1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]);
541       }
542     }
543 
544     // If we're removing all of the instructions within an IT block, then
545     // also remove the IT instruction.
546     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
547     SmallPtrSet<MachineInstr *, 2> RemoveITs;
548     for (auto *Dead : Killed) {
549       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
550         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
551         RemoveITs.insert(IT);
552         auto &CurrentBlock = ITBlocks[IT];
553         CurrentBlock.erase(Dead);
554         if (CurrentBlock.empty())
555           ModifiedITs.erase(IT);
556         else
557           ModifiedITs.insert(IT);
558       }
559     }
560     if (!ModifiedITs.empty())
561       return false;
562     Killed.insert(RemoveITs.begin(), RemoveITs.end());
563     return true;
564   };
565 
566   SmallPtrSet<MachineInstr *, 2> Uses;
567   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
568     return false;
569 
570   if (WontCorruptITs(Uses, RDA)) {
571     ToRemove.insert(Uses.begin(), Uses.end());
572     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
573                << " - can also remove:\n";
574                for (auto *Use : Uses)
575                  dbgs() << "   - " << *Use);
576 
577     SmallPtrSet<MachineInstr*, 4> Killed;
578     RDA.collectKilledOperands(MI, Killed);
579     if (WontCorruptITs(Killed, RDA)) {
580       ToRemove.insert(Killed.begin(), Killed.end());
581       LLVM_DEBUG(for (auto *Dead : Killed)
582                    dbgs() << "   - " << *Dead);
583     }
584     return true;
585   }
586   return false;
587 }
588 
589 bool LowOverheadLoop::ValidateTailPredicate() {
590   if (!IsTailPredicationLegal()) {
591     LLVM_DEBUG(if (VCTPs.empty())
592                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
593                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
594     return false;
595   }
596 
597   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
598   assert(ML.getBlocks().size() == 1 &&
599          "Shouldn't be processing a loop with more than one block");
600 
601   if (DisableTailPredication) {
602     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
603     return false;
604   }
605 
606   if (!VPTState::isValid(RDA)) {
607     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
608     return false;
609   }
610 
611   if (!ValidateLiveOuts()) {
612     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
613     return false;
614   }
615 
616   // Check that creating a [W|D]LSTP, which will define LR with an element
617   // count instead of iteration count, won't affect any other instructions
618   // than the LoopStart and LoopDec.
619   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
620   if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) {
621     if (auto *IterCount = RDA.getMIOperand(Start, 0)) {
622       SmallPtrSet<MachineInstr *, 2> Uses;
623       RDA.getGlobalUses(IterCount, ARM::LR, Uses);
624       for (auto *Use : Uses) {
625         if (Use != Start && Use != Dec) {
626           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
627           return false;
628         }
629       }
630     }
631   }
632 
633   // For tail predication, we need to provide the number of elements, instead
634   // of the iteration count, to the loop start instruction. The number of
635   // elements is provided to the vctp instruction, so we need to check that
636   // we can use this register at InsertPt.
637   MachineInstr *VCTP = VCTPs.back();
638   TPNumElements = VCTP->getOperand(1);
639   Register NumElements = TPNumElements.getReg();
640 
641   // If the register is defined within loop, then we can't perform TP.
642   // TODO: Check whether this is just a mov of a register that would be
643   // available.
644   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
645     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
646     return false;
647   }
648 
649   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
650   // world the [w|d]lstp instruction would be last instruction in the preheader
651   // and so it would only affect instructions within the loop body. But due to
652   // scheduling, and/or the logic in this pass, the insertion point can
653   // be moved earlier. So if the Loop Start isn't the last instruction in the
654   // preheader, and if the initial element count is smaller than the vector
655   // width, the Loop Start instruction will immediately generate one or more
656   // false lane mask which can, incorrectly, affect the proceeding MVE
657   // instructions in the preheader.
658   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
659                                       MachineBasicBlock::iterator E) {
660     for (; I != E; ++I) {
661       if (shouldInspect(*I)) {
662         LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP"
663                    << " insertion: " << *I);
664         return true;
665       }
666     }
667     return false;
668   };
669 
670   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
671     return false;
672 
673   // Especially in the case of while loops, InsertBB may not be the
674   // preheader, so we need to check that the register isn't redefined
675   // before entering the loop.
676   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
677                                       Register NumElements) {
678     if (MBB->empty())
679       return false;
680     // NumElements is redefined in this block.
681     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
682       return true;
683 
684     // Don't continue searching up through multiple predecessors.
685     if (MBB->pred_size() > 1)
686       return true;
687 
688     return false;
689   };
690 
691   // Search backwards for a def, until we get to InsertBB.
692   MachineBasicBlock *MBB = Preheader;
693   while (MBB && MBB != StartInsertBB) {
694     if (CannotProvideElements(MBB, NumElements)) {
695       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
696       return false;
697     }
698     MBB = *MBB->pred_begin();
699   }
700 
701   // Check that the value change of the element count is what we expect and
702   // that the predication will be equivalent. For this we need:
703   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
704   // and we can also allow register copies within the chain too.
705   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
706     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
707   };
708 
709   MBB = VCTP->getParent();
710   // Remove modifications to the element count since they have no purpose in a
711   // tail predicated loop. Explicitly refer to the vctp operand no matter which
712   // register NumElements has been assigned to, since that is what the
713   // modifications will be using
714   if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(),
715                                              VCTP->getOperand(1).getReg())) {
716     SmallPtrSet<MachineInstr*, 2> ElementChain;
717     SmallPtrSet<MachineInstr*, 2> Ignore;
718     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
719 
720     Ignore.insert(VCTPs.begin(), VCTPs.end());
721 
722     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
723       bool FoundSub = false;
724 
725       for (auto *MI : ElementChain) {
726         if (isMovRegOpcode(MI->getOpcode()))
727           continue;
728 
729         if (isSubImmOpcode(MI->getOpcode())) {
730           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
731             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
732                        " count: " << *MI);
733             return false;
734           }
735           FoundSub = true;
736         } else {
737           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
738                      " count: " << *MI);
739           return false;
740         }
741       }
742       ToRemove.insert(ElementChain.begin(), ElementChain.end());
743     }
744   }
745   return true;
746 }
747 
748 static bool isRegInClass(const MachineOperand &MO,
749                          const TargetRegisterClass *Class) {
750   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
751 }
752 
753 // MVE 'narrowing' operate on half a lane, reading from half and writing
754 // to half, which are referred to has the top and bottom half. The other
755 // half retains its previous value.
756 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
757   const MCInstrDesc &MCID = MI.getDesc();
758   uint64_t Flags = MCID.TSFlags;
759   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
760 }
761 
762 // Some MVE instructions read from the top/bottom halves of their operand(s)
763 // and generate a vector result with result elements that are double the
764 // width of the input.
765 static bool producesDoubleWidthResult(const MachineInstr &MI) {
766   const MCInstrDesc &MCID = MI.getDesc();
767   uint64_t Flags = MCID.TSFlags;
768   return (Flags & ARMII::DoubleWidthResult) != 0;
769 }
770 
771 static bool isHorizontalReduction(const MachineInstr &MI) {
772   const MCInstrDesc &MCID = MI.getDesc();
773   uint64_t Flags = MCID.TSFlags;
774   return (Flags & ARMII::HorizontalReduction) != 0;
775 }
776 
777 // Can this instruction generate a non-zero result when given only zeroed
778 // operands? This allows us to know that, given operands with false bytes
779 // zeroed by masked loads, that the result will also contain zeros in those
780 // bytes.
781 static bool canGenerateNonZeros(const MachineInstr &MI) {
782 
783   // Check for instructions which can write into a larger element size,
784   // possibly writing into a previous zero'd lane.
785   if (producesDoubleWidthResult(MI))
786     return true;
787 
788   switch (MI.getOpcode()) {
789   default:
790     break;
791   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
792   // fp16 -> fp32 vector conversions.
793   // Instructions that perform a NOT will generate 1s from 0s.
794   case ARM::MVE_VMVN:
795   case ARM::MVE_VORN:
796   // Count leading zeros will do just that!
797   case ARM::MVE_VCLZs8:
798   case ARM::MVE_VCLZs16:
799   case ARM::MVE_VCLZs32:
800     return true;
801   }
802   return false;
803 }
804 
805 // Look at its register uses to see if it only can only receive zeros
806 // into its false lanes which would then produce zeros. Also check that
807 // the output register is also defined by an FalseLanesZero instruction
808 // so that if tail-predication happens, the lanes that aren't updated will
809 // still be zeros.
810 static bool producesFalseLanesZero(MachineInstr &MI,
811                                    const TargetRegisterClass *QPRs,
812                                    const ReachingDefAnalysis &RDA,
813                                    InstSet &FalseLanesZero) {
814   if (canGenerateNonZeros(MI))
815     return false;
816 
817   bool isPredicated = isVectorPredicated(&MI);
818   // Predicated loads will write zeros to the falsely predicated bytes of the
819   // destination register.
820   if (MI.mayLoad())
821     return isPredicated;
822 
823   auto IsZeroInit = [](MachineInstr *Def) {
824     return !isVectorPredicated(Def) &&
825            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
826            Def->getOperand(1).getImm() == 0;
827   };
828 
829   bool AllowScalars = isHorizontalReduction(MI);
830   for (auto &MO : MI.operands()) {
831     if (!MO.isReg() || !MO.getReg())
832       continue;
833     if (!isRegInClass(MO, QPRs) && AllowScalars)
834       continue;
835 
836     // Check that this instruction will produce zeros in its false lanes:
837     // - If it only consumes false lanes zero or constant 0 (vmov #0)
838     // - If it's predicated, it only matters that it's def register already has
839     //   false lane zeros, so we can ignore the uses.
840     SmallPtrSet<MachineInstr *, 2> Defs;
841     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
842     for (auto *Def : Defs) {
843       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
844         continue;
845       if (MO.isUse() && isPredicated)
846         continue;
847       return false;
848     }
849   }
850   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
851   return true;
852 }
853 
854 bool LowOverheadLoop::ValidateLiveOuts() {
855   // We want to find out if the tail-predicated version of this loop will
856   // produce the same values as the loop in its original form. For this to
857   // be true, the newly inserted implicit predication must not change the
858   // the (observable) results.
859   // We're doing this because many instructions in the loop will not be
860   // predicated and so the conversion from VPT predication to tail-predication
861   // can result in different values being produced; due to the tail-predication
862   // preventing many instructions from updating their falsely predicated
863   // lanes. This analysis assumes that all the instructions perform lane-wise
864   // operations and don't perform any exchanges.
865   // A masked load, whether through VPT or tail predication, will write zeros
866   // to any of the falsely predicated bytes. So, from the loads, we know that
867   // the false lanes are zeroed and here we're trying to track that those false
868   // lanes remain zero, or where they change, the differences are masked away
869   // by their user(s).
870   // All MVE stores have to be predicated, so we know that any predicate load
871   // operands, or stored results are equivalent already. Other explicitly
872   // predicated instructions will perform the same operation in the original
873   // loop and the tail-predicated form too. Because of this, we can insert
874   // loads, stores and other predicated instructions into our Predicated
875   // set and build from there.
876   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
877   SetVector<MachineInstr *> FalseLanesUnknown;
878   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
879   SmallPtrSet<MachineInstr *, 4> Predicated;
880   MachineBasicBlock *Header = ML.getHeader();
881 
882   for (auto &MI : *Header) {
883     if (!shouldInspect(MI))
884       continue;
885 
886     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
887       continue;
888 
889     bool isPredicated = isVectorPredicated(&MI);
890     bool retainsOrReduces =
891       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
892 
893     if (isPredicated)
894       Predicated.insert(&MI);
895     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
896       FalseLanesZero.insert(&MI);
897     else if (MI.getNumDefs() == 0)
898       continue;
899     else if (!isPredicated && retainsOrReduces)
900       return false;
901     else if (!isPredicated)
902       FalseLanesUnknown.insert(&MI);
903   }
904 
905   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
906                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
907     SmallPtrSet<MachineInstr *, 2> Uses;
908     RDA.getGlobalUses(MI, MO.getReg(), Uses);
909     for (auto *Use : Uses) {
910       if (Use != MI && !Predicated.count(Use))
911         return false;
912     }
913     return true;
914   };
915 
916   // Visit the unknowns in reverse so that we can start at the values being
917   // stored and then we can work towards the leaves, hopefully adding more
918   // instructions to Predicated. Successfully terminating the loop means that
919   // all the unknown values have to found to be masked by predicated user(s).
920   // For any unpredicated values, we store them in NonPredicated so that we
921   // can later check whether these form a reduction.
922   SmallPtrSet<MachineInstr*, 2> NonPredicated;
923   for (auto *MI : reverse(FalseLanesUnknown)) {
924     for (auto &MO : MI->operands()) {
925       if (!isRegInClass(MO, QPRs) || !MO.isDef())
926         continue;
927       if (!HasPredicatedUsers(MI, MO, Predicated)) {
928         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
929                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
930         NonPredicated.insert(MI);
931         break;
932       }
933     }
934     // Any unknown false lanes have been masked away by the user(s).
935     if (!NonPredicated.contains(MI))
936       Predicated.insert(MI);
937   }
938 
939   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
940   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
941   ML.getExitBlocks(ExitBlocks);
942   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
943   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
944   MachineBasicBlock *ExitBB = ExitBlocks.front();
945   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
946     // TODO: Instead of blocking predication, we could move the vctp to the exit
947     // block and calculate it's operand there in or the preheader.
948     if (RegMask.PhysReg == ARM::VPR)
949       return false;
950     // Check Q-regs that are live in the exit blocks. We don't collect scalars
951     // because they won't be affected by lane predication.
952     if (QPRs->contains(RegMask.PhysReg))
953       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
954         LiveOutMIs.insert(MI);
955   }
956 
957   // We've already validated that any VPT predication within the loop will be
958   // equivalent when we perform the predication transformation; so we know that
959   // any VPT predicated instruction is predicated upon VCTP. Any live-out
960   // instruction needs to be predicated, so check this here. The instructions
961   // in NonPredicated have been found to be a reduction that we can ensure its
962   // legality.
963   for (auto *MI : LiveOutMIs) {
964     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
965       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
966       return false;
967     }
968   }
969 
970   return true;
971 }
972 
973 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
974   if (Revert)
975     return;
976 
977   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
978   // can only jump back.
979   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
980                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
981     if (!End->getOperand(1).isMBB())
982       report_fatal_error("Expected LoopEnd to target basic block");
983 
984     // TODO Maybe there's cases where the target doesn't have to be the header,
985     // but for now be safe and revert.
986     if (End->getOperand(1).getMBB() != ML.getHeader()) {
987       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
988       return false;
989     }
990 
991     // The WLS and LE instructions have 12-bits for the label offset. WLS
992     // requires a positive offset, while LE uses negative.
993     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
994         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
995       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
996       return false;
997     }
998 
999     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1000         (BBUtils->getOffsetOf(Start) >
1001          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1002          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1003       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1004       return false;
1005     }
1006     return true;
1007   };
1008 
1009   // Find a suitable position to insert the loop start instruction. It needs to
1010   // be able to safely define LR.
1011   auto FindStartInsertionPoint = [](MachineInstr *Start,
1012                                     MachineInstr *Dec,
1013                                     MachineBasicBlock::iterator &InsertPt,
1014                                     MachineBasicBlock *&InsertBB,
1015                                     ReachingDefAnalysis &RDA,
1016                                     InstSet &ToRemove) {
1017     // We can define LR because LR already contains the same value.
1018     if (Start->getOperand(0).getReg() == ARM::LR) {
1019       InsertPt = MachineBasicBlock::iterator(Start);
1020       InsertBB = Start->getParent();
1021       return true;
1022     }
1023 
1024     unsigned CountReg = Start->getOperand(0).getReg();
1025     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1026       return MI->getOpcode() == ARM::tMOVr &&
1027              MI->getOperand(0).getReg() == ARM::LR &&
1028              MI->getOperand(1).getReg() == CountReg &&
1029              MI->getOperand(2).getImm() == ARMCC::AL;
1030     };
1031 
1032     // Find an insertion point:
1033     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1034     //   writes to Count before Start, we can insert at start.
1035     if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) {
1036       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1037         SmallPtrSet<MachineInstr *, 2> Ignore = { Dec };
1038         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1039           return false;
1040         InsertPt = MachineBasicBlock::iterator(Start);
1041         InsertBB = Start->getParent();
1042         return true;
1043       }
1044     }
1045 
1046     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1047     //   to Count after Start, we can insert at that mov (which will now be
1048     //   dead).
1049     MachineBasicBlock *MBB = Start->getParent();
1050     if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) {
1051       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1052         SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec };
1053         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1054           return false;
1055         InsertPt = MachineBasicBlock::iterator(LRDef);
1056         InsertBB = LRDef->getParent();
1057         return true;
1058       }
1059     }
1060 
1061     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1062     // just define LR anyway?
1063     if (!RDA.isSafeToDefRegAt(Start, ARM::LR))
1064       return false;
1065 
1066     InsertPt = MachineBasicBlock::iterator(Start);
1067     InsertBB = Start->getParent();
1068     return true;
1069   };
1070 
1071   // We know that we can define safely LR at InsertPt, but maybe we could
1072   // push the insertion point to later on in the basic block.
1073   auto TryAdjustInsertionPoint = [](MachineBasicBlock::iterator &InsertPt,
1074                                     MachineInstr *Start,
1075                                     ReachingDefAnalysis &RDA) {
1076 
1077     MachineBasicBlock *MBB = InsertPt->getParent();
1078     MachineBasicBlock::iterator FirstNonTerminator =
1079       MBB->getFirstTerminator();
1080     unsigned CountReg = Start->getOperand(0).getReg();
1081 
1082     // Get the latest possible insertion point and check whether the semantics
1083     // will be maintained if Start was inserted there.
1084     if (FirstNonTerminator == MBB->end()) {
1085       if (RDA.isReachingDefLiveOut(Start, CountReg) &&
1086           RDA.isReachingDefLiveOut(Start, ARM::LR))
1087         InsertPt = FirstNonTerminator;
1088     } else if (RDA.hasSameReachingDef(Start, &*FirstNonTerminator, CountReg) &&
1089                RDA.hasSameReachingDef(Start, &*FirstNonTerminator, ARM::LR))
1090       InsertPt = FirstNonTerminator;
1091   };
1092 
1093   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1094                                ToRemove)) {
1095     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1096     Revert = true;
1097     return;
1098   }
1099   TryAdjustInsertionPoint(StartInsertPt, Start, RDA);
1100   LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1101                dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1102              else
1103                dbgs() << "ARM Loops: Will insert LoopStart at "
1104                << *StartInsertPt
1105             );
1106 
1107   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1108   CannotTailPredicate = !ValidateTailPredicate();
1109 }
1110 
1111 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1112   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1113   if (VCTPs.empty()) {
1114     VCTPs.push_back(MI);
1115     return true;
1116   }
1117 
1118   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1119   // If it does, store it in the VCTPs set, else refuse it.
1120   MachineInstr *Prev = VCTPs.back();
1121   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1122       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) {
1123     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1124                          "definition from the main VCTP");
1125     return false;
1126   }
1127   VCTPs.push_back(MI);
1128   return true;
1129 }
1130 
1131 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1132   if (CannotTailPredicate)
1133     return false;
1134 
1135   if (!shouldInspect(*MI))
1136     return true;
1137 
1138   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1139       MI->getOpcode() == ARM::MVE_VPNOT) {
1140     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1141     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1142     //    instead a VPT block, which means we can assert while building up
1143     //    the VPT block because we don't find another VPT or VPST to being a new
1144     //    one.
1145     // 2) VPSEL still requires a VPR operand even after tail predicating,
1146     //    which means we can't remove it unless there is another
1147     //    instruction, such as vcmp, that can provide the VPR def.
1148     return false;
1149   }
1150 
1151   // Record all VCTPs and check that they're equivalent to one another.
1152   if (isVCTP(MI) && !AddVCTP(MI))
1153     return false;
1154 
1155   // Inspect uses first so that any instructions that alter the VPR don't
1156   // alter the predicate upon themselves.
1157   const MCInstrDesc &MCID = MI->getDesc();
1158   bool IsUse = false;
1159   unsigned LastOpIdx = MI->getNumOperands() - 1;
1160   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1161     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1162     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1163       continue;
1164 
1165     if (ARM::isVpred(Op.value().OperandType)) {
1166       VPTState::addInst(MI);
1167       IsUse = true;
1168     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1169       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1170       return false;
1171     }
1172   }
1173 
1174   // If we find an instruction that has been marked as not valid for tail
1175   // predication, only allow the instruction if it's contained within a valid
1176   // VPT block.
1177   bool RequiresExplicitPredication =
1178     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1179   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1180     LLVM_DEBUG(if (!IsUse)
1181                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1182     return IsUse;
1183   }
1184 
1185   // If the instruction is already explicitly predicated, then the conversion
1186   // will be fine, but ensure that all store operations are predicated.
1187   if (MI->mayStore())
1188     return IsUse;
1189 
1190   // If this instruction defines the VPR, update the predicate for the
1191   // proceeding instructions.
1192   if (isVectorPredicate(MI)) {
1193     // Clear the existing predicate when we're not in VPT Active state,
1194     // otherwise we add to it.
1195     if (!isVectorPredicated(MI))
1196       VPTState::resetPredicate(MI);
1197     else
1198       VPTState::addPredicate(MI);
1199   }
1200 
1201   // Finally once the predicate has been modified, we can start a new VPT
1202   // block if necessary.
1203   if (isVPTOpcode(MI->getOpcode()))
1204     VPTState::CreateVPTBlock(MI);
1205 
1206   return true;
1207 }
1208 
1209 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1210   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1211   if (!ST.hasLOB())
1212     return false;
1213 
1214   MF = &mf;
1215   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1216 
1217   MLI = &getAnalysis<MachineLoopInfo>();
1218   RDA = &getAnalysis<ReachingDefAnalysis>();
1219   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1220   MRI = &MF->getRegInfo();
1221   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1222   TRI = ST.getRegisterInfo();
1223   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1224   BBUtils->computeAllBlockSizes();
1225   BBUtils->adjustBBOffsetsAfter(&MF->front());
1226 
1227   bool Changed = false;
1228   for (auto ML : *MLI) {
1229     if (ML->isOutermost())
1230       Changed |= ProcessLoop(ML);
1231   }
1232   Changed |= RevertNonLoops();
1233   return Changed;
1234 }
1235 
1236 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1237 
1238   bool Changed = false;
1239 
1240   // Process inner loops first.
1241   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1242     Changed |= ProcessLoop(*I);
1243 
1244   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1245              if (auto *Preheader = ML->getLoopPreheader())
1246                dbgs() << " - " << Preheader->getName() << "\n";
1247              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1248                dbgs() << " - " << Preheader->getName() << "\n";
1249              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1250                dbgs() << " - " << Preheader->getName() << "\n";
1251              for (auto *MBB : ML->getBlocks())
1252                dbgs() << " - " << MBB->getName() << "\n";
1253             );
1254 
1255   // Search the given block for a loop start instruction. If one isn't found,
1256   // and there's only one predecessor block, search that one too.
1257   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1258     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1259     for (auto &MI : *MBB) {
1260       if (isLoopStart(MI))
1261         return &MI;
1262     }
1263     if (MBB->pred_size() == 1)
1264       return SearchForStart(*MBB->pred_begin());
1265     return nullptr;
1266   };
1267 
1268   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1269   // Search the preheader for the start intrinsic.
1270   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1271   // with potentially multiple set.loop.iterations, so we need to enable this.
1272   if (LoLoop.Preheader)
1273     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1274   else
1275     return false;
1276 
1277   // Find the low-overhead loop components and decide whether or not to fall
1278   // back to a normal loop. Also look for a vctp instructions and decide
1279   // whether we can convert that predicate using tail predication.
1280   for (auto *MBB : reverse(ML->getBlocks())) {
1281     for (auto &MI : *MBB) {
1282       if (MI.isDebugValue())
1283         continue;
1284       else if (MI.getOpcode() == ARM::t2LoopDec)
1285         LoLoop.Dec = &MI;
1286       else if (MI.getOpcode() == ARM::t2LoopEnd)
1287         LoLoop.End = &MI;
1288       else if (isLoopStart(MI))
1289         LoLoop.Start = &MI;
1290       else if (MI.getDesc().isCall()) {
1291         // TODO: Though the call will require LE to execute again, does this
1292         // mean we should revert? Always executing LE hopefully should be
1293         // faster than performing a sub,cmp,br or even subs,br.
1294         LoLoop.Revert = true;
1295         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1296       } else {
1297         // Record VPR defs and build up their corresponding vpt blocks.
1298         // Check we know how to tail predicate any mve instructions.
1299         LoLoop.AnalyseMVEInst(&MI);
1300       }
1301     }
1302   }
1303 
1304   LLVM_DEBUG(LoLoop.dump());
1305   if (!LoLoop.FoundAllComponents()) {
1306     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1307     return false;
1308   }
1309 
1310   // Check that the only instruction using LoopDec is LoopEnd.
1311   // TODO: Check for copy chains that really have no effect.
1312   SmallPtrSet<MachineInstr*, 2> Uses;
1313   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
1314   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1315     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1316     LoLoop.Revert = true;
1317   }
1318   LoLoop.Validate(BBUtils.get());
1319   Expand(LoLoop);
1320   return true;
1321 }
1322 
1323 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1324 // beq that branches to the exit branch.
1325 // TODO: We could also try to generate a cbz if the value in LR is also in
1326 // another low register.
1327 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1328   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1329   MachineBasicBlock *MBB = MI->getParent();
1330   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1331                                     TII->get(ARM::t2CMPri));
1332   MIB.add(MI->getOperand(0));
1333   MIB.addImm(0);
1334   MIB.addImm(ARMCC::AL);
1335   MIB.addReg(ARM::NoRegister);
1336 
1337   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1338   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1339     ARM::tBcc : ARM::t2Bcc;
1340 
1341   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1342   MIB.add(MI->getOperand(1));   // branch target
1343   MIB.addImm(ARMCC::EQ);        // condition code
1344   MIB.addReg(ARM::CPSR);
1345   MI->eraseFromParent();
1346 }
1347 
1348 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1349   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1350   MachineBasicBlock *MBB = MI->getParent();
1351   SmallPtrSet<MachineInstr*, 1> Ignore;
1352   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1353     if (I->getOpcode() == ARM::t2LoopEnd) {
1354       Ignore.insert(&*I);
1355       break;
1356     }
1357   }
1358 
1359   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1360   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
1361 
1362   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1363                                     TII->get(ARM::t2SUBri));
1364   MIB.addDef(ARM::LR);
1365   MIB.add(MI->getOperand(1));
1366   MIB.add(MI->getOperand(2));
1367   MIB.addImm(ARMCC::AL);
1368   MIB.addReg(0);
1369 
1370   if (SetFlags) {
1371     MIB.addReg(ARM::CPSR);
1372     MIB->getOperand(5).setIsDef(true);
1373   } else
1374     MIB.addReg(0);
1375 
1376   MI->eraseFromParent();
1377   return SetFlags;
1378 }
1379 
1380 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1381 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1382   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1383 
1384   MachineBasicBlock *MBB = MI->getParent();
1385   // Create cmp
1386   if (!SkipCmp) {
1387     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1388                                       TII->get(ARM::t2CMPri));
1389     MIB.addReg(ARM::LR);
1390     MIB.addImm(0);
1391     MIB.addImm(ARMCC::AL);
1392     MIB.addReg(ARM::NoRegister);
1393   }
1394 
1395   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1396   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1397     ARM::tBcc : ARM::t2Bcc;
1398 
1399   // Create bne
1400   MachineInstrBuilder MIB =
1401     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1402   MIB.add(MI->getOperand(1));   // branch target
1403   MIB.addImm(ARMCC::NE);        // condition code
1404   MIB.addReg(ARM::CPSR);
1405   MI->eraseFromParent();
1406 }
1407 
1408 // Perform dead code elimation on the loop iteration count setup expression.
1409 // If we are tail-predicating, the number of elements to be processed is the
1410 // operand of the VCTP instruction in the vector body, see getCount(), which is
1411 // register $r3 in this example:
1412 //
1413 //   $lr = big-itercount-expression
1414 //   ..
1415 //   t2DoLoopStart renamable $lr
1416 //   vector.body:
1417 //     ..
1418 //     $vpr = MVE_VCTP32 renamable $r3
1419 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1420 //     t2LoopEnd renamable $lr, %vector.body
1421 //     tB %end
1422 //
1423 // What we would like achieve here is to replace the do-loop start pseudo
1424 // instruction t2DoLoopStart with:
1425 //
1426 //    $lr = MVE_DLSTP_32 killed renamable $r3
1427 //
1428 // Thus, $r3 which defines the number of elements, is written to $lr,
1429 // and then we want to delete the whole chain that used to define $lr,
1430 // see the comment below how this chain could look like.
1431 //
1432 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1433   if (!LoLoop.IsTailPredicationLegal())
1434     return;
1435 
1436   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1437 
1438   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1439   if (!Def) {
1440     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1441     return;
1442   }
1443 
1444   // Collect and remove the users of iteration count.
1445   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1446                                             LoLoop.End };
1447   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1448     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1449 }
1450 
1451 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1452   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1453   // When using tail-predication, try to delete the dead code that was used to
1454   // calculate the number of loop iterations.
1455   IterationCountDCE(LoLoop);
1456 
1457   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1458   MachineInstr *Start = LoLoop.Start;
1459   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1460   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1461   unsigned Opc = LoLoop.getStartOpcode();
1462   MachineOperand &Count = LoLoop.getLoopStartOperand();
1463 
1464   MachineInstrBuilder MIB =
1465     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1466 
1467   MIB.addDef(ARM::LR);
1468   MIB.add(Count);
1469   if (!IsDo)
1470     MIB.add(Start->getOperand(1));
1471 
1472   LoLoop.ToRemove.insert(Start);
1473   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1474   return &*MIB;
1475 }
1476 
1477 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1478   auto RemovePredicate = [](MachineInstr *MI) {
1479     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1480     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1481       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1482              "Expected Then predicate!");
1483       MI->getOperand(PIdx).setImm(ARMVCC::None);
1484       MI->getOperand(PIdx+1).setReg(0);
1485     } else
1486       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1487   };
1488 
1489   for (auto &Block : LoLoop.getVPTBlocks()) {
1490     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1491 
1492     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1493       if (VPTState::hasUniformPredicate(Block)) {
1494         // A vpt block starting with VPST, is only predicated upon vctp and has no
1495         // internal vpr defs:
1496         // - Remove vpst.
1497         // - Unpredicate the remaining instructions.
1498         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1499         LoLoop.ToRemove.insert(Insts.front());
1500         for (unsigned i = 1; i < Insts.size(); ++i)
1501           RemovePredicate(Insts[i]);
1502       } else {
1503         // The VPT block has a non-uniform predicate but it uses a vpst and its
1504         // entry is guarded only by a vctp, which means we:
1505         // - Need to remove the original vpst.
1506         // - Then need to unpredicate any following instructions, until
1507         //   we come across the divergent vpr def.
1508         // - Insert a new vpst to predicate the instruction(s) that following
1509         //   the divergent vpr def.
1510         // TODO: We could be producing more VPT blocks than necessary and could
1511         // fold the newly created one into a proceeding one.
1512         MachineInstr *Divergent = VPTState::getDivergent(Block);
1513         for (auto I = ++MachineBasicBlock::iterator(Insts.front()),
1514              E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I)
1515           RemovePredicate(&*I);
1516 
1517         // Check if the instruction defining vpr is a vcmp so it can be combined
1518         // with the VPST This should be the divergent instruction
1519         MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0
1520           ? Divergent
1521           : nullptr;
1522 
1523         MachineInstrBuilder MIB;
1524         if (VCMP) {
1525           // Combine the VPST and VCMP into a VPT
1526           MIB = BuildMI(*Divergent->getParent(), Divergent,
1527                         Divergent->getDebugLoc(),
1528                         TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1529           MIB.addImm(ARMVCC::Then);
1530           // Register one
1531           MIB.add(VCMP->getOperand(1));
1532           // Register two
1533           MIB.add(VCMP->getOperand(2));
1534           // The comparison code, e.g. ge, eq, lt
1535           MIB.add(VCMP->getOperand(3));
1536           LLVM_DEBUG(dbgs()
1537                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1538           LoLoop.ToRemove.insert(VCMP);
1539         } else {
1540           // Create a VPST (with a null mask for now, we'll recompute it later)
1541           // or a VPT in case there was a VCMP right before it
1542           MIB = BuildMI(*Divergent->getParent(), Divergent,
1543                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1544           MIB.addImm(0);
1545           LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1546         }
1547         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1548         LoLoop.ToRemove.insert(Insts.front());
1549         LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1550       }
1551     } else if (Block.containsVCTP()) {
1552       // The vctp will be removed, so the block mask of the vp(s)t will need
1553       // to be recomputed.
1554       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1555     }
1556   }
1557 
1558   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1559 }
1560 
1561 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1562 
1563   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1564   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1565     MachineInstr *End = LoLoop.End;
1566     MachineBasicBlock *MBB = End->getParent();
1567     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1568       ARM::MVE_LETP : ARM::t2LEUpdate;
1569     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1570                                       TII->get(Opc));
1571     MIB.addDef(ARM::LR);
1572     MIB.add(End->getOperand(0));
1573     MIB.add(End->getOperand(1));
1574     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1575     LoLoop.ToRemove.insert(LoLoop.Dec);
1576     LoLoop.ToRemove.insert(End);
1577     return &*MIB;
1578   };
1579 
1580   // TODO: We should be able to automatically remove these branches before we
1581   // get here - probably by teaching analyzeBranch about the pseudo
1582   // instructions.
1583   // If there is an unconditional branch, after I, that just branches to the
1584   // next block, remove it.
1585   auto RemoveDeadBranch = [](MachineInstr *I) {
1586     MachineBasicBlock *BB = I->getParent();
1587     MachineInstr *Terminator = &BB->instr_back();
1588     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1589       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1590       if (BB->isLayoutSuccessor(Succ)) {
1591         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1592         Terminator->eraseFromParent();
1593       }
1594     }
1595   };
1596 
1597   if (LoLoop.Revert) {
1598     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1599       RevertWhile(LoLoop.Start);
1600     else
1601       LoLoop.Start->eraseFromParent();
1602     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1603     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1604   } else {
1605     LoLoop.Start = ExpandLoopStart(LoLoop);
1606     RemoveDeadBranch(LoLoop.Start);
1607     LoLoop.End = ExpandLoopEnd(LoLoop);
1608     RemoveDeadBranch(LoLoop.End);
1609     if (LoLoop.IsTailPredicationLegal())
1610       ConvertVPTBlocks(LoLoop);
1611     for (auto *I : LoLoop.ToRemove) {
1612       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1613       I->eraseFromParent();
1614     }
1615     for (auto *I : LoLoop.BlockMasksToRecompute) {
1616       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1617       recomputeVPTBlockMask(*I);
1618       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1619     }
1620   }
1621 
1622   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1623   DFS.ProcessLoop();
1624   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1625   for (auto *MBB : PostOrder) {
1626     recomputeLiveIns(*MBB);
1627     // FIXME: For some reason, the live-in print order is non-deterministic for
1628     // our tests and I can't out why... So just sort them.
1629     MBB->sortUniqueLiveIns();
1630   }
1631 
1632   for (auto *MBB : reverse(PostOrder))
1633     recomputeLivenessFlags(*MBB);
1634 
1635   // We've moved, removed and inserted new instructions, so update RDA.
1636   RDA->reset();
1637 }
1638 
1639 bool ARMLowOverheadLoops::RevertNonLoops() {
1640   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1641   bool Changed = false;
1642 
1643   for (auto &MBB : *MF) {
1644     SmallVector<MachineInstr*, 4> Starts;
1645     SmallVector<MachineInstr*, 4> Decs;
1646     SmallVector<MachineInstr*, 4> Ends;
1647 
1648     for (auto &I : MBB) {
1649       if (isLoopStart(I))
1650         Starts.push_back(&I);
1651       else if (I.getOpcode() == ARM::t2LoopDec)
1652         Decs.push_back(&I);
1653       else if (I.getOpcode() == ARM::t2LoopEnd)
1654         Ends.push_back(&I);
1655     }
1656 
1657     if (Starts.empty() && Decs.empty() && Ends.empty())
1658       continue;
1659 
1660     Changed = true;
1661 
1662     for (auto *Start : Starts) {
1663       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1664         RevertWhile(Start);
1665       else
1666         Start->eraseFromParent();
1667     }
1668     for (auto *Dec : Decs)
1669       RevertLoopDec(Dec);
1670 
1671     for (auto *End : Ends)
1672       RevertLoopEnd(End);
1673   }
1674   return Changed;
1675 }
1676 
1677 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1678   return new ARMLowOverheadLoops();
1679 }
1680