1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 18 #define DEBUG_TYPE "si-fold-operands" 19 using namespace llvm; 20 21 namespace { 22 23 struct FoldCandidate { 24 MachineInstr *UseMI; 25 union { 26 MachineOperand *OpToFold; 27 uint64_t ImmToFold; 28 int FrameIndexToFold; 29 }; 30 int ShrinkOpcode; 31 unsigned UseOpNo; 32 MachineOperand::MachineOperandType Kind; 33 bool Commuted; 34 35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 36 bool Commuted_ = false, 37 int ShrinkOp = -1) : 38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 39 Kind(FoldOp->getType()), 40 Commuted(Commuted_) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg() || FoldOp->isGlobal()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 64 65 bool isCommuted() const { 66 return Commuted; 67 } 68 69 bool needsShrink() const { 70 return ShrinkOpcode != -1; 71 } 72 73 int getShrinkOpcode() const { 74 return ShrinkOpcode; 75 } 76 }; 77 78 class SIFoldOperands : public MachineFunctionPass { 79 public: 80 static char ID; 81 MachineRegisterInfo *MRI; 82 const SIInstrInfo *TII; 83 const SIRegisterInfo *TRI; 84 const GCNSubtarget *ST; 85 const SIMachineFunctionInfo *MFI; 86 87 void foldOperand(MachineOperand &OpToFold, 88 MachineInstr *UseMI, 89 int UseOpIdx, 90 SmallVectorImpl<FoldCandidate> &FoldList, 91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 92 93 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 94 95 const MachineOperand *isClamp(const MachineInstr &MI) const; 96 bool tryFoldClamp(MachineInstr &MI); 97 98 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 99 bool tryFoldOMod(MachineInstr &MI); 100 bool tryFoldRegSequence(MachineInstr &MI); 101 bool tryFoldLCSSAPhi(MachineInstr &MI); 102 bool tryFoldLoad(MachineInstr &MI); 103 104 public: 105 SIFoldOperands() : MachineFunctionPass(ID) { 106 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 107 } 108 109 bool runOnMachineFunction(MachineFunction &MF) override; 110 111 StringRef getPassName() const override { return "SI Fold Operands"; } 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.setPreservesCFG(); 115 MachineFunctionPass::getAnalysisUsage(AU); 116 } 117 }; 118 119 } // End anonymous namespace. 120 121 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 122 "SI Fold Operands", false, false) 123 124 char SIFoldOperands::ID = 0; 125 126 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 127 128 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 129 static unsigned macToMad(unsigned Opc) { 130 switch (Opc) { 131 case AMDGPU::V_MAC_F32_e64: 132 return AMDGPU::V_MAD_F32_e64; 133 case AMDGPU::V_MAC_F16_e64: 134 return AMDGPU::V_MAD_F16_e64; 135 case AMDGPU::V_FMAC_F32_e64: 136 return AMDGPU::V_FMA_F32_e64; 137 case AMDGPU::V_FMAC_F16_e64: 138 return AMDGPU::V_FMA_F16_gfx9_e64; 139 case AMDGPU::V_FMAC_LEGACY_F32_e64: 140 return AMDGPU::V_FMA_LEGACY_F32_e64; 141 case AMDGPU::V_FMAC_F64_e64: 142 return AMDGPU::V_FMA_F64_e64; 143 } 144 return AMDGPU::INSTRUCTION_LIST_END; 145 } 146 147 // Wrapper around isInlineConstant that understands special cases when 148 // instruction types are replaced during operand folding. 149 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 150 const MachineInstr &UseMI, 151 unsigned OpNo, 152 const MachineOperand &OpToFold) { 153 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 154 return true; 155 156 unsigned Opc = UseMI.getOpcode(); 157 unsigned NewOpc = macToMad(Opc); 158 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 159 // Special case for mac. Since this is replaced with mad when folded into 160 // src2, we need to check the legality for the final instruction. 161 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 162 if (static_cast<int>(OpNo) == Src2Idx) { 163 const MCInstrDesc &MadDesc = TII->get(NewOpc); 164 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 165 } 166 } 167 168 return false; 169 } 170 171 // TODO: Add heuristic that the frame index might not fit in the addressing mode 172 // immediate offset to avoid materializing in loops. 173 static bool frameIndexMayFold(const SIInstrInfo *TII, 174 const MachineInstr &UseMI, 175 int OpNo, 176 const MachineOperand &OpToFold) { 177 if (!OpToFold.isFI()) 178 return false; 179 180 if (TII->isMUBUF(UseMI)) 181 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 182 AMDGPU::OpName::vaddr); 183 if (!TII->isFLATScratch(UseMI)) 184 return false; 185 186 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 187 AMDGPU::OpName::saddr); 188 if (OpNo == SIdx) 189 return true; 190 191 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 192 AMDGPU::OpName::vaddr); 193 return OpNo == VIdx && SIdx == -1; 194 } 195 196 FunctionPass *llvm::createSIFoldOperandsPass() { 197 return new SIFoldOperands(); 198 } 199 200 static bool updateOperand(FoldCandidate &Fold, 201 const SIInstrInfo &TII, 202 const TargetRegisterInfo &TRI, 203 const GCNSubtarget &ST) { 204 MachineInstr *MI = Fold.UseMI; 205 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 206 assert(Old.isReg()); 207 208 if (Fold.isImm()) { 209 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 210 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 211 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 212 ST.hasInv2PiInlineImm())) { 213 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 214 // already set. 215 unsigned Opcode = MI->getOpcode(); 216 int OpNo = MI->getOperandNo(&Old); 217 int ModIdx = -1; 218 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 219 ModIdx = AMDGPU::OpName::src0_modifiers; 220 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 221 ModIdx = AMDGPU::OpName::src1_modifiers; 222 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 223 ModIdx = AMDGPU::OpName::src2_modifiers; 224 assert(ModIdx != -1); 225 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 226 MachineOperand &Mod = MI->getOperand(ModIdx); 227 unsigned Val = Mod.getImm(); 228 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 229 // Only apply the following transformation if that operand requries 230 // a packed immediate. 231 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 232 case AMDGPU::OPERAND_REG_IMM_V2FP16: 233 case AMDGPU::OPERAND_REG_IMM_V2INT16: 234 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 235 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 236 // If upper part is all zero we do not need op_sel_hi. 237 if (!isUInt<16>(Fold.ImmToFold)) { 238 if (!(Fold.ImmToFold & 0xffff)) { 239 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 240 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 241 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 242 return true; 243 } 244 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 245 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 246 return true; 247 } 248 break; 249 default: 250 break; 251 } 252 } 253 } 254 } 255 256 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 257 MachineBasicBlock *MBB = MI->getParent(); 258 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 259 if (Liveness != MachineBasicBlock::LQR_Dead) { 260 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 261 return false; 262 } 263 264 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 265 int Op32 = Fold.getShrinkOpcode(); 266 MachineOperand &Dst0 = MI->getOperand(0); 267 MachineOperand &Dst1 = MI->getOperand(1); 268 assert(Dst0.isDef() && Dst1.isDef()); 269 270 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 271 272 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 273 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 274 275 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 276 277 if (HaveNonDbgCarryUse) { 278 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 279 .addReg(AMDGPU::VCC, RegState::Kill); 280 } 281 282 // Keep the old instruction around to avoid breaking iterators, but 283 // replace it with a dummy instruction to remove uses. 284 // 285 // FIXME: We should not invert how this pass looks at operands to avoid 286 // this. Should track set of foldable movs instead of looking for uses 287 // when looking at a use. 288 Dst0.setReg(NewReg0); 289 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 290 MI->RemoveOperand(I); 291 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 292 293 if (Fold.isCommuted()) 294 TII.commuteInstruction(*Inst32, false); 295 return true; 296 } 297 298 assert(!Fold.needsShrink() && "not handled"); 299 300 if (Fold.isImm()) { 301 Old.ChangeToImmediate(Fold.ImmToFold); 302 return true; 303 } 304 305 if (Fold.isGlobal()) { 306 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 307 Fold.OpToFold->getTargetFlags()); 308 return true; 309 } 310 311 if (Fold.isFI()) { 312 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 313 return true; 314 } 315 316 MachineOperand *New = Fold.OpToFold; 317 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 318 Old.setIsUndef(New->isUndef()); 319 return true; 320 } 321 322 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 323 const MachineInstr *MI) { 324 for (auto Candidate : FoldList) { 325 if (Candidate.UseMI == MI) 326 return true; 327 } 328 return false; 329 } 330 331 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 332 MachineInstr *MI, unsigned OpNo, 333 MachineOperand *FoldOp, bool Commuted = false, 334 int ShrinkOp = -1) { 335 // Skip additional folding on the same operand. 336 for (FoldCandidate &Fold : FoldList) 337 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 338 return; 339 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 340 << " operand " << OpNo << "\n " << *MI << '\n'); 341 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 342 } 343 344 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 345 MachineInstr *MI, unsigned OpNo, 346 MachineOperand *OpToFold, 347 const SIInstrInfo *TII) { 348 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 349 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 350 unsigned Opc = MI->getOpcode(); 351 unsigned NewOpc = macToMad(Opc); 352 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 353 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 354 // to fold the operand. 355 MI->setDesc(TII->get(NewOpc)); 356 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 357 if (FoldAsMAD) { 358 MI->untieRegOperand(OpNo); 359 return true; 360 } 361 MI->setDesc(TII->get(Opc)); 362 } 363 364 // Special case for s_setreg_b32 365 if (OpToFold->isImm()) { 366 unsigned ImmOpc = 0; 367 if (Opc == AMDGPU::S_SETREG_B32) 368 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 369 else if (Opc == AMDGPU::S_SETREG_B32_mode) 370 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 371 if (ImmOpc) { 372 MI->setDesc(TII->get(ImmOpc)); 373 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 374 return true; 375 } 376 } 377 378 // If we are already folding into another operand of MI, then 379 // we can't commute the instruction, otherwise we risk making the 380 // other fold illegal. 381 if (isUseMIInFoldList(FoldList, MI)) 382 return false; 383 384 unsigned CommuteOpNo = OpNo; 385 386 // Operand is not legal, so try to commute the instruction to 387 // see if this makes it possible to fold. 388 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 389 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 390 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 391 392 if (CanCommute) { 393 if (CommuteIdx0 == OpNo) 394 CommuteOpNo = CommuteIdx1; 395 else if (CommuteIdx1 == OpNo) 396 CommuteOpNo = CommuteIdx0; 397 } 398 399 400 // One of operands might be an Imm operand, and OpNo may refer to it after 401 // the call of commuteInstruction() below. Such situations are avoided 402 // here explicitly as OpNo must be a register operand to be a candidate 403 // for memory folding. 404 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 405 !MI->getOperand(CommuteIdx1).isReg())) 406 return false; 407 408 if (!CanCommute || 409 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 410 return false; 411 412 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 413 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 414 Opc == AMDGPU::V_SUB_CO_U32_e64 || 415 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 416 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 417 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 418 419 // Verify the other operand is a VGPR, otherwise we would violate the 420 // constant bus restriction. 421 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 422 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 423 if (!OtherOp.isReg() || 424 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 425 return false; 426 427 assert(MI->getOperand(1).isDef()); 428 429 // Make sure to get the 32-bit version of the commuted opcode. 430 unsigned MaybeCommutedOpc = MI->getOpcode(); 431 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 432 433 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 434 return true; 435 } 436 437 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 438 return false; 439 } 440 441 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 442 return true; 443 } 444 445 // Check the case where we might introduce a second constant operand to a 446 // scalar instruction 447 if (TII->isSALU(MI->getOpcode())) { 448 const MCInstrDesc &InstDesc = MI->getDesc(); 449 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 450 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 451 452 // Fine if the operand can be encoded as an inline constant 453 if (OpToFold->isImm()) { 454 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 455 !TII->isInlineConstant(*OpToFold, OpInfo)) { 456 // Otherwise check for another constant 457 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 458 auto &Op = MI->getOperand(i); 459 if (OpNo != i && 460 TII->isLiteralConstantLike(Op, OpInfo)) { 461 return false; 462 } 463 } 464 } 465 } 466 } 467 468 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 469 return true; 470 } 471 472 // If the use operand doesn't care about the value, this may be an operand only 473 // used for register indexing, in which case it is unsafe to fold. 474 static bool isUseSafeToFold(const SIInstrInfo *TII, 475 const MachineInstr &MI, 476 const MachineOperand &UseMO) { 477 if (UseMO.isUndef() || TII->isSDWA(MI)) 478 return false; 479 480 switch (MI.getOpcode()) { 481 case AMDGPU::V_MOV_B32_e32: 482 case AMDGPU::V_MOV_B32_e64: 483 case AMDGPU::V_MOV_B64_PSEUDO: 484 // Do not fold into an indirect mov. 485 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 486 } 487 488 return true; 489 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 490 } 491 492 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 493 // for each subreg, tracking it to foldable inline immediate if possible. 494 // Returns true on success. 495 static bool getRegSeqInit( 496 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 497 Register UseReg, uint8_t OpTy, 498 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 499 MachineInstr *Def = MRI.getVRegDef(UseReg); 500 if (!Def || !Def->isRegSequence()) 501 return false; 502 503 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 504 MachineOperand *Sub = &Def->getOperand(I); 505 assert (Sub->isReg()); 506 507 for (MachineInstr *SubDef = MRI.getVRegDef(Sub->getReg()); 508 SubDef && Sub->isReg() && !Sub->getSubReg() && 509 TII->isFoldableCopy(*SubDef); 510 SubDef = MRI.getVRegDef(Sub->getReg())) { 511 MachineOperand *Op = &SubDef->getOperand(1); 512 if (Op->isImm()) { 513 if (TII->isInlineConstant(*Op, OpTy)) 514 Sub = Op; 515 break; 516 } 517 if (!Op->isReg()) 518 break; 519 Sub = Op; 520 } 521 522 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 523 } 524 525 return true; 526 } 527 528 static bool tryToFoldACImm(const SIInstrInfo *TII, 529 const MachineOperand &OpToFold, 530 MachineInstr *UseMI, 531 unsigned UseOpIdx, 532 SmallVectorImpl<FoldCandidate> &FoldList) { 533 const MCInstrDesc &Desc = UseMI->getDesc(); 534 const MCOperandInfo *OpInfo = Desc.OpInfo; 535 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 536 return false; 537 538 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 539 if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 540 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) && 541 (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST || 542 OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST)) 543 return false; 544 545 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 546 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 547 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 548 return true; 549 } 550 551 if (!OpToFold.isReg()) 552 return false; 553 554 Register UseReg = OpToFold.getReg(); 555 if (!UseReg.isVirtual()) 556 return false; 557 558 if (isUseMIInFoldList(FoldList, UseMI)) 559 return false; 560 561 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 562 563 // Maybe it is just a COPY of an immediate itself. 564 MachineInstr *Def = MRI.getVRegDef(UseReg); 565 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 566 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 567 MachineOperand &DefOp = Def->getOperand(1); 568 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 569 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 570 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 571 return true; 572 } 573 } 574 575 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 576 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 577 return false; 578 579 int32_t Imm; 580 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 581 const MachineOperand *Op = Defs[I].first; 582 if (!Op->isImm()) 583 return false; 584 585 auto SubImm = Op->getImm(); 586 if (!I) { 587 Imm = SubImm; 588 if (!TII->isInlineConstant(*Op, OpTy) || 589 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 590 return false; 591 592 continue; 593 } 594 if (Imm != SubImm) 595 return false; // Can only fold splat constants 596 } 597 598 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 599 return true; 600 } 601 602 void SIFoldOperands::foldOperand( 603 MachineOperand &OpToFold, 604 MachineInstr *UseMI, 605 int UseOpIdx, 606 SmallVectorImpl<FoldCandidate> &FoldList, 607 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 608 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 609 610 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 611 return; 612 613 // FIXME: Fold operands with subregs. 614 if (UseOp.isReg() && OpToFold.isReg()) { 615 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 616 return; 617 } 618 619 // Special case for REG_SEQUENCE: We can't fold literals into 620 // REG_SEQUENCE instructions, so we have to fold them into the 621 // uses of REG_SEQUENCE. 622 if (UseMI->isRegSequence()) { 623 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 624 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 625 626 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) { 627 MachineInstr *RSUseMI = RSUse.getParent(); 628 629 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 630 RSUseMI->getOperandNo(&RSUse), FoldList)) 631 continue; 632 633 if (RSUse.getSubReg() != RegSeqDstSubReg) 634 continue; 635 636 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList, 637 CopiesToReplace); 638 } 639 640 return; 641 } 642 643 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 644 return; 645 646 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 647 // Sanity check that this is a stack access. 648 // FIXME: Should probably use stack pseudos before frame lowering. 649 650 if (TII->isMUBUF(*UseMI)) { 651 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 652 MFI->getScratchRSrcReg()) 653 return; 654 655 // Ensure this is either relative to the current frame or the current 656 // wave. 657 MachineOperand &SOff = 658 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 659 if (!SOff.isImm() || SOff.getImm() != 0) 660 return; 661 } 662 663 // A frame index will resolve to a positive constant, so it should always be 664 // safe to fold the addressing mode, even pre-GFX9. 665 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 666 667 if (TII->isFLATScratch(*UseMI) && 668 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 669 AMDGPU::OpName::vaddr) != -1) { 670 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 671 UseMI->setDesc(TII->get(NewOpc)); 672 } 673 674 return; 675 } 676 677 bool FoldingImmLike = 678 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 679 680 if (FoldingImmLike && UseMI->isCopy()) { 681 Register DestReg = UseMI->getOperand(0).getReg(); 682 Register SrcReg = UseMI->getOperand(1).getReg(); 683 assert(SrcReg.isVirtual()); 684 685 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 686 687 // Don't fold into a copy to a physical register with the same class. Doing 688 // so would interfere with the register coalescer's logic which would avoid 689 // redundant initalizations. 690 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 691 return; 692 693 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 694 if (!DestReg.isPhysical()) { 695 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 696 SmallVector<FoldCandidate, 4> CopyUses; 697 for (auto &Use : make_early_inc_range(MRI->use_nodbg_operands(DestReg))) { 698 // There's no point trying to fold into an implicit operand. 699 if (Use.isImplicit()) 700 continue; 701 702 FoldCandidate FC = FoldCandidate(Use.getParent(), Use.getParent()->getOperandNo(&Use), 703 &UseMI->getOperand(1)); 704 CopyUses.push_back(FC); 705 } 706 for (auto &F : CopyUses) { 707 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 708 } 709 } 710 711 if (DestRC == &AMDGPU::AGPR_32RegClass && 712 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 713 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 714 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 715 CopiesToReplace.push_back(UseMI); 716 return; 717 } 718 } 719 720 // In order to fold immediates into copies, we need to change the 721 // copy to a MOV. 722 723 unsigned MovOp = TII->getMovOpcode(DestRC); 724 if (MovOp == AMDGPU::COPY) 725 return; 726 727 UseMI->setDesc(TII->get(MovOp)); 728 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 729 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 730 while (ImpOpI != ImpOpE) { 731 MachineInstr::mop_iterator Tmp = ImpOpI; 732 ImpOpI++; 733 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 734 } 735 CopiesToReplace.push_back(UseMI); 736 } else { 737 if (UseMI->isCopy() && OpToFold.isReg() && 738 UseMI->getOperand(0).getReg().isVirtual() && 739 !UseMI->getOperand(1).getSubReg()) { 740 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 741 << "\n into " << *UseMI << '\n'); 742 unsigned Size = TII->getOpSize(*UseMI, 1); 743 Register UseReg = OpToFold.getReg(); 744 UseMI->getOperand(1).setReg(UseReg); 745 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 746 UseMI->getOperand(1).setIsKill(false); 747 CopiesToReplace.push_back(UseMI); 748 OpToFold.setIsKill(false); 749 750 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 751 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 752 // its initializers right here, so we will rematerialize immediates and 753 // avoid copies via different reg classes. 754 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 755 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 756 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 757 *MRI)) { 758 const DebugLoc &DL = UseMI->getDebugLoc(); 759 MachineBasicBlock &MBB = *UseMI->getParent(); 760 761 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 762 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 763 UseMI->RemoveOperand(I); 764 765 MachineInstrBuilder B(*MBB.getParent(), UseMI); 766 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 767 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 768 for (unsigned I = 0; I < Size / 4; ++I) { 769 MachineOperand *Def = Defs[I].first; 770 TargetInstrInfo::RegSubRegPair CopyToVGPR; 771 if (Def->isImm() && 772 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 773 int64_t Imm = Def->getImm(); 774 775 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 776 BuildMI(MBB, UseMI, DL, 777 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 778 B.addReg(Tmp); 779 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 780 auto Src = getRegSubRegPair(*Def); 781 Def->setIsKill(false); 782 if (!SeenAGPRs.insert(Src)) { 783 // We cannot build a reg_sequence out of the same registers, they 784 // must be copied. Better do it here before copyPhysReg() created 785 // several reads to do the AGPR->VGPR->AGPR copy. 786 CopyToVGPR = Src; 787 } else { 788 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 789 Src.SubReg); 790 } 791 } else { 792 assert(Def->isReg()); 793 Def->setIsKill(false); 794 auto Src = getRegSubRegPair(*Def); 795 796 // Direct copy from SGPR to AGPR is not possible. To avoid creation 797 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 798 // create a copy here and track if we already have such a copy. 799 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 800 CopyToVGPR = Src; 801 } else { 802 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 803 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 804 B.addReg(Tmp); 805 } 806 } 807 808 if (CopyToVGPR.Reg) { 809 Register Vgpr; 810 if (VGPRCopies.count(CopyToVGPR)) { 811 Vgpr = VGPRCopies[CopyToVGPR]; 812 } else { 813 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 814 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 815 VGPRCopies[CopyToVGPR] = Vgpr; 816 } 817 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 818 BuildMI(MBB, UseMI, DL, 819 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 820 B.addReg(Tmp); 821 } 822 823 B.addImm(Defs[I].second); 824 } 825 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 826 return; 827 } 828 829 if (Size != 4) 830 return; 831 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 832 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 833 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 834 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 835 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 836 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 837 else if (ST->hasGFX90AInsts() && 838 TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 839 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 840 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 841 return; 842 } 843 844 unsigned UseOpc = UseMI->getOpcode(); 845 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 846 (UseOpc == AMDGPU::V_READLANE_B32 && 847 (int)UseOpIdx == 848 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 849 // %vgpr = V_MOV_B32 imm 850 // %sgpr = V_READFIRSTLANE_B32 %vgpr 851 // => 852 // %sgpr = S_MOV_B32 imm 853 if (FoldingImmLike) { 854 if (execMayBeModifiedBeforeUse(*MRI, 855 UseMI->getOperand(UseOpIdx).getReg(), 856 *OpToFold.getParent(), 857 *UseMI)) 858 return; 859 860 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 861 862 if (OpToFold.isImm()) 863 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 864 else 865 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 866 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 867 return; 868 } 869 870 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 871 if (execMayBeModifiedBeforeUse(*MRI, 872 UseMI->getOperand(UseOpIdx).getReg(), 873 *OpToFold.getParent(), 874 *UseMI)) 875 return; 876 877 // %vgpr = COPY %sgpr0 878 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 879 // => 880 // %sgpr1 = COPY %sgpr0 881 UseMI->setDesc(TII->get(AMDGPU::COPY)); 882 UseMI->getOperand(1).setReg(OpToFold.getReg()); 883 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 884 UseMI->getOperand(1).setIsKill(false); 885 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 886 return; 887 } 888 } 889 890 const MCInstrDesc &UseDesc = UseMI->getDesc(); 891 892 // Don't fold into target independent nodes. Target independent opcodes 893 // don't have defined register classes. 894 if (UseDesc.isVariadic() || 895 UseOp.isImplicit() || 896 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 897 return; 898 } 899 900 if (!FoldingImmLike) { 901 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 902 903 // FIXME: We could try to change the instruction from 64-bit to 32-bit 904 // to enable more folding opportunites. The shrink operands pass 905 // already does this. 906 return; 907 } 908 909 910 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 911 const TargetRegisterClass *FoldRC = 912 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 913 914 // Split 64-bit constants into 32-bits for folding. 915 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 916 Register UseReg = UseOp.getReg(); 917 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 918 919 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 920 return; 921 922 APInt Imm(64, OpToFold.getImm()); 923 if (UseOp.getSubReg() == AMDGPU::sub0) { 924 Imm = Imm.getLoBits(32); 925 } else { 926 assert(UseOp.getSubReg() == AMDGPU::sub1); 927 Imm = Imm.getHiBits(32); 928 } 929 930 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 931 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 932 return; 933 } 934 935 936 937 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 938 } 939 940 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 941 uint32_t LHS, uint32_t RHS) { 942 switch (Opcode) { 943 case AMDGPU::V_AND_B32_e64: 944 case AMDGPU::V_AND_B32_e32: 945 case AMDGPU::S_AND_B32: 946 Result = LHS & RHS; 947 return true; 948 case AMDGPU::V_OR_B32_e64: 949 case AMDGPU::V_OR_B32_e32: 950 case AMDGPU::S_OR_B32: 951 Result = LHS | RHS; 952 return true; 953 case AMDGPU::V_XOR_B32_e64: 954 case AMDGPU::V_XOR_B32_e32: 955 case AMDGPU::S_XOR_B32: 956 Result = LHS ^ RHS; 957 return true; 958 case AMDGPU::S_XNOR_B32: 959 Result = ~(LHS ^ RHS); 960 return true; 961 case AMDGPU::S_NAND_B32: 962 Result = ~(LHS & RHS); 963 return true; 964 case AMDGPU::S_NOR_B32: 965 Result = ~(LHS | RHS); 966 return true; 967 case AMDGPU::S_ANDN2_B32: 968 Result = LHS & ~RHS; 969 return true; 970 case AMDGPU::S_ORN2_B32: 971 Result = LHS | ~RHS; 972 return true; 973 case AMDGPU::V_LSHL_B32_e64: 974 case AMDGPU::V_LSHL_B32_e32: 975 case AMDGPU::S_LSHL_B32: 976 // The instruction ignores the high bits for out of bounds shifts. 977 Result = LHS << (RHS & 31); 978 return true; 979 case AMDGPU::V_LSHLREV_B32_e64: 980 case AMDGPU::V_LSHLREV_B32_e32: 981 Result = RHS << (LHS & 31); 982 return true; 983 case AMDGPU::V_LSHR_B32_e64: 984 case AMDGPU::V_LSHR_B32_e32: 985 case AMDGPU::S_LSHR_B32: 986 Result = LHS >> (RHS & 31); 987 return true; 988 case AMDGPU::V_LSHRREV_B32_e64: 989 case AMDGPU::V_LSHRREV_B32_e32: 990 Result = RHS >> (LHS & 31); 991 return true; 992 case AMDGPU::V_ASHR_I32_e64: 993 case AMDGPU::V_ASHR_I32_e32: 994 case AMDGPU::S_ASHR_I32: 995 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 996 return true; 997 case AMDGPU::V_ASHRREV_I32_e64: 998 case AMDGPU::V_ASHRREV_I32_e32: 999 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1000 return true; 1001 default: 1002 return false; 1003 } 1004 } 1005 1006 static unsigned getMovOpc(bool IsScalar) { 1007 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1008 } 1009 1010 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1011 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1012 /// anymore. 1013 static void stripExtraCopyOperands(MachineInstr &MI) { 1014 const MCInstrDesc &Desc = MI.getDesc(); 1015 unsigned NumOps = Desc.getNumOperands() + 1016 Desc.getNumImplicitUses() + 1017 Desc.getNumImplicitDefs(); 1018 1019 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1020 MI.RemoveOperand(I); 1021 } 1022 1023 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1024 MI.setDesc(NewDesc); 1025 stripExtraCopyOperands(MI); 1026 } 1027 1028 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1029 MachineOperand &Op) { 1030 if (Op.isReg()) { 1031 // If this has a subregister, it obviously is a register source. 1032 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1033 return &Op; 1034 1035 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1036 if (Def && Def->isMoveImmediate()) { 1037 MachineOperand &ImmSrc = Def->getOperand(1); 1038 if (ImmSrc.isImm()) 1039 return &ImmSrc; 1040 } 1041 } 1042 1043 return &Op; 1044 } 1045 1046 // Try to simplify operations with a constant that may appear after instruction 1047 // selection. 1048 // TODO: See if a frame index with a fixed offset can fold. 1049 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1050 const SIInstrInfo *TII, 1051 MachineInstr *MI, 1052 MachineOperand *ImmOp) { 1053 unsigned Opc = MI->getOpcode(); 1054 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1055 Opc == AMDGPU::S_NOT_B32) { 1056 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1057 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1058 return true; 1059 } 1060 1061 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1062 if (Src1Idx == -1) 1063 return false; 1064 1065 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1066 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1067 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1068 1069 if (!Src0->isImm() && !Src1->isImm()) 1070 return false; 1071 1072 // and k0, k1 -> v_mov_b32 (k0 & k1) 1073 // or k0, k1 -> v_mov_b32 (k0 | k1) 1074 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1075 if (Src0->isImm() && Src1->isImm()) { 1076 int32_t NewImm; 1077 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1078 return false; 1079 1080 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1081 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1082 1083 // Be careful to change the right operand, src0 may belong to a different 1084 // instruction. 1085 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1086 MI->RemoveOperand(Src1Idx); 1087 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1088 return true; 1089 } 1090 1091 if (!MI->isCommutable()) 1092 return false; 1093 1094 if (Src0->isImm() && !Src1->isImm()) { 1095 std::swap(Src0, Src1); 1096 std::swap(Src0Idx, Src1Idx); 1097 } 1098 1099 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1100 if (Opc == AMDGPU::V_OR_B32_e64 || 1101 Opc == AMDGPU::V_OR_B32_e32 || 1102 Opc == AMDGPU::S_OR_B32) { 1103 if (Src1Val == 0) { 1104 // y = or x, 0 => y = copy x 1105 MI->RemoveOperand(Src1Idx); 1106 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1107 } else if (Src1Val == -1) { 1108 // y = or x, -1 => y = v_mov_b32 -1 1109 MI->RemoveOperand(Src1Idx); 1110 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1111 } else 1112 return false; 1113 1114 return true; 1115 } 1116 1117 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1118 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1119 MI->getOpcode() == AMDGPU::S_AND_B32) { 1120 if (Src1Val == 0) { 1121 // y = and x, 0 => y = v_mov_b32 0 1122 MI->RemoveOperand(Src0Idx); 1123 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1124 } else if (Src1Val == -1) { 1125 // y = and x, -1 => y = copy x 1126 MI->RemoveOperand(Src1Idx); 1127 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1128 stripExtraCopyOperands(*MI); 1129 } else 1130 return false; 1131 1132 return true; 1133 } 1134 1135 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1136 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1137 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1138 if (Src1Val == 0) { 1139 // y = xor x, 0 => y = copy x 1140 MI->RemoveOperand(Src1Idx); 1141 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1142 return true; 1143 } 1144 } 1145 1146 return false; 1147 } 1148 1149 // Try to fold an instruction into a simpler one 1150 static bool tryFoldCndMask(const SIInstrInfo *TII, 1151 MachineInstr *MI) { 1152 unsigned Opc = MI->getOpcode(); 1153 1154 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1155 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1156 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1157 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1158 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1159 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1160 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1161 if (Src1->isIdenticalTo(*Src0) && 1162 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1163 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1164 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1165 auto &NewDesc = 1166 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1167 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1168 if (Src2Idx != -1) 1169 MI->RemoveOperand(Src2Idx); 1170 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1171 if (Src1ModIdx != -1) 1172 MI->RemoveOperand(Src1ModIdx); 1173 if (Src0ModIdx != -1) 1174 MI->RemoveOperand(Src0ModIdx); 1175 mutateCopyOp(*MI, NewDesc); 1176 LLVM_DEBUG(dbgs() << *MI << '\n'); 1177 return true; 1178 } 1179 } 1180 1181 return false; 1182 } 1183 1184 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1185 MachineOperand &OpToFold) const { 1186 // We need mutate the operands of new mov instructions to add implicit 1187 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1188 // this. 1189 SmallVector<MachineInstr *, 4> CopiesToReplace; 1190 SmallVector<FoldCandidate, 4> FoldList; 1191 MachineOperand &Dst = MI.getOperand(0); 1192 1193 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1194 if (FoldingImm) { 1195 unsigned NumLiteralUses = 0; 1196 MachineOperand *NonInlineUse = nullptr; 1197 int NonInlineUseOpNo = -1; 1198 1199 bool Again; 1200 do { 1201 Again = false; 1202 for (auto &Use : make_early_inc_range(MRI->use_nodbg_operands(Dst.getReg()))) { 1203 MachineInstr *UseMI = Use.getParent(); 1204 unsigned OpNo = UseMI->getOperandNo(&Use); 1205 1206 // Folding the immediate may reveal operations that can be constant 1207 // folded or replaced with a copy. This can happen for example after 1208 // frame indices are lowered to constants or from splitting 64-bit 1209 // constants. 1210 // 1211 // We may also encounter cases where one or both operands are 1212 // immediates materialized into a register, which would ordinarily not 1213 // be folded due to multiple uses or operand constraints. 1214 1215 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1216 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1217 1218 // Some constant folding cases change the same immediate's use to a new 1219 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1220 // again. The same constant folded instruction could also have a second 1221 // use operand. 1222 FoldList.clear(); 1223 Again = true; 1224 break; 1225 } 1226 1227 // Try to fold any inline immediate uses, and then only fold other 1228 // constants if they have one use. 1229 // 1230 // The legality of the inline immediate must be checked based on the use 1231 // operand, not the defining instruction, because 32-bit instructions 1232 // with 32-bit inline immediate sources may be used to materialize 1233 // constants used in 16-bit operands. 1234 // 1235 // e.g. it is unsafe to fold: 1236 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1237 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1238 1239 // Folding immediates with more than one use will increase program size. 1240 // FIXME: This will also reduce register usage, which may be better 1241 // in some cases. A better heuristic is needed. 1242 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1243 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1244 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1245 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1246 CopiesToReplace); 1247 } else { 1248 if (++NumLiteralUses == 1) { 1249 NonInlineUse = &Use; 1250 NonInlineUseOpNo = OpNo; 1251 } 1252 } 1253 } 1254 } while (Again); 1255 1256 if (NumLiteralUses == 1) { 1257 MachineInstr *UseMI = NonInlineUse->getParent(); 1258 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1259 } 1260 } else { 1261 // Folding register. 1262 SmallVector <MachineOperand *, 4> UsesToProcess; 1263 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1264 UsesToProcess.push_back(&Use); 1265 for (auto U : UsesToProcess) { 1266 MachineInstr *UseMI = U->getParent(); 1267 1268 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), 1269 FoldList, CopiesToReplace); 1270 } 1271 } 1272 1273 MachineFunction *MF = MI.getParent()->getParent(); 1274 // Make sure we add EXEC uses to any new v_mov instructions created. 1275 for (MachineInstr *Copy : CopiesToReplace) 1276 Copy->addImplicitDefUseOperands(*MF); 1277 1278 SmallPtrSet<MachineInstr *, 16> Folded; 1279 for (FoldCandidate &Fold : FoldList) { 1280 assert(!Fold.isReg() || Fold.OpToFold); 1281 if (Folded.count(Fold.UseMI)) 1282 continue; 1283 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1284 Register Reg = Fold.OpToFold->getReg(); 1285 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1286 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1287 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1288 continue; 1289 } 1290 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1291 // Clear kill flags. 1292 if (Fold.isReg()) { 1293 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1294 // FIXME: Probably shouldn't bother trying to fold if not an 1295 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1296 // copies. 1297 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1298 } 1299 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1300 << static_cast<int>(Fold.UseOpNo) << " of " 1301 << *Fold.UseMI << '\n'); 1302 if (tryFoldCndMask(TII, Fold.UseMI)) 1303 Folded.insert(Fold.UseMI); 1304 } else if (Fold.isCommuted()) { 1305 // Restoring instruction's original operand order if fold has failed. 1306 TII->commuteInstruction(*Fold.UseMI, false); 1307 } 1308 } 1309 } 1310 1311 // Clamp patterns are canonically selected to v_max_* instructions, so only 1312 // handle them. 1313 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1314 unsigned Op = MI.getOpcode(); 1315 switch (Op) { 1316 case AMDGPU::V_MAX_F32_e64: 1317 case AMDGPU::V_MAX_F16_e64: 1318 case AMDGPU::V_MAX_F64_e64: 1319 case AMDGPU::V_PK_MAX_F16: { 1320 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1321 return nullptr; 1322 1323 // Make sure sources are identical. 1324 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1325 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1326 if (!Src0->isReg() || !Src1->isReg() || 1327 Src0->getReg() != Src1->getReg() || 1328 Src0->getSubReg() != Src1->getSubReg() || 1329 Src0->getSubReg() != AMDGPU::NoSubRegister) 1330 return nullptr; 1331 1332 // Can't fold up if we have modifiers. 1333 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1334 return nullptr; 1335 1336 unsigned Src0Mods 1337 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1338 unsigned Src1Mods 1339 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1340 1341 // Having a 0 op_sel_hi would require swizzling the output in the source 1342 // instruction, which we can't do. 1343 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1344 : 0u; 1345 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1346 return nullptr; 1347 return Src0; 1348 } 1349 default: 1350 return nullptr; 1351 } 1352 } 1353 1354 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1355 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1356 const MachineOperand *ClampSrc = isClamp(MI); 1357 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1358 return false; 1359 1360 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1361 1362 // The type of clamp must be compatible. 1363 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1364 return false; 1365 1366 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1367 if (!DefClamp) 1368 return false; 1369 1370 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1371 << '\n'); 1372 1373 // Clamp is applied after omod, so it is OK if omod is set. 1374 DefClamp->setImm(1); 1375 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1376 MI.eraseFromParent(); 1377 return true; 1378 } 1379 1380 static int getOModValue(unsigned Opc, int64_t Val) { 1381 switch (Opc) { 1382 case AMDGPU::V_MUL_F64_e64: { 1383 switch (Val) { 1384 case 0x3fe0000000000000: // 0.5 1385 return SIOutMods::DIV2; 1386 case 0x4000000000000000: // 2.0 1387 return SIOutMods::MUL2; 1388 case 0x4010000000000000: // 4.0 1389 return SIOutMods::MUL4; 1390 default: 1391 return SIOutMods::NONE; 1392 } 1393 } 1394 case AMDGPU::V_MUL_F32_e64: { 1395 switch (static_cast<uint32_t>(Val)) { 1396 case 0x3f000000: // 0.5 1397 return SIOutMods::DIV2; 1398 case 0x40000000: // 2.0 1399 return SIOutMods::MUL2; 1400 case 0x40800000: // 4.0 1401 return SIOutMods::MUL4; 1402 default: 1403 return SIOutMods::NONE; 1404 } 1405 } 1406 case AMDGPU::V_MUL_F16_e64: { 1407 switch (static_cast<uint16_t>(Val)) { 1408 case 0x3800: // 0.5 1409 return SIOutMods::DIV2; 1410 case 0x4000: // 2.0 1411 return SIOutMods::MUL2; 1412 case 0x4400: // 4.0 1413 return SIOutMods::MUL4; 1414 default: 1415 return SIOutMods::NONE; 1416 } 1417 } 1418 default: 1419 llvm_unreachable("invalid mul opcode"); 1420 } 1421 } 1422 1423 // FIXME: Does this really not support denormals with f16? 1424 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1425 // handled, so will anything other than that break? 1426 std::pair<const MachineOperand *, int> 1427 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1428 unsigned Op = MI.getOpcode(); 1429 switch (Op) { 1430 case AMDGPU::V_MUL_F64_e64: 1431 case AMDGPU::V_MUL_F32_e64: 1432 case AMDGPU::V_MUL_F16_e64: { 1433 // If output denormals are enabled, omod is ignored. 1434 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1435 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64) && 1436 MFI->getMode().FP64FP16OutputDenormals)) 1437 return std::make_pair(nullptr, SIOutMods::NONE); 1438 1439 const MachineOperand *RegOp = nullptr; 1440 const MachineOperand *ImmOp = nullptr; 1441 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1442 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1443 if (Src0->isImm()) { 1444 ImmOp = Src0; 1445 RegOp = Src1; 1446 } else if (Src1->isImm()) { 1447 ImmOp = Src1; 1448 RegOp = Src0; 1449 } else 1450 return std::make_pair(nullptr, SIOutMods::NONE); 1451 1452 int OMod = getOModValue(Op, ImmOp->getImm()); 1453 if (OMod == SIOutMods::NONE || 1454 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1455 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1456 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1457 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1458 return std::make_pair(nullptr, SIOutMods::NONE); 1459 1460 return std::make_pair(RegOp, OMod); 1461 } 1462 case AMDGPU::V_ADD_F64_e64: 1463 case AMDGPU::V_ADD_F32_e64: 1464 case AMDGPU::V_ADD_F16_e64: { 1465 // If output denormals are enabled, omod is ignored. 1466 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1467 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64) && 1468 MFI->getMode().FP64FP16OutputDenormals)) 1469 return std::make_pair(nullptr, SIOutMods::NONE); 1470 1471 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1472 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1473 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1474 1475 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1476 Src0->getSubReg() == Src1->getSubReg() && 1477 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1478 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1479 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1480 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1481 return std::make_pair(Src0, SIOutMods::MUL2); 1482 1483 return std::make_pair(nullptr, SIOutMods::NONE); 1484 } 1485 default: 1486 return std::make_pair(nullptr, SIOutMods::NONE); 1487 } 1488 } 1489 1490 // FIXME: Does this need to check IEEE bit on function? 1491 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1492 const MachineOperand *RegOp; 1493 int OMod; 1494 std::tie(RegOp, OMod) = isOMod(MI); 1495 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1496 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1497 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1498 return false; 1499 1500 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1501 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1502 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1503 return false; 1504 1505 // Clamp is applied after omod. If the source already has clamp set, don't 1506 // fold it. 1507 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1508 return false; 1509 1510 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1511 1512 DefOMod->setImm(OMod); 1513 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1514 MI.eraseFromParent(); 1515 return true; 1516 } 1517 1518 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1519 // instruction which can take an agpr. So far that means a store. 1520 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { 1521 assert(MI.isRegSequence()); 1522 auto Reg = MI.getOperand(0).getReg(); 1523 1524 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1525 !MRI->hasOneNonDBGUse(Reg)) 1526 return false; 1527 1528 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1529 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER, TII, *MRI)) 1530 return false; 1531 1532 for (auto &Def : Defs) { 1533 const auto *Op = Def.first; 1534 if (!Op->isReg()) 1535 return false; 1536 if (TRI->isAGPR(*MRI, Op->getReg())) 1537 continue; 1538 // Maybe this is a COPY from AREG 1539 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1540 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1541 return false; 1542 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1543 return false; 1544 } 1545 1546 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1547 MachineInstr *UseMI = Op->getParent(); 1548 while (UseMI->isCopy() && !Op->getSubReg()) { 1549 Reg = UseMI->getOperand(0).getReg(); 1550 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1551 return false; 1552 Op = &*MRI->use_nodbg_begin(Reg); 1553 UseMI = Op->getParent(); 1554 } 1555 1556 if (Op->getSubReg()) 1557 return false; 1558 1559 unsigned OpIdx = Op - &UseMI->getOperand(0); 1560 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1561 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 1562 switch (OpInfo.RegClass) { 1563 case AMDGPU::AV_32RegClassID: LLVM_FALLTHROUGH; 1564 case AMDGPU::AV_64RegClassID: LLVM_FALLTHROUGH; 1565 case AMDGPU::AV_96RegClassID: LLVM_FALLTHROUGH; 1566 case AMDGPU::AV_128RegClassID: LLVM_FALLTHROUGH; 1567 case AMDGPU::AV_160RegClassID: 1568 break; 1569 default: 1570 return false; 1571 } 1572 1573 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1574 auto Dst = MRI->createVirtualRegister(NewDstRC); 1575 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1576 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1577 1578 for (unsigned I = 0; I < Defs.size(); ++I) { 1579 MachineOperand *Def = Defs[I].first; 1580 Def->setIsKill(false); 1581 if (TRI->isAGPR(*MRI, Def->getReg())) { 1582 RS.add(*Def); 1583 } else { // This is a copy 1584 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1585 SubDef->getOperand(1).setIsKill(false); 1586 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1587 } 1588 RS.addImm(Defs[I].second); 1589 } 1590 1591 Op->setReg(Dst); 1592 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1593 Op->setReg(Reg); 1594 RS->eraseFromParent(); 1595 return false; 1596 } 1597 1598 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI << '\n'); 1599 1600 return true; 1601 } 1602 1603 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI. 1604 // This should allow folding of an AGPR into a consumer which may support it. 1605 // I.e.: 1606 // 1607 // loop: // loop: 1608 // %1:vreg = COPY %0:areg // exit: 1609 // exit: => // %1:areg = PHI %0:areg, %loop 1610 // %2:vreg = PHI %1:vreg, %loop // %2:vreg = COPY %1:areg 1611 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) { 1612 assert(PHI.isPHI()); 1613 1614 if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI 1615 return false; 1616 1617 Register PhiIn = PHI.getOperand(1).getReg(); 1618 Register PhiOut = PHI.getOperand(0).getReg(); 1619 if (PHI.getOperand(1).getSubReg() || 1620 !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut)) 1621 return false; 1622 1623 // A single use should not matter for correctness, but if it has another use 1624 // inside the loop we may perform copy twice in a worst case. 1625 if (!MRI->hasOneNonDBGUse(PhiIn)) 1626 return false; 1627 1628 MachineInstr *Copy = MRI->getVRegDef(PhiIn); 1629 if (!Copy || !Copy->isCopy()) 1630 return false; 1631 1632 Register CopyIn = Copy->getOperand(1).getReg(); 1633 if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg()) 1634 return false; 1635 1636 const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn); 1637 Register NewReg = MRI->createVirtualRegister(ARC); 1638 PHI.getOperand(1).setReg(CopyIn); 1639 PHI.getOperand(0).setReg(NewReg); 1640 1641 MachineBasicBlock *MBB = PHI.getParent(); 1642 BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(), 1643 TII->get(AMDGPU::COPY), PhiOut) 1644 .addReg(NewReg, RegState::Kill); 1645 Copy->eraseFromParent(); // We know this copy had a single use. 1646 1647 LLVM_DEBUG(dbgs() << "Folded " << PHI << '\n'); 1648 1649 return true; 1650 } 1651 1652 // Attempt to convert VGPR load to an AGPR load. 1653 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { 1654 assert(MI.mayLoad()); 1655 if (!ST->hasGFX90AInsts() || !MI.getNumOperands()) 1656 return false; 1657 1658 MachineOperand &Def = MI.getOperand(0); 1659 if (!Def.isDef()) 1660 return false; 1661 1662 Register DefReg = Def.getReg(); 1663 1664 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 1665 return false; 1666 1667 SmallVector<const MachineInstr*, 8> Users; 1668 SmallVector<Register, 8> MoveRegs; 1669 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) { 1670 Users.push_back(&I); 1671 } 1672 if (Users.empty()) 1673 return false; 1674 1675 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 1676 while (!Users.empty()) { 1677 const MachineInstr *I = Users.pop_back_val(); 1678 if (!I->isCopy() && !I->isRegSequence()) 1679 return false; 1680 Register DstReg = I->getOperand(0).getReg(); 1681 if (TRI->isAGPR(*MRI, DstReg)) 1682 continue; 1683 MoveRegs.push_back(DstReg); 1684 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) { 1685 Users.push_back(&U); 1686 } 1687 } 1688 1689 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 1690 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 1691 if (!TII->isOperandLegal(MI, 0, &Def)) { 1692 MRI->setRegClass(DefReg, RC); 1693 return false; 1694 } 1695 1696 while (!MoveRegs.empty()) { 1697 Register Reg = MoveRegs.pop_back_val(); 1698 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 1699 } 1700 1701 LLVM_DEBUG(dbgs() << "Folded " << MI << '\n'); 1702 1703 return true; 1704 } 1705 1706 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1707 if (skipFunction(MF.getFunction())) 1708 return false; 1709 1710 MRI = &MF.getRegInfo(); 1711 ST = &MF.getSubtarget<GCNSubtarget>(); 1712 TII = ST->getInstrInfo(); 1713 TRI = &TII->getRegisterInfo(); 1714 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1715 1716 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1717 // correctly handle signed zeros. 1718 // 1719 // FIXME: Also need to check strictfp 1720 bool IsIEEEMode = MFI->getMode().IEEE; 1721 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1722 1723 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1724 MachineOperand *CurrentKnownM0Val = nullptr; 1725 for (auto &MI : make_early_inc_range(*MBB)) { 1726 tryFoldCndMask(TII, &MI); 1727 1728 if (MI.isRegSequence() && tryFoldRegSequence(MI)) 1729 continue; 1730 1731 if (MI.isPHI() && tryFoldLCSSAPhi(MI)) 1732 continue; 1733 1734 if (MI.mayLoad() && tryFoldLoad(MI)) 1735 continue; 1736 1737 if (!TII->isFoldableCopy(MI)) { 1738 // Saw an unknown clobber of m0, so we no longer know what it is. 1739 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1740 CurrentKnownM0Val = nullptr; 1741 1742 // TODO: Omod might be OK if there is NSZ only on the source 1743 // instruction, and not the omod multiply. 1744 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1745 !tryFoldOMod(MI)) 1746 tryFoldClamp(MI); 1747 1748 continue; 1749 } 1750 1751 // Specially track simple redefs of m0 to the same value in a block, so we 1752 // can erase the later ones. 1753 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1754 MachineOperand &NewM0Val = MI.getOperand(1); 1755 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1756 MI.eraseFromParent(); 1757 continue; 1758 } 1759 1760 // We aren't tracking other physical registers 1761 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1762 nullptr : &NewM0Val; 1763 continue; 1764 } 1765 1766 MachineOperand &OpToFold = MI.getOperand(1); 1767 bool FoldingImm = 1768 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1769 1770 // FIXME: We could also be folding things like TargetIndexes. 1771 if (!FoldingImm && !OpToFold.isReg()) 1772 continue; 1773 1774 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1775 continue; 1776 1777 // Prevent folding operands backwards in the function. For example, 1778 // the COPY opcode must not be replaced by 1 in this example: 1779 // 1780 // %3 = COPY %vgpr0; VGPR_32:%3 1781 // ... 1782 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1783 MachineOperand &Dst = MI.getOperand(0); 1784 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1785 continue; 1786 1787 foldInstOperand(MI, OpToFold); 1788 } 1789 } 1790 return true; 1791 } 1792