1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/CodeGen/LiveIntervals.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "si-fold-operands" 27 using namespace llvm; 28 29 namespace { 30 31 struct FoldCandidate { 32 MachineInstr *UseMI; 33 union { 34 MachineOperand *OpToFold; 35 uint64_t ImmToFold; 36 int FrameIndexToFold; 37 }; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false) : 44 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()), 45 Commuted(Commuted_) { 46 if (FoldOp->isImm()) { 47 ImmToFold = FoldOp->getImm(); 48 } else if (FoldOp->isFI()) { 49 FrameIndexToFold = FoldOp->getIndex(); 50 } else { 51 assert(FoldOp->isReg()); 52 OpToFold = FoldOp; 53 } 54 } 55 56 bool isFI() const { 57 return Kind == MachineOperand::MO_FrameIndex; 58 } 59 60 bool isImm() const { 61 return Kind == MachineOperand::MO_Immediate; 62 } 63 64 bool isReg() const { 65 return Kind == MachineOperand::MO_Register; 66 } 67 68 bool isCommuted() const { 69 return Commuted; 70 } 71 }; 72 73 class SIFoldOperands : public MachineFunctionPass { 74 public: 75 static char ID; 76 MachineRegisterInfo *MRI; 77 const SIInstrInfo *TII; 78 const SIRegisterInfo *TRI; 79 const GCNSubtarget *ST; 80 81 void foldOperand(MachineOperand &OpToFold, 82 MachineInstr *UseMI, 83 unsigned UseOpIdx, 84 SmallVectorImpl<FoldCandidate> &FoldList, 85 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 86 87 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 88 89 const MachineOperand *isClamp(const MachineInstr &MI) const; 90 bool tryFoldClamp(MachineInstr &MI); 91 92 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 93 bool tryFoldOMod(MachineInstr &MI); 94 95 public: 96 SIFoldOperands() : MachineFunctionPass(ID) { 97 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 98 } 99 100 bool runOnMachineFunction(MachineFunction &MF) override; 101 102 StringRef getPassName() const override { return "SI Fold Operands"; } 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 AU.setPreservesCFG(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 }; 109 110 } // End anonymous namespace. 111 112 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 113 "SI Fold Operands", false, false) 114 115 char SIFoldOperands::ID = 0; 116 117 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 118 119 // Wrapper around isInlineConstant that understands special cases when 120 // instruction types are replaced during operand folding. 121 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 122 const MachineInstr &UseMI, 123 unsigned OpNo, 124 const MachineOperand &OpToFold) { 125 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 126 return true; 127 128 unsigned Opc = UseMI.getOpcode(); 129 switch (Opc) { 130 case AMDGPU::V_MAC_F32_e64: 131 case AMDGPU::V_MAC_F16_e64: 132 case AMDGPU::V_FMAC_F32_e64: { 133 // Special case for mac. Since this is replaced with mad when folded into 134 // src2, we need to check the legality for the final instruction. 135 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 136 if (static_cast<int>(OpNo) == Src2Idx) { 137 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 138 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 139 140 unsigned Opc = IsFMA ? 141 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 142 const MCInstrDesc &MadDesc = TII->get(Opc); 143 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 144 } 145 return false; 146 } 147 default: 148 return false; 149 } 150 } 151 152 FunctionPass *llvm::createSIFoldOperandsPass() { 153 return new SIFoldOperands(); 154 } 155 156 static bool updateOperand(FoldCandidate &Fold, 157 const TargetRegisterInfo &TRI) { 158 MachineInstr *MI = Fold.UseMI; 159 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 160 assert(Old.isReg()); 161 162 if (Fold.isImm()) { 163 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) { 164 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 165 // already set. 166 unsigned Opcode = MI->getOpcode(); 167 int OpNo = MI->getOperandNo(&Old); 168 int ModIdx = -1; 169 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 170 ModIdx = AMDGPU::OpName::src0_modifiers; 171 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 172 ModIdx = AMDGPU::OpName::src1_modifiers; 173 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 174 ModIdx = AMDGPU::OpName::src2_modifiers; 175 assert(ModIdx != -1); 176 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 177 MachineOperand &Mod = MI->getOperand(ModIdx); 178 unsigned Val = Mod.getImm(); 179 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 180 return false; 181 // If upper part is all zero we do not need op_sel_hi. 182 if (!isUInt<16>(Fold.ImmToFold)) { 183 if (!(Fold.ImmToFold & 0xffff)) { 184 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 185 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 186 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 187 return true; 188 } 189 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 190 } 191 } 192 Old.ChangeToImmediate(Fold.ImmToFold); 193 return true; 194 } 195 196 if (Fold.isFI()) { 197 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 198 return true; 199 } 200 201 MachineOperand *New = Fold.OpToFold; 202 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 203 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 204 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 205 206 Old.setIsUndef(New->isUndef()); 207 return true; 208 } 209 210 // FIXME: Handle physical registers. 211 212 return false; 213 } 214 215 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 216 const MachineInstr *MI) { 217 for (auto Candidate : FoldList) { 218 if (Candidate.UseMI == MI) 219 return true; 220 } 221 return false; 222 } 223 224 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 225 MachineInstr *MI, unsigned OpNo, 226 MachineOperand *OpToFold, 227 const SIInstrInfo *TII) { 228 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 229 230 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 231 unsigned Opc = MI->getOpcode(); 232 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 233 Opc == AMDGPU::V_FMAC_F32_e64) && 234 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 235 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 236 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 237 unsigned NewOpc = IsFMA ? 238 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 239 240 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 241 // to fold the operand. 242 MI->setDesc(TII->get(NewOpc)); 243 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 244 if (FoldAsMAD) { 245 MI->untieRegOperand(OpNo); 246 return true; 247 } 248 MI->setDesc(TII->get(Opc)); 249 } 250 251 // Special case for s_setreg_b32 252 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 253 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 254 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 255 return true; 256 } 257 258 // If we are already folding into another operand of MI, then 259 // we can't commute the instruction, otherwise we risk making the 260 // other fold illegal. 261 if (isUseMIInFoldList(FoldList, MI)) 262 return false; 263 264 // Operand is not legal, so try to commute the instruction to 265 // see if this makes it possible to fold. 266 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 267 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 268 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 269 270 if (CanCommute) { 271 if (CommuteIdx0 == OpNo) 272 OpNo = CommuteIdx1; 273 else if (CommuteIdx1 == OpNo) 274 OpNo = CommuteIdx0; 275 } 276 277 // One of operands might be an Imm operand, and OpNo may refer to it after 278 // the call of commuteInstruction() below. Such situations are avoided 279 // here explicitly as OpNo must be a register operand to be a candidate 280 // for memory folding. 281 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 282 !MI->getOperand(CommuteIdx1).isReg())) 283 return false; 284 285 if (!CanCommute || 286 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 287 return false; 288 289 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 290 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 291 return false; 292 } 293 294 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true)); 295 return true; 296 } 297 298 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 299 return true; 300 } 301 302 // If the use operand doesn't care about the value, this may be an operand only 303 // used for register indexing, in which case it is unsafe to fold. 304 static bool isUseSafeToFold(const SIInstrInfo *TII, 305 const MachineInstr &MI, 306 const MachineOperand &UseMO) { 307 return !UseMO.isUndef() && !TII->isSDWA(MI); 308 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 309 } 310 311 void SIFoldOperands::foldOperand( 312 MachineOperand &OpToFold, 313 MachineInstr *UseMI, 314 unsigned UseOpIdx, 315 SmallVectorImpl<FoldCandidate> &FoldList, 316 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 317 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 318 319 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 320 return; 321 322 // FIXME: Fold operands with subregs. 323 if (UseOp.isReg() && OpToFold.isReg()) { 324 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 325 return; 326 327 // Don't fold subregister extracts into tied operands, only if it is a full 328 // copy since a subregister use tied to a full register def doesn't really 329 // make sense. e.g. don't fold: 330 // 331 // %1 = COPY %0:sub1 332 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 333 // 334 // into 335 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 336 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 337 return; 338 } 339 340 // Special case for REG_SEQUENCE: We can't fold literals into 341 // REG_SEQUENCE instructions, so we have to fold them into the 342 // uses of REG_SEQUENCE. 343 if (UseMI->isRegSequence()) { 344 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 345 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 346 347 for (MachineRegisterInfo::use_iterator 348 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 349 RSUse != RSE; ++RSUse) { 350 351 MachineInstr *RSUseMI = RSUse->getParent(); 352 if (RSUse->getSubReg() != RegSeqDstSubReg) 353 continue; 354 355 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 356 CopiesToReplace); 357 } 358 359 return; 360 } 361 362 363 bool FoldingImm = OpToFold.isImm(); 364 365 // In order to fold immediates into copies, we need to change the 366 // copy to a MOV. 367 if (FoldingImm && UseMI->isCopy()) { 368 unsigned DestReg = UseMI->getOperand(0).getReg(); 369 const TargetRegisterClass *DestRC 370 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 371 MRI->getRegClass(DestReg) : 372 TRI->getPhysRegClass(DestReg); 373 374 unsigned MovOp = TII->getMovOpcode(DestRC); 375 if (MovOp == AMDGPU::COPY) 376 return; 377 378 UseMI->setDesc(TII->get(MovOp)); 379 CopiesToReplace.push_back(UseMI); 380 } else { 381 const MCInstrDesc &UseDesc = UseMI->getDesc(); 382 383 // Don't fold into target independent nodes. Target independent opcodes 384 // don't have defined register classes. 385 if (UseDesc.isVariadic() || 386 UseOp.isImplicit() || 387 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 388 return; 389 } 390 391 if (!FoldingImm) { 392 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 393 394 // FIXME: We could try to change the instruction from 64-bit to 32-bit 395 // to enable more folding opportunites. The shrink operands pass 396 // already does this. 397 return; 398 } 399 400 401 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 402 const TargetRegisterClass *FoldRC = 403 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 404 405 406 // Split 64-bit constants into 32-bits for folding. 407 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 408 unsigned UseReg = UseOp.getReg(); 409 const TargetRegisterClass *UseRC 410 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 411 MRI->getRegClass(UseReg) : 412 TRI->getPhysRegClass(UseReg); 413 414 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 415 return; 416 417 APInt Imm(64, OpToFold.getImm()); 418 if (UseOp.getSubReg() == AMDGPU::sub0) { 419 Imm = Imm.getLoBits(32); 420 } else { 421 assert(UseOp.getSubReg() == AMDGPU::sub1); 422 Imm = Imm.getHiBits(32); 423 } 424 425 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 426 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 427 return; 428 } 429 430 431 432 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 433 } 434 435 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 436 uint32_t LHS, uint32_t RHS) { 437 switch (Opcode) { 438 case AMDGPU::V_AND_B32_e64: 439 case AMDGPU::V_AND_B32_e32: 440 case AMDGPU::S_AND_B32: 441 Result = LHS & RHS; 442 return true; 443 case AMDGPU::V_OR_B32_e64: 444 case AMDGPU::V_OR_B32_e32: 445 case AMDGPU::S_OR_B32: 446 Result = LHS | RHS; 447 return true; 448 case AMDGPU::V_XOR_B32_e64: 449 case AMDGPU::V_XOR_B32_e32: 450 case AMDGPU::S_XOR_B32: 451 Result = LHS ^ RHS; 452 return true; 453 case AMDGPU::V_LSHL_B32_e64: 454 case AMDGPU::V_LSHL_B32_e32: 455 case AMDGPU::S_LSHL_B32: 456 // The instruction ignores the high bits for out of bounds shifts. 457 Result = LHS << (RHS & 31); 458 return true; 459 case AMDGPU::V_LSHLREV_B32_e64: 460 case AMDGPU::V_LSHLREV_B32_e32: 461 Result = RHS << (LHS & 31); 462 return true; 463 case AMDGPU::V_LSHR_B32_e64: 464 case AMDGPU::V_LSHR_B32_e32: 465 case AMDGPU::S_LSHR_B32: 466 Result = LHS >> (RHS & 31); 467 return true; 468 case AMDGPU::V_LSHRREV_B32_e64: 469 case AMDGPU::V_LSHRREV_B32_e32: 470 Result = RHS >> (LHS & 31); 471 return true; 472 case AMDGPU::V_ASHR_I32_e64: 473 case AMDGPU::V_ASHR_I32_e32: 474 case AMDGPU::S_ASHR_I32: 475 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 476 return true; 477 case AMDGPU::V_ASHRREV_I32_e64: 478 case AMDGPU::V_ASHRREV_I32_e32: 479 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 480 return true; 481 default: 482 return false; 483 } 484 } 485 486 static unsigned getMovOpc(bool IsScalar) { 487 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 488 } 489 490 /// Remove any leftover implicit operands from mutating the instruction. e.g. 491 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 492 /// anymore. 493 static void stripExtraCopyOperands(MachineInstr &MI) { 494 const MCInstrDesc &Desc = MI.getDesc(); 495 unsigned NumOps = Desc.getNumOperands() + 496 Desc.getNumImplicitUses() + 497 Desc.getNumImplicitDefs(); 498 499 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 500 MI.RemoveOperand(I); 501 } 502 503 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 504 MI.setDesc(NewDesc); 505 stripExtraCopyOperands(MI); 506 } 507 508 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 509 MachineOperand &Op) { 510 if (Op.isReg()) { 511 // If this has a subregister, it obviously is a register source. 512 if (Op.getSubReg() != AMDGPU::NoSubRegister || 513 !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 514 return &Op; 515 516 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 517 if (Def && Def->isMoveImmediate()) { 518 MachineOperand &ImmSrc = Def->getOperand(1); 519 if (ImmSrc.isImm()) 520 return &ImmSrc; 521 } 522 } 523 524 return &Op; 525 } 526 527 // Try to simplify operations with a constant that may appear after instruction 528 // selection. 529 // TODO: See if a frame index with a fixed offset can fold. 530 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 531 const SIInstrInfo *TII, 532 MachineInstr *MI, 533 MachineOperand *ImmOp) { 534 unsigned Opc = MI->getOpcode(); 535 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 536 Opc == AMDGPU::S_NOT_B32) { 537 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 538 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 539 return true; 540 } 541 542 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 543 if (Src1Idx == -1) 544 return false; 545 546 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 547 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 548 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 549 550 if (!Src0->isImm() && !Src1->isImm()) 551 return false; 552 553 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 554 if (Src0->isImm() && Src0->getImm() == 0) { 555 // v_lshl_or_b32 0, X, Y -> copy Y 556 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 557 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 558 MI->RemoveOperand(Src1Idx); 559 MI->RemoveOperand(Src0Idx); 560 561 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 562 return true; 563 } 564 } 565 566 // and k0, k1 -> v_mov_b32 (k0 & k1) 567 // or k0, k1 -> v_mov_b32 (k0 | k1) 568 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 569 if (Src0->isImm() && Src1->isImm()) { 570 int32_t NewImm; 571 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 572 return false; 573 574 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 575 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 576 577 // Be careful to change the right operand, src0 may belong to a different 578 // instruction. 579 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 580 MI->RemoveOperand(Src1Idx); 581 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 582 return true; 583 } 584 585 if (!MI->isCommutable()) 586 return false; 587 588 if (Src0->isImm() && !Src1->isImm()) { 589 std::swap(Src0, Src1); 590 std::swap(Src0Idx, Src1Idx); 591 } 592 593 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 594 if (Opc == AMDGPU::V_OR_B32_e64 || 595 Opc == AMDGPU::V_OR_B32_e32 || 596 Opc == AMDGPU::S_OR_B32) { 597 if (Src1Val == 0) { 598 // y = or x, 0 => y = copy x 599 MI->RemoveOperand(Src1Idx); 600 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 601 } else if (Src1Val == -1) { 602 // y = or x, -1 => y = v_mov_b32 -1 603 MI->RemoveOperand(Src1Idx); 604 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 605 } else 606 return false; 607 608 return true; 609 } 610 611 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 612 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 613 MI->getOpcode() == AMDGPU::S_AND_B32) { 614 if (Src1Val == 0) { 615 // y = and x, 0 => y = v_mov_b32 0 616 MI->RemoveOperand(Src0Idx); 617 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 618 } else if (Src1Val == -1) { 619 // y = and x, -1 => y = copy x 620 MI->RemoveOperand(Src1Idx); 621 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 622 stripExtraCopyOperands(*MI); 623 } else 624 return false; 625 626 return true; 627 } 628 629 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 630 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 631 MI->getOpcode() == AMDGPU::S_XOR_B32) { 632 if (Src1Val == 0) { 633 // y = xor x, 0 => y = copy x 634 MI->RemoveOperand(Src1Idx); 635 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 636 return true; 637 } 638 } 639 640 return false; 641 } 642 643 // Try to fold an instruction into a simpler one 644 static bool tryFoldInst(const SIInstrInfo *TII, 645 MachineInstr *MI) { 646 unsigned Opc = MI->getOpcode(); 647 648 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 649 Opc == AMDGPU::V_CNDMASK_B32_e64 || 650 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 651 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 652 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 653 if (Src1->isIdenticalTo(*Src0)) { 654 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 655 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 656 if (Src2Idx != -1) 657 MI->RemoveOperand(Src2Idx); 658 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 659 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 660 : getMovOpc(false))); 661 LLVM_DEBUG(dbgs() << *MI << '\n'); 662 return true; 663 } 664 } 665 666 return false; 667 } 668 669 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 670 MachineOperand &OpToFold) const { 671 // We need mutate the operands of new mov instructions to add implicit 672 // uses of EXEC, but adding them invalidates the use_iterator, so defer 673 // this. 674 SmallVector<MachineInstr *, 4> CopiesToReplace; 675 SmallVector<FoldCandidate, 4> FoldList; 676 MachineOperand &Dst = MI.getOperand(0); 677 678 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 679 if (FoldingImm) { 680 unsigned NumLiteralUses = 0; 681 MachineOperand *NonInlineUse = nullptr; 682 int NonInlineUseOpNo = -1; 683 684 MachineRegisterInfo::use_iterator NextUse; 685 for (MachineRegisterInfo::use_iterator 686 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 687 Use != E; Use = NextUse) { 688 NextUse = std::next(Use); 689 MachineInstr *UseMI = Use->getParent(); 690 unsigned OpNo = Use.getOperandNo(); 691 692 // Folding the immediate may reveal operations that can be constant 693 // folded or replaced with a copy. This can happen for example after 694 // frame indices are lowered to constants or from splitting 64-bit 695 // constants. 696 // 697 // We may also encounter cases where one or both operands are 698 // immediates materialized into a register, which would ordinarily not 699 // be folded due to multiple uses or operand constraints. 700 701 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 702 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 703 704 // Some constant folding cases change the same immediate's use to a new 705 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 706 // again. The same constant folded instruction could also have a second 707 // use operand. 708 NextUse = MRI->use_begin(Dst.getReg()); 709 FoldList.clear(); 710 continue; 711 } 712 713 // Try to fold any inline immediate uses, and then only fold other 714 // constants if they have one use. 715 // 716 // The legality of the inline immediate must be checked based on the use 717 // operand, not the defining instruction, because 32-bit instructions 718 // with 32-bit inline immediate sources may be used to materialize 719 // constants used in 16-bit operands. 720 // 721 // e.g. it is unsafe to fold: 722 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 723 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 724 725 // Folding immediates with more than one use will increase program size. 726 // FIXME: This will also reduce register usage, which may be better 727 // in some cases. A better heuristic is needed. 728 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 729 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 730 } else { 731 if (++NumLiteralUses == 1) { 732 NonInlineUse = &*Use; 733 NonInlineUseOpNo = OpNo; 734 } 735 } 736 } 737 738 if (NumLiteralUses == 1) { 739 MachineInstr *UseMI = NonInlineUse->getParent(); 740 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 741 } 742 } else { 743 // Folding register. 744 for (MachineRegisterInfo::use_iterator 745 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 746 Use != E; ++Use) { 747 MachineInstr *UseMI = Use->getParent(); 748 749 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 750 FoldList, CopiesToReplace); 751 } 752 } 753 754 MachineFunction *MF = MI.getParent()->getParent(); 755 // Make sure we add EXEC uses to any new v_mov instructions created. 756 for (MachineInstr *Copy : CopiesToReplace) 757 Copy->addImplicitDefUseOperands(*MF); 758 759 for (FoldCandidate &Fold : FoldList) { 760 if (updateOperand(Fold, *TRI)) { 761 // Clear kill flags. 762 if (Fold.isReg()) { 763 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 764 // FIXME: Probably shouldn't bother trying to fold if not an 765 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 766 // copies. 767 MRI->clearKillFlags(Fold.OpToFold->getReg()); 768 } 769 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 770 << static_cast<int>(Fold.UseOpNo) << " of " 771 << *Fold.UseMI << '\n'); 772 tryFoldInst(TII, Fold.UseMI); 773 } else if (Fold.isCommuted()) { 774 // Restoring instruction's original operand order if fold has failed. 775 TII->commuteInstruction(*Fold.UseMI, false); 776 } 777 } 778 } 779 780 // Clamp patterns are canonically selected to v_max_* instructions, so only 781 // handle them. 782 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 783 unsigned Op = MI.getOpcode(); 784 switch (Op) { 785 case AMDGPU::V_MAX_F32_e64: 786 case AMDGPU::V_MAX_F16_e64: 787 case AMDGPU::V_MAX_F64: 788 case AMDGPU::V_PK_MAX_F16: { 789 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 790 return nullptr; 791 792 // Make sure sources are identical. 793 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 794 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 795 if (!Src0->isReg() || !Src1->isReg() || 796 Src0->getReg() != Src1->getReg() || 797 Src0->getSubReg() != Src1->getSubReg() || 798 Src0->getSubReg() != AMDGPU::NoSubRegister) 799 return nullptr; 800 801 // Can't fold up if we have modifiers. 802 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 803 return nullptr; 804 805 unsigned Src0Mods 806 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 807 unsigned Src1Mods 808 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 809 810 // Having a 0 op_sel_hi would require swizzling the output in the source 811 // instruction, which we can't do. 812 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0; 813 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 814 return nullptr; 815 return Src0; 816 } 817 default: 818 return nullptr; 819 } 820 } 821 822 // We obviously have multiple uses in a clamp since the register is used twice 823 // in the same instruction. 824 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 825 int Count = 0; 826 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 827 I != E; ++I) { 828 if (++Count > 1) 829 return false; 830 } 831 832 return true; 833 } 834 835 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 836 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 837 const MachineOperand *ClampSrc = isClamp(MI); 838 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 839 return false; 840 841 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 842 843 // The type of clamp must be compatible. 844 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 845 return false; 846 847 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 848 if (!DefClamp) 849 return false; 850 851 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 852 << '\n'); 853 854 // Clamp is applied after omod, so it is OK if omod is set. 855 DefClamp->setImm(1); 856 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 857 MI.eraseFromParent(); 858 return true; 859 } 860 861 static int getOModValue(unsigned Opc, int64_t Val) { 862 switch (Opc) { 863 case AMDGPU::V_MUL_F32_e64: { 864 switch (static_cast<uint32_t>(Val)) { 865 case 0x3f000000: // 0.5 866 return SIOutMods::DIV2; 867 case 0x40000000: // 2.0 868 return SIOutMods::MUL2; 869 case 0x40800000: // 4.0 870 return SIOutMods::MUL4; 871 default: 872 return SIOutMods::NONE; 873 } 874 } 875 case AMDGPU::V_MUL_F16_e64: { 876 switch (static_cast<uint16_t>(Val)) { 877 case 0x3800: // 0.5 878 return SIOutMods::DIV2; 879 case 0x4000: // 2.0 880 return SIOutMods::MUL2; 881 case 0x4400: // 4.0 882 return SIOutMods::MUL4; 883 default: 884 return SIOutMods::NONE; 885 } 886 } 887 default: 888 llvm_unreachable("invalid mul opcode"); 889 } 890 } 891 892 // FIXME: Does this really not support denormals with f16? 893 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 894 // handled, so will anything other than that break? 895 std::pair<const MachineOperand *, int> 896 SIFoldOperands::isOMod(const MachineInstr &MI) const { 897 unsigned Op = MI.getOpcode(); 898 switch (Op) { 899 case AMDGPU::V_MUL_F32_e64: 900 case AMDGPU::V_MUL_F16_e64: { 901 // If output denormals are enabled, omod is ignored. 902 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 903 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 904 return std::make_pair(nullptr, SIOutMods::NONE); 905 906 const MachineOperand *RegOp = nullptr; 907 const MachineOperand *ImmOp = nullptr; 908 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 909 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 910 if (Src0->isImm()) { 911 ImmOp = Src0; 912 RegOp = Src1; 913 } else if (Src1->isImm()) { 914 ImmOp = Src1; 915 RegOp = Src0; 916 } else 917 return std::make_pair(nullptr, SIOutMods::NONE); 918 919 int OMod = getOModValue(Op, ImmOp->getImm()); 920 if (OMod == SIOutMods::NONE || 921 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 922 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 923 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 924 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 925 return std::make_pair(nullptr, SIOutMods::NONE); 926 927 return std::make_pair(RegOp, OMod); 928 } 929 case AMDGPU::V_ADD_F32_e64: 930 case AMDGPU::V_ADD_F16_e64: { 931 // If output denormals are enabled, omod is ignored. 932 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 933 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 934 return std::make_pair(nullptr, SIOutMods::NONE); 935 936 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 937 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 938 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 939 940 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 941 Src0->getSubReg() == Src1->getSubReg() && 942 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 943 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 944 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 945 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 946 return std::make_pair(Src0, SIOutMods::MUL2); 947 948 return std::make_pair(nullptr, SIOutMods::NONE); 949 } 950 default: 951 return std::make_pair(nullptr, SIOutMods::NONE); 952 } 953 } 954 955 // FIXME: Does this need to check IEEE bit on function? 956 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 957 const MachineOperand *RegOp; 958 int OMod; 959 std::tie(RegOp, OMod) = isOMod(MI); 960 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 961 RegOp->getSubReg() != AMDGPU::NoSubRegister || 962 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 963 return false; 964 965 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 966 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 967 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 968 return false; 969 970 // Clamp is applied after omod. If the source already has clamp set, don't 971 // fold it. 972 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 973 return false; 974 975 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 976 977 DefOMod->setImm(OMod); 978 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 979 MI.eraseFromParent(); 980 return true; 981 } 982 983 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 984 if (skipFunction(MF.getFunction())) 985 return false; 986 987 MRI = &MF.getRegInfo(); 988 ST = &MF.getSubtarget<GCNSubtarget>(); 989 TII = ST->getInstrInfo(); 990 TRI = &TII->getRegisterInfo(); 991 992 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 993 994 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 995 // correctly handle signed zeros. 996 // 997 // TODO: Check nsz on instructions when fast math flags are preserved to MI 998 // level. 999 bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath(); 1000 1001 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1002 MachineBasicBlock::iterator I, Next; 1003 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1004 Next = std::next(I); 1005 MachineInstr &MI = *I; 1006 1007 tryFoldInst(TII, &MI); 1008 1009 if (!TII->isFoldableCopy(MI)) { 1010 if (IsIEEEMode || !tryFoldOMod(MI)) 1011 tryFoldClamp(MI); 1012 continue; 1013 } 1014 1015 MachineOperand &OpToFold = MI.getOperand(1); 1016 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 1017 1018 // FIXME: We could also be folding things like TargetIndexes. 1019 if (!FoldingImm && !OpToFold.isReg()) 1020 continue; 1021 1022 if (OpToFold.isReg() && 1023 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 1024 continue; 1025 1026 // Prevent folding operands backwards in the function. For example, 1027 // the COPY opcode must not be replaced by 1 in this example: 1028 // 1029 // %3 = COPY %vgpr0; VGPR_32:%3 1030 // ... 1031 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1032 MachineOperand &Dst = MI.getOperand(0); 1033 if (Dst.isReg() && 1034 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 1035 continue; 1036 1037 foldInstOperand(MI, OpToFold); 1038 } 1039 } 1040 return false; 1041 } 1042