1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17
18 #define DEBUG_TYPE "si-fold-operands"
19 using namespace llvm;
20
21 namespace {
22
23 struct FoldCandidate {
24 MachineInstr *UseMI;
25 union {
26 MachineOperand *OpToFold;
27 uint64_t ImmToFold;
28 int FrameIndexToFold;
29 };
30 int ShrinkOpcode;
31 unsigned UseOpNo;
32 MachineOperand::MachineOperandType Kind;
33 bool Commuted;
34
FoldCandidate__anonab0293a00111::FoldCandidate35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
36 bool Commuted_ = false,
37 int ShrinkOp = -1) :
38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
39 Kind(FoldOp->getType()),
40 Commuted(Commuted_) {
41 if (FoldOp->isImm()) {
42 ImmToFold = FoldOp->getImm();
43 } else if (FoldOp->isFI()) {
44 FrameIndexToFold = FoldOp->getIndex();
45 } else {
46 assert(FoldOp->isReg() || FoldOp->isGlobal());
47 OpToFold = FoldOp;
48 }
49 }
50
isFI__anonab0293a00111::FoldCandidate51 bool isFI() const {
52 return Kind == MachineOperand::MO_FrameIndex;
53 }
54
isImm__anonab0293a00111::FoldCandidate55 bool isImm() const {
56 return Kind == MachineOperand::MO_Immediate;
57 }
58
isReg__anonab0293a00111::FoldCandidate59 bool isReg() const {
60 return Kind == MachineOperand::MO_Register;
61 }
62
isGlobal__anonab0293a00111::FoldCandidate63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
64
isCommuted__anonab0293a00111::FoldCandidate65 bool isCommuted() const {
66 return Commuted;
67 }
68
needsShrink__anonab0293a00111::FoldCandidate69 bool needsShrink() const {
70 return ShrinkOpcode != -1;
71 }
72
getShrinkOpcode__anonab0293a00111::FoldCandidate73 int getShrinkOpcode() const {
74 return ShrinkOpcode;
75 }
76 };
77
78 class SIFoldOperands : public MachineFunctionPass {
79 public:
80 static char ID;
81 MachineRegisterInfo *MRI;
82 const SIInstrInfo *TII;
83 const SIRegisterInfo *TRI;
84 const GCNSubtarget *ST;
85 const SIMachineFunctionInfo *MFI;
86
87 void foldOperand(MachineOperand &OpToFold,
88 MachineInstr *UseMI,
89 int UseOpIdx,
90 SmallVectorImpl<FoldCandidate> &FoldList,
91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
92
93 bool tryFoldCndMask(MachineInstr &MI) const;
94 bool tryFoldZeroHighBits(MachineInstr &MI) const;
95 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
96
97 const MachineOperand *isClamp(const MachineInstr &MI) const;
98 bool tryFoldClamp(MachineInstr &MI);
99
100 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
101 bool tryFoldOMod(MachineInstr &MI);
102 bool tryFoldRegSequence(MachineInstr &MI);
103 bool tryFoldLCSSAPhi(MachineInstr &MI);
104 bool tryFoldLoad(MachineInstr &MI);
105
106 public:
SIFoldOperands()107 SIFoldOperands() : MachineFunctionPass(ID) {
108 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
109 }
110
111 bool runOnMachineFunction(MachineFunction &MF) override;
112
getPassName() const113 StringRef getPassName() const override { return "SI Fold Operands"; }
114
getAnalysisUsage(AnalysisUsage & AU) const115 void getAnalysisUsage(AnalysisUsage &AU) const override {
116 AU.setPreservesCFG();
117 MachineFunctionPass::getAnalysisUsage(AU);
118 }
119 };
120
121 } // End anonymous namespace.
122
123 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
124 "SI Fold Operands", false, false)
125
126 char SIFoldOperands::ID = 0;
127
128 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
129
130 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
macToMad(unsigned Opc)131 static unsigned macToMad(unsigned Opc) {
132 switch (Opc) {
133 case AMDGPU::V_MAC_F32_e64:
134 return AMDGPU::V_MAD_F32_e64;
135 case AMDGPU::V_MAC_F16_e64:
136 return AMDGPU::V_MAD_F16_e64;
137 case AMDGPU::V_FMAC_F32_e64:
138 return AMDGPU::V_FMA_F32_e64;
139 case AMDGPU::V_FMAC_F16_e64:
140 return AMDGPU::V_FMA_F16_gfx9_e64;
141 case AMDGPU::V_FMAC_LEGACY_F32_e64:
142 return AMDGPU::V_FMA_LEGACY_F32_e64;
143 case AMDGPU::V_FMAC_F64_e64:
144 return AMDGPU::V_FMA_F64_e64;
145 }
146 return AMDGPU::INSTRUCTION_LIST_END;
147 }
148
149 // TODO: Add heuristic that the frame index might not fit in the addressing mode
150 // immediate offset to avoid materializing in loops.
frameIndexMayFold(const SIInstrInfo * TII,const MachineInstr & UseMI,int OpNo,const MachineOperand & OpToFold)151 static bool frameIndexMayFold(const SIInstrInfo *TII,
152 const MachineInstr &UseMI,
153 int OpNo,
154 const MachineOperand &OpToFold) {
155 if (!OpToFold.isFI())
156 return false;
157
158 if (TII->isMUBUF(UseMI))
159 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
160 AMDGPU::OpName::vaddr);
161 if (!TII->isFLATScratch(UseMI))
162 return false;
163
164 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
165 AMDGPU::OpName::saddr);
166 if (OpNo == SIdx)
167 return true;
168
169 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
170 AMDGPU::OpName::vaddr);
171 return OpNo == VIdx && SIdx == -1;
172 }
173
createSIFoldOperandsPass()174 FunctionPass *llvm::createSIFoldOperandsPass() {
175 return new SIFoldOperands();
176 }
177
updateOperand(FoldCandidate & Fold,const SIInstrInfo & TII,const TargetRegisterInfo & TRI,const GCNSubtarget & ST)178 static bool updateOperand(FoldCandidate &Fold,
179 const SIInstrInfo &TII,
180 const TargetRegisterInfo &TRI,
181 const GCNSubtarget &ST) {
182 MachineInstr *MI = Fold.UseMI;
183 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
184 assert(Old.isReg());
185
186 if (Fold.isImm()) {
187 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
188 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
189 (!ST.hasDOTOpSelHazard() ||
190 !(MI->getDesc().TSFlags & SIInstrFlags::IsDOT)) &&
191 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
192 ST.hasInv2PiInlineImm())) {
193 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
194 // already set.
195 unsigned Opcode = MI->getOpcode();
196 int OpNo = MI->getOperandNo(&Old);
197 int ModIdx = -1;
198 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
199 ModIdx = AMDGPU::OpName::src0_modifiers;
200 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
201 ModIdx = AMDGPU::OpName::src1_modifiers;
202 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
203 ModIdx = AMDGPU::OpName::src2_modifiers;
204 assert(ModIdx != -1);
205 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
206 MachineOperand &Mod = MI->getOperand(ModIdx);
207 unsigned Val = Mod.getImm();
208 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
209 // Only apply the following transformation if that operand requires
210 // a packed immediate.
211 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
212 case AMDGPU::OPERAND_REG_IMM_V2FP16:
213 case AMDGPU::OPERAND_REG_IMM_V2INT16:
214 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
215 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
216 // If upper part is all zero we do not need op_sel_hi.
217 if (!isUInt<16>(Fold.ImmToFold)) {
218 if (!(Fold.ImmToFold & 0xffff)) {
219 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
220 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
221 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
222 return true;
223 }
224 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
225 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
226 return true;
227 }
228 break;
229 default:
230 break;
231 }
232 }
233 }
234 }
235
236 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
237 MachineBasicBlock *MBB = MI->getParent();
238 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
239 if (Liveness != MachineBasicBlock::LQR_Dead) {
240 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
241 return false;
242 }
243
244 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
245 int Op32 = Fold.getShrinkOpcode();
246 MachineOperand &Dst0 = MI->getOperand(0);
247 MachineOperand &Dst1 = MI->getOperand(1);
248 assert(Dst0.isDef() && Dst1.isDef());
249
250 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
251
252 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
253 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
254
255 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
256
257 if (HaveNonDbgCarryUse) {
258 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
259 .addReg(AMDGPU::VCC, RegState::Kill);
260 }
261
262 // Keep the old instruction around to avoid breaking iterators, but
263 // replace it with a dummy instruction to remove uses.
264 //
265 // FIXME: We should not invert how this pass looks at operands to avoid
266 // this. Should track set of foldable movs instead of looking for uses
267 // when looking at a use.
268 Dst0.setReg(NewReg0);
269 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
270 MI->removeOperand(I);
271 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
272
273 if (Fold.isCommuted())
274 TII.commuteInstruction(*Inst32, false);
275 return true;
276 }
277
278 assert(!Fold.needsShrink() && "not handled");
279
280 if (Fold.isImm()) {
281 if (Old.isTied()) {
282 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode());
283 if (NewMFMAOpc == -1)
284 return false;
285 MI->setDesc(TII.get(NewMFMAOpc));
286 MI->untieRegOperand(0);
287 }
288 Old.ChangeToImmediate(Fold.ImmToFold);
289 return true;
290 }
291
292 if (Fold.isGlobal()) {
293 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
294 Fold.OpToFold->getTargetFlags());
295 return true;
296 }
297
298 if (Fold.isFI()) {
299 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
300 return true;
301 }
302
303 MachineOperand *New = Fold.OpToFold;
304 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
305 Old.setIsUndef(New->isUndef());
306 return true;
307 }
308
isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,const MachineInstr * MI)309 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
310 const MachineInstr *MI) {
311 for (auto Candidate : FoldList) {
312 if (Candidate.UseMI == MI)
313 return true;
314 }
315 return false;
316 }
317
appendFoldCandidate(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * FoldOp,bool Commuted=false,int ShrinkOp=-1)318 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
319 MachineInstr *MI, unsigned OpNo,
320 MachineOperand *FoldOp, bool Commuted = false,
321 int ShrinkOp = -1) {
322 // Skip additional folding on the same operand.
323 for (FoldCandidate &Fold : FoldList)
324 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
325 return;
326 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
327 << " operand " << OpNo << "\n " << *MI);
328 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
329 }
330
tryAddToFoldList(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)331 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
332 MachineInstr *MI, unsigned OpNo,
333 MachineOperand *OpToFold,
334 const SIInstrInfo *TII) {
335 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
336 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
337 unsigned Opc = MI->getOpcode();
338 unsigned NewOpc = macToMad(Opc);
339 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
340 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
341 // to fold the operand.
342 MI->setDesc(TII->get(NewOpc));
343 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
344 if (FoldAsMAD) {
345 MI->untieRegOperand(OpNo);
346 return true;
347 }
348 MI->setDesc(TII->get(Opc));
349 }
350
351 // Special case for s_setreg_b32
352 if (OpToFold->isImm()) {
353 unsigned ImmOpc = 0;
354 if (Opc == AMDGPU::S_SETREG_B32)
355 ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
356 else if (Opc == AMDGPU::S_SETREG_B32_mode)
357 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
358 if (ImmOpc) {
359 MI->setDesc(TII->get(ImmOpc));
360 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
361 return true;
362 }
363 }
364
365 // If we are already folding into another operand of MI, then
366 // we can't commute the instruction, otherwise we risk making the
367 // other fold illegal.
368 if (isUseMIInFoldList(FoldList, MI))
369 return false;
370
371 unsigned CommuteOpNo = OpNo;
372
373 // Operand is not legal, so try to commute the instruction to
374 // see if this makes it possible to fold.
375 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
376 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
377 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
378
379 if (CanCommute) {
380 if (CommuteIdx0 == OpNo)
381 CommuteOpNo = CommuteIdx1;
382 else if (CommuteIdx1 == OpNo)
383 CommuteOpNo = CommuteIdx0;
384 }
385
386
387 // One of operands might be an Imm operand, and OpNo may refer to it after
388 // the call of commuteInstruction() below. Such situations are avoided
389 // here explicitly as OpNo must be a register operand to be a candidate
390 // for memory folding.
391 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
392 !MI->getOperand(CommuteIdx1).isReg()))
393 return false;
394
395 if (!CanCommute ||
396 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
397 return false;
398
399 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
400 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
401 Opc == AMDGPU::V_SUB_CO_U32_e64 ||
402 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
403 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
404 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
405
406 // Verify the other operand is a VGPR, otherwise we would violate the
407 // constant bus restriction.
408 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
409 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
410 if (!OtherOp.isReg() ||
411 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
412 return false;
413
414 assert(MI->getOperand(1).isDef());
415
416 // Make sure to get the 32-bit version of the commuted opcode.
417 unsigned MaybeCommutedOpc = MI->getOpcode();
418 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
419
420 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
421 return true;
422 }
423
424 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
425 return false;
426 }
427
428 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
429 return true;
430 }
431
432 // Check the case where we might introduce a second constant operand to a
433 // scalar instruction
434 if (TII->isSALU(MI->getOpcode())) {
435 const MCInstrDesc &InstDesc = MI->getDesc();
436 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
437 const SIRegisterInfo &SRI = TII->getRegisterInfo();
438
439 // Fine if the operand can be encoded as an inline constant
440 if (TII->isLiteralConstantLike(*OpToFold, OpInfo)) {
441 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
442 !TII->isInlineConstant(*OpToFold, OpInfo)) {
443 // Otherwise check for another constant
444 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
445 auto &Op = MI->getOperand(i);
446 if (OpNo != i &&
447 TII->isLiteralConstantLike(Op, OpInfo)) {
448 return false;
449 }
450 }
451 }
452 }
453 }
454
455 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
456 return true;
457 }
458
459 // If the use operand doesn't care about the value, this may be an operand only
460 // used for register indexing, in which case it is unsafe to fold.
isUseSafeToFold(const SIInstrInfo * TII,const MachineInstr & MI,const MachineOperand & UseMO)461 static bool isUseSafeToFold(const SIInstrInfo *TII,
462 const MachineInstr &MI,
463 const MachineOperand &UseMO) {
464 if (UseMO.isUndef() || TII->isSDWA(MI))
465 return false;
466
467 switch (MI.getOpcode()) {
468 case AMDGPU::V_MOV_B32_e32:
469 case AMDGPU::V_MOV_B32_e64:
470 case AMDGPU::V_MOV_B64_PSEUDO:
471 case AMDGPU::V_MOV_B64_e32:
472 case AMDGPU::V_MOV_B64_e64:
473 // Do not fold into an indirect mov.
474 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0);
475 }
476
477 return true;
478 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
479 }
480
481 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
482 // for each subreg, tracking it to foldable inline immediate if possible.
483 // Returns true on success.
getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *,unsigned>> & Defs,Register UseReg,uint8_t OpTy,const SIInstrInfo * TII,const MachineRegisterInfo & MRI)484 static bool getRegSeqInit(
485 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
486 Register UseReg, uint8_t OpTy,
487 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
488 MachineInstr *Def = MRI.getVRegDef(UseReg);
489 if (!Def || !Def->isRegSequence())
490 return false;
491
492 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
493 MachineOperand *Sub = &Def->getOperand(I);
494 assert(Sub->isReg());
495
496 for (MachineInstr *SubDef = MRI.getVRegDef(Sub->getReg());
497 SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
498 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
499 SubDef = MRI.getVRegDef(Sub->getReg())) {
500 MachineOperand *Op = &SubDef->getOperand(1);
501 if (Op->isImm()) {
502 if (TII->isInlineConstant(*Op, OpTy))
503 Sub = Op;
504 break;
505 }
506 if (!Op->isReg() || Op->getReg().isPhysical())
507 break;
508 Sub = Op;
509 }
510
511 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
512 }
513
514 return true;
515 }
516
tryToFoldACImm(const SIInstrInfo * TII,const MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList)517 static bool tryToFoldACImm(const SIInstrInfo *TII,
518 const MachineOperand &OpToFold,
519 MachineInstr *UseMI,
520 unsigned UseOpIdx,
521 SmallVectorImpl<FoldCandidate> &FoldList) {
522 const MCInstrDesc &Desc = UseMI->getDesc();
523 const MCOperandInfo *OpInfo = Desc.OpInfo;
524 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
525 return false;
526
527 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
528 if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
529 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) &&
530 (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST ||
531 OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST))
532 return false;
533
534 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
535 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
536 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
537 return true;
538 }
539
540 if (!OpToFold.isReg())
541 return false;
542
543 Register UseReg = OpToFold.getReg();
544 if (!UseReg.isVirtual())
545 return false;
546
547 if (isUseMIInFoldList(FoldList, UseMI))
548 return false;
549
550 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
551
552 // Maybe it is just a COPY of an immediate itself.
553 MachineInstr *Def = MRI.getVRegDef(UseReg);
554 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
555 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
556 MachineOperand &DefOp = Def->getOperand(1);
557 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
558 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
559 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
560 return true;
561 }
562 }
563
564 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
565 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
566 return false;
567
568 int32_t Imm;
569 for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
570 const MachineOperand *Op = Defs[I].first;
571 if (!Op->isImm())
572 return false;
573
574 auto SubImm = Op->getImm();
575 if (!I) {
576 Imm = SubImm;
577 if (!TII->isInlineConstant(*Op, OpTy) ||
578 !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
579 return false;
580
581 continue;
582 }
583 if (Imm != SubImm)
584 return false; // Can only fold splat constants
585 }
586
587 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
588 return true;
589 }
590
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,int UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace) const591 void SIFoldOperands::foldOperand(
592 MachineOperand &OpToFold,
593 MachineInstr *UseMI,
594 int UseOpIdx,
595 SmallVectorImpl<FoldCandidate> &FoldList,
596 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
597 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
598
599 if (!isUseSafeToFold(TII, *UseMI, UseOp))
600 return;
601
602 // FIXME: Fold operands with subregs.
603 if (UseOp.isReg() && OpToFold.isReg()) {
604 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
605 return;
606 }
607
608 // Special case for REG_SEQUENCE: We can't fold literals into
609 // REG_SEQUENCE instructions, so we have to fold them into the
610 // uses of REG_SEQUENCE.
611 if (UseMI->isRegSequence()) {
612 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
613 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
614
615 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
616 MachineInstr *RSUseMI = RSUse.getParent();
617
618 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
619 RSUseMI->getOperandNo(&RSUse), FoldList))
620 continue;
621
622 if (RSUse.getSubReg() != RegSeqDstSubReg)
623 continue;
624
625 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
626 CopiesToReplace);
627 }
628
629 return;
630 }
631
632 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
633 return;
634
635 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
636 // Verify that this is a stack access.
637 // FIXME: Should probably use stack pseudos before frame lowering.
638
639 if (TII->isMUBUF(*UseMI)) {
640 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
641 MFI->getScratchRSrcReg())
642 return;
643
644 // Ensure this is either relative to the current frame or the current
645 // wave.
646 MachineOperand &SOff =
647 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
648 if (!SOff.isImm() || SOff.getImm() != 0)
649 return;
650 }
651
652 // A frame index will resolve to a positive constant, so it should always be
653 // safe to fold the addressing mode, even pre-GFX9.
654 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
655
656 if (TII->isFLATScratch(*UseMI) &&
657 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(),
658 AMDGPU::OpName::vaddr) != -1 &&
659 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(),
660 AMDGPU::OpName::saddr) == -1) {
661 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode());
662 UseMI->setDesc(TII->get(NewOpc));
663 }
664
665 return;
666 }
667
668 bool FoldingImmLike =
669 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
670
671 if (FoldingImmLike && UseMI->isCopy()) {
672 Register DestReg = UseMI->getOperand(0).getReg();
673 Register SrcReg = UseMI->getOperand(1).getReg();
674 assert(SrcReg.isVirtual());
675
676 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
677
678 // Don't fold into a copy to a physical register with the same class. Doing
679 // so would interfere with the register coalescer's logic which would avoid
680 // redundant initializations.
681 if (DestReg.isPhysical() && SrcRC->contains(DestReg))
682 return;
683
684 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
685 if (!DestReg.isPhysical()) {
686 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
687 SmallVector<FoldCandidate, 4> CopyUses;
688 for (auto &Use : MRI->use_nodbg_operands(DestReg)) {
689 // There's no point trying to fold into an implicit operand.
690 if (Use.isImplicit())
691 continue;
692
693 CopyUses.emplace_back(Use.getParent(),
694 Use.getParent()->getOperandNo(&Use),
695 &UseMI->getOperand(1));
696 }
697 for (auto &F : CopyUses) {
698 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace);
699 }
700 }
701
702 if (DestRC == &AMDGPU::AGPR_32RegClass &&
703 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
704 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
705 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
706 CopiesToReplace.push_back(UseMI);
707 return;
708 }
709 }
710
711 // In order to fold immediates into copies, we need to change the
712 // copy to a MOV.
713
714 unsigned MovOp = TII->getMovOpcode(DestRC);
715 if (MovOp == AMDGPU::COPY)
716 return;
717
718 UseMI->setDesc(TII->get(MovOp));
719 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
720 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
721 while (ImpOpI != ImpOpE) {
722 MachineInstr::mop_iterator Tmp = ImpOpI;
723 ImpOpI++;
724 UseMI->removeOperand(UseMI->getOperandNo(Tmp));
725 }
726 CopiesToReplace.push_back(UseMI);
727 } else {
728 if (UseMI->isCopy() && OpToFold.isReg() &&
729 UseMI->getOperand(0).getReg().isVirtual() &&
730 !UseMI->getOperand(1).getSubReg()) {
731 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
732 unsigned Size = TII->getOpSize(*UseMI, 1);
733 Register UseReg = OpToFold.getReg();
734 UseMI->getOperand(1).setReg(UseReg);
735 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
736 UseMI->getOperand(1).setIsKill(false);
737 CopiesToReplace.push_back(UseMI);
738 OpToFold.setIsKill(false);
739
740 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
741 // can only accept VGPR or inline immediate. Recreate a reg_sequence with
742 // its initializers right here, so we will rematerialize immediates and
743 // avoid copies via different reg classes.
744 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
745 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
746 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
747 *MRI)) {
748 const DebugLoc &DL = UseMI->getDebugLoc();
749 MachineBasicBlock &MBB = *UseMI->getParent();
750
751 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
752 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
753 UseMI->removeOperand(I);
754
755 MachineInstrBuilder B(*MBB.getParent(), UseMI);
756 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
757 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
758 for (unsigned I = 0; I < Size / 4; ++I) {
759 MachineOperand *Def = Defs[I].first;
760 TargetInstrInfo::RegSubRegPair CopyToVGPR;
761 if (Def->isImm() &&
762 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
763 int64_t Imm = Def->getImm();
764
765 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
766 BuildMI(MBB, UseMI, DL,
767 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
768 B.addReg(Tmp);
769 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
770 auto Src = getRegSubRegPair(*Def);
771 Def->setIsKill(false);
772 if (!SeenAGPRs.insert(Src)) {
773 // We cannot build a reg_sequence out of the same registers, they
774 // must be copied. Better do it here before copyPhysReg() created
775 // several reads to do the AGPR->VGPR->AGPR copy.
776 CopyToVGPR = Src;
777 } else {
778 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
779 Src.SubReg);
780 }
781 } else {
782 assert(Def->isReg());
783 Def->setIsKill(false);
784 auto Src = getRegSubRegPair(*Def);
785
786 // Direct copy from SGPR to AGPR is not possible. To avoid creation
787 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
788 // create a copy here and track if we already have such a copy.
789 if (TRI->isSGPRReg(*MRI, Src.Reg)) {
790 CopyToVGPR = Src;
791 } else {
792 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
793 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
794 B.addReg(Tmp);
795 }
796 }
797
798 if (CopyToVGPR.Reg) {
799 Register Vgpr;
800 if (VGPRCopies.count(CopyToVGPR)) {
801 Vgpr = VGPRCopies[CopyToVGPR];
802 } else {
803 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
804 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
805 VGPRCopies[CopyToVGPR] = Vgpr;
806 }
807 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
808 BuildMI(MBB, UseMI, DL,
809 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
810 B.addReg(Tmp);
811 }
812
813 B.addImm(Defs[I].second);
814 }
815 LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
816 return;
817 }
818
819 if (Size != 4)
820 return;
821 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
822 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
823 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
824 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
825 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
826 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
827 else if (ST->hasGFX90AInsts() &&
828 TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
829 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
830 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
831 return;
832 }
833
834 unsigned UseOpc = UseMI->getOpcode();
835 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
836 (UseOpc == AMDGPU::V_READLANE_B32 &&
837 (int)UseOpIdx ==
838 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
839 // %vgpr = V_MOV_B32 imm
840 // %sgpr = V_READFIRSTLANE_B32 %vgpr
841 // =>
842 // %sgpr = S_MOV_B32 imm
843 if (FoldingImmLike) {
844 if (execMayBeModifiedBeforeUse(*MRI,
845 UseMI->getOperand(UseOpIdx).getReg(),
846 *OpToFold.getParent(),
847 *UseMI))
848 return;
849
850 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
851
852 if (OpToFold.isImm())
853 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
854 else
855 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
856 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
857 return;
858 }
859
860 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
861 if (execMayBeModifiedBeforeUse(*MRI,
862 UseMI->getOperand(UseOpIdx).getReg(),
863 *OpToFold.getParent(),
864 *UseMI))
865 return;
866
867 // %vgpr = COPY %sgpr0
868 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
869 // =>
870 // %sgpr1 = COPY %sgpr0
871 UseMI->setDesc(TII->get(AMDGPU::COPY));
872 UseMI->getOperand(1).setReg(OpToFold.getReg());
873 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
874 UseMI->getOperand(1).setIsKill(false);
875 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
876 return;
877 }
878 }
879
880 const MCInstrDesc &UseDesc = UseMI->getDesc();
881
882 // Don't fold into target independent nodes. Target independent opcodes
883 // don't have defined register classes.
884 if (UseDesc.isVariadic() ||
885 UseOp.isImplicit() ||
886 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
887 return;
888 }
889
890 if (!FoldingImmLike) {
891 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
892 // Don't fold if OpToFold doesn't hold an aligned register.
893 const TargetRegisterClass *RC =
894 TRI->getRegClassForReg(*MRI, OpToFold.getReg());
895 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
896 unsigned SubReg = OpToFold.getSubReg();
897 const TargetRegisterClass *SubRC = TRI->getSubRegClass(RC, SubReg);
898 RC = TRI->getCompatibleSubRegClass(RC, SubRC, SubReg);
899 if (RC)
900 RC = SubRC;
901 }
902
903 if (!RC || !TRI->isProperlyAlignedRC(*RC))
904 return;
905 }
906
907 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
908
909 // FIXME: We could try to change the instruction from 64-bit to 32-bit
910 // to enable more folding opportunities. The shrink operands pass
911 // already does this.
912 return;
913 }
914
915
916 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
917 const TargetRegisterClass *FoldRC =
918 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
919
920 // Split 64-bit constants into 32-bits for folding.
921 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
922 Register UseReg = UseOp.getReg();
923 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
924
925 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
926 return;
927
928 APInt Imm(64, OpToFold.getImm());
929 if (UseOp.getSubReg() == AMDGPU::sub0) {
930 Imm = Imm.getLoBits(32);
931 } else {
932 assert(UseOp.getSubReg() == AMDGPU::sub1);
933 Imm = Imm.getHiBits(32);
934 }
935
936 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
937 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
938 return;
939 }
940
941
942
943 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
944 }
945
evalBinaryInstruction(unsigned Opcode,int32_t & Result,uint32_t LHS,uint32_t RHS)946 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
947 uint32_t LHS, uint32_t RHS) {
948 switch (Opcode) {
949 case AMDGPU::V_AND_B32_e64:
950 case AMDGPU::V_AND_B32_e32:
951 case AMDGPU::S_AND_B32:
952 Result = LHS & RHS;
953 return true;
954 case AMDGPU::V_OR_B32_e64:
955 case AMDGPU::V_OR_B32_e32:
956 case AMDGPU::S_OR_B32:
957 Result = LHS | RHS;
958 return true;
959 case AMDGPU::V_XOR_B32_e64:
960 case AMDGPU::V_XOR_B32_e32:
961 case AMDGPU::S_XOR_B32:
962 Result = LHS ^ RHS;
963 return true;
964 case AMDGPU::S_XNOR_B32:
965 Result = ~(LHS ^ RHS);
966 return true;
967 case AMDGPU::S_NAND_B32:
968 Result = ~(LHS & RHS);
969 return true;
970 case AMDGPU::S_NOR_B32:
971 Result = ~(LHS | RHS);
972 return true;
973 case AMDGPU::S_ANDN2_B32:
974 Result = LHS & ~RHS;
975 return true;
976 case AMDGPU::S_ORN2_B32:
977 Result = LHS | ~RHS;
978 return true;
979 case AMDGPU::V_LSHL_B32_e64:
980 case AMDGPU::V_LSHL_B32_e32:
981 case AMDGPU::S_LSHL_B32:
982 // The instruction ignores the high bits for out of bounds shifts.
983 Result = LHS << (RHS & 31);
984 return true;
985 case AMDGPU::V_LSHLREV_B32_e64:
986 case AMDGPU::V_LSHLREV_B32_e32:
987 Result = RHS << (LHS & 31);
988 return true;
989 case AMDGPU::V_LSHR_B32_e64:
990 case AMDGPU::V_LSHR_B32_e32:
991 case AMDGPU::S_LSHR_B32:
992 Result = LHS >> (RHS & 31);
993 return true;
994 case AMDGPU::V_LSHRREV_B32_e64:
995 case AMDGPU::V_LSHRREV_B32_e32:
996 Result = RHS >> (LHS & 31);
997 return true;
998 case AMDGPU::V_ASHR_I32_e64:
999 case AMDGPU::V_ASHR_I32_e32:
1000 case AMDGPU::S_ASHR_I32:
1001 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
1002 return true;
1003 case AMDGPU::V_ASHRREV_I32_e64:
1004 case AMDGPU::V_ASHRREV_I32_e32:
1005 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1006 return true;
1007 default:
1008 return false;
1009 }
1010 }
1011
getMovOpc(bool IsScalar)1012 static unsigned getMovOpc(bool IsScalar) {
1013 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1014 }
1015
1016 /// Remove any leftover implicit operands from mutating the instruction. e.g.
1017 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1018 /// anymore.
stripExtraCopyOperands(MachineInstr & MI)1019 static void stripExtraCopyOperands(MachineInstr &MI) {
1020 const MCInstrDesc &Desc = MI.getDesc();
1021 unsigned NumOps = Desc.getNumOperands() +
1022 Desc.getNumImplicitUses() +
1023 Desc.getNumImplicitDefs();
1024
1025 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1026 MI.removeOperand(I);
1027 }
1028
mutateCopyOp(MachineInstr & MI,const MCInstrDesc & NewDesc)1029 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1030 MI.setDesc(NewDesc);
1031 stripExtraCopyOperands(MI);
1032 }
1033
getImmOrMaterializedImm(MachineRegisterInfo & MRI,MachineOperand & Op)1034 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
1035 MachineOperand &Op) {
1036 if (Op.isReg()) {
1037 // If this has a subregister, it obviously is a register source.
1038 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual())
1039 return &Op;
1040
1041 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
1042 if (Def && Def->isMoveImmediate()) {
1043 MachineOperand &ImmSrc = Def->getOperand(1);
1044 if (ImmSrc.isImm())
1045 return &ImmSrc;
1046 }
1047 }
1048
1049 return &Op;
1050 }
1051
1052 // Try to simplify operations with a constant that may appear after instruction
1053 // selection.
1054 // TODO: See if a frame index with a fixed offset can fold.
tryConstantFoldOp(MachineRegisterInfo & MRI,const SIInstrInfo * TII,MachineInstr * MI)1055 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, const SIInstrInfo *TII,
1056 MachineInstr *MI) {
1057 unsigned Opc = MI->getOpcode();
1058
1059 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1060 if (Src0Idx == -1)
1061 return false;
1062 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1063
1064 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1065 Opc == AMDGPU::S_NOT_B32) &&
1066 Src0->isImm()) {
1067 MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1068 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1069 return true;
1070 }
1071
1072 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1073 if (Src1Idx == -1)
1074 return false;
1075 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1076
1077 if (!Src0->isImm() && !Src1->isImm())
1078 return false;
1079
1080 // and k0, k1 -> v_mov_b32 (k0 & k1)
1081 // or k0, k1 -> v_mov_b32 (k0 | k1)
1082 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1083 if (Src0->isImm() && Src1->isImm()) {
1084 int32_t NewImm;
1085 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1086 return false;
1087
1088 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1089 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1090
1091 // Be careful to change the right operand, src0 may belong to a different
1092 // instruction.
1093 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1094 MI->removeOperand(Src1Idx);
1095 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1096 return true;
1097 }
1098
1099 if (!MI->isCommutable())
1100 return false;
1101
1102 if (Src0->isImm() && !Src1->isImm()) {
1103 std::swap(Src0, Src1);
1104 std::swap(Src0Idx, Src1Idx);
1105 }
1106
1107 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1108 if (Opc == AMDGPU::V_OR_B32_e64 ||
1109 Opc == AMDGPU::V_OR_B32_e32 ||
1110 Opc == AMDGPU::S_OR_B32) {
1111 if (Src1Val == 0) {
1112 // y = or x, 0 => y = copy x
1113 MI->removeOperand(Src1Idx);
1114 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1115 } else if (Src1Val == -1) {
1116 // y = or x, -1 => y = v_mov_b32 -1
1117 MI->removeOperand(Src1Idx);
1118 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1119 } else
1120 return false;
1121
1122 return true;
1123 }
1124
1125 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1126 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1127 MI->getOpcode() == AMDGPU::S_AND_B32) {
1128 if (Src1Val == 0) {
1129 // y = and x, 0 => y = v_mov_b32 0
1130 MI->removeOperand(Src0Idx);
1131 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1132 } else if (Src1Val == -1) {
1133 // y = and x, -1 => y = copy x
1134 MI->removeOperand(Src1Idx);
1135 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1136 stripExtraCopyOperands(*MI);
1137 } else
1138 return false;
1139
1140 return true;
1141 }
1142
1143 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1144 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1145 MI->getOpcode() == AMDGPU::S_XOR_B32) {
1146 if (Src1Val == 0) {
1147 // y = xor x, 0 => y = copy x
1148 MI->removeOperand(Src1Idx);
1149 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1150 return true;
1151 }
1152 }
1153
1154 return false;
1155 }
1156
1157 // Try to fold an instruction into a simpler one
tryFoldCndMask(MachineInstr & MI) const1158 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1159 unsigned Opc = MI.getOpcode();
1160 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1161 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1162 return false;
1163
1164 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1165 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1166 if (!Src1->isIdenticalTo(*Src0)) {
1167 auto *Src0Imm = getImmOrMaterializedImm(*MRI, *Src0);
1168 auto *Src1Imm = getImmOrMaterializedImm(*MRI, *Src1);
1169 if (!Src1Imm->isIdenticalTo(*Src0Imm))
1170 return false;
1171 }
1172
1173 int Src1ModIdx =
1174 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1175 int Src0ModIdx =
1176 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1177 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1178 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1179 return false;
1180
1181 LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1182 auto &NewDesc =
1183 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1184 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1185 if (Src2Idx != -1)
1186 MI.removeOperand(Src2Idx);
1187 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1188 if (Src1ModIdx != -1)
1189 MI.removeOperand(Src1ModIdx);
1190 if (Src0ModIdx != -1)
1191 MI.removeOperand(Src0ModIdx);
1192 mutateCopyOp(MI, NewDesc);
1193 LLVM_DEBUG(dbgs() << MI);
1194 return true;
1195 }
1196
tryFoldZeroHighBits(MachineInstr & MI) const1197 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1198 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1199 MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1200 return false;
1201
1202 MachineOperand *Src0 = getImmOrMaterializedImm(*MRI, MI.getOperand(1));
1203 if (!Src0->isImm() || Src0->getImm() != 0xffff)
1204 return false;
1205
1206 Register Src1 = MI.getOperand(2).getReg();
1207 MachineInstr *SrcDef = MRI->getVRegDef(Src1);
1208 if (ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) {
1209 Register Dst = MI.getOperand(0).getReg();
1210 MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
1211 MI.eraseFromParent();
1212 return true;
1213 }
1214
1215 return false;
1216 }
1217
foldInstOperand(MachineInstr & MI,MachineOperand & OpToFold) const1218 bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
1219 MachineOperand &OpToFold) const {
1220 // We need mutate the operands of new mov instructions to add implicit
1221 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1222 // this.
1223 SmallVector<MachineInstr *, 4> CopiesToReplace;
1224 SmallVector<FoldCandidate, 4> FoldList;
1225 MachineOperand &Dst = MI.getOperand(0);
1226 bool Changed = false;
1227
1228 if (OpToFold.isImm()) {
1229 for (auto &UseMI :
1230 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1231 // Folding the immediate may reveal operations that can be constant
1232 // folded or replaced with a copy. This can happen for example after
1233 // frame indices are lowered to constants or from splitting 64-bit
1234 // constants.
1235 //
1236 // We may also encounter cases where one or both operands are
1237 // immediates materialized into a register, which would ordinarily not
1238 // be folded due to multiple uses or operand constraints.
1239 if (tryConstantFoldOp(*MRI, TII, &UseMI)) {
1240 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1241 Changed = true;
1242 }
1243 }
1244 }
1245
1246 SmallVector<MachineOperand *, 4> UsesToProcess;
1247 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1248 UsesToProcess.push_back(&Use);
1249 for (auto U : UsesToProcess) {
1250 MachineInstr *UseMI = U->getParent();
1251 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList,
1252 CopiesToReplace);
1253 }
1254
1255 if (CopiesToReplace.empty() && FoldList.empty())
1256 return Changed;
1257
1258 MachineFunction *MF = MI.getParent()->getParent();
1259 // Make sure we add EXEC uses to any new v_mov instructions created.
1260 for (MachineInstr *Copy : CopiesToReplace)
1261 Copy->addImplicitDefUseOperands(*MF);
1262
1263 for (FoldCandidate &Fold : FoldList) {
1264 assert(!Fold.isReg() || Fold.OpToFold);
1265 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1266 Register Reg = Fold.OpToFold->getReg();
1267 MachineInstr *DefMI = Fold.OpToFold->getParent();
1268 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1269 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1270 continue;
1271 }
1272 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1273 // Clear kill flags.
1274 if (Fold.isReg()) {
1275 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1276 // FIXME: Probably shouldn't bother trying to fold if not an
1277 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1278 // copies.
1279 MRI->clearKillFlags(Fold.OpToFold->getReg());
1280 }
1281 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1282 << static_cast<int>(Fold.UseOpNo) << " of "
1283 << *Fold.UseMI);
1284 } else if (Fold.isCommuted()) {
1285 // Restoring instruction's original operand order if fold has failed.
1286 TII->commuteInstruction(*Fold.UseMI, false);
1287 }
1288 }
1289 return true;
1290 }
1291
1292 // Clamp patterns are canonically selected to v_max_* instructions, so only
1293 // handle them.
isClamp(const MachineInstr & MI) const1294 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1295 unsigned Op = MI.getOpcode();
1296 switch (Op) {
1297 case AMDGPU::V_MAX_F32_e64:
1298 case AMDGPU::V_MAX_F16_e64:
1299 case AMDGPU::V_MAX_F64_e64:
1300 case AMDGPU::V_PK_MAX_F16: {
1301 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1302 return nullptr;
1303
1304 // Make sure sources are identical.
1305 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1306 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1307 if (!Src0->isReg() || !Src1->isReg() ||
1308 Src0->getReg() != Src1->getReg() ||
1309 Src0->getSubReg() != Src1->getSubReg() ||
1310 Src0->getSubReg() != AMDGPU::NoSubRegister)
1311 return nullptr;
1312
1313 // Can't fold up if we have modifiers.
1314 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1315 return nullptr;
1316
1317 unsigned Src0Mods
1318 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1319 unsigned Src1Mods
1320 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1321
1322 // Having a 0 op_sel_hi would require swizzling the output in the source
1323 // instruction, which we can't do.
1324 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1325 : 0u;
1326 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1327 return nullptr;
1328 return Src0;
1329 }
1330 default:
1331 return nullptr;
1332 }
1333 }
1334
1335 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
tryFoldClamp(MachineInstr & MI)1336 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1337 const MachineOperand *ClampSrc = isClamp(MI);
1338 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1339 return false;
1340
1341 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1342
1343 // The type of clamp must be compatible.
1344 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1345 return false;
1346
1347 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1348 if (!DefClamp)
1349 return false;
1350
1351 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1352
1353 // Clamp is applied after omod, so it is OK if omod is set.
1354 DefClamp->setImm(1);
1355 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1356 MI.eraseFromParent();
1357
1358 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1359 // instruction, so we might as well convert it to the more flexible VOP3-only
1360 // mad/fma form.
1361 if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1362 Def->eraseFromParent();
1363
1364 return true;
1365 }
1366
getOModValue(unsigned Opc,int64_t Val)1367 static int getOModValue(unsigned Opc, int64_t Val) {
1368 switch (Opc) {
1369 case AMDGPU::V_MUL_F64_e64: {
1370 switch (Val) {
1371 case 0x3fe0000000000000: // 0.5
1372 return SIOutMods::DIV2;
1373 case 0x4000000000000000: // 2.0
1374 return SIOutMods::MUL2;
1375 case 0x4010000000000000: // 4.0
1376 return SIOutMods::MUL4;
1377 default:
1378 return SIOutMods::NONE;
1379 }
1380 }
1381 case AMDGPU::V_MUL_F32_e64: {
1382 switch (static_cast<uint32_t>(Val)) {
1383 case 0x3f000000: // 0.5
1384 return SIOutMods::DIV2;
1385 case 0x40000000: // 2.0
1386 return SIOutMods::MUL2;
1387 case 0x40800000: // 4.0
1388 return SIOutMods::MUL4;
1389 default:
1390 return SIOutMods::NONE;
1391 }
1392 }
1393 case AMDGPU::V_MUL_F16_e64: {
1394 switch (static_cast<uint16_t>(Val)) {
1395 case 0x3800: // 0.5
1396 return SIOutMods::DIV2;
1397 case 0x4000: // 2.0
1398 return SIOutMods::MUL2;
1399 case 0x4400: // 4.0
1400 return SIOutMods::MUL4;
1401 default:
1402 return SIOutMods::NONE;
1403 }
1404 }
1405 default:
1406 llvm_unreachable("invalid mul opcode");
1407 }
1408 }
1409
1410 // FIXME: Does this really not support denormals with f16?
1411 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1412 // handled, so will anything other than that break?
1413 std::pair<const MachineOperand *, int>
isOMod(const MachineInstr & MI) const1414 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1415 unsigned Op = MI.getOpcode();
1416 switch (Op) {
1417 case AMDGPU::V_MUL_F64_e64:
1418 case AMDGPU::V_MUL_F32_e64:
1419 case AMDGPU::V_MUL_F16_e64: {
1420 // If output denormals are enabled, omod is ignored.
1421 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1422 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64) &&
1423 MFI->getMode().FP64FP16OutputDenormals))
1424 return std::make_pair(nullptr, SIOutMods::NONE);
1425
1426 const MachineOperand *RegOp = nullptr;
1427 const MachineOperand *ImmOp = nullptr;
1428 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1429 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1430 if (Src0->isImm()) {
1431 ImmOp = Src0;
1432 RegOp = Src1;
1433 } else if (Src1->isImm()) {
1434 ImmOp = Src1;
1435 RegOp = Src0;
1436 } else
1437 return std::make_pair(nullptr, SIOutMods::NONE);
1438
1439 int OMod = getOModValue(Op, ImmOp->getImm());
1440 if (OMod == SIOutMods::NONE ||
1441 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1442 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1443 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1444 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1445 return std::make_pair(nullptr, SIOutMods::NONE);
1446
1447 return std::make_pair(RegOp, OMod);
1448 }
1449 case AMDGPU::V_ADD_F64_e64:
1450 case AMDGPU::V_ADD_F32_e64:
1451 case AMDGPU::V_ADD_F16_e64: {
1452 // If output denormals are enabled, omod is ignored.
1453 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1454 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64) &&
1455 MFI->getMode().FP64FP16OutputDenormals))
1456 return std::make_pair(nullptr, SIOutMods::NONE);
1457
1458 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1459 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1460 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1461
1462 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1463 Src0->getSubReg() == Src1->getSubReg() &&
1464 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1465 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1466 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1467 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1468 return std::make_pair(Src0, SIOutMods::MUL2);
1469
1470 return std::make_pair(nullptr, SIOutMods::NONE);
1471 }
1472 default:
1473 return std::make_pair(nullptr, SIOutMods::NONE);
1474 }
1475 }
1476
1477 // FIXME: Does this need to check IEEE bit on function?
tryFoldOMod(MachineInstr & MI)1478 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1479 const MachineOperand *RegOp;
1480 int OMod;
1481 std::tie(RegOp, OMod) = isOMod(MI);
1482 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1483 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1484 !MRI->hasOneNonDBGUser(RegOp->getReg()))
1485 return false;
1486
1487 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1488 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1489 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1490 return false;
1491
1492 // Clamp is applied after omod. If the source already has clamp set, don't
1493 // fold it.
1494 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1495 return false;
1496
1497 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1498
1499 DefOMod->setImm(OMod);
1500 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1501 MI.eraseFromParent();
1502
1503 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1504 // instruction, so we might as well convert it to the more flexible VOP3-only
1505 // mad/fma form.
1506 if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1507 Def->eraseFromParent();
1508
1509 return true;
1510 }
1511
1512 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1513 // instruction which can take an agpr. So far that means a store.
tryFoldRegSequence(MachineInstr & MI)1514 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1515 assert(MI.isRegSequence());
1516 auto Reg = MI.getOperand(0).getReg();
1517
1518 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1519 !MRI->hasOneNonDBGUse(Reg))
1520 return false;
1521
1522 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1523 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER, TII, *MRI))
1524 return false;
1525
1526 for (auto &Def : Defs) {
1527 const auto *Op = Def.first;
1528 if (!Op->isReg())
1529 return false;
1530 if (TRI->isAGPR(*MRI, Op->getReg()))
1531 continue;
1532 // Maybe this is a COPY from AREG
1533 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1534 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1535 return false;
1536 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1537 return false;
1538 }
1539
1540 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1541 MachineInstr *UseMI = Op->getParent();
1542 while (UseMI->isCopy() && !Op->getSubReg()) {
1543 Reg = UseMI->getOperand(0).getReg();
1544 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1545 return false;
1546 Op = &*MRI->use_nodbg_begin(Reg);
1547 UseMI = Op->getParent();
1548 }
1549
1550 if (Op->getSubReg())
1551 return false;
1552
1553 unsigned OpIdx = Op - &UseMI->getOperand(0);
1554 const MCInstrDesc &InstDesc = UseMI->getDesc();
1555 const TargetRegisterClass *OpRC =
1556 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
1557 if (!OpRC || !TRI->isVectorSuperClass(OpRC))
1558 return false;
1559
1560 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1561 auto Dst = MRI->createVirtualRegister(NewDstRC);
1562 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1563 TII->get(AMDGPU::REG_SEQUENCE), Dst);
1564
1565 for (unsigned I = 0; I < Defs.size(); ++I) {
1566 MachineOperand *Def = Defs[I].first;
1567 Def->setIsKill(false);
1568 if (TRI->isAGPR(*MRI, Def->getReg())) {
1569 RS.add(*Def);
1570 } else { // This is a copy
1571 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1572 SubDef->getOperand(1).setIsKill(false);
1573 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1574 }
1575 RS.addImm(Defs[I].second);
1576 }
1577
1578 Op->setReg(Dst);
1579 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1580 Op->setReg(Reg);
1581 RS->eraseFromParent();
1582 return false;
1583 }
1584
1585 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1586
1587 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1588 // in which case we can erase them all later in runOnMachineFunction.
1589 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1590 MI.eraseFromParent();
1591 return true;
1592 }
1593
1594 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI.
1595 // This should allow folding of an AGPR into a consumer which may support it.
1596 // I.e.:
1597 //
1598 // loop: // loop:
1599 // %1:vreg = COPY %0:areg // exit:
1600 // exit: => // %1:areg = PHI %0:areg, %loop
1601 // %2:vreg = PHI %1:vreg, %loop // %2:vreg = COPY %1:areg
tryFoldLCSSAPhi(MachineInstr & PHI)1602 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) {
1603 assert(PHI.isPHI());
1604
1605 if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI
1606 return false;
1607
1608 Register PhiIn = PHI.getOperand(1).getReg();
1609 Register PhiOut = PHI.getOperand(0).getReg();
1610 if (PHI.getOperand(1).getSubReg() ||
1611 !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut))
1612 return false;
1613
1614 // A single use should not matter for correctness, but if it has another use
1615 // inside the loop we may perform copy twice in a worst case.
1616 if (!MRI->hasOneNonDBGUse(PhiIn))
1617 return false;
1618
1619 MachineInstr *Copy = MRI->getVRegDef(PhiIn);
1620 if (!Copy || !Copy->isCopy())
1621 return false;
1622
1623 Register CopyIn = Copy->getOperand(1).getReg();
1624 if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg())
1625 return false;
1626
1627 const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn);
1628 Register NewReg = MRI->createVirtualRegister(ARC);
1629 PHI.getOperand(1).setReg(CopyIn);
1630 PHI.getOperand(0).setReg(NewReg);
1631
1632 MachineBasicBlock *MBB = PHI.getParent();
1633 BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(),
1634 TII->get(AMDGPU::COPY), PhiOut)
1635 .addReg(NewReg, RegState::Kill);
1636 Copy->eraseFromParent(); // We know this copy had a single use.
1637
1638 LLVM_DEBUG(dbgs() << "Folded " << PHI);
1639
1640 return true;
1641 }
1642
1643 // Attempt to convert VGPR load to an AGPR load.
tryFoldLoad(MachineInstr & MI)1644 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1645 assert(MI.mayLoad());
1646 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1647 return false;
1648
1649 MachineOperand &Def = MI.getOperand(0);
1650 if (!Def.isDef())
1651 return false;
1652
1653 Register DefReg = Def.getReg();
1654
1655 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1656 return false;
1657
1658 SmallVector<const MachineInstr*, 8> Users;
1659 SmallVector<Register, 8> MoveRegs;
1660 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) {
1661 Users.push_back(&I);
1662 }
1663 if (Users.empty())
1664 return false;
1665
1666 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
1667 while (!Users.empty()) {
1668 const MachineInstr *I = Users.pop_back_val();
1669 if (!I->isCopy() && !I->isRegSequence())
1670 return false;
1671 Register DstReg = I->getOperand(0).getReg();
1672 if (TRI->isAGPR(*MRI, DstReg))
1673 continue;
1674 MoveRegs.push_back(DstReg);
1675 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) {
1676 Users.push_back(&U);
1677 }
1678 }
1679
1680 const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
1681 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
1682 if (!TII->isOperandLegal(MI, 0, &Def)) {
1683 MRI->setRegClass(DefReg, RC);
1684 return false;
1685 }
1686
1687 while (!MoveRegs.empty()) {
1688 Register Reg = MoveRegs.pop_back_val();
1689 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
1690 }
1691
1692 LLVM_DEBUG(dbgs() << "Folded " << MI);
1693
1694 return true;
1695 }
1696
runOnMachineFunction(MachineFunction & MF)1697 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1698 if (skipFunction(MF.getFunction()))
1699 return false;
1700
1701 MRI = &MF.getRegInfo();
1702 ST = &MF.getSubtarget<GCNSubtarget>();
1703 TII = ST->getInstrInfo();
1704 TRI = &TII->getRegisterInfo();
1705 MFI = MF.getInfo<SIMachineFunctionInfo>();
1706
1707 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1708 // correctly handle signed zeros.
1709 //
1710 // FIXME: Also need to check strictfp
1711 bool IsIEEEMode = MFI->getMode().IEEE;
1712 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1713
1714 bool Changed = false;
1715 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1716 MachineOperand *CurrentKnownM0Val = nullptr;
1717 for (auto &MI : make_early_inc_range(*MBB)) {
1718 Changed |= tryFoldCndMask(MI);
1719
1720 if (tryFoldZeroHighBits(MI)) {
1721 Changed = true;
1722 continue;
1723 }
1724
1725 if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
1726 Changed = true;
1727 continue;
1728 }
1729
1730 if (MI.isPHI() && tryFoldLCSSAPhi(MI)) {
1731 Changed = true;
1732 continue;
1733 }
1734
1735 if (MI.mayLoad() && tryFoldLoad(MI)) {
1736 Changed = true;
1737 continue;
1738 }
1739
1740 if (!TII->isFoldableCopy(MI)) {
1741 // Saw an unknown clobber of m0, so we no longer know what it is.
1742 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1743 CurrentKnownM0Val = nullptr;
1744
1745 // TODO: Omod might be OK if there is NSZ only on the source
1746 // instruction, and not the omod multiply.
1747 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1748 !tryFoldOMod(MI))
1749 Changed |= tryFoldClamp(MI);
1750
1751 continue;
1752 }
1753
1754 // Specially track simple redefs of m0 to the same value in a block, so we
1755 // can erase the later ones.
1756 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1757 MachineOperand &NewM0Val = MI.getOperand(1);
1758 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1759 MI.eraseFromParent();
1760 Changed = true;
1761 continue;
1762 }
1763
1764 // We aren't tracking other physical registers
1765 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1766 nullptr : &NewM0Val;
1767 continue;
1768 }
1769
1770 MachineOperand &OpToFold = MI.getOperand(1);
1771 bool FoldingImm =
1772 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1773
1774 // FIXME: We could also be folding things like TargetIndexes.
1775 if (!FoldingImm && !OpToFold.isReg())
1776 continue;
1777
1778 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1779 continue;
1780
1781 // Prevent folding operands backwards in the function. For example,
1782 // the COPY opcode must not be replaced by 1 in this example:
1783 //
1784 // %3 = COPY %vgpr0; VGPR_32:%3
1785 // ...
1786 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1787 if (!MI.getOperand(0).getReg().isVirtual())
1788 continue;
1789
1790 Changed |= foldInstOperand(MI, OpToFold);
1791
1792 // If we managed to fold all uses of this copy then we might as well
1793 // delete it now.
1794 // The only reason we need to follow chains of copies here is that
1795 // tryFoldRegSequence looks forward through copies before folding a
1796 // REG_SEQUENCE into its eventual users.
1797 auto *InstToErase = &MI;
1798 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1799 auto &SrcOp = InstToErase->getOperand(1);
1800 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1801 InstToErase->eraseFromParent();
1802 Changed = true;
1803 InstToErase = nullptr;
1804 if (!SrcReg || SrcReg.isPhysical())
1805 break;
1806 InstToErase = MRI->getVRegDef(SrcReg);
1807 if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1808 break;
1809 }
1810 if (InstToErase && InstToErase->isRegSequence() &&
1811 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1812 InstToErase->eraseFromParent();
1813 Changed = true;
1814 }
1815 }
1816 }
1817 return Changed;
1818 }
1819