1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineLoopInfo.h" 66 #include "llvm/CodeGen/MachineLoopUtils.h" 67 #include "llvm/CodeGen/MachineRegisterInfo.h" 68 #include "llvm/CodeGen/Passes.h" 69 #include "llvm/CodeGen/ReachingDefAnalysis.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-low-overhead-loops" 75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 76 77 static cl::opt<bool> 78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 80 cl::init(false)); 81 82 static bool isVectorPredicated(MachineInstr *MI) { 83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 85 } 86 87 static bool isVectorPredicate(MachineInstr *MI) { 88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 89 } 90 91 static bool hasVPRUse(MachineInstr &MI) { 92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 93 } 94 95 static bool isDomainMVE(MachineInstr *MI) { 96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 97 return Domain == ARMII::DomainMVE; 98 } 99 100 static bool shouldInspect(MachineInstr &MI) { 101 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 102 } 103 104 static bool isDo(MachineInstr *MI) { 105 return MI->getOpcode() != ARM::t2WhileLoopStart; 106 } 107 108 namespace { 109 110 using InstSet = SmallPtrSetImpl<MachineInstr *>; 111 112 class PostOrderLoopTraversal { 113 MachineLoop &ML; 114 MachineLoopInfo &MLI; 115 SmallPtrSet<MachineBasicBlock*, 4> Visited; 116 SmallVector<MachineBasicBlock*, 4> Order; 117 118 public: 119 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 120 : ML(ML), MLI(MLI) { } 121 122 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 123 return Order; 124 } 125 126 // Visit all the blocks within the loop, as well as exit blocks and any 127 // blocks properly dominating the header. 128 void ProcessLoop() { 129 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 130 (MachineBasicBlock *MBB) -> void { 131 if (Visited.count(MBB)) 132 return; 133 134 Visited.insert(MBB); 135 for (auto *Succ : MBB->successors()) { 136 if (!ML.contains(Succ)) 137 continue; 138 Search(Succ); 139 } 140 Order.push_back(MBB); 141 }; 142 143 // Insert exit blocks. 144 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 145 ML.getExitBlocks(ExitBlocks); 146 for (auto *MBB : ExitBlocks) 147 Order.push_back(MBB); 148 149 // Then add the loop body. 150 Search(ML.getHeader()); 151 152 // Then try the preheader and its predecessors. 153 std::function<void(MachineBasicBlock*)> GetPredecessor = 154 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 155 Order.push_back(MBB); 156 if (MBB->pred_size() == 1) 157 GetPredecessor(*MBB->pred_begin()); 158 }; 159 160 if (auto *Preheader = ML.getLoopPreheader()) 161 GetPredecessor(Preheader); 162 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 163 GetPredecessor(Preheader); 164 } 165 }; 166 167 struct PredicatedMI { 168 MachineInstr *MI = nullptr; 169 SetVector<MachineInstr*> Predicates; 170 171 public: 172 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 173 assert(I && "Instruction must not be null!"); 174 Predicates.insert(Preds.begin(), Preds.end()); 175 } 176 }; 177 178 // Represent the current state of the VPR and hold all instances which 179 // represent a VPT block, which is a list of instructions that begins with a 180 // VPT/VPST and has a maximum of four proceeding instructions. All 181 // instructions within the block are predicated upon the vpr and we allow 182 // instructions to define the vpr within in the block too. 183 class VPTState { 184 friend struct LowOverheadLoop; 185 186 SmallVector<MachineInstr *, 4> Insts; 187 188 static SmallVector<VPTState, 4> Blocks; 189 static SetVector<MachineInstr *> CurrentPredicates; 190 static std::map<MachineInstr *, 191 std::unique_ptr<PredicatedMI>> PredicatedInsts; 192 193 static void CreateVPTBlock(MachineInstr *MI) { 194 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 195 && "Can't begin VPT without predicate"); 196 Blocks.emplace_back(MI); 197 // The execution of MI is predicated upon the current set of instructions 198 // that are AND'ed together to form the VPR predicate value. In the case 199 // that MI is a VPT, CurrentPredicates will also just be MI. 200 PredicatedInsts.emplace( 201 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 202 } 203 204 static void reset() { 205 Blocks.clear(); 206 PredicatedInsts.clear(); 207 CurrentPredicates.clear(); 208 } 209 210 static void addInst(MachineInstr *MI) { 211 Blocks.back().insert(MI); 212 PredicatedInsts.emplace( 213 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 214 } 215 216 static void addPredicate(MachineInstr *MI) { 217 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 218 CurrentPredicates.insert(MI); 219 } 220 221 static void resetPredicate(MachineInstr *MI) { 222 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 223 CurrentPredicates.clear(); 224 CurrentPredicates.insert(MI); 225 } 226 227 public: 228 // Have we found an instruction within the block which defines the vpr? If 229 // so, not all the instructions in the block will have the same predicate. 230 static bool hasUniformPredicate(VPTState &Block) { 231 return getDivergent(Block) == nullptr; 232 } 233 234 // If it exists, return the first internal instruction which modifies the 235 // VPR. 236 static MachineInstr *getDivergent(VPTState &Block) { 237 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 238 for (unsigned i = 1; i < Insts.size(); ++i) { 239 MachineInstr *Next = Insts[i]; 240 if (isVectorPredicate(Next)) 241 return Next; // Found an instruction altering the vpr. 242 } 243 return nullptr; 244 } 245 246 // Return whether the given instruction is predicated upon a VCTP. 247 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 248 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 249 if (Exclusive && Predicates.size() != 1) 250 return false; 251 for (auto *PredMI : Predicates) 252 if (isVCTP(PredMI)) 253 return true; 254 return false; 255 } 256 257 // Is the VPST, controlling the block entry, predicated upon a VCTP. 258 static bool isEntryPredicatedOnVCTP(VPTState &Block, 259 bool Exclusive = false) { 260 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 261 return isPredicatedOnVCTP(Insts.front(), Exclusive); 262 } 263 264 // If this block begins with a VPT, we can check whether it's using 265 // at least one predicated input(s), as well as possible loop invariant 266 // which would result in it being implicitly predicated. 267 static bool hasImplicitlyValidVPT(VPTState &Block, 268 ReachingDefAnalysis &RDA) { 269 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 270 MachineInstr *VPT = Insts.front(); 271 assert(isVPTOpcode(VPT->getOpcode()) && 272 "Expected VPT block to begin with VPT/VPST"); 273 274 if (VPT->getOpcode() == ARM::MVE_VPST) 275 return false; 276 277 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 278 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 279 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 280 }; 281 282 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 283 MachineOperand &MO = MI->getOperand(Idx); 284 if (!MO.isReg() || !MO.getReg()) 285 return true; 286 287 SmallPtrSet<MachineInstr *, 2> Defs; 288 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 289 if (Defs.empty()) 290 return true; 291 292 for (auto *Def : Defs) 293 if (Def->getParent() == VPT->getParent()) 294 return false; 295 return true; 296 }; 297 298 // Check that at least one of the operands is directly predicated on a 299 // vctp and allow an invariant value too. 300 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 301 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 302 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 303 } 304 305 static bool isValid(ReachingDefAnalysis &RDA) { 306 // All predication within the loop should be based on vctp. If the block 307 // isn't predicated on entry, check whether the vctp is within the block 308 // and that all other instructions are then predicated on it. 309 for (auto &Block : Blocks) { 310 if (isEntryPredicatedOnVCTP(Block, false) || 311 hasImplicitlyValidVPT(Block, RDA)) 312 continue; 313 314 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 315 // We don't know how to convert a block with just a VPT;VCTP into 316 // anything valid once we remove the VCTP. For now just bail out. 317 assert(isVPTOpcode(Insts.front()->getOpcode()) && 318 "Expected VPT block to start with a VPST or VPT!"); 319 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 320 isVCTP(Insts.back())) 321 return false; 322 323 for (auto *MI : Insts) { 324 // Check that any internal VCTPs are 'Then' predicated. 325 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 326 return false; 327 // Skip other instructions that build up the predicate. 328 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 329 continue; 330 // Check that any other instructions are predicated upon a vctp. 331 // TODO: We could infer when VPTs are implicitly predicated on the 332 // vctp (when the operands are predicated). 333 if (!isPredicatedOnVCTP(MI)) { 334 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 335 return false; 336 } 337 } 338 } 339 return true; 340 } 341 342 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 343 344 void insert(MachineInstr *MI) { 345 Insts.push_back(MI); 346 // VPT/VPST + 4 predicated instructions. 347 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 348 } 349 350 bool containsVCTP() const { 351 for (auto *MI : Insts) 352 if (isVCTP(MI)) 353 return true; 354 return false; 355 } 356 357 unsigned size() const { return Insts.size(); } 358 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 359 }; 360 361 struct LowOverheadLoop { 362 363 MachineLoop &ML; 364 MachineBasicBlock *Preheader = nullptr; 365 MachineLoopInfo &MLI; 366 ReachingDefAnalysis &RDA; 367 const TargetRegisterInfo &TRI; 368 const ARMBaseInstrInfo &TII; 369 MachineFunction *MF = nullptr; 370 MachineBasicBlock::iterator StartInsertPt; 371 MachineBasicBlock *StartInsertBB = nullptr; 372 MachineInstr *Start = nullptr; 373 MachineInstr *Dec = nullptr; 374 MachineInstr *End = nullptr; 375 MachineOperand TPNumElements; 376 SmallVector<MachineInstr*, 4> VCTPs; 377 SmallPtrSet<MachineInstr*, 4> ToRemove; 378 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 379 bool Revert = false; 380 bool CannotTailPredicate = false; 381 382 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 383 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 384 const ARMBaseInstrInfo &TII) 385 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 386 TPNumElements(MachineOperand::CreateImm(0)) { 387 MF = ML.getHeader()->getParent(); 388 if (auto *MBB = ML.getLoopPreheader()) 389 Preheader = MBB; 390 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 391 Preheader = MBB; 392 VPTState::reset(); 393 } 394 395 // If this is an MVE instruction, check that we know how to use tail 396 // predication with it. Record VPT blocks and return whether the 397 // instruction is valid for tail predication. 398 bool ValidateMVEInst(MachineInstr *MI); 399 400 void AnalyseMVEInst(MachineInstr *MI) { 401 CannotTailPredicate = !ValidateMVEInst(MI); 402 } 403 404 bool IsTailPredicationLegal() const { 405 // For now, let's keep things really simple and only support a single 406 // block for tail predication. 407 return !Revert && FoundAllComponents() && !VCTPs.empty() && 408 !CannotTailPredicate && ML.getNumBlocks() == 1; 409 } 410 411 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 412 // found. 413 bool AddVCTP(MachineInstr *MI); 414 415 // Check that the predication in the loop will be equivalent once we 416 // perform the conversion. Also ensure that we can provide the number 417 // of elements to the loop start instruction. 418 bool ValidateTailPredicate(); 419 420 // Check that any values available outside of the loop will be the same 421 // after tail predication conversion. 422 bool ValidateLiveOuts(); 423 424 // Is it safe to define LR with DLS/WLS? 425 // LR can be defined if it is the operand to start, because it's the same 426 // value, or if it's going to be equivalent to the operand to Start. 427 MachineInstr *isSafeToDefineLR(); 428 429 // Check the branch targets are within range and we satisfy our 430 // restrictions. 431 void Validate(ARMBasicBlockUtils *BBUtils); 432 433 bool FoundAllComponents() const { 434 return Start && Dec && End; 435 } 436 437 SmallVectorImpl<VPTState> &getVPTBlocks() { 438 return VPTState::Blocks; 439 } 440 441 // Return the operand for the loop start instruction. This will be the loop 442 // iteration count, or the number of elements if we're tail predicating. 443 MachineOperand &getLoopStartOperand() { 444 if (IsTailPredicationLegal()) 445 return TPNumElements; 446 return isDo(Start) ? Start->getOperand(1) : Start->getOperand(0); 447 } 448 449 unsigned getStartOpcode() const { 450 bool IsDo = isDo(Start); 451 if (!IsTailPredicationLegal()) 452 return IsDo ? ARM::t2DLS : ARM::t2WLS; 453 454 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 455 } 456 457 void dump() const { 458 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 459 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 460 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 461 if (!VCTPs.empty()) { 462 dbgs() << "ARM Loops: Found VCTP(s):\n"; 463 for (auto *MI : VCTPs) 464 dbgs() << " - " << *MI; 465 } 466 if (!FoundAllComponents()) 467 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 468 else if (!(Start && Dec && End)) 469 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 470 } 471 }; 472 473 class ARMLowOverheadLoops : public MachineFunctionPass { 474 MachineFunction *MF = nullptr; 475 MachineLoopInfo *MLI = nullptr; 476 ReachingDefAnalysis *RDA = nullptr; 477 const ARMBaseInstrInfo *TII = nullptr; 478 MachineRegisterInfo *MRI = nullptr; 479 const TargetRegisterInfo *TRI = nullptr; 480 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 481 482 public: 483 static char ID; 484 485 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 486 487 void getAnalysisUsage(AnalysisUsage &AU) const override { 488 AU.setPreservesCFG(); 489 AU.addRequired<MachineLoopInfo>(); 490 AU.addRequired<ReachingDefAnalysis>(); 491 MachineFunctionPass::getAnalysisUsage(AU); 492 } 493 494 bool runOnMachineFunction(MachineFunction &MF) override; 495 496 MachineFunctionProperties getRequiredProperties() const override { 497 return MachineFunctionProperties().set( 498 MachineFunctionProperties::Property::NoVRegs).set( 499 MachineFunctionProperties::Property::TracksLiveness); 500 } 501 502 StringRef getPassName() const override { 503 return ARM_LOW_OVERHEAD_LOOPS_NAME; 504 } 505 506 private: 507 bool ProcessLoop(MachineLoop *ML); 508 509 bool RevertNonLoops(); 510 511 void RevertWhile(MachineInstr *MI) const; 512 void RevertDo(MachineInstr *MI) const; 513 514 bool RevertLoopDec(MachineInstr *MI) const; 515 516 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 517 518 void RevertLoopEndDec(MachineInstr *MI) const; 519 520 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 521 522 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 523 524 void Expand(LowOverheadLoop &LoLoop); 525 526 void IterationCountDCE(LowOverheadLoop &LoLoop); 527 }; 528 } 529 530 char ARMLowOverheadLoops::ID = 0; 531 532 SmallVector<VPTState, 4> VPTState::Blocks; 533 SetVector<MachineInstr *> VPTState::CurrentPredicates; 534 std::map<MachineInstr *, 535 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 536 537 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 538 false, false) 539 540 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 541 InstSet &ToRemove, InstSet &Ignore) { 542 543 // Check that we can remove all of Killed without having to modify any IT 544 // blocks. 545 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 546 // Collect the dead code and the MBBs in which they reside. 547 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 548 for (auto *Dead : Killed) 549 BasicBlocks.insert(Dead->getParent()); 550 551 // Collect IT blocks in all affected basic blocks. 552 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 553 for (auto *MBB : BasicBlocks) { 554 for (auto &IT : *MBB) { 555 if (IT.getOpcode() != ARM::t2IT) 556 continue; 557 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 558 ITBlocks[&IT]); 559 } 560 } 561 562 // If we're removing all of the instructions within an IT block, then 563 // also remove the IT instruction. 564 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 565 SmallPtrSet<MachineInstr *, 2> RemoveITs; 566 for (auto *Dead : Killed) { 567 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 568 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 569 RemoveITs.insert(IT); 570 auto &CurrentBlock = ITBlocks[IT]; 571 CurrentBlock.erase(Dead); 572 if (CurrentBlock.empty()) 573 ModifiedITs.erase(IT); 574 else 575 ModifiedITs.insert(IT); 576 } 577 } 578 if (!ModifiedITs.empty()) 579 return false; 580 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 581 return true; 582 }; 583 584 SmallPtrSet<MachineInstr *, 2> Uses; 585 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 586 return false; 587 588 if (WontCorruptITs(Uses, RDA)) { 589 ToRemove.insert(Uses.begin(), Uses.end()); 590 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 591 << " - can also remove:\n"; 592 for (auto *Use : Uses) 593 dbgs() << " - " << *Use); 594 595 SmallPtrSet<MachineInstr*, 4> Killed; 596 RDA.collectKilledOperands(MI, Killed); 597 if (WontCorruptITs(Killed, RDA)) { 598 ToRemove.insert(Killed.begin(), Killed.end()); 599 LLVM_DEBUG(for (auto *Dead : Killed) 600 dbgs() << " - " << *Dead); 601 } 602 return true; 603 } 604 return false; 605 } 606 607 bool LowOverheadLoop::ValidateTailPredicate() { 608 if (!IsTailPredicationLegal()) { 609 LLVM_DEBUG(if (VCTPs.empty()) 610 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 611 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 612 return false; 613 } 614 615 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 616 assert(ML.getBlocks().size() == 1 && 617 "Shouldn't be processing a loop with more than one block"); 618 619 if (DisableTailPredication) { 620 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 621 return false; 622 } 623 624 if (!VPTState::isValid(RDA)) { 625 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 626 return false; 627 } 628 629 if (!ValidateLiveOuts()) { 630 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 631 return false; 632 } 633 634 // Check that creating a [W|D]LSTP, which will define LR with an element 635 // count instead of iteration count, won't affect any other instructions 636 // than the LoopStart and LoopDec. 637 // TODO: We should try to insert the [W|D]LSTP after any of the other uses. 638 Register StartReg = isDo(Start) ? Start->getOperand(1).getReg() 639 : Start->getOperand(0).getReg(); 640 if (StartInsertPt == Start && StartReg == ARM::LR) { 641 if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) { 642 SmallPtrSet<MachineInstr *, 2> Uses; 643 RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses); 644 for (auto *Use : Uses) { 645 if (Use != Start && Use != Dec) { 646 LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use); 647 return false; 648 } 649 } 650 } 651 } 652 653 // For tail predication, we need to provide the number of elements, instead 654 // of the iteration count, to the loop start instruction. The number of 655 // elements is provided to the vctp instruction, so we need to check that 656 // we can use this register at InsertPt. 657 MachineInstr *VCTP = VCTPs.back(); 658 if (Start->getOpcode() == ARM::t2DoLoopStartTP) { 659 TPNumElements = Start->getOperand(2); 660 StartInsertPt = Start; 661 StartInsertBB = Start->getParent(); 662 } else { 663 TPNumElements = VCTP->getOperand(1); 664 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 665 666 // If the register is defined within loop, then we can't perform TP. 667 // TODO: Check whether this is just a mov of a register that would be 668 // available. 669 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 670 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 671 return false; 672 } 673 674 // The element count register maybe defined after InsertPt, in which case we 675 // need to try to move either InsertPt or the def so that the [w|d]lstp can 676 // use the value. 677 678 if (StartInsertPt != StartInsertBB->end() && 679 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 680 if (auto *ElemDef = 681 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 682 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 683 ElemDef->removeFromParent(); 684 StartInsertBB->insert(StartInsertPt, ElemDef); 685 LLVM_DEBUG(dbgs() 686 << "ARM Loops: Moved element count def: " << *ElemDef); 687 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 688 StartInsertPt->removeFromParent(); 689 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 690 &*StartInsertPt); 691 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 692 } else { 693 // If we fail to move an instruction and the element count is provided 694 // by a mov, use the mov operand if it will have the same value at the 695 // insertion point 696 MachineOperand Operand = ElemDef->getOperand(1); 697 if (isMovRegOpcode(ElemDef->getOpcode()) && 698 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 699 RDA.getUniqueReachingMIDef(&*StartInsertPt, 700 Operand.getReg().asMCReg())) { 701 TPNumElements = Operand; 702 NumElements = TPNumElements.getReg(); 703 } else { 704 LLVM_DEBUG(dbgs() 705 << "ARM Loops: Unable to move element count to loop " 706 << "start instruction.\n"); 707 return false; 708 } 709 } 710 } 711 } 712 713 // Especially in the case of while loops, InsertBB may not be the 714 // preheader, so we need to check that the register isn't redefined 715 // before entering the loop. 716 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 717 MCRegister NumElements) { 718 if (MBB->empty()) 719 return false; 720 // NumElements is redefined in this block. 721 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 722 return true; 723 724 // Don't continue searching up through multiple predecessors. 725 if (MBB->pred_size() > 1) 726 return true; 727 728 return false; 729 }; 730 731 // Search backwards for a def, until we get to InsertBB. 732 MachineBasicBlock *MBB = Preheader; 733 while (MBB && MBB != StartInsertBB) { 734 if (CannotProvideElements(MBB, NumElements)) { 735 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 736 return false; 737 } 738 MBB = *MBB->pred_begin(); 739 } 740 } 741 742 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 743 // world the [w|d]lstp instruction would be last instruction in the preheader 744 // and so it would only affect instructions within the loop body. But due to 745 // scheduling, and/or the logic in this pass (above), the insertion point can 746 // be moved earlier. So if the Loop Start isn't the last instruction in the 747 // preheader, and if the initial element count is smaller than the vector 748 // width, the Loop Start instruction will immediately generate one or more 749 // false lane mask which can, incorrectly, affect the proceeding MVE 750 // instructions in the preheader. 751 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 752 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 753 return false; 754 } 755 756 // Check that the value change of the element count is what we expect and 757 // that the predication will be equivalent. For this we need: 758 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 759 // and we can also allow register copies within the chain too. 760 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 761 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 762 }; 763 764 MachineBasicBlock *MBB = VCTP->getParent(); 765 // Remove modifications to the element count since they have no purpose in a 766 // tail predicated loop. Explicitly refer to the vctp operand no matter which 767 // register NumElements has been assigned to, since that is what the 768 // modifications will be using 769 if (auto *Def = RDA.getUniqueReachingMIDef( 770 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 771 SmallPtrSet<MachineInstr*, 2> ElementChain; 772 SmallPtrSet<MachineInstr*, 2> Ignore; 773 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 774 775 Ignore.insert(VCTPs.begin(), VCTPs.end()); 776 777 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 778 bool FoundSub = false; 779 780 for (auto *MI : ElementChain) { 781 if (isMovRegOpcode(MI->getOpcode())) 782 continue; 783 784 if (isSubImmOpcode(MI->getOpcode())) { 785 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 786 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 787 " count: " << *MI); 788 return false; 789 } 790 FoundSub = true; 791 } else { 792 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 793 " count: " << *MI); 794 return false; 795 } 796 } 797 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 798 } 799 } 800 return true; 801 } 802 803 static bool isRegInClass(const MachineOperand &MO, 804 const TargetRegisterClass *Class) { 805 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 806 } 807 808 // MVE 'narrowing' operate on half a lane, reading from half and writing 809 // to half, which are referred to has the top and bottom half. The other 810 // half retains its previous value. 811 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 812 const MCInstrDesc &MCID = MI.getDesc(); 813 uint64_t Flags = MCID.TSFlags; 814 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 815 } 816 817 // Some MVE instructions read from the top/bottom halves of their operand(s) 818 // and generate a vector result with result elements that are double the 819 // width of the input. 820 static bool producesDoubleWidthResult(const MachineInstr &MI) { 821 const MCInstrDesc &MCID = MI.getDesc(); 822 uint64_t Flags = MCID.TSFlags; 823 return (Flags & ARMII::DoubleWidthResult) != 0; 824 } 825 826 static bool isHorizontalReduction(const MachineInstr &MI) { 827 const MCInstrDesc &MCID = MI.getDesc(); 828 uint64_t Flags = MCID.TSFlags; 829 return (Flags & ARMII::HorizontalReduction) != 0; 830 } 831 832 // Can this instruction generate a non-zero result when given only zeroed 833 // operands? This allows us to know that, given operands with false bytes 834 // zeroed by masked loads, that the result will also contain zeros in those 835 // bytes. 836 static bool canGenerateNonZeros(const MachineInstr &MI) { 837 838 // Check for instructions which can write into a larger element size, 839 // possibly writing into a previous zero'd lane. 840 if (producesDoubleWidthResult(MI)) 841 return true; 842 843 switch (MI.getOpcode()) { 844 default: 845 break; 846 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 847 // fp16 -> fp32 vector conversions. 848 // Instructions that perform a NOT will generate 1s from 0s. 849 case ARM::MVE_VMVN: 850 case ARM::MVE_VORN: 851 // Count leading zeros will do just that! 852 case ARM::MVE_VCLZs8: 853 case ARM::MVE_VCLZs16: 854 case ARM::MVE_VCLZs32: 855 return true; 856 } 857 return false; 858 } 859 860 // Look at its register uses to see if it only can only receive zeros 861 // into its false lanes which would then produce zeros. Also check that 862 // the output register is also defined by an FalseLanesZero instruction 863 // so that if tail-predication happens, the lanes that aren't updated will 864 // still be zeros. 865 static bool producesFalseLanesZero(MachineInstr &MI, 866 const TargetRegisterClass *QPRs, 867 const ReachingDefAnalysis &RDA, 868 InstSet &FalseLanesZero) { 869 if (canGenerateNonZeros(MI)) 870 return false; 871 872 bool isPredicated = isVectorPredicated(&MI); 873 // Predicated loads will write zeros to the falsely predicated bytes of the 874 // destination register. 875 if (MI.mayLoad()) 876 return isPredicated; 877 878 auto IsZeroInit = [](MachineInstr *Def) { 879 return !isVectorPredicated(Def) && 880 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 881 Def->getOperand(1).getImm() == 0; 882 }; 883 884 bool AllowScalars = isHorizontalReduction(MI); 885 for (auto &MO : MI.operands()) { 886 if (!MO.isReg() || !MO.getReg()) 887 continue; 888 if (!isRegInClass(MO, QPRs) && AllowScalars) 889 continue; 890 891 // Check that this instruction will produce zeros in its false lanes: 892 // - If it only consumes false lanes zero or constant 0 (vmov #0) 893 // - If it's predicated, it only matters that it's def register already has 894 // false lane zeros, so we can ignore the uses. 895 SmallPtrSet<MachineInstr *, 2> Defs; 896 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 897 for (auto *Def : Defs) { 898 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 899 continue; 900 if (MO.isUse() && isPredicated) 901 continue; 902 return false; 903 } 904 } 905 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 906 return true; 907 } 908 909 bool LowOverheadLoop::ValidateLiveOuts() { 910 // We want to find out if the tail-predicated version of this loop will 911 // produce the same values as the loop in its original form. For this to 912 // be true, the newly inserted implicit predication must not change the 913 // the (observable) results. 914 // We're doing this because many instructions in the loop will not be 915 // predicated and so the conversion from VPT predication to tail-predication 916 // can result in different values being produced; due to the tail-predication 917 // preventing many instructions from updating their falsely predicated 918 // lanes. This analysis assumes that all the instructions perform lane-wise 919 // operations and don't perform any exchanges. 920 // A masked load, whether through VPT or tail predication, will write zeros 921 // to any of the falsely predicated bytes. So, from the loads, we know that 922 // the false lanes are zeroed and here we're trying to track that those false 923 // lanes remain zero, or where they change, the differences are masked away 924 // by their user(s). 925 // All MVE stores have to be predicated, so we know that any predicate load 926 // operands, or stored results are equivalent already. Other explicitly 927 // predicated instructions will perform the same operation in the original 928 // loop and the tail-predicated form too. Because of this, we can insert 929 // loads, stores and other predicated instructions into our Predicated 930 // set and build from there. 931 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 932 SetVector<MachineInstr *> FalseLanesUnknown; 933 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 934 SmallPtrSet<MachineInstr *, 4> Predicated; 935 MachineBasicBlock *Header = ML.getHeader(); 936 937 for (auto &MI : *Header) { 938 if (!shouldInspect(MI)) 939 continue; 940 941 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 942 continue; 943 944 bool isPredicated = isVectorPredicated(&MI); 945 bool retainsOrReduces = 946 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 947 948 if (isPredicated) 949 Predicated.insert(&MI); 950 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 951 FalseLanesZero.insert(&MI); 952 else if (MI.getNumDefs() == 0) 953 continue; 954 else if (!isPredicated && retainsOrReduces) 955 return false; 956 else if (!isPredicated) 957 FalseLanesUnknown.insert(&MI); 958 } 959 960 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 961 SmallPtrSetImpl<MachineInstr *> &Predicated) { 962 SmallPtrSet<MachineInstr *, 2> Uses; 963 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 964 for (auto *Use : Uses) { 965 if (Use != MI && !Predicated.count(Use)) 966 return false; 967 } 968 return true; 969 }; 970 971 // Visit the unknowns in reverse so that we can start at the values being 972 // stored and then we can work towards the leaves, hopefully adding more 973 // instructions to Predicated. Successfully terminating the loop means that 974 // all the unknown values have to found to be masked by predicated user(s). 975 // For any unpredicated values, we store them in NonPredicated so that we 976 // can later check whether these form a reduction. 977 SmallPtrSet<MachineInstr*, 2> NonPredicated; 978 for (auto *MI : reverse(FalseLanesUnknown)) { 979 for (auto &MO : MI->operands()) { 980 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 981 continue; 982 if (!HasPredicatedUsers(MI, MO, Predicated)) { 983 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 984 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 985 NonPredicated.insert(MI); 986 break; 987 } 988 } 989 // Any unknown false lanes have been masked away by the user(s). 990 if (!NonPredicated.contains(MI)) 991 Predicated.insert(MI); 992 } 993 994 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 995 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 996 ML.getExitBlocks(ExitBlocks); 997 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 998 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 999 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1000 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1001 // TODO: Instead of blocking predication, we could move the vctp to the exit 1002 // block and calculate it's operand there in or the preheader. 1003 if (RegMask.PhysReg == ARM::VPR) 1004 return false; 1005 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1006 // because they won't be affected by lane predication. 1007 if (QPRs->contains(RegMask.PhysReg)) 1008 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1009 LiveOutMIs.insert(MI); 1010 } 1011 1012 // We've already validated that any VPT predication within the loop will be 1013 // equivalent when we perform the predication transformation; so we know that 1014 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1015 // instruction needs to be predicated, so check this here. The instructions 1016 // in NonPredicated have been found to be a reduction that we can ensure its 1017 // legality. 1018 for (auto *MI : LiveOutMIs) { 1019 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1020 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 1021 return false; 1022 } 1023 } 1024 1025 return true; 1026 } 1027 1028 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1029 if (Revert) 1030 return; 1031 1032 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1033 // can only jump back. 1034 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1035 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1036 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1037 ? End->getOperand(1).getMBB() 1038 : End->getOperand(2).getMBB(); 1039 // TODO Maybe there's cases where the target doesn't have to be the header, 1040 // but for now be safe and revert. 1041 if (TgtBB != ML.getHeader()) { 1042 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1043 return false; 1044 } 1045 1046 // The WLS and LE instructions have 12-bits for the label offset. WLS 1047 // requires a positive offset, while LE uses negative. 1048 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1049 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1050 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1051 return false; 1052 } 1053 1054 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1055 (BBUtils->getOffsetOf(Start) > 1056 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1057 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1058 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1059 return false; 1060 } 1061 return true; 1062 }; 1063 1064 // Find a suitable position to insert the loop start instruction. It needs to 1065 // be able to safely define LR. 1066 auto FindStartInsertionPoint = [](MachineInstr *Start, MachineInstr *Dec, 1067 MachineBasicBlock::iterator &InsertPt, 1068 MachineBasicBlock *&InsertBB, 1069 ReachingDefAnalysis &RDA, 1070 InstSet &ToRemove) { 1071 // For a t2DoLoopStart it is always valid to use the start insertion point. 1072 // For WLS we can define LR if LR already contains the same value. 1073 if (isDo(Start) || Start->getOperand(0).getReg() == ARM::LR) { 1074 InsertPt = MachineBasicBlock::iterator(Start); 1075 InsertBB = Start->getParent(); 1076 return true; 1077 } 1078 1079 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1080 // just define LR anyway? 1081 if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR))) 1082 return false; 1083 1084 InsertPt = MachineBasicBlock::iterator(Start); 1085 InsertBB = Start->getParent(); 1086 return true; 1087 }; 1088 1089 if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA, 1090 ToRemove)) { 1091 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 1092 Revert = true; 1093 return; 1094 } 1095 LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end()) 1096 dbgs() << "ARM Loops: Will insert LoopStart at end of block\n"; 1097 else 1098 dbgs() << "ARM Loops: Will insert LoopStart at " 1099 << *StartInsertPt 1100 ); 1101 1102 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1103 CannotTailPredicate = !ValidateTailPredicate(); 1104 } 1105 1106 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1107 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1108 if (VCTPs.empty()) { 1109 VCTPs.push_back(MI); 1110 return true; 1111 } 1112 1113 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1114 // If it does, store it in the VCTPs set, else refuse it. 1115 MachineInstr *Prev = VCTPs.back(); 1116 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1117 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1118 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1119 "definition from the main VCTP"); 1120 return false; 1121 } 1122 VCTPs.push_back(MI); 1123 return true; 1124 } 1125 1126 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1127 if (CannotTailPredicate) 1128 return false; 1129 1130 if (!shouldInspect(*MI)) 1131 return true; 1132 1133 if (MI->getOpcode() == ARM::MVE_VPSEL || 1134 MI->getOpcode() == ARM::MVE_VPNOT) { 1135 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1136 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1137 // instead a VPT block, which means we can assert while building up 1138 // the VPT block because we don't find another VPT or VPST to being a new 1139 // one. 1140 // 2) VPSEL still requires a VPR operand even after tail predicating, 1141 // which means we can't remove it unless there is another 1142 // instruction, such as vcmp, that can provide the VPR def. 1143 return false; 1144 } 1145 1146 // Record all VCTPs and check that they're equivalent to one another. 1147 if (isVCTP(MI) && !AddVCTP(MI)) 1148 return false; 1149 1150 // Inspect uses first so that any instructions that alter the VPR don't 1151 // alter the predicate upon themselves. 1152 const MCInstrDesc &MCID = MI->getDesc(); 1153 bool IsUse = false; 1154 unsigned LastOpIdx = MI->getNumOperands() - 1; 1155 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1156 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1157 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1158 continue; 1159 1160 if (ARM::isVpred(Op.value().OperandType)) { 1161 VPTState::addInst(MI); 1162 IsUse = true; 1163 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1164 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1165 return false; 1166 } 1167 } 1168 1169 // If we find an instruction that has been marked as not valid for tail 1170 // predication, only allow the instruction if it's contained within a valid 1171 // VPT block. 1172 bool RequiresExplicitPredication = 1173 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1174 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1175 LLVM_DEBUG(if (!IsUse) 1176 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1177 return IsUse; 1178 } 1179 1180 // If the instruction is already explicitly predicated, then the conversion 1181 // will be fine, but ensure that all store operations are predicated. 1182 if (MI->mayStore()) 1183 return IsUse; 1184 1185 // If this instruction defines the VPR, update the predicate for the 1186 // proceeding instructions. 1187 if (isVectorPredicate(MI)) { 1188 // Clear the existing predicate when we're not in VPT Active state, 1189 // otherwise we add to it. 1190 if (!isVectorPredicated(MI)) 1191 VPTState::resetPredicate(MI); 1192 else 1193 VPTState::addPredicate(MI); 1194 } 1195 1196 // Finally once the predicate has been modified, we can start a new VPT 1197 // block if necessary. 1198 if (isVPTOpcode(MI->getOpcode())) 1199 VPTState::CreateVPTBlock(MI); 1200 1201 return true; 1202 } 1203 1204 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1205 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1206 if (!ST.hasLOB()) 1207 return false; 1208 1209 MF = &mf; 1210 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1211 1212 MLI = &getAnalysis<MachineLoopInfo>(); 1213 RDA = &getAnalysis<ReachingDefAnalysis>(); 1214 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1215 MRI = &MF->getRegInfo(); 1216 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1217 TRI = ST.getRegisterInfo(); 1218 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1219 BBUtils->computeAllBlockSizes(); 1220 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1221 1222 bool Changed = false; 1223 for (auto ML : *MLI) { 1224 if (ML->isOutermost()) 1225 Changed |= ProcessLoop(ML); 1226 } 1227 Changed |= RevertNonLoops(); 1228 return Changed; 1229 } 1230 1231 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1232 1233 bool Changed = false; 1234 1235 // Process inner loops first. 1236 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1237 Changed |= ProcessLoop(*I); 1238 1239 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1240 if (auto *Preheader = ML->getLoopPreheader()) 1241 dbgs() << " - " << Preheader->getName() << "\n"; 1242 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1243 dbgs() << " - " << Preheader->getName() << "\n"; 1244 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1245 dbgs() << " - " << Preheader->getName() << "\n"; 1246 for (auto *MBB : ML->getBlocks()) 1247 dbgs() << " - " << MBB->getName() << "\n"; 1248 ); 1249 1250 // Search the given block for a loop start instruction. If one isn't found, 1251 // and there's only one predecessor block, search that one too. 1252 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1253 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1254 for (auto &MI : *MBB) { 1255 if (isLoopStart(MI)) 1256 return &MI; 1257 } 1258 if (MBB->pred_size() == 1) 1259 return SearchForStart(*MBB->pred_begin()); 1260 return nullptr; 1261 }; 1262 1263 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1264 // Search the preheader for the start intrinsic. 1265 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1266 // with potentially multiple set.loop.iterations, so we need to enable this. 1267 if (LoLoop.Preheader) 1268 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1269 else 1270 return false; 1271 1272 // Find the low-overhead loop components and decide whether or not to fall 1273 // back to a normal loop. Also look for a vctp instructions and decide 1274 // whether we can convert that predicate using tail predication. 1275 for (auto *MBB : reverse(ML->getBlocks())) { 1276 for (auto &MI : *MBB) { 1277 if (MI.isDebugValue()) 1278 continue; 1279 else if (MI.getOpcode() == ARM::t2LoopDec) 1280 LoLoop.Dec = &MI; 1281 else if (MI.getOpcode() == ARM::t2LoopEnd) 1282 LoLoop.End = &MI; 1283 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1284 LoLoop.End = LoLoop.Dec = &MI; 1285 else if (isLoopStart(MI)) 1286 LoLoop.Start = &MI; 1287 else if (MI.getDesc().isCall()) { 1288 // TODO: Though the call will require LE to execute again, does this 1289 // mean we should revert? Always executing LE hopefully should be 1290 // faster than performing a sub,cmp,br or even subs,br. 1291 LoLoop.Revert = true; 1292 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1293 } else { 1294 // Record VPR defs and build up their corresponding vpt blocks. 1295 // Check we know how to tail predicate any mve instructions. 1296 LoLoop.AnalyseMVEInst(&MI); 1297 } 1298 } 1299 } 1300 1301 LLVM_DEBUG(LoLoop.dump()); 1302 if (!LoLoop.FoundAllComponents()) { 1303 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1304 return false; 1305 } 1306 1307 // Check that the only instruction using LoopDec is LoopEnd. This can only 1308 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1309 // TODO: Check for copy chains that really have no effect. 1310 if (LoLoop.Dec != LoLoop.End) { 1311 SmallPtrSet<MachineInstr *, 2> Uses; 1312 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1313 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1314 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1315 LoLoop.Revert = true; 1316 } 1317 } 1318 LoLoop.Validate(BBUtils.get()); 1319 Expand(LoLoop); 1320 return true; 1321 } 1322 1323 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1324 // beq that branches to the exit branch. 1325 // TODO: We could also try to generate a cbz if the value in LR is also in 1326 // another low register. 1327 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1328 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1329 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1330 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1331 ARM::tBcc : ARM::t2Bcc; 1332 1333 RevertWhileLoopStart(MI, TII, BrOpc); 1334 } 1335 1336 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1337 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1338 RevertDoLoopStart(MI, TII); 1339 } 1340 1341 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1342 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1343 MachineBasicBlock *MBB = MI->getParent(); 1344 SmallPtrSet<MachineInstr*, 1> Ignore; 1345 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1346 if (I->getOpcode() == ARM::t2LoopEnd) { 1347 Ignore.insert(&*I); 1348 break; 1349 } 1350 } 1351 1352 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1353 bool SetFlags = 1354 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1355 1356 llvm::RevertLoopDec(MI, TII, SetFlags); 1357 return SetFlags; 1358 } 1359 1360 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1361 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1362 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1363 1364 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1365 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1366 ARM::tBcc : ARM::t2Bcc; 1367 1368 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1369 } 1370 1371 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1372 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1373 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1374 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1375 MachineBasicBlock *MBB = MI->getParent(); 1376 1377 MachineInstrBuilder MIB = 1378 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1379 MIB.addDef(ARM::LR); 1380 MIB.add(MI->getOperand(1)); 1381 MIB.addImm(1); 1382 MIB.addImm(ARMCC::AL); 1383 MIB.addReg(ARM::NoRegister); 1384 MIB.addReg(ARM::CPSR); 1385 MIB->getOperand(5).setIsDef(true); 1386 1387 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1388 unsigned BrOpc = 1389 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1390 1391 // Create bne 1392 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1393 MIB.add(MI->getOperand(2)); // branch target 1394 MIB.addImm(ARMCC::NE); // condition code 1395 MIB.addReg(ARM::CPSR); 1396 1397 MI->eraseFromParent(); 1398 } 1399 1400 // Perform dead code elimation on the loop iteration count setup expression. 1401 // If we are tail-predicating, the number of elements to be processed is the 1402 // operand of the VCTP instruction in the vector body, see getCount(), which is 1403 // register $r3 in this example: 1404 // 1405 // $lr = big-itercount-expression 1406 // .. 1407 // $lr = t2DoLoopStart renamable $lr 1408 // vector.body: 1409 // .. 1410 // $vpr = MVE_VCTP32 renamable $r3 1411 // renamable $lr = t2LoopDec killed renamable $lr, 1 1412 // t2LoopEnd renamable $lr, %vector.body 1413 // tB %end 1414 // 1415 // What we would like achieve here is to replace the do-loop start pseudo 1416 // instruction t2DoLoopStart with: 1417 // 1418 // $lr = MVE_DLSTP_32 killed renamable $r3 1419 // 1420 // Thus, $r3 which defines the number of elements, is written to $lr, 1421 // and then we want to delete the whole chain that used to define $lr, 1422 // see the comment below how this chain could look like. 1423 // 1424 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1425 if (!LoLoop.IsTailPredicationLegal()) 1426 return; 1427 1428 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1429 1430 MachineInstr *Def = 1431 RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0); 1432 if (!Def) { 1433 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1434 return; 1435 } 1436 1437 // Collect and remove the users of iteration count. 1438 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1439 LoLoop.End }; 1440 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1441 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1442 } 1443 1444 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1445 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1446 // When using tail-predication, try to delete the dead code that was used to 1447 // calculate the number of loop iterations. 1448 IterationCountDCE(LoLoop); 1449 1450 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1451 MachineInstr *Start = LoLoop.Start; 1452 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1453 unsigned Opc = LoLoop.getStartOpcode(); 1454 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1455 1456 MachineInstrBuilder MIB = 1457 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1458 1459 MIB.addDef(ARM::LR); 1460 MIB.add(Count); 1461 if (!isDo(Start)) 1462 MIB.add(Start->getOperand(1)); 1463 1464 LoLoop.ToRemove.insert(Start); 1465 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1466 return &*MIB; 1467 } 1468 1469 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1470 auto RemovePredicate = [](MachineInstr *MI) { 1471 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1472 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1473 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1474 "Expected Then predicate!"); 1475 MI->getOperand(PIdx).setImm(ARMVCC::None); 1476 MI->getOperand(PIdx+1).setReg(0); 1477 } else 1478 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1479 }; 1480 1481 for (auto &Block : LoLoop.getVPTBlocks()) { 1482 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1483 1484 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1485 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1486 // Replace the VCMP with a VPT 1487 MachineInstrBuilder MIB = 1488 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1489 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1490 MIB.addImm(ARMVCC::Then); 1491 // Register one 1492 MIB.add(TheVCMP->getOperand(1)); 1493 // Register two 1494 MIB.add(TheVCMP->getOperand(2)); 1495 // The comparison code, e.g. ge, eq, lt 1496 MIB.add(TheVCMP->getOperand(3)); 1497 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1498 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1499 LoLoop.ToRemove.insert(TheVCMP); 1500 TheVCMP = nullptr; 1501 }; 1502 1503 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1504 MachineInstr *VPST = Insts.front(); 1505 if (VPTState::hasUniformPredicate(Block)) { 1506 // A vpt block starting with VPST, is only predicated upon vctp and has no 1507 // internal vpr defs: 1508 // - Remove vpst. 1509 // - Unpredicate the remaining instructions. 1510 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1511 for (unsigned i = 1; i < Insts.size(); ++i) 1512 RemovePredicate(Insts[i]); 1513 } else { 1514 // The VPT block has a non-uniform predicate but it uses a vpst and its 1515 // entry is guarded only by a vctp, which means we: 1516 // - Need to remove the original vpst. 1517 // - Then need to unpredicate any following instructions, until 1518 // we come across the divergent vpr def. 1519 // - Insert a new vpst to predicate the instruction(s) that following 1520 // the divergent vpr def. 1521 MachineInstr *Divergent = VPTState::getDivergent(Block); 1522 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1523 bool DivergentNextIsPredicated = 1524 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1525 1526 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1527 I != E; ++I) 1528 RemovePredicate(&*I); 1529 1530 // Check if the instruction defining vpr is a vcmp so it can be combined 1531 // with the VPST This should be the divergent instruction 1532 MachineInstr *VCMP = 1533 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1534 1535 if (DivergentNextIsPredicated) { 1536 // Insert a VPST at the divergent only if the next instruction 1537 // would actually use it. A VCMP following a VPST can be 1538 // merged into a VPT so do that instead if the VCMP exists. 1539 if (!VCMP) { 1540 // Create a VPST (with a null mask for now, we'll recompute it 1541 // later) 1542 MachineInstrBuilder MIB = 1543 BuildMI(*Divergent->getParent(), Divergent, 1544 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1545 MIB.addImm(0); 1546 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1547 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1548 } else { 1549 // No RDA checks are necessary here since the VPST would have been 1550 // directly after the VCMP 1551 ReplaceVCMPWithVPT(VCMP, VCMP); 1552 } 1553 } 1554 } 1555 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1556 LoLoop.ToRemove.insert(VPST); 1557 } else if (Block.containsVCTP()) { 1558 // The vctp will be removed, so either the entire block will be dead or 1559 // the block mask of the vp(s)t will need to be recomputed. 1560 MachineInstr *VPST = Insts.front(); 1561 if (Block.size() == 2) { 1562 assert(VPST->getOpcode() == ARM::MVE_VPST && 1563 "Found a VPST in an otherwise empty vpt block"); 1564 LoLoop.ToRemove.insert(VPST); 1565 } else 1566 LoLoop.BlockMasksToRecompute.insert(VPST); 1567 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1568 // If this block starts with a VPST then attempt to merge it with the 1569 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1570 // block that no longer exists 1571 MachineInstr *VPST = Insts.front(); 1572 auto Next = ++MachineBasicBlock::iterator(VPST); 1573 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1574 "The instruction after a VPST must be predicated"); 1575 (void)Next; 1576 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1577 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1578 !LoLoop.ToRemove.contains(VprDef)) { 1579 MachineInstr *VCMP = VprDef; 1580 // The VCMP and VPST can only be merged if the VCMP's operands will have 1581 // the same values at the VPST. 1582 // If any of the instructions between the VCMP and VPST are predicated 1583 // then a different code path is expected to have merged the VCMP and 1584 // VPST already. 1585 if (!std::any_of(++MachineBasicBlock::iterator(VCMP), 1586 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1587 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1588 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1589 ReplaceVCMPWithVPT(VCMP, VPST); 1590 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1591 LoLoop.ToRemove.insert(VPST); 1592 } 1593 } 1594 } 1595 } 1596 1597 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1598 } 1599 1600 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1601 1602 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1603 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1604 MachineInstr *End = LoLoop.End; 1605 MachineBasicBlock *MBB = End->getParent(); 1606 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1607 ARM::MVE_LETP : ARM::t2LEUpdate; 1608 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1609 TII->get(Opc)); 1610 MIB.addDef(ARM::LR); 1611 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1612 MIB.add(End->getOperand(Off + 0)); 1613 MIB.add(End->getOperand(Off + 1)); 1614 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1615 LoLoop.ToRemove.insert(LoLoop.Dec); 1616 LoLoop.ToRemove.insert(End); 1617 return &*MIB; 1618 }; 1619 1620 // TODO: We should be able to automatically remove these branches before we 1621 // get here - probably by teaching analyzeBranch about the pseudo 1622 // instructions. 1623 // If there is an unconditional branch, after I, that just branches to the 1624 // next block, remove it. 1625 auto RemoveDeadBranch = [](MachineInstr *I) { 1626 MachineBasicBlock *BB = I->getParent(); 1627 MachineInstr *Terminator = &BB->instr_back(); 1628 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1629 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1630 if (BB->isLayoutSuccessor(Succ)) { 1631 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1632 Terminator->eraseFromParent(); 1633 } 1634 } 1635 }; 1636 1637 if (LoLoop.Revert) { 1638 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1639 RevertWhile(LoLoop.Start); 1640 else 1641 RevertDo(LoLoop.Start); 1642 if (LoLoop.Dec == LoLoop.End) 1643 RevertLoopEndDec(LoLoop.End); 1644 else 1645 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1646 } else { 1647 LoLoop.Start = ExpandLoopStart(LoLoop); 1648 RemoveDeadBranch(LoLoop.Start); 1649 LoLoop.End = ExpandLoopEnd(LoLoop); 1650 RemoveDeadBranch(LoLoop.End); 1651 if (LoLoop.IsTailPredicationLegal()) 1652 ConvertVPTBlocks(LoLoop); 1653 for (auto *I : LoLoop.ToRemove) { 1654 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1655 I->eraseFromParent(); 1656 } 1657 for (auto *I : LoLoop.BlockMasksToRecompute) { 1658 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1659 recomputeVPTBlockMask(*I); 1660 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1661 } 1662 } 1663 1664 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1665 DFS.ProcessLoop(); 1666 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1667 for (auto *MBB : PostOrder) { 1668 recomputeLiveIns(*MBB); 1669 // FIXME: For some reason, the live-in print order is non-deterministic for 1670 // our tests and I can't out why... So just sort them. 1671 MBB->sortUniqueLiveIns(); 1672 } 1673 1674 for (auto *MBB : reverse(PostOrder)) 1675 recomputeLivenessFlags(*MBB); 1676 1677 // We've moved, removed and inserted new instructions, so update RDA. 1678 RDA->reset(); 1679 } 1680 1681 bool ARMLowOverheadLoops::RevertNonLoops() { 1682 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1683 bool Changed = false; 1684 1685 for (auto &MBB : *MF) { 1686 SmallVector<MachineInstr*, 4> Starts; 1687 SmallVector<MachineInstr*, 4> Decs; 1688 SmallVector<MachineInstr*, 4> Ends; 1689 SmallVector<MachineInstr *, 4> EndDecs; 1690 1691 for (auto &I : MBB) { 1692 if (isLoopStart(I)) 1693 Starts.push_back(&I); 1694 else if (I.getOpcode() == ARM::t2LoopDec) 1695 Decs.push_back(&I); 1696 else if (I.getOpcode() == ARM::t2LoopEnd) 1697 Ends.push_back(&I); 1698 else if (I.getOpcode() == ARM::t2LoopEndDec) 1699 EndDecs.push_back(&I); 1700 } 1701 1702 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty()) 1703 continue; 1704 1705 Changed = true; 1706 1707 for (auto *Start : Starts) { 1708 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1709 RevertWhile(Start); 1710 else 1711 RevertDo(Start); 1712 } 1713 for (auto *Dec : Decs) 1714 RevertLoopDec(Dec); 1715 1716 for (auto *End : Ends) 1717 RevertLoopEnd(End); 1718 for (auto *End : EndDecs) 1719 RevertLoopEndDec(End); 1720 } 1721 return Changed; 1722 } 1723 1724 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1725 return new ARMLowOverheadLoops(); 1726 } 1727