1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 namespace { 77 78 using InstSet = SmallPtrSetImpl<MachineInstr *>; 79 80 class PostOrderLoopTraversal { 81 MachineLoop &ML; 82 MachineLoopInfo &MLI; 83 SmallPtrSet<MachineBasicBlock*, 4> Visited; 84 SmallVector<MachineBasicBlock*, 4> Order; 85 86 public: 87 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 88 : ML(ML), MLI(MLI) { } 89 90 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 91 return Order; 92 } 93 94 // Visit all the blocks within the loop, as well as exit blocks and any 95 // blocks properly dominating the header. 96 void ProcessLoop() { 97 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 98 (MachineBasicBlock *MBB) -> void { 99 if (Visited.count(MBB)) 100 return; 101 102 Visited.insert(MBB); 103 for (auto *Succ : MBB->successors()) { 104 if (!ML.contains(Succ)) 105 continue; 106 Search(Succ); 107 } 108 Order.push_back(MBB); 109 }; 110 111 // Insert exit blocks. 112 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 113 ML.getExitBlocks(ExitBlocks); 114 for (auto *MBB : ExitBlocks) 115 Order.push_back(MBB); 116 117 // Then add the loop body. 118 Search(ML.getHeader()); 119 120 // Then try the preheader and its predecessors. 121 std::function<void(MachineBasicBlock*)> GetPredecessor = 122 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 123 Order.push_back(MBB); 124 if (MBB->pred_size() == 1) 125 GetPredecessor(*MBB->pred_begin()); 126 }; 127 128 if (auto *Preheader = ML.getLoopPreheader()) 129 GetPredecessor(Preheader); 130 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 131 GetPredecessor(Preheader); 132 } 133 }; 134 135 struct PredicatedMI { 136 MachineInstr *MI = nullptr; 137 SetVector<MachineInstr*> Predicates; 138 139 public: 140 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 141 assert(I && "Instruction must not be null!"); 142 Predicates.insert(Preds.begin(), Preds.end()); 143 } 144 }; 145 146 // Represent a VPT block, a list of instructions that begins with a VPT/VPST 147 // and has a maximum of four proceeding instructions. All instructions within 148 // the block are predicated upon the vpr and we allow instructions to define 149 // the vpr within in the block too. 150 class VPTBlock { 151 // The predicate then instruction, which is either a VPT, or a VPST 152 // instruction. 153 std::unique_ptr<PredicatedMI> PredicateThen; 154 PredicatedMI *Divergent = nullptr; 155 SmallVector<PredicatedMI, 4> Insts; 156 157 public: 158 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 159 PredicateThen = std::make_unique<PredicatedMI>(MI, Preds); 160 } 161 162 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 163 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 164 if (!Divergent && !set_difference(Preds, PredicateThen->Predicates).empty()) { 165 Divergent = &Insts.back(); 166 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 167 } 168 Insts.emplace_back(MI, Preds); 169 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 170 } 171 172 // Have we found an instruction within the block which defines the vpr? If 173 // so, not all the instructions in the block will have the same predicate. 174 bool HasNonUniformPredicate() const { 175 return Divergent != nullptr; 176 } 177 178 // Is the given instruction part of the predicate set controlling the entry 179 // to the block. 180 bool IsPredicatedOn(MachineInstr *MI) const { 181 return PredicateThen->Predicates.count(MI); 182 } 183 184 // Returns true if this is a VPT instruction. 185 bool isVPT() const { return !isVPST(); } 186 187 // Returns true if this is a VPST instruction. 188 bool isVPST() const { 189 return PredicateThen->MI->getOpcode() == ARM::MVE_VPST; 190 } 191 192 // Is the given instruction the only predicate which controls the entry to 193 // the block. 194 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 195 return IsPredicatedOn(MI) && PredicateThen->Predicates.size() == 1; 196 } 197 198 unsigned size() const { return Insts.size(); } 199 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 200 MachineInstr *getPredicateThen() const { return PredicateThen->MI; } 201 PredicatedMI *getDivergent() const { return Divergent; } 202 }; 203 204 struct LowOverheadLoop { 205 206 MachineLoop &ML; 207 MachineLoopInfo &MLI; 208 ReachingDefAnalysis &RDA; 209 const TargetRegisterInfo &TRI; 210 MachineFunction *MF = nullptr; 211 MachineInstr *InsertPt = nullptr; 212 MachineInstr *Start = nullptr; 213 MachineInstr *Dec = nullptr; 214 MachineInstr *End = nullptr; 215 MachineInstr *VCTP = nullptr; 216 SmallPtrSet<MachineInstr*, 4> SecondaryVCTPs; 217 VPTBlock *CurrentBlock = nullptr; 218 SetVector<MachineInstr*> CurrentPredicate; 219 SmallVector<VPTBlock, 4> VPTBlocks; 220 SmallPtrSet<MachineInstr*, 4> ToRemove; 221 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 222 bool Revert = false; 223 bool CannotTailPredicate = false; 224 225 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 226 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 227 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 228 MF = ML.getHeader()->getParent(); 229 } 230 231 // If this is an MVE instruction, check that we know how to use tail 232 // predication with it. Record VPT blocks and return whether the 233 // instruction is valid for tail predication. 234 bool ValidateMVEInst(MachineInstr *MI); 235 236 void AnalyseMVEInst(MachineInstr *MI) { 237 CannotTailPredicate = !ValidateMVEInst(MI); 238 } 239 240 bool IsTailPredicationLegal() const { 241 // For now, let's keep things really simple and only support a single 242 // block for tail predication. 243 return !Revert && FoundAllComponents() && VCTP && 244 !CannotTailPredicate && ML.getNumBlocks() == 1; 245 } 246 247 // Check that the predication in the loop will be equivalent once we 248 // perform the conversion. Also ensure that we can provide the number 249 // of elements to the loop start instruction. 250 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 251 252 // Check that any values available outside of the loop will be the same 253 // after tail predication conversion. 254 bool ValidateLiveOuts() const; 255 256 // Is it safe to define LR with DLS/WLS? 257 // LR can be defined if it is the operand to start, because it's the same 258 // value, or if it's going to be equivalent to the operand to Start. 259 MachineInstr *isSafeToDefineLR(); 260 261 // Check the branch targets are within range and we satisfy our 262 // restrictions. 263 void CheckLegality(ARMBasicBlockUtils *BBUtils); 264 265 bool FoundAllComponents() const { 266 return Start && Dec && End; 267 } 268 269 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 270 271 // Return the loop iteration count, or the number of elements if we're tail 272 // predicating. 273 MachineOperand &getCount() { 274 return IsTailPredicationLegal() ? 275 VCTP->getOperand(1) : Start->getOperand(0); 276 } 277 278 unsigned getStartOpcode() const { 279 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 280 if (!IsTailPredicationLegal()) 281 return IsDo ? ARM::t2DLS : ARM::t2WLS; 282 283 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 284 } 285 286 void dump() const { 287 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 288 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 289 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 290 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 291 if (!FoundAllComponents()) 292 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 293 else if (!(Start && Dec && End)) 294 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 295 } 296 }; 297 298 class ARMLowOverheadLoops : public MachineFunctionPass { 299 MachineFunction *MF = nullptr; 300 MachineLoopInfo *MLI = nullptr; 301 ReachingDefAnalysis *RDA = nullptr; 302 const ARMBaseInstrInfo *TII = nullptr; 303 MachineRegisterInfo *MRI = nullptr; 304 const TargetRegisterInfo *TRI = nullptr; 305 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 306 307 public: 308 static char ID; 309 310 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 311 312 void getAnalysisUsage(AnalysisUsage &AU) const override { 313 AU.setPreservesCFG(); 314 AU.addRequired<MachineLoopInfo>(); 315 AU.addRequired<ReachingDefAnalysis>(); 316 MachineFunctionPass::getAnalysisUsage(AU); 317 } 318 319 bool runOnMachineFunction(MachineFunction &MF) override; 320 321 MachineFunctionProperties getRequiredProperties() const override { 322 return MachineFunctionProperties().set( 323 MachineFunctionProperties::Property::NoVRegs).set( 324 MachineFunctionProperties::Property::TracksLiveness); 325 } 326 327 StringRef getPassName() const override { 328 return ARM_LOW_OVERHEAD_LOOPS_NAME; 329 } 330 331 private: 332 bool ProcessLoop(MachineLoop *ML); 333 334 bool RevertNonLoops(); 335 336 void RevertWhile(MachineInstr *MI) const; 337 338 bool RevertLoopDec(MachineInstr *MI) const; 339 340 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 341 342 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 343 344 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 345 346 void Expand(LowOverheadLoop &LoLoop); 347 348 void IterationCountDCE(LowOverheadLoop &LoLoop); 349 }; 350 } 351 352 char ARMLowOverheadLoops::ID = 0; 353 354 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 355 false, false) 356 357 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 358 // We can define LR because LR already contains the same value. 359 if (Start->getOperand(0).getReg() == ARM::LR) 360 return Start; 361 362 unsigned CountReg = Start->getOperand(0).getReg(); 363 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 364 return MI->getOpcode() == ARM::tMOVr && 365 MI->getOperand(0).getReg() == ARM::LR && 366 MI->getOperand(1).getReg() == CountReg && 367 MI->getOperand(2).getImm() == ARMCC::AL; 368 }; 369 370 MachineBasicBlock *MBB = Start->getParent(); 371 372 // Find an insertion point: 373 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 374 // to Count before Start, we can insert at that mov. 375 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 376 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 377 return LRDef; 378 379 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 380 // to Count after Start, we can insert at that mov. 381 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 382 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 383 return LRDef; 384 385 // We've found no suitable LR def and Start doesn't use LR directly. Can we 386 // just define LR anyway? 387 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 388 } 389 390 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 391 assert(VCTP && "VCTP instruction expected but is not set"); 392 // All predication within the loop should be based on vctp. If the block 393 // isn't predicated on entry, check whether the vctp is within the block 394 // and that all other instructions are then predicated on it. 395 for (auto &Block : VPTBlocks) { 396 if (Block.IsPredicatedOn(VCTP)) 397 continue; 398 if (Block.HasNonUniformPredicate() && !isVCTP(Block.getDivergent()->MI)) { 399 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 400 << *Block.getDivergent()->MI); 401 return false; 402 } 403 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 404 for (auto &PredMI : Insts) { 405 // Check the instructions in the block and only allow: 406 // - VCTPs 407 // - Instructions predicated on the main VCTP 408 // - Any VCMP 409 // - VCMPs just "and" their result with VPR.P0. Whether they are 410 // located before/after the VCTP is irrelevant - the end result will 411 // be the same in both cases, so there's no point in requiring them 412 // to be located after the VCTP! 413 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI) || 414 VCMPOpcodeToVPT(PredMI.MI->getOpcode()) != 0) 415 continue; 416 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 417 << " - which is predicated on:\n"; 418 for (auto *MI : PredMI.Predicates) 419 dbgs() << " - " << *MI); 420 return false; 421 } 422 } 423 424 if (!ValidateLiveOuts()) 425 return false; 426 427 // For tail predication, we need to provide the number of elements, instead 428 // of the iteration count, to the loop start instruction. The number of 429 // elements is provided to the vctp instruction, so we need to check that 430 // we can use this register at InsertPt. 431 Register NumElements = VCTP->getOperand(1).getReg(); 432 433 // If the register is defined within loop, then we can't perform TP. 434 // TODO: Check whether this is just a mov of a register that would be 435 // available. 436 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 437 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 438 return false; 439 } 440 441 // The element count register maybe defined after InsertPt, in which case we 442 // need to try to move either InsertPt or the def so that the [w|d]lstp can 443 // use the value. 444 // TODO: On failing to move an instruction, check if the count is provided by 445 // a mov and whether we can use the mov operand directly. 446 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 447 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 448 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 449 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 450 ElemDef->removeFromParent(); 451 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 452 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 453 << *ElemDef); 454 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 455 StartInsertPt->removeFromParent(); 456 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 457 StartInsertPt); 458 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 459 } else { 460 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 461 << "start instruction.\n"); 462 return false; 463 } 464 } 465 } 466 467 // Especially in the case of while loops, InsertBB may not be the 468 // preheader, so we need to check that the register isn't redefined 469 // before entering the loop. 470 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 471 Register NumElements) { 472 // NumElements is redefined in this block. 473 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 474 return true; 475 476 // Don't continue searching up through multiple predecessors. 477 if (MBB->pred_size() > 1) 478 return true; 479 480 return false; 481 }; 482 483 // First, find the block that looks like the preheader. 484 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 485 if (!MBB) { 486 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 487 return false; 488 } 489 490 // Then search backwards for a def, until we get to InsertBB. 491 while (MBB != InsertBB) { 492 if (CannotProvideElements(MBB, NumElements)) { 493 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 494 return false; 495 } 496 MBB = *MBB->pred_begin(); 497 } 498 499 // Check that the value change of the element count is what we expect and 500 // that the predication will be equivalent. For this we need: 501 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 502 // and we can also allow register copies within the chain too. 503 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 504 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 505 }; 506 507 MBB = VCTP->getParent(); 508 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 509 SmallPtrSet<MachineInstr*, 2> ElementChain; 510 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 511 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 512 513 Ignore.insert(SecondaryVCTPs.begin(), SecondaryVCTPs.end()); 514 515 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 516 bool FoundSub = false; 517 518 for (auto *MI : ElementChain) { 519 if (isMovRegOpcode(MI->getOpcode())) 520 continue; 521 522 if (isSubImmOpcode(MI->getOpcode())) { 523 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 524 return false; 525 FoundSub = true; 526 } else 527 return false; 528 } 529 530 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 531 for (auto *MI : ElementChain) 532 dbgs() << " - " << *MI); 533 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 534 } 535 } 536 return true; 537 } 538 539 static bool isVectorPredicated(MachineInstr *MI) { 540 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 541 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 542 } 543 544 static bool isRegInClass(const MachineOperand &MO, 545 const TargetRegisterClass *Class) { 546 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 547 } 548 549 // MVE 'narrowing' operate on half a lane, reading from half and writing 550 // to half, which are referred to has the top and bottom half. The other 551 // half retains its previous value. 552 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 553 const MCInstrDesc &MCID = MI.getDesc(); 554 uint64_t Flags = MCID.TSFlags; 555 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 556 } 557 558 // Some MVE instructions read from the top/bottom halves of their operand(s) 559 // and generate a vector result with result elements that are double the 560 // width of the input. 561 static bool producesDoubleWidthResult(const MachineInstr &MI) { 562 const MCInstrDesc &MCID = MI.getDesc(); 563 uint64_t Flags = MCID.TSFlags; 564 return (Flags & ARMII::DoubleWidthResult) != 0; 565 } 566 567 static bool isHorizontalReduction(const MachineInstr &MI) { 568 const MCInstrDesc &MCID = MI.getDesc(); 569 uint64_t Flags = MCID.TSFlags; 570 return (Flags & ARMII::HorizontalReduction) != 0; 571 } 572 573 // Can this instruction generate a non-zero result when given only zeroed 574 // operands? This allows us to know that, given operands with false bytes 575 // zeroed by masked loads, that the result will also contain zeros in those 576 // bytes. 577 static bool canGenerateNonZeros(const MachineInstr &MI) { 578 579 // Check for instructions which can write into a larger element size, 580 // possibly writing into a previous zero'd lane. 581 if (producesDoubleWidthResult(MI)) 582 return true; 583 584 switch (MI.getOpcode()) { 585 default: 586 break; 587 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 588 // fp16 -> fp32 vector conversions. 589 // Instructions that perform a NOT will generate 1s from 0s. 590 case ARM::MVE_VMVN: 591 case ARM::MVE_VORN: 592 // Count leading zeros will do just that! 593 case ARM::MVE_VCLZs8: 594 case ARM::MVE_VCLZs16: 595 case ARM::MVE_VCLZs32: 596 return true; 597 } 598 return false; 599 } 600 601 602 // Look at its register uses to see if it only can only receive zeros 603 // into its false lanes which would then produce zeros. Also check that 604 // the output register is also defined by an FalseLanesZero instruction 605 // so that if tail-predication happens, the lanes that aren't updated will 606 // still be zeros. 607 static bool producesFalseLanesZero(MachineInstr &MI, 608 const TargetRegisterClass *QPRs, 609 const ReachingDefAnalysis &RDA, 610 InstSet &FalseLanesZero) { 611 if (canGenerateNonZeros(MI)) 612 return false; 613 614 bool AllowScalars = isHorizontalReduction(MI); 615 for (auto &MO : MI.operands()) { 616 if (!MO.isReg() || !MO.getReg()) 617 continue; 618 if (!isRegInClass(MO, QPRs) && AllowScalars) 619 continue; 620 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 621 if (FalseLanesZero.count(OpDef)) 622 continue; 623 return false; 624 } 625 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 626 return true; 627 } 628 629 bool LowOverheadLoop::ValidateLiveOuts() const { 630 // We want to find out if the tail-predicated version of this loop will 631 // produce the same values as the loop in its original form. For this to 632 // be true, the newly inserted implicit predication must not change the 633 // the (observable) results. 634 // We're doing this because many instructions in the loop will not be 635 // predicated and so the conversion from VPT predication to tail-predication 636 // can result in different values being produced; due to the tail-predication 637 // preventing many instructions from updating their falsely predicated 638 // lanes. This analysis assumes that all the instructions perform lane-wise 639 // operations and don't perform any exchanges. 640 // A masked load, whether through VPT or tail predication, will write zeros 641 // to any of the falsely predicated bytes. So, from the loads, we know that 642 // the false lanes are zeroed and here we're trying to track that those false 643 // lanes remain zero, or where they change, the differences are masked away 644 // by their user(s). 645 // All MVE loads and stores have to be predicated, so we know that any load 646 // operands, or stored results are equivalent already. Other explicitly 647 // predicated instructions will perform the same operation in the original 648 // loop and the tail-predicated form too. Because of this, we can insert 649 // loads, stores and other predicated instructions into our Predicated 650 // set and build from there. 651 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 652 SetVector<MachineInstr *> FalseLanesUnknown; 653 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 654 SmallPtrSet<MachineInstr *, 4> Predicated; 655 MachineBasicBlock *MBB = ML.getHeader(); 656 657 for (auto &MI : *MBB) { 658 const MCInstrDesc &MCID = MI.getDesc(); 659 uint64_t Flags = MCID.TSFlags; 660 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 661 continue; 662 663 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 664 continue; 665 666 // Predicated loads will write zeros to the falsely predicated bytes of the 667 // destination register. 668 if (isVectorPredicated(&MI)) { 669 if (MI.mayLoad()) 670 FalseLanesZero.insert(&MI); 671 Predicated.insert(&MI); 672 continue; 673 } 674 675 if (MI.getNumDefs() == 0) 676 continue; 677 678 if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) { 679 // We require retaining and horizontal operations to operate upon zero'd 680 // false lanes to ensure the conversion doesn't change the output. 681 if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI)) 682 return false; 683 // Otherwise we need to evaluate this instruction later to see whether 684 // unknown false lanes will get masked away by their user(s). 685 FalseLanesUnknown.insert(&MI); 686 } else if (!isHorizontalReduction(MI)) 687 FalseLanesZero.insert(&MI); 688 } 689 690 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 691 SmallPtrSetImpl<MachineInstr *> &Predicated) { 692 SmallPtrSet<MachineInstr *, 2> Uses; 693 RDA.getGlobalUses(MI, MO.getReg(), Uses); 694 for (auto *Use : Uses) { 695 if (Use != MI && !Predicated.count(Use)) 696 return false; 697 } 698 return true; 699 }; 700 701 // Visit the unknowns in reverse so that we can start at the values being 702 // stored and then we can work towards the leaves, hopefully adding more 703 // instructions to Predicated. Successfully terminating the loop means that 704 // all the unknown values have to found to be masked by predicated user(s). 705 for (auto *MI : reverse(FalseLanesUnknown)) { 706 for (auto &MO : MI->operands()) { 707 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 708 continue; 709 if (!HasPredicatedUsers(MI, MO, Predicated)) { 710 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 711 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 712 return false; 713 } 714 } 715 // Any unknown false lanes have been masked away by the user(s). 716 Predicated.insert(MI); 717 } 718 719 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 720 // because they won't be affected by lane predication. 721 SmallSet<Register, 2> LiveOuts; 722 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 723 ML.getExitBlocks(ExitBlocks); 724 for (auto *MBB : ExitBlocks) 725 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 726 if (QPRs->contains(RegMask.PhysReg)) 727 LiveOuts.insert(RegMask.PhysReg); 728 729 // Collect the instructions in the loop body that define the live-out values. 730 SmallPtrSet<MachineInstr *, 2> LiveMIs; 731 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 732 for (auto Reg : LiveOuts) 733 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 734 LiveMIs.insert(MI); 735 736 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 737 for (auto *MI : LiveMIs) 738 dbgs() << " - " << *MI); 739 // We've already validated that any VPT predication within the loop will be 740 // equivalent when we perform the predication transformation; so we know that 741 // any VPT predicated instruction is predicated upon VCTP. Any live-out 742 // instruction needs to be predicated, so check this here. 743 for (auto *MI : LiveMIs) 744 if (!isVectorPredicated(MI)) 745 return false; 746 747 return true; 748 } 749 750 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 751 if (Revert) 752 return; 753 754 if (!End->getOperand(1).isMBB()) 755 report_fatal_error("Expected LoopEnd to target basic block"); 756 757 // TODO Maybe there's cases where the target doesn't have to be the header, 758 // but for now be safe and revert. 759 if (End->getOperand(1).getMBB() != ML.getHeader()) { 760 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 761 Revert = true; 762 return; 763 } 764 765 // The WLS and LE instructions have 12-bits for the label offset. WLS 766 // requires a positive offset, while LE uses negative. 767 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 768 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 769 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 770 Revert = true; 771 return; 772 } 773 774 if (Start->getOpcode() == ARM::t2WhileLoopStart && 775 (BBUtils->getOffsetOf(Start) > 776 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 777 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 778 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 779 Revert = true; 780 return; 781 } 782 783 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 784 if (!InsertPt) { 785 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 786 Revert = true; 787 return; 788 } else 789 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 790 791 if (!IsTailPredicationLegal()) { 792 LLVM_DEBUG(if (!VCTP) 793 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 794 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 795 return; 796 } 797 798 assert(ML.getBlocks().size() == 1 && 799 "Shouldn't be processing a loop with more than one block"); 800 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 801 LLVM_DEBUG(if (CannotTailPredicate) 802 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 803 } 804 805 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 806 if (CannotTailPredicate) 807 return false; 808 809 if (isVCTP(MI)) { 810 // If we find another VCTP, check whether it uses the same value as the main VCTP. 811 // If it does, store it in the SecondaryVCTPs set, else refuse it. 812 if (VCTP) { 813 if (!VCTP->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 814 !RDA.hasSameReachingDef(VCTP, MI, MI->getOperand(1).getReg())) { 815 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 816 "definition from the main VCTP"); 817 return false; 818 } 819 LLVM_DEBUG(dbgs() << "ARM Loops: Found secondary VCTP: " << *MI); 820 SecondaryVCTPs.insert(MI); 821 } else { 822 LLVM_DEBUG(dbgs() << "ARM Loops: Found 'main' VCTP: " << *MI); 823 VCTP = MI; 824 } 825 } else if (isVPTOpcode(MI->getOpcode())) { 826 if (MI->getOpcode() != ARM::MVE_VPST) { 827 assert(MI->findRegisterDefOperandIdx(ARM::VPR) != -1 && 828 "VPT does not implicitly define VPR?!"); 829 CurrentPredicate.insert(MI); 830 } 831 832 VPTBlocks.emplace_back(MI, CurrentPredicate); 833 CurrentBlock = &VPTBlocks.back(); 834 return true; 835 } else if (MI->getOpcode() == ARM::MVE_VPSEL || 836 MI->getOpcode() == ARM::MVE_VPNOT) { 837 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 838 // 1) It will use the VPR as a predicate operand, but doesn't have to be 839 // instead a VPT block, which means we can assert while building up 840 // the VPT block because we don't find another VPT or VPST to being a new 841 // one. 842 // 2) VPSEL still requires a VPR operand even after tail predicating, 843 // which means we can't remove it unless there is another 844 // instruction, such as vcmp, that can provide the VPR def. 845 return false; 846 } 847 848 bool IsUse = false; 849 bool IsDef = false; 850 const MCInstrDesc &MCID = MI->getDesc(); 851 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 852 const MachineOperand &MO = MI->getOperand(i); 853 if (!MO.isReg() || MO.getReg() != ARM::VPR) 854 continue; 855 856 if (MO.isDef()) { 857 CurrentPredicate.insert(MI); 858 IsDef = true; 859 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 860 CurrentBlock->addInst(MI, CurrentPredicate); 861 IsUse = true; 862 } else { 863 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 864 return false; 865 } 866 } 867 868 // If we find a vpr def that is not already predicated on the vctp, we've 869 // got disjoint predicates that may not be equivalent when we do the 870 // conversion. 871 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 872 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 873 return false; 874 } 875 876 uint64_t Flags = MCID.TSFlags; 877 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 878 return true; 879 880 // If we find an instruction that has been marked as not valid for tail 881 // predication, only allow the instruction if it's contained within a valid 882 // VPT block. 883 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 884 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 885 return false; 886 } 887 888 // If the instruction is already explicitly predicated, then the conversion 889 // will be fine, but ensure that all memory operations are predicated. 890 return !IsUse && MI->mayLoadOrStore() ? false : true; 891 } 892 893 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 894 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 895 if (!ST.hasLOB()) 896 return false; 897 898 MF = &mf; 899 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 900 901 MLI = &getAnalysis<MachineLoopInfo>(); 902 RDA = &getAnalysis<ReachingDefAnalysis>(); 903 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 904 MRI = &MF->getRegInfo(); 905 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 906 TRI = ST.getRegisterInfo(); 907 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 908 BBUtils->computeAllBlockSizes(); 909 BBUtils->adjustBBOffsetsAfter(&MF->front()); 910 911 bool Changed = false; 912 for (auto ML : *MLI) { 913 if (!ML->getParentLoop()) 914 Changed |= ProcessLoop(ML); 915 } 916 Changed |= RevertNonLoops(); 917 return Changed; 918 } 919 920 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 921 922 bool Changed = false; 923 924 // Process inner loops first. 925 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 926 Changed |= ProcessLoop(*I); 927 928 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 929 if (auto *Preheader = ML->getLoopPreheader()) 930 dbgs() << " - " << Preheader->getName() << "\n"; 931 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 932 dbgs() << " - " << Preheader->getName() << "\n"; 933 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 934 dbgs() << " - " << Preheader->getName() << "\n"; 935 for (auto *MBB : ML->getBlocks()) 936 dbgs() << " - " << MBB->getName() << "\n"; 937 ); 938 939 // Search the given block for a loop start instruction. If one isn't found, 940 // and there's only one predecessor block, search that one too. 941 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 942 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 943 for (auto &MI : *MBB) { 944 if (isLoopStart(MI)) 945 return &MI; 946 } 947 if (MBB->pred_size() == 1) 948 return SearchForStart(*MBB->pred_begin()); 949 return nullptr; 950 }; 951 952 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 953 // Search the preheader for the start intrinsic. 954 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 955 // with potentially multiple set.loop.iterations, so we need to enable this. 956 if (auto *Preheader = ML->getLoopPreheader()) 957 LoLoop.Start = SearchForStart(Preheader); 958 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 959 LoLoop.Start = SearchForStart(Preheader); 960 else 961 return false; 962 963 // Find the low-overhead loop components and decide whether or not to fall 964 // back to a normal loop. Also look for a vctp instructions and decide 965 // whether we can convert that predicate using tail predication. 966 for (auto *MBB : reverse(ML->getBlocks())) { 967 for (auto &MI : *MBB) { 968 if (MI.isDebugValue()) 969 continue; 970 else if (MI.getOpcode() == ARM::t2LoopDec) 971 LoLoop.Dec = &MI; 972 else if (MI.getOpcode() == ARM::t2LoopEnd) 973 LoLoop.End = &MI; 974 else if (isLoopStart(MI)) 975 LoLoop.Start = &MI; 976 else if (MI.getDesc().isCall()) { 977 // TODO: Though the call will require LE to execute again, does this 978 // mean we should revert? Always executing LE hopefully should be 979 // faster than performing a sub,cmp,br or even subs,br. 980 LoLoop.Revert = true; 981 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 982 } else { 983 // Record VPR defs and build up their corresponding vpt blocks. 984 // Check we know how to tail predicate any mve instructions. 985 LoLoop.AnalyseMVEInst(&MI); 986 } 987 } 988 } 989 990 LLVM_DEBUG(LoLoop.dump()); 991 if (!LoLoop.FoundAllComponents()) { 992 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 993 return false; 994 } 995 996 // Check that the only instruction using LoopDec is LoopEnd. 997 // TODO: Check for copy chains that really have no effect. 998 SmallPtrSet<MachineInstr*, 2> Uses; 999 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1000 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1001 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1002 LoLoop.Revert = true; 1003 } 1004 LoLoop.CheckLegality(BBUtils.get()); 1005 Expand(LoLoop); 1006 return true; 1007 } 1008 1009 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1010 // beq that branches to the exit branch. 1011 // TODO: We could also try to generate a cbz if the value in LR is also in 1012 // another low register. 1013 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1014 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1015 MachineBasicBlock *MBB = MI->getParent(); 1016 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1017 TII->get(ARM::t2CMPri)); 1018 MIB.add(MI->getOperand(0)); 1019 MIB.addImm(0); 1020 MIB.addImm(ARMCC::AL); 1021 MIB.addReg(ARM::NoRegister); 1022 1023 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1024 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1025 ARM::tBcc : ARM::t2Bcc; 1026 1027 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1028 MIB.add(MI->getOperand(1)); // branch target 1029 MIB.addImm(ARMCC::EQ); // condition code 1030 MIB.addReg(ARM::CPSR); 1031 MI->eraseFromParent(); 1032 } 1033 1034 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1035 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1036 MachineBasicBlock *MBB = MI->getParent(); 1037 SmallPtrSet<MachineInstr*, 1> Ignore; 1038 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1039 if (I->getOpcode() == ARM::t2LoopEnd) { 1040 Ignore.insert(&*I); 1041 break; 1042 } 1043 } 1044 1045 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1046 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1047 1048 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1049 TII->get(ARM::t2SUBri)); 1050 MIB.addDef(ARM::LR); 1051 MIB.add(MI->getOperand(1)); 1052 MIB.add(MI->getOperand(2)); 1053 MIB.addImm(ARMCC::AL); 1054 MIB.addReg(0); 1055 1056 if (SetFlags) { 1057 MIB.addReg(ARM::CPSR); 1058 MIB->getOperand(5).setIsDef(true); 1059 } else 1060 MIB.addReg(0); 1061 1062 MI->eraseFromParent(); 1063 return SetFlags; 1064 } 1065 1066 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1067 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1068 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1069 1070 MachineBasicBlock *MBB = MI->getParent(); 1071 // Create cmp 1072 if (!SkipCmp) { 1073 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1074 TII->get(ARM::t2CMPri)); 1075 MIB.addReg(ARM::LR); 1076 MIB.addImm(0); 1077 MIB.addImm(ARMCC::AL); 1078 MIB.addReg(ARM::NoRegister); 1079 } 1080 1081 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1082 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1083 ARM::tBcc : ARM::t2Bcc; 1084 1085 // Create bne 1086 MachineInstrBuilder MIB = 1087 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1088 MIB.add(MI->getOperand(1)); // branch target 1089 MIB.addImm(ARMCC::NE); // condition code 1090 MIB.addReg(ARM::CPSR); 1091 MI->eraseFromParent(); 1092 } 1093 1094 // Perform dead code elimation on the loop iteration count setup expression. 1095 // If we are tail-predicating, the number of elements to be processed is the 1096 // operand of the VCTP instruction in the vector body, see getCount(), which is 1097 // register $r3 in this example: 1098 // 1099 // $lr = big-itercount-expression 1100 // .. 1101 // t2DoLoopStart renamable $lr 1102 // vector.body: 1103 // .. 1104 // $vpr = MVE_VCTP32 renamable $r3 1105 // renamable $lr = t2LoopDec killed renamable $lr, 1 1106 // t2LoopEnd renamable $lr, %vector.body 1107 // tB %end 1108 // 1109 // What we would like achieve here is to replace the do-loop start pseudo 1110 // instruction t2DoLoopStart with: 1111 // 1112 // $lr = MVE_DLSTP_32 killed renamable $r3 1113 // 1114 // Thus, $r3 which defines the number of elements, is written to $lr, 1115 // and then we want to delete the whole chain that used to define $lr, 1116 // see the comment below how this chain could look like. 1117 // 1118 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1119 if (!LoLoop.IsTailPredicationLegal()) 1120 return; 1121 1122 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1123 1124 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1125 if (!Def) { 1126 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1127 return; 1128 } 1129 1130 // Collect and remove the users of iteration count. 1131 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1132 LoLoop.End, LoLoop.InsertPt }; 1133 SmallPtrSet<MachineInstr*, 2> Remove; 1134 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1135 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1136 else { 1137 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1138 return; 1139 } 1140 1141 // Collect the dead code and the MBBs in which they reside. 1142 RDA->collectKilledOperands(Def, Killed); 1143 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1144 for (auto *MI : Killed) 1145 BasicBlocks.insert(MI->getParent()); 1146 1147 // Collect IT blocks in all affected basic blocks. 1148 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1149 for (auto *MBB : BasicBlocks) { 1150 for (auto &MI : *MBB) { 1151 if (MI.getOpcode() != ARM::t2IT) 1152 continue; 1153 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1154 } 1155 } 1156 1157 // If we're removing all of the instructions within an IT block, then 1158 // also remove the IT instruction. 1159 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1160 for (auto *MI : Killed) { 1161 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1162 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1163 auto &CurrentBlock = ITBlocks[IT]; 1164 CurrentBlock.erase(MI); 1165 if (CurrentBlock.empty()) 1166 ModifiedITs.erase(IT); 1167 else 1168 ModifiedITs.insert(IT); 1169 } 1170 } 1171 1172 // Delete the killed instructions only if we don't have any IT blocks that 1173 // need to be modified because we need to fixup the mask. 1174 // TODO: Handle cases where IT blocks are modified. 1175 if (ModifiedITs.empty()) { 1176 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1177 for (auto *MI : Killed) 1178 dbgs() << " - " << *MI); 1179 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1180 } else 1181 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1182 } 1183 1184 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1185 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1186 // When using tail-predication, try to delete the dead code that was used to 1187 // calculate the number of loop iterations. 1188 IterationCountDCE(LoLoop); 1189 1190 MachineInstr *InsertPt = LoLoop.InsertPt; 1191 MachineInstr *Start = LoLoop.Start; 1192 MachineBasicBlock *MBB = InsertPt->getParent(); 1193 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1194 unsigned Opc = LoLoop.getStartOpcode(); 1195 MachineOperand &Count = LoLoop.getCount(); 1196 1197 MachineInstrBuilder MIB = 1198 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1199 1200 MIB.addDef(ARM::LR); 1201 MIB.add(Count); 1202 if (!IsDo) 1203 MIB.add(Start->getOperand(1)); 1204 1205 // If we're inserting at a mov lr, then remove it as it's redundant. 1206 if (InsertPt != Start) 1207 LoLoop.ToRemove.insert(InsertPt); 1208 LoLoop.ToRemove.insert(Start); 1209 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1210 return &*MIB; 1211 } 1212 1213 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1214 auto RemovePredicate = [](MachineInstr *MI) { 1215 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1216 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1217 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1218 "Expected Then predicate!"); 1219 MI->getOperand(PIdx).setImm(ARMVCC::None); 1220 MI->getOperand(PIdx+1).setReg(0); 1221 } else 1222 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1223 }; 1224 1225 // There are a few scenarios which we have to fix up: 1226 // 1. VPT Blocks with non-uniform predicates: 1227 // - a. When the divergent instruction is a vctp 1228 // - b. When the block uses a vpst, and is only predicated on the vctp 1229 // - c. When the block uses a vpt and (optionally) contains one or more 1230 // vctp. 1231 // 2. VPT Blocks with uniform predicates: 1232 // - a. The block uses a vpst, and is only predicated on the vctp 1233 for (auto &Block : LoLoop.getVPTBlocks()) { 1234 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1235 if (Block.HasNonUniformPredicate()) { 1236 PredicatedMI *Divergent = Block.getDivergent(); 1237 if (isVCTP(Divergent->MI)) { 1238 // The vctp will be removed, so the block mask of the vp(s)t will need 1239 // to be recomputed. 1240 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1241 } else if (Block.isVPST() && Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1242 // The VPT block has a non-uniform predicate but it uses a vpst and its 1243 // entry is guarded only by a vctp, which means we: 1244 // - Need to remove the original vpst. 1245 // - Then need to unpredicate any following instructions, until 1246 // we come across the divergent vpr def. 1247 // - Insert a new vpst to predicate the instruction(s) that following 1248 // the divergent vpr def. 1249 // TODO: We could be producing more VPT blocks than necessary and could 1250 // fold the newly created one into a proceeding one. 1251 for (auto I = ++MachineBasicBlock::iterator(Block.getPredicateThen()), 1252 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1253 RemovePredicate(&*I); 1254 1255 unsigned Size = 0; 1256 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1257 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1258 MachineInstr *InsertAt = nullptr; 1259 while (I != E) { 1260 InsertAt = &*I; 1261 ++Size; 1262 ++I; 1263 } 1264 // Create a VPST (with a null mask for now, we'll recompute it later). 1265 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1266 InsertAt->getDebugLoc(), 1267 TII->get(ARM::MVE_VPST)); 1268 MIB.addImm(0); 1269 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1270 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1271 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1272 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1273 } 1274 // Else, if the block uses a vpt, iterate over the block, removing the 1275 // extra VCTPs it may contain. 1276 else if (Block.isVPT()) { 1277 bool RemovedVCTP = false; 1278 for (PredicatedMI &Elt : Block.getInsts()) { 1279 MachineInstr *MI = Elt.MI; 1280 if (isVCTP(MI)) { 1281 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *MI); 1282 LoLoop.ToRemove.insert(MI); 1283 RemovedVCTP = true; 1284 continue; 1285 } 1286 } 1287 if (RemovedVCTP) 1288 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1289 } 1290 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP) && Block.isVPST()) { 1291 // A vpt block starting with VPST, is only predicated upon vctp and has no 1292 // internal vpr defs: 1293 // - Remove vpst. 1294 // - Unpredicate the remaining instructions. 1295 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1296 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1297 for (auto &PredMI : Insts) 1298 RemovePredicate(PredMI.MI); 1299 } 1300 } 1301 LLVM_DEBUG(dbgs() << "ARM Loops: Removing remaining VCTPs...\n"); 1302 // Remove the "main" VCTP 1303 LoLoop.ToRemove.insert(LoLoop.VCTP); 1304 LLVM_DEBUG(dbgs() << " " << *LoLoop.VCTP); 1305 // Remove remaining secondary VCTPs 1306 for (MachineInstr *VCTP : LoLoop.SecondaryVCTPs) { 1307 // All VCTPs that aren't marked for removal yet should be unpredicated ones. 1308 // The predicated ones should have already been marked for removal when 1309 // visiting the VPT blocks. 1310 if (LoLoop.ToRemove.insert(VCTP).second) { 1311 assert(getVPTInstrPredicate(*VCTP) == ARMVCC::None && 1312 "Removing Predicated VCTP without updating the block mask!"); 1313 LLVM_DEBUG(dbgs() << " " << *VCTP); 1314 } 1315 } 1316 } 1317 1318 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1319 1320 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1321 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1322 MachineInstr *End = LoLoop.End; 1323 MachineBasicBlock *MBB = End->getParent(); 1324 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1325 ARM::MVE_LETP : ARM::t2LEUpdate; 1326 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1327 TII->get(Opc)); 1328 MIB.addDef(ARM::LR); 1329 MIB.add(End->getOperand(0)); 1330 MIB.add(End->getOperand(1)); 1331 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1332 LoLoop.ToRemove.insert(LoLoop.Dec); 1333 LoLoop.ToRemove.insert(End); 1334 return &*MIB; 1335 }; 1336 1337 // TODO: We should be able to automatically remove these branches before we 1338 // get here - probably by teaching analyzeBranch about the pseudo 1339 // instructions. 1340 // If there is an unconditional branch, after I, that just branches to the 1341 // next block, remove it. 1342 auto RemoveDeadBranch = [](MachineInstr *I) { 1343 MachineBasicBlock *BB = I->getParent(); 1344 MachineInstr *Terminator = &BB->instr_back(); 1345 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1346 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1347 if (BB->isLayoutSuccessor(Succ)) { 1348 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1349 Terminator->eraseFromParent(); 1350 } 1351 } 1352 }; 1353 1354 if (LoLoop.Revert) { 1355 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1356 RevertWhile(LoLoop.Start); 1357 else 1358 LoLoop.Start->eraseFromParent(); 1359 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1360 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1361 } else { 1362 LoLoop.Start = ExpandLoopStart(LoLoop); 1363 RemoveDeadBranch(LoLoop.Start); 1364 LoLoop.End = ExpandLoopEnd(LoLoop); 1365 RemoveDeadBranch(LoLoop.End); 1366 if (LoLoop.IsTailPredicationLegal()) 1367 ConvertVPTBlocks(LoLoop); 1368 for (auto *I : LoLoop.ToRemove) { 1369 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1370 I->eraseFromParent(); 1371 } 1372 for (auto *I : LoLoop.BlockMasksToRecompute) { 1373 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1374 recomputeVPTBlockMask(*I); 1375 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1376 } 1377 } 1378 1379 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1380 DFS.ProcessLoop(); 1381 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1382 for (auto *MBB : PostOrder) { 1383 recomputeLiveIns(*MBB); 1384 // FIXME: For some reason, the live-in print order is non-deterministic for 1385 // our tests and I can't out why... So just sort them. 1386 MBB->sortUniqueLiveIns(); 1387 } 1388 1389 for (auto *MBB : reverse(PostOrder)) 1390 recomputeLivenessFlags(*MBB); 1391 1392 // We've moved, removed and inserted new instructions, so update RDA. 1393 RDA->reset(); 1394 } 1395 1396 bool ARMLowOverheadLoops::RevertNonLoops() { 1397 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1398 bool Changed = false; 1399 1400 for (auto &MBB : *MF) { 1401 SmallVector<MachineInstr*, 4> Starts; 1402 SmallVector<MachineInstr*, 4> Decs; 1403 SmallVector<MachineInstr*, 4> Ends; 1404 1405 for (auto &I : MBB) { 1406 if (isLoopStart(I)) 1407 Starts.push_back(&I); 1408 else if (I.getOpcode() == ARM::t2LoopDec) 1409 Decs.push_back(&I); 1410 else if (I.getOpcode() == ARM::t2LoopEnd) 1411 Ends.push_back(&I); 1412 } 1413 1414 if (Starts.empty() && Decs.empty() && Ends.empty()) 1415 continue; 1416 1417 Changed = true; 1418 1419 for (auto *Start : Starts) { 1420 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1421 RevertWhile(Start); 1422 else 1423 Start->eraseFromParent(); 1424 } 1425 for (auto *Dec : Decs) 1426 RevertLoopDec(Dec); 1427 1428 for (auto *End : Ends) 1429 RevertLoopEnd(End); 1430 } 1431 return Changed; 1432 } 1433 1434 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1435 return new ARMLowOverheadLoops(); 1436 } 1437