for (auto *I : LoLoop.ToRemove) {
1610       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1611       I->eraseFromParent();
1612     }
1613     for (auto *I : LoLoop.BlockMasksToRecompute) {
1614       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1615       recomputeVPTBlockMask(*I);
1616       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1617     }
1618   }
1619 
1620   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1621   DFS.ProcessLoop();
1622   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1623   for (auto *MBB : PostOrder) {
1624     recomputeLiveIns(*MBB);
1625     // FIXME: For some reason, the live-in print order is non-deterministic for
1626     // our tests and I can't out why... So just sort them.
1627     MBB->sortUniqueLiveIns();
1628   }
1629 
1630   for (auto *MBB : reverse(PostOrder))
1631     recomputeLivenessFlags(*MBB);
1632 
1633   // We've moved, removed and inserted new instructions, so update RDA.
1634   RDA->reset();
1635 }
1636 
1637 bool ARMLowOverheadLoops::RevertNonLoops() {
1638   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1639   bool Changed = false;
1640 
1641   for (auto &MBB : *MF) {
1642     SmallVector<MachineInstr*, 4> Starts;
1643     SmallVector<MachineInstr*, 4> Decs;
1644     SmallVector<MachineInstr*, 4> Ends;
1645 
1646     for (auto &I : MBB) {
1647       if (isLoopStart(I))
1648         Starts.push_back(&I);
1649       else if (I.getOpcode() == ARM::t2LoopDec)
1650         Decs.push_back(&I);
1651       else if (I.getOpcode() == ARM::t2LoopEnd)
1652         Ends.push_back(&I);
1653     }
1654 
1655     if (Starts.empty() && Decs.empty() && Ends.empty())
1656       continue;
1657 
1658     Changed = true;
1659 
1660     for (auto *Start : Starts) {
1661       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1662         RevertWhile(Start);
1663       else
1664         Start->eraseFromParent();
1665     }
1666     for (auto *Dec : Decs)
1667       RevertLoopDec(Dec);
1668 
1669     for (auto *End : Ends)
1670       RevertLoopEnd(End);
1671   }
1672   return Changed;
1673 }
1674 
1675 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1676   return new ARMLowOverheadLoops();
1677 }
1678